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Abstract 
 
 

 The purpose of this course was to present results on weak convergence and 
invariance principle with statistical applications. As various techniques used to obtain 
different statistical applications, I have made an effort to introduce students to embedding 
technique of Skorokhod in chapter 1 and 5. Most of the material is from the book of Durrett 
[3]. In chapter 2, we relate this convergence to weak convergence on C [0,1] following the 
book of Billingsley [1]. In addition, we present the work in [1] on weak convergence on D[0,1] 
and D[0,∞) originated in the work of Skorokhod. In particular, we present the interesting 
theorem of Aldous for determining compactness in D[0,∞) as given in [1]. This is then 
exploited in chapter 4 to obtain central limit theorems for continuous semi-martingale due to 
Lipster and Shiryayev using ideas from the book of Jacod and Shiryayev [5]. As an 
application of this work we present the work of R. Gill [4], Kaplan-Meier estimate of life 
distributin with censored data using techniques in [2]. Finally in the last chapter we present 
the work on empirical processes using recent book of Van der Vaart and Wellner [6]. 
 
 I thank Mr. J. Kim for taking careful notes and typing them. 
 
 Finally, I dedicated these notes to the memory of A. V. Skorokhod from whom I 
learned a lot. 



2 Weak Convergence In Metric Spaces

2.1 Cylindrical Measures

Let {Xt, t ∈ T} be family of random variable on a probability space (Ω,F , P ).
Assume that Xt takes values in (Xt,At).

For any finite set S ⊂ T ,

XS =
∏
t∈S
Xt,AS =

⊗
t∈S
At, QS = P ◦ (Xt, t ∈ S)−1

where QS is the induced measure. Check if ΠS′S : XS′ → XS for S ⊂ S′, then

QS = QS′ ◦Π−1
S′S (1)

Suppose we are given a family {QS , S ⊂ T finite dimensional} where QS on
(XS ,AS). Assume they satisfy (1). Then, there exists probability measure on
(XT ,AT ) such that

Q ◦Π−1
S = QS

where XT =
∏
t∈T Xt,AT = σ

(⋃
S⊂T CS

)
, CS = Π−1

S (AS).

Remark. For S ⊂ T and C ∈ CS , define

Q0(C) = QS(A)

C = Π−1
S (A)

CS = Π−1
S (AS)

We can define Q0 on
⋃
S⊂T CS . Then, for C ∈ CS and CS′ ,

Q0(C) = QS(A) = QS′(A),

and hence Q0 is well-defined.

Note that
CS1
∪ CS2

∪ · · · ∪ CSk ⊂ CS1∪···∪Sk

Q0 is finitely additive on
⋃
S⊂T CS . We have to show the countable additivity.

Definition 2.1 A collection of subsets K ⊂ X is called a compact class if for
every sequence {Ck} ⊂ K, for all n <∞,

n⋂
k=1

Ck 6= ∅ =⇒
∞⋂
k=1

Ck 6= ∅
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Exercise 1. Every subcollection of compact class is compact.

Exercise 2. If X and Y are two spaces and T : X → Y, and K is com-
pact class in Y, then T−1(K) is compact class in X .

Definition 2.2 A finitely additive measure µ on (X ,A0) is called compact if
there exists a compact class K such that for every A ∈ A0 and ε > 0, there exists
Cε ∈ K, and Aε ∈ A0 such that

Aε ⊂ Cε ⊂ A and µ(A−Aε) < ε

We call K is µ−approximable A0.

Lemma 2.1 Every compact finitely additive measure is countably additive.

Proof. Suppose (X ,A0, µ) is given. There exists a compact class K which is
µ−approximable A0. Let {An} ⊂ A0 such that An ↘ ∅. We need to show that
µ(An)↘ 0. For given ε > 0, let Bn ∈ A0 and Cn ∈ K such that

Bn ⊂ Cn ⊂ An, and µ(An −Bn) <
ε

2n

Suppose µ(An) does not go to 0, i.e., for all n, µ(An) > ε. Since we know that

µ
(
An −

n⋂
k=1

Bk

)
= µ

( n⋂
k=1

Ak

)
− µ

( n⋂
k=1

Bk

)
<
ε

2
,

we conclude that for all n,

µ
( n⋂
k=1

Bk

)
>
ε

2

Next for all n
n⋂
k=1

Bk 6= ∅,

and hence we have for all n
n⋂
k=1

Ck 6= ∅,

which implies
∞⋂
k=1

Ck 6= ∅
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since Ck ∈ K, and K is compact. Therefore, it follows that

∞⋂
k=1

Ak ⊃
∞⋂
k=1

Ck 6= ∅

implies
lim
n→∞

An 6= ∅,

which is a contradiction.
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2.2 Kolmogorov Consistency Theorem

In this section we show that, given finite dimensional family satisfying (1.1) for
random variables we can construct all of them on the same probability space.
Suppose S ⊂ T is finite subset and QS is measure on (XS ,AS) satisfying con-
sistency condition (1-1). Let (X{t},A{t}, Q{t}) be compact probability measure
space. For each t ∈ T with compact class Kt ⊂ At, Q{t} approximates A{t}.
Then, there exists a unique probability measure Q0 on (XT ,AT ) such that

ΠS : XT → XS , and Q0 ◦Π−1
S = QS

Remark. For (
∏
t∈T
Xt︸ ︷︷ ︸

Ω

,
⊗
t∈T
At︸ ︷︷ ︸
F

, Q0) as probability space

Xt(ω) = ω(t),
⋃
S⊂T
CS = C0

Proof)
Define

D = {C : C = Π−1
t (K),K ∈ Kt, t ∈ T}

Let
{Π−1

ti (Cti), i = 1, 2...}

be a countable families of sets and

Bt =
⋃
ti=t

Π−1
ti (Cti)

If the countable intersection is empty, then Bt0 is empty for some t0. Since Kt0
is a compact class and all Cti ∈ Kt0 , we get a finite set of ti’s (ti = t0). Let’s
call it J for which ⋃

ti∈J
Cti = ∅ =⇒

⋃
ti∈J

Π−1
ti (Cti) = ∅

Since D is a compact class, K as a countable intersections of sets in D os a com-
pact class. We shall show thatQ0 is a compact measure, i.e., KQ0−approximates
C0. Take C ∈ C0 and ε > 0. For some S ⊂ T ,

C = Π−1
S (B)

Choose a rectangle ∏
t∈S

(At) ⊂ B
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so that for At ∈ At

QS(B −
∏
t∈S

At) <
ε

2

Q0(Π−1
S (B)−Π−1

S (
∏
t∈S

At)) <
ε

2

For each t, choose Kt ∈ Kt such that Kt ⊂ At and

Qt(At) < Qt(Kt) +
ε

cardinality(S)

Let
K =

⋃
t∈S

Π−1
t (Kt) for Kt ∈ Kt

Then, K ⊂ C and

Q0

(
Π−1
S (B)−Π−1

S (
∏
t∈S

Kt)
)

= Q0

(
Π−1
S (B −

∏
t∈S

At)
)

+Q0

(
Π−1
S (
∏
t∈S

At)−Π−1
S (
∏
t∈S

Kt)
)

< ε

Q0 extends to a countable additive measure on σ(C). Call it Q. Consider now
Ω = Xt, σ(C), and Q and define Xt(ω) = ω(t).

(Xt = R, Rd, or complete separate metric space.)

Example 1. T = N,Xt = R with Q{t} probability measure on B(R).
Suppose

Qn =
⊗

t∈{1,2,...,n}

Q{t}

Then, there exists {Xn, n ∈ N} of random variables defined on R∞.

Example 2. T = [0, 1].

Let {C(t, s), t, s ∈ T} be a set of real valued function with C(t, s) = C(s, t)
and ∑

t,s∈S
atasC(t, s) ≥ 0

for S finite.({at, t ∈ S} ⊂ R) Let QS be a probability measure with character-
istic function for t ∈ Rd

φQS (t) = exp

(
ia′t− 1

2
t′
∑
S

t

)
(2)
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where
∑
S is the covariance matrix given by∑

S

=
(
C(u, v)

)
u,v∈S

QS satisfies the condition of Kolmogorov Consistency Theorem. Therefore,
there exists {Xt, t ∈ T} a family of random variables such that joint distribu-
tion is QS .

Example. Take t, s ∈ [0, 1] and C(t, s) = min(t, s).

C(t, s) =

∫ 1

0

1[0,t](u) · 1[0,s](u)du

= min(t, s)

Let S = {t1, ..., tn}, {a1, ..., an} ⊂ R. Then,

∑
i,j

aiajC(ti, tj) =
∑
i,j

aiaj

∫ 1

0

1[0,ti](u) · 1[0,tj ](u)du

=

∫ 1

0

( n∑
i=1

ai1[0,ti](u)
)2
du

≥ 0

since
∑∑

aiajC(ti, tj) is non-negative definite. Therefore, there exists a Gaus-
sian Process with covariance C(t, s) = min(t, s).
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2.3 The finite-dimensional family for Brownian Motion

Given Covariance function C(t, s) = C(s, t) with s, t ∈ T , and for all {a1, ..., ak}
and {t1, ..., tk} ⊂ T , such that∑

k,j

akajC(tk, tj) ≥ 0

then there exists a Gaussian Process {Xt, t ∈ T} with EXt = 0 for all t and
C(t, s) = E(XtXs).

Example.
C(t, s) = min(t, s), and T = [0, 1].

min(t, s) =

∫ 1

0

1[o,t](u) · 1[o,s](u)du

= EXtXs

There exists {Xt, t ∈ T} such that C(t, s) = E(XtXs) = min(t, s).

Since Xt is Gaussian, we know that

Xt ∈ L2(Ω,F , P )

Let

M(X) = SP
L2

(Xt, t ∈ T )

Consider the map

I(Xt) = 1[0,t](u) ∈ L2([0, 1]), (Lebesue measure)

I is an isometry. Therefore, for (t1, ..., tn) with t1 ≤ ... ≤ tn

I(Xtk −Xtk−1
) = I(Xtk)− I(Xtk−1

) ( because I is a linear map)

= 1[0,tk](u)− 1[0,tk−1](u)

= 1(tk−1,tk](u)

For k 6= j

E(Xtk −Xtk−1
)(Xtj −Xtj−1) =

∫ 1

0

1(tk−1,tk](u) · 1(tj−1,tj ](u)du

= 0

Xtk −Xtk−1
is independent of Xtj −Xtj−1

if (tk−1, tk] ∩ (tj−1, tj ] = ∅ because

(tk−1, tk] ∩ (tj−1, tj ] = ∅ =⇒ E(Xtk −Xtk−1
)(Xtj −Xtj−1) = 0
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{Xt, t ∈ T} is an independent increment process.

Given t0 = 0, X0 = 0, t0 ≤ t1 ≤ ... ≤ tn, we have

P (Xtk −Xtk−1
≤ xk, k = 1, 2..., n) =

n∏
k=1

∫ ∞
−∞

1√
2π(tk − tk−1)

e
−

y2
k

2(tk−tk−1) dyk

By using transformation

Yt1 = Xt1

Yt2 = Xt2 −Xt1

... =
...

Ytn = Xtn −Xtn−1

we can compute joint density of (Xt1 , ..., Xtn).

f(Xt1 ,...,Xtn )(x1, ..., xn) =
1∏n

k=1

√
2π(tk − tk−1)

exp[−1

2

n∑
k=1

(xk − xk−1)2

(tk − tk−1)
]

Define

p(t, x,B) =
1√
2πt

∫
B

e−
(y−x)2

t dy, t ≥ 0

and
p̃(t, s, x,B) = p(t− s, x,B)

Exercise 1. Prove for 0 = t0 ≤ t1 ≤ ... ≤ tn

QXt1 ,...,Xtn (B1×· · ·×Bn) =

∫
Bn

· · ·
∫
B1

p(t1−t0, dy1)p(t2−t1, y1, dy2) · · · p(p(tn−tn−1, yn−1, dyn))

Suppose we are given transition function p(t, s, x,B) with x ≤ t. Assume that
s ≤ t ≤ u

p(u, s, x,B) =

∫
p(t, s, x, dy)p(s, t, y, B) (C-Kolmogorov Condition)

Then, for 0 = t0 ≤ t1 ≤ ... ≤ tn

Qxt1,...,tn(B1×· · ·×Bn) =

∫
Bn

· · ·
∫
B1

p(t1, t0, x, dy1)p(t2, t1, y1, dy2) · · · p(p(tn, tn−1, yn−1, dyn))

(Use Fubini’s Theorem.) For this consistent family, there exists a stochastic
process with Q as finite dimensional distributions.
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Exercise 2. Check that p̃(t, s, x,B) satisfies the above condition.

Qx(Xs ∈ B1, Xt ∈ B2) =

∫
B1

p(s, 0, x, dy)p(t, s, y, B2)

=

∫
B1

Qx(Xt ∈ B2|Xs = y)Qx ◦X−1
s (dy)

where

Qx(Xtn ∈ Bn|Xt1 , ..., Xtn) = p(tn, tn−1, Xtn−1
, Bn) (Markov)

The Gaussian Process with covariance

min(t, s), t, s,∈ [0, 1]

has independent increments and is Markov.

Remarks. Consider

• X(ω) ∈ R[0,1]

• C[0, 1] /∈ σ(C(R[0,1]))

C[0, 1] is not measurable. But C[0, 1] has Q∗0(C[0,1]) = 1 (outer measure).
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2.4 Properties of Brownian Motion

Definition 2.3 A Gaussian process is a stochastic process {Xt, t ∈ T}, for
which any finite linear combination of samples has a joint Gaussian distribution.
More accurately, any linear functional applied to the sample function Xt will give
a normally distributed result. Notation-wise, one can write X ∼ GP (m,K),
meaning the random function X is distributed as a GP with mean function m
and covariance function K.

Remark.

X ∼ N(µX , σ
2
X)

Y ∼ N(µY , σ
2
Y )

Z = X + Y

Then, Z ∼ N(µZ , σ
2
Z) where

µZ = µX + µY and σ2
Z = σ2

X + σ2
Y + 2ρX,Y σXσY

Proposition 2.1 Given covariance C(t, s) = C(s, t) with s, t ∈ T and for all
{a1, ..., ak} ⊂ R and {t1, ..., tk} ⊂ T∑

k,j

akajC(tk, tj) ≥ 0

then there exists a Gaussian Process such that

{Xt, t ∈ T} with for all t, EXt = 0, C(t, s) = E(Xt, Xs)

Example: C(t, s) = min(t, s) and T = [0, 1].
In this example,

min(t, s) =

∫ 1

0

1[0,t](u)1[0,s](u)du

= EXtXs

So, there exists {Xt, t ∈ T}, which is Gaussian Process, such that for all t

EXt = 0, and C(t, s) = E(Xt, Xs) = min(t, s)

Since Xt is Gaussian, we know that

Xt ∈ L2(Ω,F , P )

Let

M(X) = SP
L2

(Xt, t ∈ T ) (SP means ”Span”)
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Consider the map I : M(X)→ SP{1[0,t](u), t ∈ [0, 1]} such that

I(Xt) = 1[0,t](u)

and
I
(∑

akXtk

)
=
∑

akI(Xtk)

Proposition 2.2 I is a linear map.

Proof. Easy.

Proposition 2.3 I is an isometry

Proof. Since {Xt, t ∈ T} is Gaussian,

V ar(Xtk −Xtk−1
) = V ar(Xtk) + V ar(Xtk)− 2Cov(Xtk , Xtk−1

)

= C(tk, tk) + C(tk−1, tk−1)− 2C(tk−1, tk)

= tk + tk−1 − 2tk−1

= tk − tk−1

Therefore,

||Xtk −Xtk−1
||2L2

=

∫
[0,1]

(Xtk −Xtk−1
)2dP

= E(Xtk −Xtk−1
)2

= V ar(Xtk −Xtk−1
)

= tk − tk−1

Also,

||I(Xtk)− I(Xtk−1
)||2L2

= ||1[0,tk](u)− 1[0,tk−1](u)||2L2

= ||1(tk−1,tk](u)||2L2

= tk − tk−1

= ||Xtk −Xtk−1
||2L2

This completes the proof.

Suppose that t2 ≤ ... ≤ tk. Then,

I(Xtk −Xtk−1
) = I(Xtk)− I(Xtk−1

) ( since I is an linear map)

= 1[0,tk](u)− 1[0,tk−1](u)

= 1(tk−1,tk](u)
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Xtk −Xtk−1
is independent of Xtj −Xtj−1

if

(tk−1, tk] ∩ (tj−1, tj ] = ∅

Proposition 2.4 If Xtk −Xtk−1
is independent of Xtj −Xtj−1 , then

E(Xtk −Xtk−1
)(Xtj −Xtj−1

) = 0

Proof. For k 6= j

E(Xtk −Xtk−1
)(Xtj −Xtj−1

)

=

∫ 1

0

1(tk−1,tk](u)1(tj−1,tj ](u)du

= 0

Suppose {Xt, t ∈ T} is an independent increment process such that t0 = 0,
X0 = 0, and t0 ≤ t1 ≤ ... ≤ tn. Then, Xtk −Xtk−1

is Gaussian with mean 0 and
variance tk − tk−1.

P (Xtk −Xtk−1
≤ xk, k = 1, 2..., n) =

n∏
k=1

P (Xtk −Xtk−1
≤ xk)

=

n∏
k=1

∫ xk

−∞

1√
2π(tk − tk−1)

e
−

y2
k

2(tk−tk−1) dyk

Let

Yt1 = Xt1

Yt2 = Xt2 −Xt1

...
...

Ytn = Xtn −Xtn−1

Then,

fXt1 ,...,Xtn (x1, ..., xn) =
1∏n
k=1

√
2π(tk − tk−1) exp

[
− 1

2

n∑
k=1

(xk − xk−1)2

(tk − tk−1)

]
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2.5 Kolmogorov Continuity Theorem.

For each t, if P (X̃t = Xt) = 1, then we say the finite dimensional distributions
of X̃t and Xt are the same and {X̃t} is a version of {Xt}.

Proposition 2.5 Let {Xt, t ∈ [0, 1]} be a stochastic process with

E|Xt −Xs|β ≤ C|t− s|1+α with C,α, β > 0

Then, there exists a version of {Xt, t ∈ [0, 1]} which has a continuous sample
paths.

Corollary 2.1 The Gaussian Process with covariance function

C(t, s) = min(t, s), t, s ∈ [0, 1]

(has independent increment and is Markovian) has a version which is continu-
ous.

E(Xt −Xs)
2︸ ︷︷ ︸

=|t−s|

= EX2
t − 2EXtXs + EX2

s

= t− 2s+ s

= |t− s|
E(Xt −Xs)

4 = 3[E(Xt −Xs)
2]2

= 3|t− s|2

We shall denote the continuous version by Wt, called Wiener process BM.

Proof. Take 0 < γ < α
β and δ > 0 such that

(1− δ)(1 + α− βγ) > 1 + δ

For 0 ≤ i ≤ j ≤ 2n and |j − i| ≤ 2nδ,∑
i,j

P
(
|Xj2−n −Xi2−n | > [(j − i)2−n]γ

)
≤ C

∑
i,j

[(j − i)2−n]−βγ+(1+δ) ( by Chevyshev)

= C22n[(1+δ)−(1−δ)(1+α−βγ)]

< ∞

where (1 + δ)− (1− δ)(1 + α− βγ) = −µ.

Then, by Borell-Cantelli Lemma,

P
(
|Xj2−n −Xi2−n | > [(j − i)2−n]γ

)
= 0
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i.e., there exists n0(ω) such that for all n ≥ n0(ω)

|Xj2−n −Xi2−n | ≤ [(j − i)2−n]γ

Let t1 < t2 be rational numbers in [0, 1] such that

t2 − t1 ≤ 2−n0(1−δ)

t1 = i2−n − 2−p1 − ...− 2−pk (n < p1 < ... < pk)

t2 = j2−n − 2−q1 − ...− 2−qk (n < q1 < ... < qk)

t1 ≤ i2−n ≤ j2−n ≤ t2

Let
h(t) = tγ for 2−(n+1)(1−δ) ≤ t ≤ 2−n(1−δ)

Then, ∣∣∣Xt1 −Xi2−n

∣∣∣ ≤ C1h(2−n)∣∣∣Xt2 −Xj2−n

∣∣∣ ≤ C2h(2−n)∣∣∣Xt2 −Xt1

∣∣∣ ≤ C3h(t2 − t1)

and ∣∣∣Xi2−n−2−p1−...−2−pk −Xi2−n−2−p1−...−2−pk−1

∣∣∣ ≤ 2−pkγ

Under this condition, process is uniformly continuous on rational numbers in
[0, 1].

Let
ψ : (ΩQ, CΩQ)→ (C[0, 1], σ(C[0, 1]))

Then, ψ extends uniformly continuous functions on rational to continuous func-
tion on [0, 1].

Let P is a measure generated by the same finite dimensional on rationals. Then

P̃ = P ◦ ψ−1

is the measure of X̃t, version of Xt. In Gaussian, there exists a version of con-
tinuous sample path. In case of Brownian motion, there exists a version. We
call it {Wt}.

{Wt+t0 −Wt0 , t ∈ [0,∞]} is a Weiner Process.
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2.6 Exit time for Brownian Motion and Skorokhod Theo-
rem

Let
FWt = σ(Ws, s ≤ t)

τ is called ”stopping time” if

{τ ≤ t} ∈ FWt

Define
Fτ = {A : A ∩ {τ ≤ t} ∈ FWt }

Then Fτ is a σ−field.

Wt√
t

is a standard normal variable.

Define
Ta = inf{t : Wt = a}

Then, Ta <∞ a.e. and is a stopping time w.r.t {FWt }.

Theorem 2.1 Let a < x < b. Then

Px(Ta < Tb) =
b− x
b− a

Remark. Wt is Gaussian and has independent increment. Also, for s ≤ t

E(Wt −Ws|Fs) = 0

and hence {Wt} is Martingale.

Proof. Let T = Ta ∧ Tb. We know Ta, Tb <∞ a.e., and

WTa = a, and WTb = b

Since {Wt} is MG,

ExWT = ExW0

= x

= aP (Ta < Tb) + b(1− P (Ta < Tb))

Therefore,

Px(Ta < Tb) =
b− x
b− a

16



{Wt, t ∈ [0,∞]} is a Weiner Process, starting from x with a < x < b. Recall

Ta = inf{t : Wt = a}
Tb = inf{t : Wt = b}
T = Ta ∧ Tb

ExWT = ExW0

Px(Ta < Tb) =
b− x
b− a

We know that

E((Wt −Ws)
2|FWs ) = E(Wt −Ws)

2

= (t− s)

Also,

E((Wt −Ws)
2|FWs ) = E(W 2

t |FWs )− 2E(WtWs|FWs ) + E(W 2
s |FWs )

= E(W 2
t |FWs )−W 2

s

= E(W 2
t −W 2

s |FWs )

= (t− s)

Therefore,
E(W 2

t − t|FWs ) = W 2
s − s

and hence {(W 2
t − t), t ∈ [0,∞]} is a martingale.

Suppose that x = 0 and a < 0 < b. Then T = Ta ∧ Tb is a finite stopping
time. Therefore,

T ∧ t

is also stopping time.
E(W 2

T∧t − T ∧ t) = 0

E0(W 2
T ) = E0T

EW 2
T = ET

= a2P (Ta < Tb) + b2(1− P (Ta < Tb))

= −ab

Suppose X has two values a, b with a < 0 < b and

EX = aP (X = a) + bP (X = b)

= 0
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Remark.

P (X = a) =
b

b− a
and P (X = b) = − a

b− a

Let T = Ta ∧ Tb. Then, WT has the same distribution as X. We denote

L(WT ) = L(X)

or
WT =D X

2.6.1 Skorokhod Theorem.

Let X be random variable with EX = 0 and EX2 < ∞. Then, there exists a
FWt −stopping time T such that

L(WT ) = L(X) and ET = EX2

Proof. Let F (x) = P (X ≤ x).

EX = 0 ⇒
∫ 0

−∞
udF (u) +

∫ ∞
0

vdF (v) = 0

⇒ −
∫ 0

−∞
udF (u) =

∫ ∞
0

vdF (v) = C

Let ψ be a bounded function with ψ(0) = 0. Then,

C

∫
R

ψ(x)dF (x)

= C
(∫ ∞

0

ψ(v)dF (v) +

∫ 0

−∞
ψ(u)dF (u)

)
=

∫ ∞
0

ψ(v)dF (v)

∫ 0

−∞
−udF (u) +

∫ 0

−∞
ψ(u)dF (u)

∫ ∞
0

vdF (v)

=

∫ ∞
0

dF (v)

∫ 0

−∞
dF (u)(vψ(u)− uψ(v))

Therefore,∫
R

ψ(x)dF (x) = C−1

∫ ∞
0

dF (v)

∫ 0

−∞
dF (u)(vψ(u)− uψ(v))

= C−1

∫ ∞
0

dF (v)

∫ 0

−∞
dF (u)(v − u)

[ v

v − u
ψ(u)− u

v − u
ψ(v)

]
Consider (U, V ) be a random vector in R2 such that

P
[
(U, V ) = (0, 0)

]
= F ({0})

18



and for A ⊂ (−∞, 0)× (0,∞)

P ((U, V ) ∈ A) = C−1

∫ ∫
A

dF (u)dF (v)(v − u)

If ψ = 1,

P ((U, V ) ∈ (−∞, 0)× (0,∞)) = C−1

∫ ∞
0

dF (v)

∫ 0

−∞
dF (u)(v − u)

= C−1

∫ ∞
0

dF (v)

∫ 0

−∞
dF (u)(v − u)

[ v

v − u
ψ(u)− u

v − u
ψ(v)

]
=

∫
R

ψ(x)dF (x)

=

∫
R

dF (x)

= 1

and hence, P is a probability measure.

Let u < 0 < v such that

µU,V ({u}) =
v

v − u
and µU,V ({v}) = − u

v − u
Then, by Fubini, ∫

ψ(x)dF (x) =

On product space Ω× Ω′, let

Wt(ω, ω
′) = Wt(ω)

(U, V )(ω, ω′) = (U, V )(ω′)

TU,V is not a stopping time on FWt .

We know that if U = u and V = v

L(TU,V ) = L(X)

Then,

ETU,V = EU,V E(TU,V |U, V )

= −EUV

= C−1

∫ 0

−∞
dF (u)(−u)

∫ ∞
0

dF (v)v(v − u)

= −
∫ ∞

0

dF (v)(−u)
[
C−1

∫ ∞
0

vdF (v)− u
]

= EX2

19



Next time, we will show that

W (t+ τ)−W (τ)

is again Brownian motion.

20



2.7 Embedding of sums of i.i.d. random variable in Brow-
nian Motion

Let t0 ∈ [0,∞). Then,

{W (t+ t0)−W (t0), t ≥ 0}

is a Brownian motion and independent of Ft0 .

Let τ be a stopping time w.r.t FWt . Then,

W ∗t (ω) = Wτ(ω)+t(ω)−Wτ(ω)(ω)

is a Brownian Motion w.r.t FWτ where

FWτ = {B ∈ F : B ∪ {τ ≤ t} ∈ FWt }

Let V0 be countable. Then,

{ω : W ∗t (ω) ∈ B} =
⋃
t0∈V0

{ω : W (t+ t0)−W (t0) ∈ B, τ = t0}

For A ∈ FWτ ,

P
[
{(W ∗t1 , ...,W

∗
tk

) ∈ Bk} ∩A
]

=
∑
t0∈V0

P
[
{(Wt1 , ...,Wtk) ∈ Bk} ∩A ∩ {τ = t0}

]
=

∑
t0∈V0

P
(

(W ∗t1 , ...,W
∗
tk

) ∈ Bk
)
· P (A ∩ {τ = t0})

(because of independence)

= P
(

(W ∗t1 , ...,W
∗
tk

) ∈ Bk
) ∑
t0∈V0

P (A ∩ {τ = t0})

= P
(

(W ∗t1 , ...,W
∗
tk

) ∈ Bk
)
P (A)

Let τ be any stopping time such that

τn =

{
0, if τ=0;
k
2n , if k−1

2n < τ ≤ k
2n .

If k
2n ≤ t <

k+1
2n ,

{τn ≤ t} =
{
τ ≤ k

2n

}
∈ F k

2n
⊂ Ft

Claim. Fτ ⊂ Fτn .
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Proof. Suppose C ∈ Fτ = {B : B ∩ {τ ≤ t} ∈ Ft}. Then, since k
2n ≤ t,

C ∩ {τ ≤ t} = C ∩
{
τ ≤ k

2n

}
∈ F k

2n

This completes the proof by continuity.

Wn
t = Wτn+t −Wτn is a Brownian Motion for each n, independent of Fτ .

Theorem 2.2 Let X1, ..., Xn be i.i.d. with EXi = 0, EX2
i <∞ for all i. Then

there exists a sequence of stopping time T0 = 0, T1, ..., Tn such that

L(Sn) = L(WTn)

where (Ti − Ti−1) are i.i.d.

Proof. (U1, V1), ..., (Un, Vn) i.i.d. as (U, V ) and independent of Wt.

T0 = 0, Tk = inf{t ≥ Tk−1,WTk −WTk−1
∈ (Uk, Vk)}

Tk − Tk−1 are i.i.d. and

L(X1) = L(WT1)

L(X2) = L(WT2 −WT1)

...
...

...

L(Xn) = L(WTn −WTn−1)

Hence L(Sn) = L(WTn). Now

L
( Sn√

n

)
= L

(W (Tn)√
n

)
= L

(W (Tn/n · n)√
n

)
= L

(
W
(Tn
n

)) (
since

W (nt)√
n
≈W (t)

)
Assume EX2

1 = 1. Then

Tn
n
→a.s. E(T1) = EX2

1 = 1,

and hence
Sn√
n
→W (1). (CLT)
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2.8 Donsker’s Theorem

Xn,1, ..., Xn,n are i.i.d. for each n with EXn,m = 0, EX2
n,m < ∞, and Sn,m =

Xn,1 + · · ·+Xn,m = Wτnm
where τnm is stopping time and W is Brownian motion.

Define

Sn,u =

{
Sn,m, if u = m ∈ {0, 1, 2, ..., n};
linear, if u ∈ [m− 1,m].

Lemma 2.2 If τn[ns] → s for s ∈ [0, 1], then with |||| as supnorm

||Sn,[n·] −W (·)|| → 0 in probability.

Proof. For given ε > 0, there exists δ > 0(1/δ is an integer) such that

P
(
|Wt −Ws| < ε, for all t, s ∈ [0, 1], |t− s| < 2δ

)
> 1− ε (3)

τnm is increasing in m. For n ≥ Nδ,

P
(
|τnnkδ − kδ| < δ, k = 1, 2, ...,

1

δ

)
≥ 1− ε

since τn[ns] → s. For s ∈ ((k − 1)δ, kδ), we have

τn[ns] − s ≥ τn[n(k−1)δ] − kδ
τn[ns] − s ≤ τn[nkδ] − (k − 1)δ

Combining these, we have for n ≥ Nδ

P
(

sup
0≤s≤1

|τn[ns] − s| < 2δ
)
> 1− ε. (4)

For ω in event in (3) and (4), we get for m ≤ n∣∣∣ Wτnm︸︷︷︸
=Sn,m

−Wm
n

∣∣∣ < ε

For t = m+θ
n with 0 < θ < 1,∣∣∣Sn,[nt] −Wt

∣∣∣ ≤ (1− θ)
∣∣∣Sn,m −Wm

n

∣∣∣+ θ
∣∣∣Sn,m+1 −

Wm+1

n

∣∣∣
+(1− θ)

∣∣∣Wm
n
−Wt

∣∣∣+ θ
∣∣∣Wn+1

n
−Wt

∣∣∣
For n ≥ Nδ with 1

n < 2δ,

P
(
||Sn,ns −Ws||∞ ≥ 2ε

)
< 2ε.

We now derive some consequences of Donsker theorem.
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Theorem 2.3 Let f be bounded and continuous function on [0, 1]. Then

Ef
(
Sn,[n·]

)
→ Ef(W (·))

Proof. For fixed ε > 0, define

Gδ = {W,W ′ ∈ C[0, 1] : ||W −W ′||∞ < δ implies |f(W )− f(W ′)| < ε}

Observe that Gδ ↑ C[0, 1] as δ ↓ 0. Then,∣∣∣∣∣Ef(Sn,[n·])− Ef(W (·))

∣∣∣∣∣ ≤ ε+ 2M
(
P (Gcδ) + P

(
||Sn,[n·] −W (·)|| > δ

))
Since P (Gcδ)→ 0 and P

(
||Sn,[n·] −W (·)|| > δ

)
→ 0 by (2.2). In particular

max
t

∣∣∣∣∣S[nt]√
n

∣∣∣∣∣→ max
t
|W (t)| in distribution

and

max
1≤m≤n

∣∣∣∣∣Sm√n
∣∣∣∣∣→ max

t
|W (t)| in distribution

Let
Rn = 1 + max

1≤m≤n
Sm − min

1≤m≤n
Sm

Then
Rn√
n
⇒weakly max

0≤t≤1
W (t)− min

0≤t≤1
W (t)

We now derive from Donsker theorem invariance principle for U-statistics.

[nt]∏
i=1

(
1 +

θXi√
n

)
=

[nt]∑
k=1

n−
k
2

∑
1≤i1≤···≤ik≤n

Xi1 · · ·Xik

where Xi are i.i.d. and EX2
i <∞. Next,

log

[
[nt]∏
i=1

(
1 +

θXi√
n

)]
=

[nt]∑
i=1

log

(
1 +

θXi√
n

)

= θ

[nt]∑
i=1

Xi√
n
− θ2

2

[nt]∑
i=1

X2
i

n︸ ︷︷ ︸
→t by SNNL

+
θ3

3

[nt]∑
i=1

X3
i

n
√
n︸ ︷︷ ︸

→0

− · · ·︸︷︷︸
→0

⇒ θW (t)− θ2

2
t,

and hence
[nt]∏
i=1

(
1 +

θXi√
n

)
⇒ eθW (t)− θ22 t
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2.9 Empirical Distribution Function

Let us define empirical distribution function

F̂n(x) =
1

n

n∑
i=1

1(Xi ≤ x), x ∈ R

Then Glivenko-Cantelli lemma says

sup
x
|F̂n(x)− F (x)| →a.s. 0

Assume F is continuous. Let Ui = F (Xi). For y ∈ [0, 1], define

Ĝ(y) =
1

n

n∑
i=1

1(F (Xi) ≤ y).

Then by 1-1 transformation,
√
n sup

x
|F̂n(x)− F (x)| =

√
n sup
y∈[0,1]

|Ĝn(y)− y|

Let U1, U2, ..., Un be uniform distribution and let U(i) be order statistic such
that

U(1)(ω) ≤ · · · ≤ U(n)(ω).

Next,

f
(
U(1), ..., U(n)

)
= f

(
Uπ(1), ..., Uπ(n)

)
fUπ(1),...,Uπ(n)

(u1, ..., un) = fU1,...,Un(u1, ..., un)

=

{
1, if u ∈ [0, 1]n;
0, if u /∈ [0, 1]n.

For bounded g,

Eg
(
U1, ..., Un

)
=
∑
π∈Π

∫
u1<u2<···<un

gUπ(1),...,Uπ(n)
(u1, ..., un)f

(
uπ(1), ..., uπ(n)

)
du1 · · · dun

So we get

fU1,...,Un(u1, ..., un) =

{
n!, if u1 < u2 < · · · < un;
0, otherwise.

Theorem 2.4 Let ej be i.i.d. exponential distribution with failure rate λ. Then

L
(
U1, ..., Un

)
= L

(
Z1

Zn+1
, ...,

Zn
Zn+1

)
where

Zi =

i∑
j=1

ej .
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Proof. First we have

fe1,...,en+1
(u1, ..., un+1) =

{
λn+1e−

∑n+1

i=1
ui , if ui ≥ 0;

0, otherwise.

Let si − si−1 = ui for i = 1, 2, ..., n+ 1. Then

fZ1,...,Zn+1(s1, ..., sn+1) =

n+1∏
i=1

λe−(si−si−1)

Use transformation. Let

vi =
si
si+1

for i ≤ n

vn+1 = sn+1

Then

fV1,...,Vn+1
(v1, ..., vn+1) =

n+1∏
i=1

(
λe−λvn+1(vi−vi−1)

)
λe−λvn+1(1−vn)

= λn+1e−λvnvn+1−λvn+λvnvn+1vnn+1

Dn =
√
n max

1≤m≤n

∣∣∣∣∣ ZmZn+1
− m

n

∣∣∣∣∣
=

n

Zn+1
max

1≤m≤n

∣∣∣∣∣Zm√n − m

n

Zn+1√
n

∣∣∣∣∣
=

n

Zn+1
max

1≤m≤n

∣∣∣∣∣Zm −m√
n
− m

n

Zn+1 − n√
n

∣∣∣∣∣
=

n

Zn+1
max

1≤m≤n

∣∣∣∣∣Wn(t)− t
(
Wn(1) +

Zn+1 − Zn√
n

)∣∣∣∣∣
where

Wn(t) =

{ Zm−m√
n

, if t = m
n ;

linear , between.

We know that n/Zn+1 →a.s. 1 and

E
(Zn+1 − Zn√

n

)2

=
1

n
Ee2

n → 0,

and hence by Chebyshev’s inequality,

Zn+1 − Zn√
n

→p 0.
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Since max(·) is a continuous function and(
Wn(·)− ·Wn(1)

)
⇒D

(
W (·)− ·W (1)

)
,

we have

Dn =
n

Zn+1︸ ︷︷ ︸
→a.s1

max
1≤m≤n

∣∣∣∣∣Wn(t)− t
(
Wn(1) +

Zn+1 − Zn√
n︸ ︷︷ ︸

→p0

)∣∣∣∣∣
⇒D max

1≤m≤n

∣∣∣ W (t)− tW (1)︸ ︷︷ ︸
Brownian Bridge

∣∣∣

P
(
Wt1 ≤ x1,Wt2 ≤ x2, ...,Wtk ≤ xk,W (1) = 0

)
= P

(
Wt1 ≤ x1,Wt2 ≤ x2, ...,Wtk ≤ xk

)
·P
(
W (1) = 0

)

P
(
Wt1 ≤ x1,Wt2 ≤ x2, ...,Wtk ≤ xk

∣∣W (1) = 0
)

=
P
(
Wt1 ≤ x1,Wt2 ≤ x2, ...,Wtk ≤ xk,W (1) = 0

)
P (W (1) = 0)

= P
(
Wt1 ≤ x1,Wt2 ≤ x2, ...,Wtk ≤ xk

)
{W 0

t } is called Brownian Bridge if

EW 0
t W

0
s = E(Wt − tW (1))(Ws − sW (1))

= min(t, s)− st− ts+ ts

= s(1− t)

for s ≤ t.
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2.10 Weak Convergence of Probability Measures on Pol-
ish Space

Let (X , ρ) be a complete separable metric space. {Pn}, a sequence of probability
measure on B(X ) converges weakly to P if for all bounded continuous function
on X ∫

fdPn −→
∫
fdP

and we write Pn ⇒ P .

Theorem 2.5 Every probability measure P on (S,S) is regular; that is, for
every S−set A and every ε there exist a closed set F and an open set G such
that F ⊂ A ⊂ G and P (G− F ) < ε.

Proof. Denote the metric on S by ρ(x, y) and the distance from x to A by
ρ(x,A) = inf{ρ(x, y) : y ∈ A}. If A is closed, we can take F = A and G = Aδ =
{x : ρ(x,A) < δ} for some δ, since the latter sets decrease to A as δ ↓ 0. Hence
we need only show that the class G of S−sets with the asserted property is a
σ−field. Given sets An in G, choose closed sets Fn and open sets Gn such that
Fn ⊂ An ⊂ Gn and P (Gn−Fn) < ε/2n+1. If G =

⋃
nGn, and if F =

⋃
n≤nn Fn,

with n0 so chosen that

P

(⋃
n

Fn − F

)
<
ε

2
,

then F ⊂
⋃
nAn ⊂ G and P (G−F ) < ε. Thus G is closed under the formation

of countable unions; since it is obviously closed under complementation, G is a
σ−field.

(2.5) implies that P is completely determined by the values of P (F ) for closed
sets F . The next theorem shows that P is also determined by the values
of
∫
fdP for bounded, continuous f . The proof depends on approximating

the indicator IF by such an f , and the function f(x) = (1 − ρ(x, F )/ε)+

works. It is bounded, and it is continuous, even uniformly continuous, because
|f(x) − f(y)| ≤ ρ(x, y)/ε. And x ∈ F implies f(x) = 1, while x /∈ F ε implies
ρ(x, F ) ≥ ε and hence f(x) = 0. Therefore,

IF (x) ≤ f(x) = (1− ρ(x, F )/ε)+ ≤ IF ε(x). (5)

Theorem 2.6 Probability measures P and Q on S coincide if and only if∫
fdP =

∫
fdQ for all bounded, uniformly continuous real functions f .

Proof. (⇒) Trivial.
(⇐) For the bounded, uniformly continuous f of (5), P (F ) ≤

∫
fdP =

∫
fdQ ≤

Q(F ε). Letting ε ↓ 0 gives P (F ) = Q(F ), provided F is closed. By symmetry
and (2.5), P = Q.
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The following notion of tightness plays a fundamental role both in the the-
ory of weak convergence and in its applications. A probability measure P on
(S,S) is tight if fir each ε there exists a compact set K such that P (K) ≥ 1− ε.
By (2.5), P is tight if and only if for each A ∈ S

P (A) = sup{P (K) : K ⊂ A, K is compact.}

Theorem 2.7 If S is separable and complete, then each probability measure on
(S,S) is tight.

Proof. Since S is separable, there is, for each k, a sequence Ak1, Ak2, ... of
open 1/k−balls covering S. Choose nk large enough that

P
( ⋃
i≤nk

Aki

)
> 1− ε

2k
.

By the completeness hypothesis, the totally bounded set⋂
k≥1

⋃
i≤nk

Aki

has compact closure K. But clearly P (K) > 1− ε. This completes the proof.

The following theorem provides useful conditions equivalent to weak conver-
gence; any of them could serve as the definition. A set A in S whose boundary
∂A satisfies P (∂A) = 0 is called P−continuity set. Let Pn, P be probability
measures on (X ,B(X )).

Theorem 2.8 (The Portmanteau Theorem) The followings are equivalent.

1. for bounded and continuous f

lim
n→∞

∫
fdPn =

∫
fdP

2. for closed set F
lim sup
n→∞

Pn(F ) ≤ P (F )

3. For open set G
lim inf
n→∞

Pn(G) ≥ P (G)

4. for all set A with P (∂A) = 0

lim
n→∞

Pn(A) = P (A)
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Proof. (1)→ (2)
Let fk(x) = ψk(ρ(x, F )). First of all, we know that

fk(x)↘ 1F (x)

Then, for any δ > 0, there exists K such that for all k ≥ K

lim sup
n→∞

Pn(F ) = lim sup
n→∞

∫
1F dPn

≤ lim sup
n→∞

∫
fkdPn

= lim
n→∞

∫
fkdPn

=

∫
fkdP

≤ P (F ) + δ

The last inequality follows from the fact that∫
F

fndP ↘ P (F )

As a result, for all δ > 0, we have

lim sup
n→∞

Pn(F ) ≤ P (F ) + δ

(2) → (3)

Let G = F c. Then, it follows directly.

(4) → (1)
Let f be approximation of fn which satisfy (4). Then it follows.

Theorem 2.9 A necessary and sufficient condition for Pn ⇒ P is that each
subsequence {Pni} contain a further subsequence {Pni(m)} converging weakly to
P .

Proof. The necessary is easy. As for sufficiency, if Pn doesn’t converge weakly
to P , then there exists some bounded and continuous f such that

∫
fdPn doesn’t

converge to
∫
fdP . But then, for some positive ε and some subsequence Pni ,∣∣∣∣∣

∫
fdPni −

∫
fdP

∣∣∣∣∣ > ε
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for all i, and no further subsequence can converge weakly to P .

Suppose that h maps X into another metric space X ′, with metric ρ′ and
Borel σ−field B(X ). If h is measurable X/X ′, then each probability P on
(X ,B(X )) induces on (X ′,B(X ′)) a probability P ◦ h−1 defined as usual by
P ◦ h−1(A) = P (h−1(A)). We need conditions under which Pn ⇒ P implies
Pn ◦h−1 ⇒ P ◦h−1. One such condition is that h is continuous: If f is bounded
and continuous on X ′, then fh is bounded and continuous on X , and by change
of variable, Pn ⇒ P implies∫
X ′
f(y)Pn◦h−1(dy) =

∫
X
f(h(x))Pn(dx)→

∫
X
f(h(x))P (dx) =

∫
X ′
f(y)P◦h−1(dy)

(6)

Theorem 2.10 Let (X , ρ) and (X ′, ρ′) be two polish space and

h : X → X ′

with P (Dh) = 0. Then, Pn ⇒ P implies

Pn ◦ h−1 ⇒ P ◦ h−1.

Proof. Since
h−1(F ) ⊂ h−1(F ) ⊂ Dh ∪ h−1(F ),

lim sup
n→∞

Pn(h−1(F )) ≤ lim sup
n→∞

Pn(h−1(F ))

≤ P
(
Dh ∪ h−1(F )

)
≤ P (h−1(F )) (since Dh is set of zero)

Therefore, for all closed set F ,

lim sup
n→∞

Pn ◦ h−1(F ) ≤ P ◦ h−1(F )

and hence, by (2.8), the proof is completed.

Let Xn and X are random variables(X− valued). Then, we say Xn →D X
if P ◦X−1

n ⇒ P ◦X−1.

Observation. If Xn →D X and ρ(Xn, Yn)→p 0, then

Yn →D X
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Remark. We use the following property of limsup and liminf.

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

and
lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn

Proof. Consider closed set F . Let F ε = {x : ρ(x, F ) ≤ ε}. Then, F ε ↘ F as
ε→ 0 and

{Xn /∈ F ε} = {ω : Xn(ω) /∈ F ε}
= {ω : ρ(Xn(ω), F ) > ε}

Therefore,

ω ∈ {Xn /∈ F ε} ∩ {ρ(Xn, Yn) < ε} ⇒ ρ(Xn(ω), F ) > ε and ρ(Xn(ω), Yn(ω)) < ε

⇒
⇒ ρ(Yn(ω), F ) > 0 (draw graph.)

⇒ Yn(ω) /∈ F
⇒ ω ∈ {Yn /∈ F}

Thus,
{Xn /∈ F ε} ∩ {ρ(Xn, Yn) < ε} ⊂ {Yn /∈ F}

Therefore,
P (Yn ∈ F ) ≤ P (ρ(Xn, Yn) > ε) + P (Xn ∈ F ε)

Let PYn = P ◦ Y −1
n and PX = P ◦X−1. Then, for all ε > 0

lim sup
n→∞

Pn(F ) = lim sup
n→∞

P (Yn ∈ F )

≤ lim sup
n→∞

P (ρ(Xn, Yn)︸ ︷︷ ︸
→p0

> ε) + lim sup
n→∞

P (Xn ∈ F ε)

= lim sup
n→∞

P (Xn ∈ F ε)

= P (X ∈ F ε) (since Xn ⇒D X)

Therefore, for all closed set F , we have

lim sup
n→∞

PYn (F ) ≤ PX(F )

and hence, by (2.5),
PYn =⇒ PX ,

which implies Yn ⇒D X.

We say that a family of probability measure Π ⊂ P(X ) is tight if given ε > 0,
there exists compact Kε such that

P (Kε) > 1− ε for all P ∈ Π
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2.10.1 Prokhorov Theorem

Definition 2.4 Π is relatively compact if for {Pn} ⊂ Π, there exists a subse-
quence {Pni} ⊂ Π and probability measure P (not necessarily an element of Π)
such that

Pni ⇒ P

Even though Pni ⇒ P makes no sense if P (X ) < 1, it is to be emphasized that
we do require P (X ) = 1-we disallow any escape of mass, as discussed below.
For the most part we are concerned with the relative compactness of sequences
{Pn}; this means that every subsequence {Pni} contains a further subsequence
{Pni(m)} such that Pni(m) ⇒ P for some probability measure P .

Example. Suppose we know of probability measures Pn and P on (C, C)
that the finite-dimensional distributions of Pn converges weakly to those of
P : Pnπ

−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

for all k and all t1, ..., tk. Notice that Pn need not
converge weakly to P . Suppose, however, that we also know that {Pn} is rela-
tively compact . Then each {Pn} contains some {Pni(m)} converging weakly to

some Q. Since the mapping theorem then gives Pni(m)π
−1
t1,...,tk

⇒ Qπ−1
t1,...,tk

and

since Pnπ
−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

by assumption, we have Pπ−1
t1,...,tk

= Qπ−1
t1,...,tk

for
all t1, ..., tk. Thus the finite-dimensional distributions of P and Q are identical,
and since the class Cf of finite-dimensional sets is a separating class, P = Q.
Therefore, each subsequence contains a further subsequence converging weakly
to P -not to some fortuitous limit, but specifically to P . It follows by (2.9) that
the entire sequence {Pn} converges weakly to P . Therefore: If {Pn} is relatively
compact and the finite-dimensional distributions of Pn converge weakly to those
of P , then Pn ⇒ P . This idea provides a powerful method for proving weak
convergence in C and other function spaces. Not that, if {Pn} does converge
weakly to P , then it is relatively compact, so that this is not too strong a con-
dition.

Theorem 2.11 Suppose (X , ρ) is a Polish space and Π ⊂ P(X ) is relatively
compact, then it is tight.

This is the converse half of Prohorov’s theorem. It contains (2.7), since a Π
consisting of a single measure is obviously relatively compact. Although this
converse puts things in perspective, the direct half is what is essential to the
applications.

Proof. Consider open sets, Gn ↗ X . For each ε > 0 there exists n, such
that for all P ∈ Π

P (Gn) > 1− ε
Otherwise, for each n we can find Pn such that Pn(Gn) < 1 − ε. Then by by
relative compactness, there exists {Pni} ⊂ Π and probability measure Q ∈ Π
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such that Pni ⇒ Q. Thus,

Q(Gn) ≤ lim inf
i→∞

Pni(Gn)

≤ lim inf
i→∞

Pni(Gni) ( since ni ≥ n and hence Gn ⊂ Gni)

< 1− ε

Since Gn ↗ X ,

1 = Q(X )

= lim
n→∞

Q(Gn)

< 1− ε

which is contradiction. Let Akm , m = 1, 2, ... be open ball with radius 1
km

,
covering X (separability). Then, there exists nk such that for all P ∈ Π

P
( ⋃
i≤nk

Aki

)
> 1− ε

2k

Then, let

Kε =
⋂
k≥1

⋃
i≤nk

Aki

where
⋂
k≥1

⋃
i≤nk Aki is totally bounded set. Then, Kε is compact(completeness),

and P (Kε) > 1− ε.

Remark. The last inequality is from the following. Let Bi be such that
P (Bi) > 1− ε

2i . Then,

P (Bi) > 1− ε

2i
⇒ P (Bci ) ≤

ε

2i

⇒ P (∪∞i=1B
c
i ) ≤ ε

⇒ P (∩∞i=1Bi) > 1− ε
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2.11 Tightness and compactness in weak convergence

Theorem 2.12 If Π is tight, then for {Pn} ⊂ Π, there exists a subsequence
{Pni} ⊂ {Pn} and probability measure P such that

Pni ⇒ P

Proof. Choose compact K1 ⊂ K2 ⊂ ... such that for all n

Pn(Ku) > 1− 1

u

from tightness condition. Look at
⋃
uKu. We know that there exists a countable

family of open sets, A, such that if x ∈ ∪uKu and G is open, then

x ∈ A ⊂ Ā ⊂ G

for some A ∈ A. Let

H = {∅} ∪ { finite union of sets of the form Ā ∩Ku u ≥ 1, A ∈ A}

Then, H is a countable family. Using Cantor Diagonalization method, there
exists {ni} such that for all H ∈ H,

α(H) = lim
i→∞

Pni(H)

Our aim is to construct a probability measure P such that for all open set G

P (G) = sup
H⊂G

α(H) (7)

Suppose we showed (7) above. Consider an open set G. Then, for ε > 0, there
exists Hε ⊂ G such that

P (G) = sup
H⊂G

α(H)

< α(Hε) + ε

= lim
i
Pni(Hε) + ε

= lim inf
i

Pni(Hε) + ε

≤ lim inf
i

Pni(G) + ε

and hence, for all open set G,

P (G) ≤ lim inf
i

Pni(G),

which is equivalent to Pni ⇒ P .

Observe H is closed under finite union and
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1. α(H1) ≤ α(H2) if H1 ⊂ H2

2. α(H1 ∪H2) = α(H1) + α(H2) if H1 ∩H2 = ∅

3. α(H1 ∪H2) ≤ α(H1) + α(H2)

Define for open set G
β(G) = sup

H⊂G
α(H) (8)

Then, α(∅) = β(∅) = 0 and β is monotone.

Define for M ⊂ X
γ(M) = inf

M⊂G
β(G)

Then,

γ(M) = inf
M⊂G

β(G)

= inf
M⊂G

(
sup
H⊂G

α(H)
)

γ(G) = inf
G⊂G′

β(G′)

= β(G)

M is γ−measurable if for all L ⊂ X

γ(L) ≥ γ(M ∩ L) + γ(M ∩ L2)

We shall prove that γ is outer measure, and hence open and closed sets are
β−measurable.

γ−measurable sets M form a σ−field, M and

γ
∣∣∣
M

is a measure.

Claim. Each closed set is in M and

P = γ
∣∣∣
B(X )

so that for open set G
P (G) = γ(G) = β(G)

Note that P is a probability measure. Ku has finite covering of sets in A when
Ku ∈ H.

1 ≥ P (X )
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= β(X )

= sup
u
α(Ku)

= sup
u

(
1− 1

u

)
= 1

Step 1. If F ⊂ G (F is closed and G is open), and if F ⊂ H for some H ∈ H
then there exists some H0 ∈ H such that

H ⊂ H0 ⊂ G

Proof. Consider x ∈ F and Ax ∈ A such that

x ∈ Ax ⊂ Āx ⊂ G

Since F is closed subset of compact, F is compact. Since Ax covers F , there
exists finite subcovers Ax1

, Ax2
, ..., Axk . Take

H0 =

k⋃
i=1

(
Āxi ∩Ku

)
Step 2 β is finitely sub-additive on open set. Suppose H ⊂ G1 ∪ G2, and
H ∈ H. Let

F1 = {x ∈ H : ρ(x,Gc1) ≥ ρ(x,Gc2)}
F2 = {x ∈ H : ρ(x,Gc2) ≥ ρ(x,Gc1)}

If x ∈ F1 but not in G1, then x ∈ G2, and hence x ∈ H. Suppose x is not in
G2. Then, x ∈ Gc2 and hence, ρ(x,Gc2) > 0. Therefore,

0 = ρ(x,Gc1) ( since x ∈ Gc1)

< ρ(x,Gc2)︸ ︷︷ ︸
>0

which contradicts that x ∈ F1, and hence contradicts ρ(x,Gc1) ≥ ρ(x,Gc2).
Similarly, if x ∈ F2 but not in G2, then x ∈ G1. Therefore, F1 ⊂ G1 and
F2 ⊂ G2. Since Fi’s are closed, by Step 1, there exist H1 and H2 such that

F1 ⊂ H1 ⊂ G1

and
F2 ⊂ H2 ⊂ G2

Therefore,

α(H) ≤ α(H1) + α(H2)

β(G) ≤ β(G1) + β(G2)
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Step 3. β is countably sub-additive on open set H ⊂
⋃
nGn where Gn is open

set.

Since H is compact(union of compacts), there exist a finite subcovers, i.e., there
exists n0 such that

H ⊂
⋃
n≤n0

Gn

and

α(H) ≤ β(H)

≤ β
( ⋃
n≤n0

Gn

)
=

∑
n≤n0

β(Gn)

=
∑
n

β(Gn)

Therefore,

β
(⋃

n

Gn

)
= sup

H⊂∪nGn
α(H)

≤ sup
H⊂∪nGn

∑
n

β(Gn)

=
∑
n

β(Gn)

Step 4. γ is an outer measure. We know γ is monotonic by definition and is
countably sub-additive. Given ε > 0 and subsets {Mn} ⊂ X , choose open sets
Gn, Mn ⊂ Gn such that

β(Gn) ≤ γ(Mn) +
ε

2n

γ
(⋃

n

Mn

)
≤ β

(⋃
n

Gn

)
=

∑
β(Gn)

=
∑
n

γ(Mn) + ε

Step 5. F is closed G is open.

β(G) ≥ γ(F ∩G) + γ(F c ∩G)

Choose ε > 0 and H1 ∈ H, H1 ⊂ F c ∩G such that

α(H1) > β(G ∩ F c)− ε
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Chose H0 such that
α(H0) > β(Hc

1 ∩G)− ε

Then, H0, H1 ⊂ G, and H0 ∩H1 = ∅,

β(G) ≥ α(H0 ∪H1)

= α(H0) + α(H1)

> β(Hc
1 ∩G) + β(F c ∩G)− 2ε

≥ γ(F ∩G) + γ(F c ∩G)− 2ε

Step 6. If F ∈M then F are all closed. If G is open and L ⊂ G, then,

β(G) ≥ γ(F ∩ L) + γ(F c ∩ L)

Then,

inf β(G) ≥ inf
(
γ(F ∩ L) + γ(F c ∩ L)

)
=⇒ γ(L) ≥ γ(F ∩ L) + γ(F c ∩ L)
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3 Weak Convergence on C[0, 1] and D[0,∞)

3.1 Structure of Compact sets in C[0, 1]

Let X be complete separable metric space. We showed that Π is tight iff Π is
relatively compact. Consider Pn is measure on C[0, 1] and let

πt1,...,tk(x) = (x(t1), ..., x(tk))

and suppose that
Pn ◦ π−1

t1,...,tk
=⇒ P ◦ π−1

t1,...,tk

does not imply
Pn =⇒ P

on C[0, 1]. However, Pn ◦ π−1
t1,...,tk

⇒ P ◦ π−1
t1,...,tk

and {Pn} is tight. Then,
Pn ⇒ P .

Proof. Since tightness implies(as we proved), there exists a probability measure
Q and subsequence {Pni} such that

Pni =⇒ Q

P ◦ π−1
t1,...,tk

= Q ◦ π−1
t1,...,tk

giving P = Q. Hence all limit points of subsequences of Pn is P , i.e., Pn ⇒ P .

Arzela-Ascoli Theorem

Definition 3.1 The uniform norm (or sup norm) assigns to real- or complex-
valued bounded functions f defined on a set S the non-negative number

||f ||∞ = ||f ||∞,S = sup{|f(x)| : x ∈ S}

This norm is also called the supremum norm, the Chebyshev norm, or the in-
finity norm. The name ”uniform norm” derives from the fact that a sequence of
functions {fn} converges to f under the metric derived from the uniform norm
if and only if fn converges to f uniformly.

Theorem 3.1 The set A ⊂ C[0, 1] is relative compact in sup topology if and
only if

(i) sup
x∈A
|x(0)| <∞

(ii) lim
δ

(
sup
x∈A

wx(δ)
)

= 0
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Remark(Modulus of Continuity). Here

wx(δ) = sup
|s−t|≤δ

|x(t)− x(s)|

Proof.
Consider function

f : C[0, 1]→ R

such that f(x) = x(0).

Claim. f is continuous.

Proof of Claim. We want to show that for ε > 0, there exists δ such that

||x− y||∞ = sup
t∈A
{|x(t)− y(t)|} < δ −→ |f(x)− f(y)| = |x(0)− y(0)| < ε

Given ε > 0, let δ = ε. Then, we are done.

Since A is compact, continuous mapping x 7→ x(0) is bounded. Therefore,

sup
x∈A
|x(0)| <∞

wx

(
1
n

)
is continuous in x uniformly on A and hence

lim
n→∞

wx

( 1

n

)
= 0

Suppose (i) and (ii) hold. Choose k large enough so that

sup
x∈A

wx

(1

k

)
= sup
x∈A

(
sup
|s−t|≤ 1

k

|x(s)− x(t)|
)

is finite. Since

|x(t)| < |x(0)|+
k∑
i=1

∣∣∣x( it
k

)
− x
( (i− 1)t

k

)∣∣∣
we have

α = sup
0≤t≤1

(
sup
x∈A
|x(t)|

)
<∞

Choose ε > 0 and finite ε−covering H of [−α, α]. Choose k large enough so that

wx

(1

k

)
< ε
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Take B to be finite set of polygonal functions on C[0, 1] that are linear on[
i−1
k , ik

]
and takes the values in H at end points.

If x ∈ A and
∣∣∣x( 1

k

)∣∣∣ ≤ α so that there exists a point y ∈ B such that∣∣∣∣∣x( ik)− y( ik)
∣∣∣∣∣ < ε, i = 1, 2, ..., k

then ∣∣∣∣∣y( ik)− x(t)

∣∣∣∣∣ < 2ε for t ∈
[ i− 1

k
,
i

k

]
y(t) is convex combination of y

(
i
k

)
, y
(
i−1
k

)
, so it is within 2ε of x(t), ρ(x, y) < 2ε,

B is finite, B is 2ε−covering of A.

Theorem 3.2 {Pn} is tight on C[0, 1] if and only if

1. For each η > 0, there exists a and n0 such that for n ≥ n0

Pn({x : |x(0)| > a}) > η

2. For each ε, η > 0, there exists 0 < δ < 1 and n0 such that for n ≥ n0

Pn({x : wx(δ) ≥ ε}) < η

Proof. Since {Pn} is tight, given δ > 0, choose K compact such that

Pn(K) > 1− η

Note that by Arzela-Ascoli Theorem, for large a

K ⊂ {x : |x(0)| ≤ a}

and for small δ
K ⊂ {x : wx(δ) ≤ ε}

Now, C[0, 1] is complete separable metric space. So each n, Pn is tight. Given
η > 0, there exists a such that

Pn({x : |x(0)| > a}) < η

and ε, η > 0, there exists δ > 0 such that

Pn({x : wx(δ) ≥ ε}) < η

This happens for Pn where n ≤ n0 with n0 is finite. Assume (i) and (ii) holds
for all n. Given η, choose a so that

B = {x : |x(0)| ≤ a},
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a satisfies for all n
Pn(B) > 1− η,

and choose δk such that

Bk =
{
x : wx(δk) ≤ 1

k

}
,

with
Pn(Bk) > 1− η

2k

Let K = A where
A = B ∩

(⋂
k

Bk

)
K is compact, and by Arzelar-Ascoli theorem,

Pn(K) > 1− 2η

3.2 Invariance principle for sums of i.i.d random variables

Let Xi’s be i.i.d with EXi = 0 and EX2
i = σ2. Define

Wn
t (ω) =

1

σ
√
n
S[nt](ω) + (nt− [nt])

1

σ2
√
n
X[nt]+1

Consider linear interpolation

W k
n

=
Sk√
n

where Wn ∈ C[0, 1] a.e. Pn

Let

ψnt = (nt− [nt]) ·
X[nt+1]

σ
√
n

Claim For fixed t, by Chevyshev’s inequality, as n→∞

ψnt → 0

Proof of Claim.

P (|ψnt|ε) = P

(
|X[nt+1]| >

σ
√
nε

(nt− [nt])

)

≤
E|X[nt+1]|2

σ2nε2

(nt−[nt])2

=
(nt− [nt])2

nε2

≤ 1

nε2
→ 0 (9)
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By CLT,
S[nt]

σ
√

[nt]
⇒D N(0, 1)

Since [nt]
n → t, by CLT,

S[nt]

σ
√
n

=
S[nt]

σ
√

[nt]
×
√

[nt]√
n
⇒D
√
tZ

by Slutsky’s equation. Therefore,

Wn
t ⇒D

√
tZ

Then,

(Wn
s ,W

n
t −Wn

s ) =
1

σ
√
n

(
S[ns], S[nt] − S[ns]

)
+
(
ψns, ψnt − ψns

)
=⇒D (N1, N2)

Since S[ns] and S[nt]−S[ns] are independent, N1 and N2 are independent normal
with variance s and t− s. Thus,

(Wn
s ,W

n
t ) = (Wn

s , (W
n
t −Wn

s ) +Wn
s )

⇒D (N1, N1 +N2)

We considered 2 dimensional. We can take k−dimensional. Similar argument
shows that

(Wn
1 , ...,W

n
k )⇒D finite dimensional distribution of Brownian Motion.

Now, we have to show that Pn is tight. Recall Arzela-Ascoli Theorem.

Theorem 3.3 {Pn} is tight on C[0, 1] if and only if

1. For each η > 0, there exists a and n0 such that for n ≥ n0

Pn({x : |x(0)| > a}) > η

2. For each ε, η > 0, there exists 0 < δ < 1 and n0 such that for n ≥ n0

Pn({x : wx(δ) ≥ ε}) < η

Theorem 3.4 Suppose 0 = t0 < t1 < · · · < tν = 1 and

min
1<i<ν

(ti − ti−1) ≥ δ (10)
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Then for arbitrary x,

wx(δ) ≤ 3 max
1≤i≤ν

(
sup

ti−1≤s≤ti
|x(s)− x(ti−1)|

)
(11)

and for any P on C[0, 1]

P (x : wx(δ) ≥ 3ε) ≤
ν∑
i=1

P (x : sup
ti−1≤s≤ti

|x(s)− x(ti−1)| ≥ ε) (12)

Proof. Let m denote the maximum in (11), i.e.,

m = max
1≤i≤ν

(
sup

ti−1≤s≤ti
|x(s)− x(ti−1)|

)
If s, t lie in Ii = [ti−1, ti]. Then

|x(s)− x(t)| ≤ |x(s)− x(ti−1)|+ |x(t)− x(ti−1)|
≤ 2m

Suppose s, t lie in adjoining intervals Ii−1 and Ii. Then,

|x(s)− x(t)| ≤ |x(s)− x(ti−1)|+ |x(ti)− x(ti−1)|+ |x(t)− x(ti)|
≤ 3m

Since
min

1<i<ν
(ti − ti−1) ≥ δ (13)

for s and t to be such that |s− t| < δ, s and t should lie in the same interval or
adjoining intervals. Therefore,

wx(δ) = sup
|s−t|≤δ

|x(t)− x(s)|

≤ max

{
sup

s,t∈same interval
|x(t)− x(s)|, sup

s,t∈adjoining interval
|x(t)− x(s)|

}
≤ 3m

This proves (11). Note that if X ≥ Y , then

P (X > a) ≥ P (Y > a)

Therefore,

P (x : wx(δ) > 3ε) ≤ P
(

3 max
1≤i≤ν

(
sup

ti−1≤s≤ti
|x(s)− x(ti−1)|

)
> 3ε

)
= P

(
x : max

1≤i≤ν

(
sup

ti−1≤s≤ti
|x(s)− x(ti−1)|

)
> ε

)

=

ν∑
i=1

P
(
x : sup

ti−1≤s≤ti
|x(s)− x(ti−1)| > ε

)
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This proves the theorem.

Condition (ii) of Arzela-Ascoli theorem holds if for each ε, η, there exists δ ∈
(0, 1) and n0 such that for all n ≥ n0

1

δ
Pn

(
x : sup

t≤s≤t+δ

∣∣x(s)− x(t)
∣∣ ≥ ε) > η

Now apply Theorem (3.4) with ti = iδ for i < ν = [1/δ]. Then by (12) we get
condition (ii) of Arzela-Ascoli theorem holds.
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3.3 Invariance principle for sums of stationary sequences

Definition 3.2 {Xn} is stationary if for any m,

(Xii , ..., Xik) =D (Xii+m, ..., Xik+m)

Lemma 3.1 Suppose {Xn} is stationary and Wn is defined as above. If

lim
λ→∞

lim sup
n→∞

λ2P
(

max
k≤n
|Sk| > λσ

√
n
)

= 0

then, Wn is tight.

Proof. Since Wn
0 = 0, the condition (i) of Arzela-Ascoli theorem is satisfied.

Let Pn is induced measure of Wn, i.e.,

P
(
w(Wn, δ) ≥ ε

)
= P (wWn(δ) ≥ ε)

We shall show that for all ε > 0

lim
δ→0

lim sup
n→∞

P
(
w(Wn, δ) ≥ ε

)
= 0

If
min(tt − ti−1) ≥ δ

then, by Theorem (3.4)

P
(
w(Wn, δ) ≥ 3ε

)
≤

ν∑
i=1

P
(

sup
ti−1≤s≤ti

∣∣Wn
s −Wn

t

∣∣ ≥ ε)
Take ti = mi

n , 0 = m0 < m1 < · · · < mν = n. Wn
t is polygonal and hence,

sup
ti−1≤s≤ti

∣∣Wn
s −Wn

t

∣∣ = max
mi−1≤k≤mi

|Sk − Smi−1
|

σ
√
n

Therefore,

P
(
w(Wn, δ) ≥ 3ε

)
≤

ν∑
i=1

P
(

max
mi−1≤k≤mi

|Sk − Smi−1 |
σ
√
n

≥ ε
)

≤
ν∑
i=1

P
(

max
mi−1≤k≤mi

|Sk − Smi−1
| ≥ σ

√
nε
)

=

ν∑
i=1

P
(

max
k≤mi−mi−1

|Sk| ≥ σ
√
nε
)

( by stationarity)

This inequality holds if

mi

n
− mi−1

n
≥ δ for 1 < i < ν
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Take mi = im for 0 ≤ i < ν and mν = n. For i < ν choose δ such that

mi −mi−1 = m ≥ nδ

Let m = [nδ], ν =
[
n
m

]
. Then,

mν −mν−1 ≤ m

and

ν =
[ n
m

]
−→ 1

δ
where

1

2δ
<

1

δ
<

2

δ

Therefore, for large n

P
(
w(Wn, δ) ≥ 3ε

)
≤

ν∑
i=1

P
(

max
k≤mi−mi−1

|Sk| ≥ σ
√
nε
)

≤ νP
(

max
k≤m
|Sk| ≥ σ

√
nε
)

≤ 2

δ
P
(

max
k≤m
|Sk| ≥ σ

√
nε
)

Take λ = ε√
2δ

. Then,

P
(
w(Wn, δ) ≥ 3ε

)
≤ 4λ2

ε2
P
(

max
k≤m
|Sk| ≥ λσ

√
n
)

By the condition of the Lemma, given ε, η > 0, there exists λ > 0 such that

4λ2

ε2
lim sup
n→∞

P
(

max
k≤n
|Sk| > λσ

√
n
)
< η

Now, for fixed λ, δ, let m→∞ with n→∞

Look at Xk i.i.d. Then,

lim
λ→0

lim sup
n→∞

P
(

max
k≤n
|Sk| > λσ

√
n
)

= 0

We know that
P
(

max
u≤m

|Su| > α
)
≤ 3 max

u≤m
P
(
|Su| >

α

3

)
To show

lim
λ→∞

lim sup
n→∞

λ2P
(

max
k≤n
|Sk| > λσ

√
n
)

= 0

we assume that Xi i.i.d. normal, and hence, Sk/
√
k is asymptotically normal,

N . Since we know

P (|N | > λ) ≤ EN4

λ4
=

3σ4

λ4
,
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we have for k ≤ n
(√

n√
k
> 1
)

P (|Sk| > λσ
√
n) = P (

√
k|N | > λσ

√
n)

≤ 3

λ4σ4

kλ is large and kλ ≤ k ≤ n. Then,

P (|Sk| > λσ
√
n) ≤ P (|Sk| > λσ

√
k)

≤ 3

λ4

Also,

P (|Sk| > λσ
√
n) ≤ E|Sk|2/σ2

λ2n

≤ kλ
λ2n

and hence,

max
k≤n

P (|Sk| > λσ
√
n) ≤ max

{
3

λ2
,
kλ
λ2n

}

3.4 Weak Convergence on Skorokhod Space

3.4.1 The Space D[0, 1]

Let
x : [0, 1]→ R

be right-continuous with left limit exists such that

1. for 0 ≤ t < 1
lim
s↘t

x(s) = x(t+) = x(t)

2. for 0 < t ≤ 1
lim
s↗t

x(s) = x(t−)

We say that x(t) has discontinuity of the first kind at t if left and right limit exist.

For x ∈ D and T ⊂ [0, 1]

wx(T ) = w(x, T ) = sup
s,t∈T

|x(s)− x(t)|

We define Modulus of continuity

wx(δ) = sup
0≤t≤1−δ

wx([t, t+ δ))
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Lemma 3.2 (D1) For each x ∈ D, and ε > 0 there exist points 0 = t0 < t1 <
· · · < tν = 1 and wx([ti−1, ti)) < ε.

Proof. Call ti’s above δ-sparse. If mini{(ti − ti−1)} ≥ δ, define for 0 < δ < 1

w′x(δ) = w′(x, δ) = inf
{ti}

max
1≤i≤ν

wx([ti−1, ti))

If we prove the above Lemma, we get x ∈ D

lim
δ→0

w′x(δ) = 0

If δ < 1
2 , we can split [0, 1) into subintervals [ti−1, ti) such that

δ < (ti − ti−1) ≤ 2δ

and hence,
w′x(δ) ≤ wx(2δ)

Let define jump function

j(x) = sup
0≤t≤1

|x(t)− x(t−)|

We shall prove that
wx(δ) ≤ 2w′x(δ) + j(x)

Choose δ−sparse sequence {ti} such that

wx([ti−1, ti)) < w′x(δ) + ε

We can do this from the definition

w′x(δ) = w′(x, δ) = inf
{ti}

max
1≤i≤ν

wx([ti−1, ti))

If |s− t| < δ, then s, t ∈ [ti−1, ti) or belongs to adjoining intervals. Then,

|x(s)− x(t)|
{
w′x(δ) + ε, if s, t belong to the same interval;
2w′x(δ) + ε+ j(x), if s, t belong to adjoining intervals.

If x is continuous, j(x) = 0 and hence,

wx(δ) ≤ 2w′x(δ)

3.4.2 Skorokhod Topology

Let Λ be the class of strictly increasing function on [0, 1] and λ(0) = 0, λ(1) = 1.
Define

d(x, y) = inf{ε : ∃λ ∈ Λ such that sup
t
|λ(t)−t| < ε and sup

t
|x(λ(t))−y(t)| < ε}
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d(x, y) = 0 implies there exists λn ∈ Λ such that λn(t) → t uniformly and
x(λ(t))→ y(t) uniformly. Therefore,

||λ− I|| = sup
t∈[0,1]

|λ(t)− t|

||x− y ◦ λ|| = sup
t∈[0,1]

|x(t)− y(λ(t))|

d(x, y) = inf
λ

(
||λ− I|| ∨ ||x− y ◦ λ||

)
If λ(t) = t, then

1. d(x, y) = sup |x(t)−y(t)| <∞ since we showed |x(s)−x(t)| ≤ w′x(δ) <∞.

2. d(x, y) = d(y, x).

3. d(x, y) = 0 only if x(t) = y(t) or x(t) = y(t−).

If λ1, λ2 ∈ Λ and λ1 ◦ λ2 ∈ Λ

||λ1 ◦ λ2 − I|| ≤ ||λ1 − I||+ ||λ2 − I||

If λ1, λ2 ∈ Λ, then the followings hold:

1. λ1 ◦ λ2 ∈ Λ

2. ||λ1 ◦ λ2 − I|| ≤ ||λ1 − I||+ ||λ2 − I||

3. ||x− z ◦ (λ1 ◦ λ2)|| ≤ ||x− y ◦ λ2||+ ||y − z ◦ λ1||

4. d(x, z) ≤ d(x, y) + d(y, z)

Therefore, Skorokhod Topology is given by d.

Remark. d0 is equivalent to d, but (D, d0) is complete.

Choose λ ∈ Λ near identity. Then for t, s close, λ(t)−λ(s)
t−s is close to 1. Therefore,

||λ||0 = sup
s<t

∣∣∣ log
λ(t)− λ(s)

t− s

∣∣∣ ∈ (0,∞)

3.5 Metric on D[0, 1] to make it complete

Let λ ∈ Λ (λ is non-decreasing, λ(0) = 0, and λ(1) = 1). Recall

||λ||0 = sup
s<t

∣∣∣ log
λ(t)− λ(s)

t− s

∣∣∣ ∈ (0,∞)
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Consider d0

d0(x, y) = inf{ε > 0 : ∃λ ∈ Λ with ||λ||0 < ε and sup
t
|x(t)− y(λ(t))| < ε}

= inf
λ∈Λ
{||λ||0 ∨ ||x− y ◦ λ||}

since, for u > 0,
|u− 1| ≤ e| log u| − 1,

we have

sup
0≤t≤1

|λ(t)− t| = sup
0≤t≤1

t
∣∣∣λ(t)− λ(0)

t− 0
− 1
∣∣∣

= e||λ||
0

− 1

For any ν, ν ≤ eν − 1, and hence

d(x, y) ≤ ed
0(x,y) − 1.

Thus, d0(xn, y)→ 0 implies d(xn, y)→ 0.

Lemma 3.3 (D2) If x, y ∈ D[0, 1] and d(x, y) < δ2, then d0(x, y) ≤ 4δ+w′x(δ).

Proof. Take ε < δ and {ti} δ−sparse with

wx([ti−1, ti)) < w′x(δ) + ε ∀i

We can do this from definition of w′x(δ). Choose µ ∈ Λ such that

sup
t
|x(t)− y(µ(t))| = sup

t
|x(µ−1(t))− y(t)| < δ2 (14)

and
sup
t
|µ(t)− t| < δ2 (15)

This follows from d(x, y) < δ2. Take λ to agree with µ at points ti and linear
between.

µ−1 ◦λ fixes ti and is increasing in t. Also, (µ−1 ◦λ)(t) lies in the same interval
[ti−1, ti). Thus, from (14),

|x(t)− y(λ(t))| ≤ |x(t)− x((µ−1 ◦ λ)(t))|︸ ︷︷ ︸
≤w′x(δ)+ε

+ |x((µ−1 ◦ λ)(t))− y(λ(t))|︸ ︷︷ ︸
<δ2

(by Triangle Inequality)

= w′x(δ) + ε+ δ2
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δ < 1
2 < 4δ + w′x(δ). λ agrees with µ at ti’s. Then by (15) and (ti − ti−1) > δ

(δ−sparse)

|(λ(ti)− λ(ti−1))− (ti − ti−1)| < 2δ2

< 2δ(ti − ti−1)

and
|(λ(t)− λ(s))− (t− s)| ≤ 2δ|t− s|

for t, s ∈ [ti−1, ti) by polygonal property. Now, we take a care of adjoining
interval. For u1, u2, u3

|(λ(u3)−λ(u1))−(u3−u1)| ≤ |(λ(u3)−λ(u2))−(u3−u2)|+|(λ(u2)−λ(u1))−(u2−u1)|

If t and s are in adjoining intervals, we get the same bound. Since for u < 1
2

| log(1± u)| ≤ 2u,

we have

log(1− 2δ) ≤ log
λ(t)− λ(s)

t− s
≤ log(1 + 2δ)

Therefore,

||λ||0 = sup
s<t

∣∣∣ log
λ(t)− λ(s)

t− s

∣∣∣ < 4δ

and hence, d0 and d are equivalent. Now, we shall show that D0 is separable
and is complete.

Consider σ = {su} with 0 = s0 < · · · < sk = 1 and define Aσ : D → D
by

(Aσx)(t) = x(su−1)

for t ∈ [su−1, su) with 1 ≤ u ≤ k with (Aσx)(sk) = x(1).

Lemma 3.4 (D3) If max(su − su−1) ≤ δ, then

d(Aσx, x) ≤ δ ∨ w′x(δ)

Proof. Let Aσx ≡ x̂. Let ζ(t) = su−1 if t ∈ [su−1, su) with ζ(1) = sk = 1.
Then, x̂(t) = x(ζ(t)). Given ε > 0, find δ−sparse set {ti} such that

wx([ti−1, ti)) < w′x(δ) + ε

for all i. Let λ(ti) be defined by

1. λ(t0) = s0

2. λ(ti) = sv if ti ∈ [sv−1, sv) where

ti − ti−1 > δ ≥ sv − sv−1
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Then, λ(ti) is increasing. Now, extend it to λ ∈ Λ by linear interpolation.

Claim.

||x̂(t)− x(λ−1(t)) = |x(ζ(t))− x(λ−1(t))|
< w′x(δ) + ε

Clearly, if t = 0, or t = 1, it is true. Let us look at 0 < t < 1. First we observe
that ζ(t), λ−1(t) lie in the same interval [ti−1, ti).(We will prove it.) This follows
if we shows

tj ≤ ζ(t) iff tj ≤ λ−1(t)

or equivalently,
tj > ζ(t) iff tj > λ−1(t)

This is true for tj = 0. Suppose tj ∈ (sv−1, sv] and ζ(t) = si for some i. By
the definition of ζ(t) t ≤ ζ(t) is equivalent to sv ≤ t. Since tj ∈ (sv−1, sv],
λ(tj) = sv. This completes the proof.

3.6 Separability of Skorokhod space

d0− convergence is stronger than d− convergence.

Theorem 3.5 (D1) The space (D, d) is separable, and hence, so is (D, d0).

Proof. Let Bk be the set of functions taking constant rational value on
[
u−1
k , uk

]
and taking rational value at 1. Then, B = ∪kBk is countable. Given x ∈ D,

ε > 0, choose k such that 1
k < ε and wx

(
1
k

)
. Apply Lemma D3 with σ =

{
u
k

}
.

Note that Aσx has finite many values and

d(x,Aσx) < ε

Since Aσx has finitely many real values, we can find y ∈ B such that given
d(x, y) < ε,

d(Aσx, y) < ε

Now, we shall prove the completeness.

Proof) We take d0−Cauchy sequence. Then it contains a d0−convergent subse-
quence. If {xk} is Cauchy, then there exists {yn} = {xkn} such that

d0(yn, yn+1) <
1

2n

There exists µn ∈ Λ such that

1. ||µn||0 < 1
2n
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2.

sup
t
|yn(t)− yn+1(µn(t))| = sup

t
|yn(µ−1

n (t))− yn+1(t)|

<
1

2n

We have to find y ∈ D and λn ∈ Λ such that

||λn||0 → 0

and
yn(λ−1

n (t))→ y(t)

uniformly.

Heuristic.(not a proof) Suppose yn(λ−1
n (t))→ y(t). Then, by (2), yn(µ−1

n (λ−1
n+1(t)))

is within 1
2n of yn+1(λ−1

n+1(t)). So, yn(λ−1
n (t))→ y(t) uniformly.

Find λn such that
yn(µ−1

n (λ−1
n+1(t))) = yn(λ−1

n (t))

i.e.,
µ−1
n ◦ λ−1

n+1 = λ−1
n

Thus,

λn = λn+1µn

= λn+2µn+1µn
...

= · · ·µn+2µn+1µn

Proof. Since
eu − 1 ≤ 2u

for 0 ≤ u ≤ 1
2 , we have

sup
t
|λ(t)− t| ≤ e||λ||

0

− 1

Therefore,

sup
t
|(µn+m+1µn+m · · ·µn)(t)− (µn+mµn+m−1 · · ·µn)(t)| ≤ sup

s
|µn+m+1(s)− s|

≤ 2||µn+m+1||0

=
1

2n+m
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For fixed n
(µn+mµn+m−1 · · ·µn)(t)

converges uniformly in t as n goes to ∞. Let

λn(t) = lim
m→∞

(µn+mµn+m−1 · · ·µn)(t)

Then, λn is continuous and non-decreasing with λn(0) = 0 and λn(1) = 1. We
have to prove ||λn||0 is finite. Then, λn is strictly increasing.∣∣∣∣∣ log

(µn+mµn+m−1 · · ·µn)(t)− (µn+mµn+m−1 · · ·µn)(s)

t− s

∣∣∣∣∣ ≤ ||µn+mµn+m−1 · · ·µn||0

( since λn ∈ Λ, ||λn||0 <∞)

≤ ||µn+m||0 + · · ·+ ||µn||0

( since ||λ1λ2||0 ≤ ||λ1||0 + ||λ2||0)

<
1

2n−1

Let m→∞. Then, ||λn||0 < 1
2n−1 is finite, and hence, λn is strictly increasing.

Now, by (2),

sup
t
|yn(λ−1

n (t))− yn(λ−1
n+1(t))| ≤ sup

s
|yn(s)− yn+1(µn(s))|

<
1

2n

Therefore, {yn(λ−1
n (t))} is Cauchy under supnorm and

yn(λ−1
n (t))→ y(t) ∈ D

and hence converges in d0.

3.7 Tightness in Skorokhod space

We turn now the problem of characterizing compact sets in D. We will prove
an analogue of the Arzelà-Ascoli theorem.

Theorem 3.6 A necessary and sufficient condition for a set A to be relatively
compact in the Skorohod topology is that

sup
x∈A
||x|| <∞ (16)

and
lim
δ→0

supx∈Aw
′
x(δ) = 0. (17)
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Proof of Sufficiency. Let
α = sup

x∈A
||x||.

Given ε > 0, choose a finite ε−net H in [−α, α] and choose δ so that δ < ε
and w′x(δ) < ε for all x in A. Apply Lemma 3 for any σ = {su} satisfying
max(su − su−1) < δ: x ∈ A implies d(x,Aσx). Take B to be the finite set of y
that assume on each [su−1, su) a constant value from H and satisfy y(1) ∈ H.
Since B contains a y for which d(x,Aσx), it is a finite 2ε−net for A in the sense
of d. Thus A is totally bounded in the sense of d. But we must show that
A is totally bounded in the sense of d0, since this is the metric under which
D is complete. Given (a new) ε, choose a new δ so that 0 < δ ≤ 1/2 and
so that 4δ + w′x(δ) < ε holds for all x in A. We have already seen that A is
d−totally bounded, and so there exists a finite set B′ that is a δ2−net for A
in the sense of d. But then, by Lemma 2, B′ is an ε−net for A in the sense of d0.

The proof of necessity requires a lemma and a definition.

Definition 3.3 In any metric space, f is upper semi-continuous at x, if for all
ε > 0, there exists δ > 0 such that

ρ(x, y) < δ ⇒ f(y) < f(x) + ε

Lemma 3.5 For fixed δ, w′(x, δ) is upper-semicontinuous in x.

Proof. Let x, δ, and ε be given. Let {ti} be a δ−spars set such that wx[ti−1, ti) <
w′x(δ) + ε for each i. Now choose η small enough that δ + 2η < min(ti − ti−1)
and η < ε. Suppose that d(x, y) < η. Then for some λ in Λ, we have

sup
t
|y(t)− x(λt)| < η

sup
t
|λ−1t− t| < η

Let si = λ−1ti. Then si − si−1 > ti − ti−1 − 2η > δ. Moreover, if s and t both
lies in [si−1, si), then λs and λt both lie in [ti−1, ti), and hence |y(s) − y(t)| <
|x(λs)−x(λt)|+2η ≤ w′x(δ)+ε+2η. Thus d(x, y) < η implies w′y(δ) < w′x(δ)+3ε.

Definition 3.4 (d−bounded) A is d−bounded if diameter is bounded, i.e.,

diameter(A) = sup
x,y∈A

d(x, y) <∞

Proof of Necessity in Theorem (3.6). If A− is compact, then it is d−bounded,
and since supt |x(t)| is the d−distance from x to the 0-function, (16) follows.
By Lemma 1, w′(x, δ) goes to 0 with δ for each x. But since w′(·, δ) is upper-
semiconinutous, the convergence is uniform on compact sets.
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Theorem (3.6), which characterizes compactness in D, gives the following result.
Let {Pn} be a sequence of probability measure on (D,D).

Theorem 3.7 The sequence {Pn} is tight if and only if these two conditions
hold:
We have

lim
a→∞

lim sup
n

Pn

(
{x : ||x|| ≥ a}

)
= 0 (18)

(ii) for each ε,

lim
δ→∞

lim sup
n

Pn

(
{x : w′x(δ) ≥ ε}

)
= 0. (19)

Proof. Conditions (i) and (ii) here are exactly conditions (i) and (ii) of Azela-
Ascoli theorem with ||x|| in place of |x(0)| and w′ in place of w. Since D is
separable and complete, a single probability measure on D is tight, and so the
previous proof goes through.
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3.8 The Space D[0,∞)

Here we extend the Skorohod theory to the space D∞ = D[0,∞) of cadlag func-
tions on [0,∞), a space more natural than D = D[0, 1] for certain problems.

In addition to D∞, consider for each t > 0 the space Dt = D[0, t] of cadlag
functions on [0, t]. All the definitions for D1 have obvious analogues for Dt :
sups≤t |x(s)|, Λt, ||λ||0t , d0

t , dt. And all the theorems carry over from D1 to Dt

in an obvious way. If x is an element of D∞, or if x is an element of Du and
t < u, then x can also be regarded as an element of Dt by restricting its domain
of definition. This new cadlag function will be denoted by the same symbol; it
will always be clear what domain is intended.

One might try to define Skorohod convergence xn → x in D∞ by requiring that
d0
t (xn, x)→ 0 for each finite, positive t. But in a natural theory, xn = I[0,1−1/n]

will converge to x = I[0,1] in D∞, while d0
1(xn, x) = 1. The problem here is that

x is discontinuous at 1, and the definition must accommodate discontinuities.

Lemma 3.6 Let xn and x be elements of Du. If d0
u(xn, x) → 0 and m < u,

and if x is continuous at m, then d0
m(xn, x)→ 0.

Proof. We can work with the metrics du and dm. By hypothesis, there are
elements λn of Λu such that

||λn − I||u → 0

and
||xn − xλn||u → 0.

Given ε, choose δ so that |t−m| ≤ 2δ implies |x(t)− x(m)| < ε/2. Now choose
n0 so that, if n ≥ n0 and t ≤ u, then |λnt − t| < δ and |xn(t) − x(λnt)| < ε/2.
Then, if n ≥ n0 and |t−m| <≤ δ, we have |λnt−m| ≤ |λnt− t|+ |t−m| < 2δ
and hence |xn(t)− x(m)| ≤ |xn(t)− x(λnt)|+ |x(λnt)− x(m)| < ε. Thus

sup
|t−m|≤δ

|x(t)− x(m)| < ε, sup
|t−m|≤δ

|xn(t)− x(m)| < ε, for n ≥ n0. (20)

If
(i) λnm < m, let pn = m− 1

n ;

(ii) λnm > m, let pn = λ−1
(
m− 1

n

)
;

(iii) λnm = m, let pn = m.

Then,
(i) |pn −m| = 1

n ;
(ii) |pn −m| =≤ |λ−1

n (m− n−1)− (m− n−1)|+ 1
n ;
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(iii) |pn −m| = m.
Therefore, pn → m. Since

|λnpn −m| ≤ |λnpn − pn|+ |pn −m|,

we also have λnpn → m. Define µn ∈ Λn so that µnt = λnt on [0, pn] and
µnm = m; and interpolate linearly on [pn,m]. Since µnm = m and µn is linear
over [pn,m], we have |µnt− t| ≤ |λnpn − pm| there, and therefore, µnt→ t uni-
formly on [0,m]. Increase the n0 of (20) so that pn > m− δ and λnpn > m− δ
for n ≥ n0. If t ≤ pn, then |xn(t)− x(µnt)| = |xn(t)− x(λnt)| ≤ ||xn − xλn||u.
On the other hand, if pn ≤ t ≤ m and n ≥ n0, then m ≥ t ≥ pn > m − δ and
m ≥ µnt ≥ µnpn = λnpn > m − δ, and therefore, by (20), |xn(t) − x(µnt)| ≤
|xn(t)− x(m)|+ |x(m)− x(µnt)| < 2ε. Thus, |xn(t)− x(µnt)| → 0 uniformly on
[0,m].

The metric on D∞ will be defined in terms of the metrics d0
m(x, y)for inte-

gral m, but before restricting x and y to [0,m], we transform them in shcu a
way that they are continuous at m. Define

gn(t) =

 1, if t ≤ m− 1;
m− t, if m− 1 ≤ t ≤ m;
0, t ≥ m.

(21)

For x ∈ D∞, let xm be the element of D∞ defined by

xm(t) = gm(t)x(t), t ≥ 0 (22)

And now take

d0
∞(x, y) =

∞∑
m=1

2−m(1 ∧ d0
m(xm, ym)). (23)

If d0
∞(x, y) = 0, then d0

m(x, y) = 0 and xm = ym for all m, and this implies
x = y. The other properties being easy to establish, d0

∞ is a metric on D∞; it
defines the Skorohod topology there. If we replace d0

m by dm in (23), we have a
metric d∞ equivalent to d0

∞.

Let Λ∞ be the set of continuous, increasing maps of [0,∞) onto itself.

Theorem 3.8 There is convergence d0
∞(xn, x)→ 0 in D∞ if and only if there

exist elements λn of Λ∞ such that

sup
t<∞
|λnt− t| → 0 (24)

and for each m,
sup
t≤m
|xn(λnt)− x(t)| → 0. (25)
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Proof. Suppose that d0
∞(xn, x) and d∞(xn, x) go to 0. Then there exist ele-

ments λmn of Λm such that

εmn = ||I − λmn ||m ∨ ||xmn λmn − xm||m → 0

for each m. Choose lm so that n ≥ lm implies εmn < 1/m. Arrange that lm <
lm+1, and for lm ≤ n < lm+1, let mn = m. Since lm ≤ n < lm+1, we have
mn → n and εmnn < 1/mn. Define

λnt =

{
λmnn t, if t ≤ mn;
t+ λmnn (mn)−mn, if t ≥ mn.

Then |λnt− t| < 1/mn for t ≥ mn as well as for t ≤ mn, and therefore,

sup
t
|λnt− t| ≤

1

mn
→ 0.

Hence, 24. Fix c. If n is large enough, then c < mn − 1, and so

||xnλn − x||c = ||xmnn λmnn − xmn ||c ≤
1

mn
→ 0,

which is equivalent to (25).

Now suppose that (24) and (25) hold. Fix m. First,

xmn (λnt) = gm(λnt)xn(λnt)→ gm(t)x(t) = xm(t) (26)

holds uniformly on [0,m]. Define pn and µn as in the proof of Lemma 1. As
before, µnt → t uniformly on [0,m]. For t ≤ pn, |xm(t)− xmn (µnt)| = |xm(t)−
xmn (λnt)|, and this goes to 0 uniformly by 26. For the case pn ≤ t ≤ m, first
note that |xm(u)| ≤ gm(u)||x||m for all u ≥ 0 and hence,

|xm(t)− xmn (µnt)| ≤ gm(t)||x||m + gm(µnt)||xn||m. (27)

By (24), for large n we have λn(2m) > m and hence ||xn||m ≤ ||xnλn||2m;
and ||xnλn||2m → ||xn||2m by (25). This means that ||xn||m is bounded(m
is fixed). Given ε, choose n0 so that n ≥ n0 implies that pn and µnpn both
lies in (m − ε,m], an interval on which gm is bounded by ε. If n ≥ n0 and
pn ≤ t ≤ m, then t and µnt both lie is (m − ε,m], and it follows by (27) that
|xm(t) − xmn (µnt)| ≤ ε

(
||x||m + ||xn||m

)
. Since ||xn||m is bounded, this implies

that |xm(t) − xmn (µnt)| → 0 holds uniformly on [pn,m] as well as on [0, pn].
Therefore, d0

m(xmn , x
m) → 0 for each m and hence d0

∞(xn, x) and d∞(xn, x) go
to 0. This completes the proof.

Theorem 3.9 There is convergence d0
∞(xn, x)→ 0 in D∞ if and only if d0

t (xn, x)→
0 for each continuity point t of x.
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Proof. If d0
∞(xn, x) → 0, then d0

∞(xmn , x
m) → 0 for each m. Given a conti-

nuity point t of x, fix an integer m for which t < m − 1. By Lemma 1(with
t and m in the roles of m and u) and the fact that y and ym agree on [0, t],
d0
t (xn, x) = d0

t (x
m
n , x

m)→ 0.

To prove the reverse implication, choose continuity points tm of x in such a
way that tm ↑ ∞. The argument now follows the first part of the proof of (3.8).
Choose elements λmn of Λtm in such a way that

εmn = ||λmn − I||tm ∨ ||xnλmn − x||tm → 0

for each m. As before, define integers mn in such a way that mn → ∞ and
εmnn < 1/mn, and this time define λn ∈ Λ∞ by

λnt =

{
λmnn t, if t ≤ tmn ;
t, if t ≥ tmn .

The |λnt− t| ≤ 1/mn for all t, and if c < tmn , then ||xnλn − x||c = ||xnλmnn −
x||c ≤ 1/mn → 0. This implies that (24) and ((25)) hold, which in turn implies
that d0

∞(xn, x)→ 0. This completes the proof.

3.8.1 Separability and Completeness

For x ∈ D∞, define ψmx as xm restricted to [0,m]. Then, since d0
m(ψmxn, ψmx) =

d0
m(xmn , x

m), ψm is a continuous map of D∞ into Dm. In the product space
Π = D1 ×D2 × · · ·, the metric

ρ(α, β) =

∞∑
m=1

2−m
(
1 ∧ d0

m(αm, βm)
)

defines the product topology, that of coordinatewise convergence. Now define
ψ : D∞ → Π by ψx = (ψ1x, ψ2x, ...):

ψm : D∞ → Dm, ψ : D∞ → Π

Then d0
∞(x, y) = ρ(ψx, ψy) : ψ is an isometry of D∞ into Π.

Lemma 3.7 The image ψD∞ is closed in Π.

Proof. Suppose that xn ∈ D∞ and α ∈ Π, and ρ(ψxn, α)→ 0; then d0
m(xmn , αm)→

0 for each m. We must find an x in D∞ such that α = ψx-that is , αm = ψmx for
each m. Let T be the dense set of t such that, for every m ≥ t, αm is continuous
at t. Since d0

m(xmn , αm)→ 0, t ∈ T ∩ [0,m] implies xmn (t) = gn(t)xn(t)→ αm(t).
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This means that, for every t in T , the limit x(t) = limxn(t) exists(consider an
m > t+ 1, so that gn(t) = 1). Now gm(t)x(t) = αm(t) on T ∩ [0,m]. It follows
that x(t) = αm(t) on T ∩ [0,m − 1], so that x can be extended to a cadlag
function on each [0,m − 1] and then to a cadlag function on [0,∞]. And now,
by right continuity, gm(t)x(t) = αm(t) on [0,m], or ψmx = xm = αm. This
completes the proof.

Theorem 3.10 The space D∞ is separable and complete.

Proof. Since Π is separable and complete, so are the closed subspace ψD∞ and
its isometric copy D∞. This completes the proof.

3.8.2 Compactness

Theorem 3.11 A set A is relatively compact in D∞ if and only if, for each m,
ψmA is relatively compact in Dm.

Proof. If A is relatively compact, then Ā is compact and hence the continuous
image ψmĀ is also compact. But then, ψmA, as a subset of ψmĀ, is relatively
compact.

Conversely, if each ψmA is relatively compact, then each ψmA is compact, and
therefore B = ψ1A × ψ2A × · · · and E = ψD∞ ∩ B are both compact in Π.
But x ∈ A implies ψx ∈ ψmA for each m, so that ψx ∈ B. Hence ψA ⊂ E,
which implies that ψA is totally bounded and so is its isometric image A. This
completes the proof.

For an explicit analytical characterization of relative compactness, analogous
to the Arzela-Ascoli theorem, we need to adapt the w′(x, δ) to D∞. For an
x ∈ Dm define

w′m(x, δ) = inf max
1≤i≤v

w(x, [ti−1, ti)), (28)

where the infimum extends over all decompositions [ti−1, ti), 1 ≤ i ≤ v, of [0,m)
such that tt − ti−1 > δ for 1 ≤ i ≤ v. Note that the definition does not require
tv − tv−1 > δ; Although 1 plays a special role in the theory of D1, the integers
m should play no special role in the theory of D∞.

The exact analogue of w′(x, δ) is (28), but with the infimum extending only
over the decompositions satisfying tt − ti−1 > δ for i = v as well as for i < v.
Call this w̄m(x, δ). By an obvious extension, a set B in Dm is relatively compact
if and only if supx ||x||m <∞ and limδ supx w̄(x, δ) = 0. Suppose that A ⊂ D∞,
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and transform the two conditions by giving ψmA the role of B. By (3.11), A is
relatively compact if and only if , for every m

sup
x∈A
||xm||m <∞ (29)

and
lim
δ→0

sup
x∈A

w̄m(xm, δ) = 0. (30)

The next step is to show that (29) and (30) are together equivalent to the
condition that, for every m,

sup
x∈A
||x||m <∞ (31)

and
lim
δ→0

sup
x∈A

w′m(x, δ) = 0. (32)

The equivalence of (29) and (31) follows easily because ||xm||m ≤ ||x||m ≤
||xm+1||m+1. Suppose (31) and (32) both hold, and let Km be the supremum
in (31). If x ∈ A and δ < 1, then we have |xm(t)| ≤ Kmδ for m − δ ≤ t < m.
Given ε, choose δ so that Kmδ < ε/4 and the supremum in (32) is less than ε/2.
If x ∈ A and m− δ lies in the interval [tj−1, tj) of the corresponding partition,
replace the intervals [ti−1, ti) for i ≥ j by the single interval [tj−1,m). This new
partition shows that w̄m(x, δ). Hence (30).

That (30) implies (32) is clear because w′m(x, δ) ≤ w̄m(x, δ): An infimum in-
creases if its range is reduced. This gives us the following criterion.

Theorem 3.12 A set A ∈ D∞ is relatively compact if and only if (31) and
(32) hold for all m.

3.8.3 Tightness

Theorem 3.13 The sequence {Pn} is tight if and only if there two conditions
hold:
(i) For each m

lim
a→∞

lim sup
n

Pn

(
{x : ||x||m ≥ a}

)
= 0. (33)

(ii) For each m and ε,

lim
δ

lim sup
n

Pn

(
{x : w′m(x, δ) ≥ ε}

)
= 0. (34)

And there is the corresponding corollary. Let

jm(x) = sup
t≤m
|x(t)− x(t−)|. (35)
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Corollary 3.1 Either of the following two conditions can be substituted for (i)
in (3.13):
(i’) For each t in a set T that is dense in [0,∞),

lim
a→∞

lim sup
n

Pn

(
{x : |x(t)| ≥ a}

)
= 0. (36)

(ii’) The relation (36) holds for t = 0, and for each m,

lim
a→∞

lim sup
n

Pn

(
{x : jm(x) ≥ a}

)
= 0. (37)

Proof. The proof is almost the same as that for the corollary to (3.7).

Assume (ii) and (i’). Choose points ti such that 0 = t0 < t1 < · · · < tv = m,
ti − ti−1 > δ for 1 ≤ i ≤ v − 1, and wx[ti−1, ti) < w′m(x, δ) + 1 for 1 ≤ i ≤ v.
Choose from T points sj such that 0 = s0 < s1 < · · · < sk = m and
sj − sj−1 < δ for 1 ≤ j ≤ k. Let m(x) = max0≤j≤k |x(sj)|. If tv − tv−1 > δ,
then ||x||m ≤ m(x) + w′m(x, δ) + 1, just as before. If tv − tv−1 ≤ δ(and δ < 1,
so that tv−1 > m− 1), then ||x||m−1 ≤ m(x) +w′m(x, δ) + 1. The old argument
now gives (33), but with ||x||m replaced by ||x||m−1, which is just as good.

In the proof that (ii) and (i’) imply (i), we have (v − 1)δ ≤ m instead of vδ <!.
But then, v ≤ mδ−1 + 1, and the old argument goes through. This completes
the proof.
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3.8.4 Aldous’s Tightness Criterion

Equation

lim
a→∞

lim sup
n

P
(
||Xn||m

)
= 0 (38)

Consider two conditions.

Condition 10. For each ε, η,m, there exist a δ0 and an n0 such that, if δ ≤ δ0
and n ≥ n0, and if τ is a discrete Xn−stopping time satisfying τ ≤ m, then

P
(∣∣Xn

τ+δ −Xn
τ

∣∣ ≥ ε) ≤ η. (39)

Condition 20. For each ε, η,m, there exist a δ and an n0 such that, if n ≥ n0,
and if τ1 and τ2 are a discrete Xn−stopping time satisfying 0 ≤ τ1 ≤ τ2 ≤ m,
then

P
(∣∣Xn

τ2 −X
n
τ1

∣∣ ≥ ε, τ2 − τ1 ≤ δ) ≤ η. (40)

Theorem 3.14 Conditions 10 and 20 are equivalent.

Proof. Note that τ + δ is a stopping time since

{τ + δ ≤ t} = {τ ≤ t− δ} ∈ FXnt .

In condition 2, put τ2 = τ , τ1 = τ . Then it gives condition 1. For the converse,
suppose that τ ≤ m and choose δ0 so that δ ≤ 2δ0 and n ≥ n0 together imply
39. Fix an n ≥ n0 and a δ ≤ δ0, and let (enlarge the probability space for
Xn) θ be a random variable independent of Fn = σ

(
Xs
n : s ≥ 0

)
and uniformly

distributed over J = [0, 2δ]. For the moment, fix an x in D∞ and points t1 and
t2 satisfying 0 ≤ t1 ≤ t2. Let µ be the uniform distribution over J , and let
I = [0, δ], Mi = {s ∈ J : |x(ti + s)− x(ti)| < ε}, and d = t2 − t1.
Suppose that

t2 − t1 ≤ δ (41)

and

µ(Mi) = P
(
θ ∈Mi

)
>

3

4
, for i = 1, 2 (42)

If µ(M2∩I) ≤ 1
4 , then µ(M2) ≤ 3

4 , which is a contradiction. Hence, µ(M2∩I) >
1
4 , and for d(0 ≤ d ≤ δ), µ((M2 + d) ∩ J) ≤ µ((M2 ∩ I) + d) = µ((M2 ∩ I)) 1

4 .
Thus µ(M1) +µ((M2 +d)∩J) > 1, which implies µ(M1 ∩ (M2 +d)) > 0. There
is therefore an s such that s ∈M1 and s− d ∈M2, from which follows

|x(t1)− x(t2)| < 2ε. (43)
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Thus, (41) and (42) together implies (43). To put it another way, if (41) holds
but (43) does not, then either P

(
θ ∈M c

1

)
≥ 1

4 or P
(
θ ∈M c

2

)
≥ 1

4 . Therefore,

P
(∣∣Xn

τ2 −X
n
τ1

∣∣ ≥ 2ε, τ2 − τ1 ≤ δ
)
≤

2∑
i=1

P

[
P
(∣∣Xn

τi+θ −X
n
τi

∣∣ ≥ ε|Fn) ≥ 1

4

]

≤ 4

2∑
i=1

P
(∣∣Xn

τi+θ −X
n
τi

∣∣ ≥ ε).
Since 0 ≤ θ ≤ 2δ ≤ 2δ0, and since θ and Fn are independent, it follows by (39)
that the final term here is at most 8η. Therefore, condition 1 implies condition 2.

This is Aldous’s theorem:

Theorem 3.15 (Aldous) If 38 and Condtion 1o hold, then {Xn} is tight.

PROOF. By theorem 16.8, it is enough to prove that

lim
a→∞

lim sup
n

P
(
w′m(Xn, δ) ≥ ε

)
= 0. (44)

Let ∆k be the set of nonnegative dyadic rationals1 j/2k of order k. Define
random variables τn0 , τ

n
1 , ... by τn0 = 0 and

τni = min{t ∈ ∆k : τni−1 < t ≤ m, |Xn
t −Xn

τn
i−1
| ≥ ε},

with τni = m if there is no such t. The τni depend on ε,m, and k as well as
on i and n, although the notation does not show this. It is easy to prove by
induction that the τni are all stopping times.
Because of (3.14), we can assume that condition 2 holds. For given ε, η,m,
choose δ′ and n0 so that

P
(∣∣Xn

τi −X
n
τi−1

∣∣ ≥ ε, τni − τni−1 ≤ δ′
)
≤ η

for i ≥ 1 and n ≥ n0. Since τni < m implies that
∣∣Xn

τi −X
n
τi−1

∣∣ ≥ ε. we have

P
(
τni < m, τni − τni−1 ≤ δ′

)
≤ η, i ≥ 1, n ≥ n0 (45)

Now choose an integer q such that qδ ≥ 2m. There is also a δ such that

P
(
τni < m, τni − τni−1 ≤ δ

)
≤ η

q
, i ≥ 1, n ≥ n0. (46)

1dyadic rational is a rational number whose denominator is a power of two, i.e., a number
of the form a/2b where a is an integer and b is a natural number; for example, 1/2 or 3/8,
but not 1/3. These are precisely the numbers whose binary expansion is finite.
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But then

P

(
q⋃
i−1

{
τni < m, τni − τni−1 ≤ δ

})
≤ η, n ≥ n0 (47)

Although the τni depend on k, 45 and 47 hold for all k simultaneously. By 45,

E(τni − τni−1|τnq < m) ≥ δ′P (τni − τni−1 ≥ δ′|τnq < m)

≥ δ′
(

1− η

P (τnq < m)

)
,

and therefore,

m ≥ E(τnq |τnq < m)

=

q∑
i=1

E(τni − τni−1|τnq < m)

≥ qδ′
(

1− η

P (τnq < m)

)
.

Since qδ′ ≥ 2m by the choice of q, this leads to P (τnq < m) ≥ 2η. By this and
47,

P

(
{τnq < m} ∪

q⋃
i−1

{
τni < m, τni − τni−1 ≤ δ

})
≤ 3η, k ≥ 1, n ≥ n0 (48)

Let Ank be the complement of the set in 48. On this set, let v be the first index
for which τnv = m. Fix an n beyond n0. There are points tki (τni ) such that
0 = tk0 < · · · < tkv = m and tki − tki−1 > δ for 1 ≤ i < v. And |Xn

t − Xn
s | < ε

if s, t lie in the same [tki−1, t
k
i ) as well as in ∆k. If An = lim supk Ank , then

P (An) ≥ 1 − 3η, and on An there is a sequence of values of k along which v
is constant(v ≤ q) and, for each i ≤ v, tki converges to some ti. But then,
0 = t0 < · · · < tv = m, ti − ti−1 ≥ δ for i < v, and by right continuity,
|Xn

t −Xn
s | ≤ ε if s, t lie in the same [ti−1, ti). It follows that w′(Xn, δ) ≤ ε on

a set of probability at least 1− 3η and hence 44.

From the corollary to Theorem follows this one:

Corollary 3.2 If for each m, the sequences {Xn
0 } and {jm(Xn)} are tight on

the line, and if Condition 1o holds, then {Xn} is tight.
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4 Central Limit Theorem for Semimartingales
and Applications

4.1 Local characteristics of semimartingale

In this chapter we study the central limit theorem by Lipster and Shiryayev.
We begin by giving some preliminaries. We considered (Ω, {Ft},F , P ) a filtered
probability space, where F = {Ft, t ≥ 0} is a non-decreasing family of sub
σ−field of F , satisfying

⋂
t≥s Ft = Fs. We say that {X,F} is a martingale, if for

each t, Xt ∈ X = {Xt} ⊂ L1(Ω,Ft, P ) and E
(
X(t)|Fs

)
= Xs a.e. P . WLOG,

we assume {Xt, t ≥ 0} is D[0,∞) valued(or a.s. it is cadlag) as we can always
find a version. A martingale X is said to be square-integrable if suptEX

2
t <∞.

We say that {Xt, t ≥ 0} is locally square integrable martingale if there exists
an increasing sequence σn of (Ft)-stopping times such that 0 ≤ σn < ∞ a.e.,
limn σn = ∞, and {X(t ∧ σn)1{σn>0}} is a square integrable martingale. A
process (X,F) is called a semi-martingale if it has the decomposition

Xt = X0 +Mt +At

where {Mt} is local martingale, M0 = 0, A is right continuous process with A0,
At, Ft-measurable and has sample paths of finite variation. We now state condi-
tion of A to make this decomposition unique (called canonical decomposition).
For this we need the following. We say that a sub σ-field of [0,∞)×Ω generated
by sets of the form (s, t]×A, 0 ≤ s < t <∞ with A ∈ Fs and {0}×B(B ∈ F0)
is the σ-field of predictable sets from now on called predictable σ-algebra P. In
the above decomposition A is measurable P then it is canonical.
We rework that if the jumps of the semi-martingale are bounded then the de-
composition is canonical.
We now introduce the concept of local characteristics.
Let (X,F) be a semi-martingale. Set

X̃(t) =
∑
s≤t

∆X(s)1(|∆X(s)| ≥ ε)

Then X(t) = X(t)− X̃(t) is a semi-martingale with unique canonical decompo-
sition

X(t) = X(0) +M(t) +A(t)

where (M,F) is a local martingale andA is predictable process of finite variation.
Thus,

X(t) = X(0) +M(t) +A(t) + X̃(t).

Let
µ
(

(0, t];A ∩ {|X| ≥ ε}
)

=
∑

1
(

∆X(s) ∈ A, |∆X(s)| > ε
)
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and ν
(

(0, t]; ·∩{|X| ≥ ε}
)

its predictable projection (Jacod, (1979), p.18). Then

for each ε > 0, we can write

X(t) = X(0) +M ′(t) +A(t) +

∫ t

0

∫
|x|>ε

xν(ds, dx)

where (M ′,F) is a local martingale. Now the last two terms are predictable.
Thus the semi-martingale is described by M ′,A, and ν. We thus have the
following:

Definition 4.1 The local characteristic of a semi-martingale X is defined by
the triplet (A,C, ν), where

1. A is the predictable process of finite variation appearing in the above de-
composition of X(t).

2. C is a continuous process defined by Ct

Ct = [X,X]ct =< M c >t

3. ν is the predictable random measure on R+ ×R, the dual predictable pro-
jection of the measure µ associated to the jumps of X given on ({0}c)
by

µ(w, dt, dx) =
∑
s>0

1(∆X(s, w) 6= 0)δ(s,∆X(s,w))(dt, dx)

with δ being the dirac delta measure.
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4.2 Lenglart Inequality

Lemma 4.1 (McLeish Lemma(1974)) Let Fn(t), n = 1, 2, ... and F (t) be in
D[0,∞) such that Fn(t) is increasing in t for each n, and F (t) is a.s. continuous.
Then

sup
t
|Fn(t)− F (t)| → 0

where sup is taken over compact set, and there exists {tn} such that

Fn(t)→P F (t)

PROOF. For ε > 0 choose {tni , i = 0, 1, ..., k} for fixed k ≥ 1/ε such that
tni → iε and Fn(tni)→p F (iε) as n→∞. Then

sup
t
|Fn(t)− F (t)| ≤ sup

i
|Fn(tni+1

)− Fn(tni)|+ sup
i
|Fn(tni)− F (tni)|

+ sup
i
|Fn(tni+1)− F (tni)|+ ε

As n→∞, choose ε such that |F ((i+ 1)ε)− F (iε)| is small.

We assume that At is an increasing process for each t and is Ft−measurable.

Definition 4.2 An adopted positive right continuous process is said to be dom-
inated by an increasing predictable process A if for all finite stopping times T
we have

EXT ≤ EAT

Example. Let M2
t is square martingale. Consider Xt = M2

t . Then, we know
Xt− < M >t is a martingale, and hence, XT− < M >T is a martingale. Thus,

E(XT− < M >T ) = EX0 = 0

⇒ EXT = E < M >T

Let
X∗t = sup

s≤t
|Xs|

Lemma 4.2 (M1.) Let T be a stopping time and X be dominated by increasing
process A(as above). Then,

P (X∗T ≥ c) ≤
E(AT )

c

for any positive c.
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PROOF. Let S = inf{s ≤ T ∧ n : Xs ≥ c}. Clearly, s ≤ T ∧ n. Thus,

EAT ≥ EAS ( since A is an increasing process)

≥ EXS ( since X is dominated by A)

≥
∫
{X∗

T∧n>c}
XSdP ( since XS > 0 on {X∗T∧n > c})

≥ c · P (X∗T∧n > c)

Therefore, we let n go to ∞, then we get

EAT ≥ c · P (X∗T > c).

Theorem 4.1 (Lenglart Inequality) If X is dominated by a predictable in-
creasing process, then for every positive c and d

P (X∗T > c) ≤ E(At ∧ d)

c
+ P (AT > d).

PROOF. It is enough to prove for predictable stopping time T > 0,

P (X∗T− ≥ c) ≤
1

c
E(AT− ∧ d) + P (AT− ≥ d). (49)

We choose T ′ = ∞. Then T ′ is predictable, σn = n and apply to XT
t = Xt∧T

for T finite stopping time XT∗

T− = X∗T .

To prove (49)

P (X∗T− ≥ c) = P
(
X∗T− ≥ c, AT− < d

)
+ P

(
X∗T− ≥ c, AT− ≥ d

)
= E

(
1[{X∗T− ≥ c} ∩ {AT− < d}]

)
+ E

(
1[{X∗T− ≥ c} ∩ {AT− ≥ d}]

)
= E

(
1[{X∗T− ≥ c} ∩ {AT− < d}]

)
+ P (AT− ≥ d)

≤ P (X∗T− ≥ c) + P (AT− ≥ d) (50)

Let S = {t : At ≥ d}. It is easy to show that S is a stopping time. Also, S is
predictable. On {ω : AT− < d}, S(ω) ≥ T (ω), and hence

1(At− < d)X∗T− ≤ X∗(T∧S)−.

By (50), we have

P (X∗T− ≥ c) ≤ P (X∗T− ≥ c) + P (AT− ≥ d)

≤ P (X∗T∧S ≥ c) + P (AT− ≥ d)
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Let ε > 0, ε < c and Sn ↗ S ∧ T . Then,

P (X∗(T∧S)− ≥ c) ≤ lim inf
n

P (X∗Sn ≥ c− ε) ( by Fatou’s Lemma)

≤ 1

c− ε
lim
n→∞

EASn

=
1

c− ε
EA(S∧T ) ( by Monotone Convergence Theorem)

Since ε is arbitrary,

P (X∗(T∧S)− ≥ c) ≤ 1

c
EASn

≤ 1

c
E(A(T−∧d))

This completes the proof.

Corollary 4.1 Let M ∈M2
LOC((Ft), P ) (class of locally square integrable mar-

tingale). Then,

P (sup
t≤T
|Mt| > a) ≤ 1

a2
E(< M >T ∧b) + P (< M >T≥ b)

Proof. Use Xt = |Mt|2, c = a2, b = d, At =< M >t.

Lemma 4.3 Consider {Fnt , P}. Let {Mn} be locally square martingale. As-
sume that

< Mn >t−→p f(t),

where f is continuous and deterministic function(Hence, f will be increasing
function). Then, {P ◦ (Mn)−1} on D[0,∞) is relatively compact on D[0,∞).

PROOF. It suffices to show for T <∞, and any η > 0 there exists a > 0 such
that

sup
n
P
(

sup
t≤T
|Mn

t | > a
)
< η. (51)

For each T <∞ and η, ε > 0, there exist n0, δ such that for any stopping time
τ(w.r.t F , τ ≤ T, τ + δ < T ).

sup
n≥n0

P
(

sup
0≤t≤δ

|Mn
τ+t −Mn

t | ≥ ε
)
< η (52)
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Observe that by corollary to Lenglast Inequality,

P (sup
t≤T
|Mn

t | > a) ≤ 1

a2
E(< Mn >T ∧b) + P (< Mn >T≥ b)

Let b = f(T ) + 1, then under the hypothesis there exists n1 such that for all
n ≥ n1

P (< Mn >T≥ b) >
η

2
.

Thus,

sup
n
P (sup

t≤T
|Mn

t | > a) ≤ b

a2
+
η

2
+

n1∑
k=1

P (sup
t≤T
|Mk

t | > a)

Choose a large to obtain (51).

We again note that Mn
τ+t−Mn

τ is a locally square integrable martingale. Hence
by (4.1)

P
(

sup
0≤t≤δ

|Mn
τ+t −Mn

t | ≥ ε
)
≤ 1

ε2
E

((
< Mn >τ+δ − < Mn >τ

)
∧ b

)
+ P

(
< Mn >τ+δ − < Mn >τ≥ b

)
≤ 1

ε2
E

(
sup
t≤T

(
< Mn >t+δ − < Mn >t

)
∧ b

)
+P
(

sup
t≤T

∣∣ < Mn >t+δ − < Mn >t
∣∣ ≥ b)

≤ 1

ε2
E

(
sup
t≤T

∣∣∣Mn
t+δ − f(t+ δ)

∣∣∣ ∧ b)+
1

ε2
E

(
sup
t≤T

∣∣∣Mn
t − f(t+ δ)

∣∣∣ ∧ b)

+
1

ε2
sup
t≤T
|f(t+ δ)− f(t)|+ P

(
sup
t≤T

∣∣ < Mn >t+δ −f(t+ δ)
∣∣ ≥ b

3
≥ b
)

+P
(

sup
t≤T

∣∣ < Mn >t −f(t)
∣∣ ≥ b

3
≥ b
)

+ 1
(

sup
t≤T
|f(t+ δ)− f(t)| ≥ b

3

)
+P
(

sup
t≤T

∣∣ < Mn >t+δ − < Mn >t
∣∣ ≥ b)

Using McLeish Lemma each term goes to 0. This completes the proof.

If our conditions guarantee that for a locally square integrable martingale the
associated increasing process converges then the problem reduces to the conver-
gence of finite-dimensional distributions.
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4.3 Central Limit Theorem for Semi-Martingale

Theorem 4.2 Let {Xn} be a sequence of semi-martingale with characteristics
(Bn, < Xnc >, νn) and M be a continuous Gaussian martingale with increasing
process < M >.

(i) For any t > 0 and ε ∈ (0, 1) let the following conditions be satisfied:
(A) ∫ t

0

∫
|x|>ε

νn(ds, dx)→p 0

(B)

Bnct +
∑

0≤s≤t

∫
|x|≤ε

xνn({s}, dx)→p 0

(C)

< Xnc >t +

∫ t

0

∫
|x|≤ε

x2νn(ds, dx)−
∑

0≤s≤t

(∫
|x|≤ε

xνn({s}, dx)

)2

→p< M >t

Then Xn ⇒M for finite dimension.

(ii) If (A) and (C) are satisfied as well as the condition

sup
0<s≤t

∣∣∣∣∣Bncs +
∑

0≤u≤s

∫
|x|≤ε

xνn({u}, dx)

∣∣∣∣∣→p 0 (53)

for any t and ε ∈ (0, 1] then X ⇒M in D[0, T ].

Proof. For ε ∈ (0, 1)

Xn
t =

( ∑
0≤s≤t

∫
ε<|x|≤1

xνn({s}, dx)

)
+

(
Bnct +

∑
0≤s≤t

∫
|x|≤ε

xνn({s}, dx)

)

+

(∫ t

0

∫
|x|>1

xµn(ds, dx) +

∫ t

0

∫
ε<|x|≤1

(µn − νn)(ds, dx)

)

+

(
Xnc
t +

∫ t

0

∫
|x|≤ε

(µn − νn)(ds, dx)

)
= αnt (ε) + βnt (ε) + γnt (ε) + ∆n

t (ε)

where

αnt (ε) =
∑

0≤s≤t

∫
ε<|x|≤1

xνn({s}, dx)
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βnt (ε) = Bnct +
∑

0≤s≤t

∫
|x|≤ε

xνn({s}, dx)

γnt (ε) =

∫ t

0

∫
|x|>1

xµn(ds, dx) +

∫ t

0

∫
ε<|x|≤1

(µn − νn)(ds, dx)

∆n
t (ε) = Xnc

t +

∫ t

0

∫
|x|≤ε

(µn − νn)(ds, dx)

By (A) we have
sup
s≤t

αns (ε)→p 0

By (B) we have
βnt (ε)→p 0

By (53) we have
sup
s≤t

βns (ε)→p 0

Let
Y nt = γnt (ε) + ∆n

t (ε).

It suffices to prove Y n → M on D[0, T ] for each T (by the decomposition Y n

does not depend on ε). Next, we have

sup
0<t≤T

|γnt (ε)| ≤
∫ T

0

∫
|x|>1

|x|µn(ds, dx)+

∫ T

0

∫
|x|>ε

µn(ds, dx)︸ ︷︷ ︸
↓0 by Lenglast Inequality

+

∫ T

0

∫
|x|>ε

νn(ds, dx)︸ ︷︷ ︸
↓0 by (A)
(54)

Therefore, if we can show that the first term of RHS goes to 0, then sup0<t≤T |γnt (ε)| →
0. We have ∫ T

0

∫
|x|>1

|x|µn(ds, dx) =
∑

0<s≤T

|∆Xn
s |1(|∆Xns |>1)

For δ ∈ (0, 1),{ ∑
0<s≤T

|∆Xn
s |1(|∆Xns |>1) > δ

}
⊂
{ ∑

0<s≤T

1(|∆Xns |>1) > δ
}

and ∑
0<s≤T

1(|∆Xns |>1) =

∫ T

0

∫
|x|>1

µn(ds, dx)→p 0

by Lenglast Inequality. Therefore, by (54), we have

sup
0<t≤T

|γnt (ε)| → 0.
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Now, only thing left is to show that

∆n
t (ε)→ 0

∆n
t (ε) = Xnc

t +

∫ T

0

∫
|x|≤ε

x(µn − νn)(ds, dx)

Since (µn − νn) is martingale, and Xnc is martingale, ∆n is martingale. Since

∆n(ε) ∈MLOC

(
(Fn)t, P

)
,

< ∆n(ε) >t = < Xnc >t +

∫ t

0

∫
|x|≤ε

xnνn(ds, dx)

−
∑

0<s≤t

(∫
|x|≤ε

xνn({s}, dx)
)2

−→< M >t

by condition (C).

By McLeish Lemma,

sup
t≤T
| < ∆n(ε) >t − < M >t | →p 0 (55)

We showed supt≤T |γnt (ε)| → 0. Combining this with (55), we have

max

(
sup
t≤T
| < ∆n(ε) >t − < M >t |, sup

t≤T
|γnt (ε)|

)
→ 0

Then, there exists {εn} such that

sup
t≤T
| < ∆n(εn) >t − < M >t | → 0, sup

t≤T
|γnt (εn)| → 0 (56)

Mn
t = ∆n

t (εn), Y nt = ∆n
t (εn) + γnt (εn)

It suffices to prove that Mn ⇒ M . {Mn
t = ∆n

t (εn)} is compact by (4.3) and
(55). It suffices to prove finite-dimensional convergence.

Let H(t), 0 ≤ t ≤ T be a piecewise constant left-continuous function assum-
ing finitely many values. Let

Nn
t =

∫ t

0

H(s)dMn
s , Nt =

∫ t

0

H(s)dMs.

Since M is Gaussian, N is also Gaussian.
Remark. Cramer-Wold Criterion for Df− convergence

EeiN
n
T → EeiNT = e

− 1
2

∫ T
0
H2(s)d<M>s
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Let A be predictable, A ∈ ALOC(F , P )

e(A)t = eAt
∏

0≤s≤t

(1 + ∆As)e
−As

Then eAt will be a solution of dZt = Zt−dAt. If m ∈MLOC then

At = −1

2
< mc >t +

∫ t

0

∫
R−{0}

(eisx − 1− ix)νm(ds, dx)

Lemma 4.4 For some a > 0 and c ∈ (0, 1), let < m >∞≤ a, supt |∆mt| ≤ c.
Then (e(At),Ft) is such that

|e(A)t| ≥ exp
(
− 2a

1− c2
)

and the process (Zt,Ft) with Zt = eimt
(
e(A)t

)−1

is a uniformly integrable

martingale.

We will use the lemma to prove

EeiN
n
T → EeiNT = e

− 1
2

∫ T
0
H2(s)d<M>s

Case 1. Let us first assume < Mn >T≤ a and a > 1+ < M >T . Observe that

1. By (56), < Nn >t→< N >t

2. |∆n
t | ≤ 2εn

3. |∆Nn
t | ≤ 2λεn = dn where λ = maxt≤T |H(s)|

We want to prove

E exp
(
iNn

T +
1

2
< N >T

)
→ 1 (57)

Let Ant be increasing process associated with Nn
t . Let Zt = eiN

n
t

(
e(An)t

)−1

.

Choose n0 such that dn0 = 2λεn0 ≤ 1/2. By (4.4), Zn is a martingale with
EZnT = 1. To prove (57) is equivalent to proving

lim
n→∞

(
E exp

(
iNn

T+
1

2
< N >T

)
−EeiN

n
T

(
e(An)T

)−1

︸ ︷︷ ︸
=EZn

T
=1

)
= 0E exp

(
iNn

T+
1

2
< N >T

)
→ 1

(58)
So it is sufficient to prove

e(An)T → e−
1
2<N>T
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Recall

Ant = −1

2
< N >t +

∫ t

0

∫
|x|≤dn

(eix − 1− ix)ν̃n(ds, dx)

Let

αnt =

∫
|x|≤dn

(eix − 1− ix)ν̃n({t}, dx)

Since (eix − 1− ix) ≤ x2/2, we have αnt ≤ d2
n/2. Therefore,∑

0≤t≤T

|αnt | =
1

2

∫ T

0

∫
|x|≤dn

x2ν̃n(dt, dx)

=
1

2
< Nn >T

=
1

2

λ2a

2

Then, ∏
0<t≤T

(1 + αnt )e−α
n
t → 1

By definition of e(A)t, it remains to prove

1

2
< Nnc >T −

∫ T

0

∫
|x|≤dn

(eisx − 1− isx)ν̃n(ds, dx)→p
1

2
< N >T

By observation (a) and the form of < Nn >T , it suffices to prove∫ T

0

∫
|x|≤dn

(eisx − 1− isx)ν̃n(ds, dx)→p 0

We have∫ T

0

∫
|x|≤dn

(
(eisx − 1− isx) +

x2

2

)
︸ ︷︷ ︸

≤ |x|
3

6

ν̃n(ds, dx) ≤ dn
6

∫ T

0

∫
|x|≤dn

x2ν̃n(ds, dx)

≤ dn
6
< Nn >T

≤ dn
6
λ2a

−→ 0

To dispose of assumption define

τn = min{t ≤ T :< Mn >t≥< M >T +1}

Then τn is stopping time. We have τn = T if < Mn >t<< M >T +1. Let
M̃n = Mn

t∧τn . Then

< M̃n >T≤ 1+ < M >T +ε2n ≤ 1+ < M >T +ε21
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and
lim
n
P
(
| < M̃n >t − < M̃ >t | > ε

)
≤ lim

n
P (τn > T ) = 0

Next,

lim
n→∞

EeiN
n
T = lim

n→∞
E

(
eiN

n
t − eiN

n
t∧τn

)
+ lim
n→∞

EeiN
n
t∧τn

= lim
n→∞

E

(
eiN

n
T − eiN

n
T∧τn

)
+ EeiNT

= EeiNT

The last equality follows from

lim
n→∞

∣∣∣∣∣E(eiNnT − eiNnT∧τn)
∣∣∣∣∣ ≤ 2 lim

n→∞
P (τn > T ) = 0.

This completes the proof.
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4.4 Application to a Survival Analysis

Let X be a positive random variable. Let F and f be cumulative distribution
function and probability density function of X. Then, survival function F̄ is
defined as

F̄ (t) = P (X > t) = 1− F (t)

Then, we have

P
(
t < X ≤ t+4t|X > t

)
=

P
(
t < X ≤ t+4t)

F̄ (t)

=

∫ t+4t
t

dF (s)

F̄ (t)

Since we know
1

4t

∫ t+4t

t

f(x)ds −→ f(t)

as 4t→ 0, hazard rate, is defined as

h(t) =
f(t)

F̄ (t)

= − d

dt
log F̄ (t)

Therefore, survival function can be written as

F̄ (t) = exp
(
−
∫ t

0

h(s)ds
)

If integrated hazard rate is given, then it determines uniquely life distribution.
For example, think about the following:

τF = sup{s : F (s) < 1}

Consider now the following problem arising in clinical trials.

Let

1. X1, ...., Xn be i.i.d F (life time distribution)

2. U1, ...., Un be i.i.d measurable function with distribution function G with
G(∞) < 1 which means Ui are not random variable in some sense(censoring
times).

Now, consider
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1. indicator for ”alive or not at time s”: 1(Xi ≤ Ui, Xi ∧ Ui ≤ s)

2. indicator for ”alive and leave or not at time s”: Ui1(Xi ∧ Ui ≤ s)

3. indicator for ”leave or not at time s”: 1(Xi ∧ Ui ≥ s)

and σ−field

Fnt = σ

({
1(Xi ≤ Ui, Xi∧Ui ≤ s), Ui1(Xi∧Ui ≤ s), 1(Xi∧Ui ≥ s), s ≤ t, i = 1, 2, ..., n

})

Fnt is called information contained in censored data.

Let

β(t) =

∫ t

0

h(s)ds.

It β̂(t) is an estimate of β(t), then we can estimate survival function. Estimator
of survival function will be

ˆ̄F (t) = e−β̂(t)

which will be approximately be∏
s≤t

(
1− d

(
β̂(s)

))
.

This is alternate estimate of survival function, which is called, Nelson Esti-
mate.

Let

Nn(t) =

n∑
i=1

1(Xi ≤ Ui, Xi ∧ Ui ≤ t)

Yn(t) =

n∑
i=1

1(Xi ∧ Ui ≥ t)

Then, β̂(t), which is called Breslow estimator, will be

β̂(t) =

∫ t

0

dNn(s)

Yn(s)
≈
∫ t+4t
t

dF (s)

F̄ (t)

Now, we consider another estimator of survival function, which is called Kaplan-
Meier estimator. It will be ∏

s≤t

(
1− 4Nn(s)

Yn(s)

)
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Richard Gill showed asymptotic properties of Kaplan-Meier estimator.

We can show that

e−β̂(t) −
∏
s≤t

(
1− 4Nn(s)

Yn(s)

)
= O

( 1

n

)
(59)

by using following lemma.

Lemma 4.5 C.1 Let {αn(s), 0 ≤ s ≤ T, n ≥ 1} be real-valued function such
that

1. {s ∈ (0, u] : αn(s) 6= 0} is P−a.e at most countable for each n

2.
∑

0<s≤u |αn(s)| ≤ C with C constant

3. sups≤u{|αn(s)|} = O(an) where an ↘ 0 as n goes ∞.

Then,

sup
t≤u

∣∣∣∣∣ ∏
0<s≤t

(1− αn(s))−
∏

0<s≤t

e−α
n(s)

∣∣∣∣∣ = O(an)

PROOF. We choose n0 large such that for n ≥ n0 O(an) < 1
2 . Since∏

0<s≤t

(1− αn(s))eα
n(s) = exp

( ∑
0<s≤t

log(1− αn(s)) + αn(s)
)

= exp
( ∑

0<s≤t

∞∑
j=2

(−1)j+2

j
(αn(s))j

)
( by Taylor expansion.),

for n ≥ n0 we have∣∣∣∣∣ ∏
0<s≤t

(1− αn(s))eα
n(s) − 1

∣∣∣∣∣ ≤
∣∣∣∣∣ exp

( ∑
0<s≤t

∞∑
j=2

(−1)j+2

j
(αn(s)j − 1)

)∣∣∣∣∣
≤ eη

∣∣∣∣∣ ∑
0<s≤t

∞∑
j=2

(−1)j+2

j
(αn(s))j

∣∣∣∣∣
where

0 ∧
∑

0<s≤t

∞∑
j=2

(−1)j+2

j
(αn(s))j < η < 0 ∨

∑
0<s≤t

∞∑
j=2

(−1)j+2

j
(αn(s))j
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For large n∣∣∣∣∣ ∑
0<s≤t

∞∑
j=2

(−1)j+2

j
(αn(s))j

∣∣∣∣∣ ≤ ∑
0<s≤t

∞∑
j=2

∣∣αn(s)
∣∣j

j

≤ sup
s≤u

∣∣αn(s)
∣∣︸ ︷︷ ︸

=O(an)

∑
0<s≤t

∣∣αn(s)
∣∣

︸ ︷︷ ︸
≤t·M

∞∑
j=1

(1

2

)j−2 1

j︸ ︷︷ ︸
<∞

−→ 0

∑
0<s≤t

∣∣αn(s)
∣∣ ≤ t ·M holds since

∣∣αn(s)
∣∣ will be bounded by M .

In order to prove (59), we let

αn(s) =
1

Yn(s)
, s ≤ T.

and
4N(s) = 0, s > T.

We get an = 1/n by using Glivenko-Cantelli theorem.
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4.5 Asymptotic Distributions β̂(t) and Kaplan-Meier Es-
timates

Xi and Ui are defined as previously. Again, define Nn(t), Yn(t) as

Nn(t) =

n∑
i=1

1(Xi ≤ Ui, Xi ∧ Ui ≤ t)

Yn(t) =

n∑
i=1

1(Xi ∧ Ui ≥ t)

Then,

β(t) =

∫ t

0

h(s)ds

=

∫ t

0

f(s)

F̄ (s)
ds

=

∫ t

0

dF (s)

1− F (s)

β̂(t) =

∫ t

0

dNn(s)

Yn(s)

Using above lemma, we can show that

sup
t≤u

∣∣∣∣∣∏
s≤t

(
1− 4Nn(s)

Yn(s)

)
− e−β̂(t)

∣∣∣∣∣
= sup

t≤u

∣∣∣∣∣∏
s≤t

(
1− 4Nn(s)

Yn(s)

)
︸ ︷︷ ︸

K.M estimator

− exp
(
−
∫ t

0

dNn(s)

Yn(s)
Big)︸ ︷︷ ︸

Nelson estimator

∣∣∣∣∣
= O

( 1

n

)
Let

Q1(s) = P (X1 ∧ U1 ≤ s,X1 ≤ U1)

H(s) = P (X1 ∧ U1 ≤ s)

β1(t) =

∫ t

0

dQ1(s)

(1−H(s−))

Assume that X( with F ) and U (with G) are independent. Then,

4Q1(s) = P (s ≤ X1 ∧ U1 ≤ s+4s,X1 ≤ U1)

= P (s ≤ X1 ≤ s+4s,X1 ≤ U1)
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= P (s ≤ X1 ≤ s+4s, U1 ≥ s+4s)
= P (s ≤ X1 ≤ s+4s) · P (U1 ≥ s+4s)

dQ1(s) = (1−G(s−))dF (s)

Similarly,
(1−H(s−)) = (1−G(s−))(1− F (s)). (60)

Then,

β1(t) =

∫ t

0

dQ1(s)

(1−H(s−))

=

∫ t

0

(1−G(s−))dF (s)

(1−G(s−))(1− F (s))

=

∫ t

0

dF (s)

(1− F (s))

O. Aalen (Annals of Statistics, 1978) considered this technique. He considered
P (Ui <∞) = 0. So, data is not censored and we figure out true distribution of
Xi.

Lemma 4.6 (PL 1.) Let

Fnt = σ

({
1(Xi ≤ Ui, Xi∧Ui ≤ s), Ui1(Xi∧Ui ≤ s), 1(Xi∧Ui ≥ s), s ≤ t, i = 1, 2, ..., n

})

Suppose we have

1. (Nn(t),Fnt ) is Poisson process and{
Nn(t)−

∫ t

0

Yn(s)
dQ1(s)

(1−H(s−))

}
is martingale.

2. β̂n(t) =
∫ t

0
dNn(t)
Yn(t)

Then, mn(t) = β̂n(t)−β1(t) is locally square integrable martingale, and increas-
ing process < mn >t will be

< mn >t=

∫ t

0

1

Yn(s)

dQ1(s)

(1−H(s−))
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Remark. If X and U are independent, from (60) and (60), we have

dQ1(s)

(1−H(s−))
=

dF (s)

1− F (s)

Let us assume that {Xi} and {Ui} are independent and

An(t) =

∫ t

0

Yn(s)
dQ1(s)

(1−H(s−))

From the previous theorem we know that mn(t) = (β̂n(t) − β1(t)) is a locally
square integrable martingale with

< mn >t=

∫ t

0

1

Yn(s)

dQ1(s)

(1−H(s−))

Hence √
n(β̂n(t)− β1(t))⇒a.s. γt

and

<
√
nmn >t =

∫ t

0

n

Yn(s)

dQ1(s)

(1−H(s−))
→ C1(t)

C1(t) =

∫ t

0

dQ1(s)

(1−H(s−))2

< γ >t = C1(t)

Also < mn >t= An(t) which gives by Glivenko-Cantelli Lemma < mn >t=

O
(

1
n

)
. Using Lenglart inequality we get

sup
s≤t

∣∣∣β̂n(s)− β̂1(s)
∣∣∣→p 0 (61)

Hence β̂n(s) is consistent estimate of integrated hazard rate under the indepen-
dence assumption above. We note that under this assumption

β1(t) =

∫ t

0

dF (s)

(1− F (s))

and

C1(t) =

∫ t

0

dF (s)

(1− F (s))2(1−G(s−))

With τH = inf{s : H(s−) < 1}, the above results hold for all t < τH only.

Lemma 4.7 1. For t < τH

sup
s≤t

∣∣∣∣∣ exp
(
−
∫ t

0

dF (s)

(1− F (s))

)
− exp

(
−
∫ t

0

dNn(s)

Yn(s)

)∣∣∣∣∣→p 0
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2.

√
n

[
exp

(
−
∫ ·

0

dF (s)

(1− F (s))

)
−exp

(
−
∫ ·

0

dNn(s)

Yn(s)

)]
→D γ· exp

(
−
∫ ·

0

dF (s)

(1− F (s))

)
in D[0, t] for t < τH with γ as above.

Proof. Using Taylor expansion we get

exp
(
−
∫ t

0

dF (s)

(1− F (s))

)
−exp(−β̂n(t)) = exp

(
−
∫ t

0

dF (s)

(1− F (s))

){
(β1(t)−β̂n(t))+

(β1(t)− β̂n(t))2

2
exp(−hn)

}
with hn is a random variable satisfying β1(t)∧ β̂n(t) ≤ hn ≤ β1(t)∨ β̂n(t). Since

for t < τH , exp(−hn) is bounded by convergence of sups≤t(β̂n(s)−β1(s))→p 0,
the result follows. To prove the second part, note that

√
n(β1(·)− β̂n(·))2 =

√
n(β1(·)− β̂n(·))(β1(·)− β̂n(·))⇒D γ· · 0 = 0

by Slutsky theorem and the first term converges in distribution to γ·.

Theorem 4.3 (R.Gill) Let F̂n(t) =
∏
s≤t

(
1− ∆Nn(s)

Yn(s)

)
. Then under indepen-

dence of {Xi},{Ui}, we get that

n(F̂n(·)− F (·))
1− F (·)

⇒ γ·

in D[0, t] for t < τH .

Proof. We have exp(−β1(t)) = 1−F (t) for t < τH . Hence by previous Lemma

√
n

(1− F (·))
(

exp(−β̂n(·))− (1− F (·))
)
⇒D γ·

Using (3.11) we get the result.
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5 Central Limit Theorems for dependent ran-
dom variables.

In this chapter we study central limit theorems for dependent random variable
using Skorokhod embedding theorem.

Theorem 5.1 Martingale Central Limit Theorem (discrete) Let {Sn} be a mar-
tingale. Let S0 = 0 and {W (t), 0 ≤ t < ∞} be Brownian motion. Then there
exists a sequence of stopping time, 0 = T0 ≤ T1 ≤ T2 · · · ≤ Tn with respect to
FWt such that

(S0, ..., Sn) =d (W (T0), ...,W (Tn))

Proof. We use induction.
T0 = 0
Assume there exists (T0, ..., Tk−1) such that

(S0, ..., Sk−1) =d (W (T0), ...,W (Tk−1))

Note that the strong Markov property implies {W (Tk−1 + t)−W (Tk−1), t ≥ 0}
is a Brownian motion, independent of FWt . Look at conditional distribution of
Sk − Sk−1 given S0 = s0, ..., Sk−1 = sk−1, if it is regular. Denote it by

µ(S0, ..., Sk−1;B ∈ B(R)) = P
(
Sk − Sk−1 ∈ B

∣∣S0 = s0, ..., Sk−1 = sk−1

)
Since Sk is a martingale, we have

0 = E
(
Sk − Sk−1

∣∣S0, ..., Sk−1

)
=

∫
xµk(S0, ..., Sk−1l; dx)

By Skorokhod’s representation theorem, we see that for a.e. S ≡ (S0, ..., Sk−1),
there exists a stopping time τ̃S(exist time from (Uk, Vk)) such that

W (Tk−1 + τ̃S)−W (Tk−1) = W̃ (τk) =d µk(S0, ..., Sk−1; ·)

We let Tk = Tk−1 + τ̃S then

(S0, S1, ..., Sk) =d (W (T0), ...,W (Tk))

and the result follows by induction.

Remark. If E(Sk − Sk−1)2 <∞, then

E
(
τ̃S
∣∣S0, ..., Sk−1

)
=

∫
x2µk(S0, ..., Sk−1; dx)

since W 2
t − t is a martingale and τ̃S is the exit time from a randomly chosen

interval (Sk−1 + Uk, Sk−1 + Vk).
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Definition 5.1 We say that Xn,m,Fn,m, 1 ≤ m ≤ n, is a martingale dif-
ference array if Xn,m is Fn,m−measurable and E(Xn,m|Fn,m−1) = 0 for
1 ≤ m ≤ n, where Fn,0 = {∅,Ω}.

Notation. Let

S(u) =

{
Sk, if u = k ∈ N;
linear on u, if u ∈ [k, k + 1] for k ∈ N.

and

Sn,(u) =

{
Sn,k, if u = k ∈ N ;
linear on u, if u ∈ [k, k + 1].

Consider Xn,m(1 ≤ m ≤ n) be triangular arrays of random variables with

EXn,m = 0

Sn,m = Xn,1 + · · ·+Xn,m

Lemma 5.1 If
Sn,m = W (τnm)

and
τn[ns] →P s for s ∈ [0, 1]

then ||Sn,(n·) −W (·)||∞ →P 0.

Proof is given before.
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Theorem 5.2 Let {Xn,m,Fn,m} be a martingale difference array and Sn,m =
Xn,1 + · · ·+Xn,m. Assume that

1. |Xn,m| ≤ εn for all m, and εn → 0 as n→∞

2. with Vn,m =
∑m
k=1E

(
X2
n,k

∣∣Fn,k−1

)
, Vn,[nt] → t for all t.

Then Sn,(n·) ⇒W (·).

Proof. We stop Vn,k first time if it exceeds 2(call it k0) and set Xn,m = 0,m >
k0. We can assume without loss of generality

Vn,n ≤ 2 + ε2n

for all n. By theorem (5.1) we can find stopping times Tn,1, ..., Tn,n so that

(0, Sn,1, ..., Sn,n) =d (W (0),W (Tn,1), ...,W (Tn,n))

By lemma (5.1), it suffices to show that Tn,[nt] →P t for each t. Let

tn,m = Tn,m − Tn,m−1 with (Tn,0 = 0)

By Skohorod embedding theorem, we have

E
(
tn,m

∣∣Fn,m−1

)
= E

(
X2
n,m

∣∣Fn,m−1

)
The last observation with hypothesis (2) imply

[nt]∑
m=0

E
(
tn,m

∣∣Fn,m−1

)
→P t

Observe that

E

(
Tn,[nt] − Vn,[nt]

)2

= E

(
[nt]∑
m=1

(
tn,m − E

(
tn,m

∣∣Fn,m−1

)
︸ ︷︷ ︸

these two terms are orthogonal

))2

=

[nt]∑
m=1

E

(
tn,m − E

(
tn,m

∣∣Fn,m−1

))2

≤
[nt]∑
m=1

E
(
t2n,m

∣∣Fn,m−1

)

≤
[nt]∑
m=1

C · E
(
X4
n,m

∣∣Fn,m−1

)
( we will show
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that C = 4.) (62)

≤
[nt]∑
m=1

Cε2nE
(
X2
n,m

∣∣Fn,m−1

)
(by assumption (1))

= Cε2nVn,n

≤ Cε2n(2 + ε2n)→ 0

Since L2 convergence implies convergence in probability,

E

(
Tn,[nt] − Vn,[nt]

)2

−→ 0

and
Vn,[nt] −→P 0

together implies
Tn,[nt] −→P t

Proof of (62) If θ is real, then

E

(
exp

(
θ
(
W (t)−W (s)

)
− 1

2
θ2(t− s)

)∣∣∣FWS
)

= 1

Since

E

(
exp

(
θW (t)− 1

2
θ2t
)∣∣∣FWs

)
= exp

(
θW (s)− 1

2
θ2s
)
,

we know that
{

exp
(
θW (t) − 1

2θ
2t
)
,FWt

}
is a Martingale. Then, for all A ∈

FWs ,

E1A

(
exp

(
θW (s)− 1

2
θ2s
))

=

∫
A

(
exp

(
θW (s)− 1

2
θ2s
))

dP

=

∫
A

exp
(
θW (t)− 1

2
θ2t
)
dP (by definition of conditional expectation)

= E1A

(
exp

(
θW (t)− 1

2
θ2t
))

Take a derivative in θ and find a value at θ = 0.

number of derivative

1 W (t) is MG
2 W 2(t)− t is MG
3 W 3(t)− 3tW (t) is MG
4 W 4(t)− 6tW 2(t) + 3t2 is MG
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For any stopping time τ ,

E(W 4(τ)− 6τW 2(τ) + 3τ2) = 0

Therefore,

EW 4
τ︸ ︷︷ ︸

≥0

−6E(τW 2
τ ) = −3EW 2

τ

⇒ EW 2
τ ≤ 2E(τW 2

τ )

Since

E(τW 2
τ ) ≤

(
Eτ2

)1/2

·
(
EW 4

τ

)1/2

by Schwartz Inequality, we have(
Eτ2

)1/2

≤ 2
(
EW 4

τ

)1/2

Therefore,

E
(
t2n,m

∣∣Fn,m−1

)
≤ 4E

(
X4
n,m

∣∣Fn,m−1

)

Theorem 5.3 (Generalization of Lindberg-Feller Theorem.) Let {Xn,m,Fn,m}
be a martingale difference array and Sn,m = Xn,1 + · · ·+Xn,m. Assume that

1. Vn,[nt] =
∑[nt]
k=1E

(
X2
n,k

∣∣Fn,k−1

)
→P t

2. V̂ (ε) =
∑
m≤nE

(
X2
n,m1

(
|Xn,m| > ε

)∣∣Fn,m−1

)
→P 0, for all ε > 0.

Then Sn,(n·) ⇒ W (·). For i.i.d. Xn,m, and t = 1, we get Lindberg-Feller
Theorem.

Lemma 5.2 There exists εn → 0 such that ε2nV̂ (εn)→P 0.

Proof. Since V̂ (ε)→P 0, we choose large Nm such that

P

(
V̂
( 1

m

)
>

1

m3

)
<

1

m

for m ≥ Nm. Here we choose εn = 1
m with n ∈ [Nm, Nm+1). For δ > 1

m , we
have

P

(
ε−2
n V̂ (εn) > δ

)
≤ P

(
m2V̂

( 1

m

)
>

1

m

)
<

1

m
.
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This completes the proof of lemma.

Let

Xn,m = Xn,m1(|Xn,m| ≤ εn)

X̂n,m = Xn,m1(|Xn,m| > εn)

X̃n,m = Xn,m − E
(
Xn,m

∣∣Fn,m−1

)
Lemma 5.3 S̃n,[n·] ⇒W (·)

Proof. We will show that X̃n,m satisfies Theorem (5.2).

|X̃n,m| =
∣∣∣Xn,m − E

(
Xn,m

∣∣Fn,m−1

)∣∣∣
≤

∣∣∣Xn,m

∣∣∣+
∣∣∣E(Xn,m

∣∣Fn,m−1

)∣∣∣
≤ 2εn → 0

and hence, the first condition is satisfied. Since

Xn,m = Xn,m + X̃n,m,

we have

E
(
X

2

n,m

∣∣Fn,m−1

)
= E

(
(Xn,m − X̂n,m)2

∣∣Fn,m−1

)
= E

(
X2
n,m − 2Xn,mX̂n,m + X̂n,m)2

∣∣Fn,m−1

)
= E

(
X2
n,m

∣∣Fn,m−1

)
− E

(
X̂2
n,m

∣∣Fn,m−1

)
. (63)

Last equality follows from E
(
Xn,mX̂n,m

∣∣Fn,m−1

)
= E

(
X̂2
n,m

∣∣Fn,m−1

)
. Since

Xn,m is a martingale difference array, and hence, E(Xn,m|Fn,m−1) = 0. The

last observation implies E
(
Xn,m

∣∣Fn,m−1

)
= −E

(
X̂n,m

∣∣Fn,m−1

)
, and hence,

[
E
(
Xn,m

∣∣Fn,m−1

)]2
=

[
E
(
X̂n,m

∣∣Fn,m−1

)]2
≤ E

(
X̂2
n,m

∣∣Fn,m−1

)
(by Jensen’s inequality)

Therefore,

n∑
m=1

[
E
(
Xn,m

∣∣Fn,m−1

)]2
≤

n∑
m=1

E
(
X̂2
n,m

∣∣Fn,m−1

)
= V̂ (εn)

→P 0
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by given condition. Finally,

n∑
m=1

E
(
X̃2
n,m

∣∣Fn,m−1

)
=

n∑
m=1

E
(
X

2

n,m

∣∣Fn,m−1

)
−

n∑
m=1

E
(
Xn,m

∣∣Fn,m−1

)2

(by the conditional variance formula)

=

n∑
m=1

(
E
(
X2
n,m

∣∣Fn,m−1

)
− E

(
X̂2
n,m

∣∣Fn,m−1

))
−

n∑
m=1

E
(
Xn,m

∣∣Fn,m−1

)2

(from equation (63))

=

n∑
m=1

E
(
X2
n,m

∣∣Fn,m−1

)
−

n∑
m=1

E
(
X̂2
n,m

∣∣Fn,m−1

)
︸ ︷︷ ︸

=V̂ (εn)→P 0

−
n∑

m=1

[
E
(
Xn,m

∣∣Fn,m−1

)]2
︸ ︷︷ ︸

→P 0

,

and hence, we get

lim
n→∞

n∑
m=1

E
(
X̃2
n,m

∣∣Fn,m−1

)
= lim
n→∞

n∑
m=1

E
(
X2
n,m

∣∣Fn,m−1

)
Since

Vn,[nt] =

[nt]∑
m=1

E
(
X2
n,m

∣∣Fn,m−1

)
→P t,

we conclude that
[nt]∑
m=1

E
(
X̃2
n,m

∣∣Fn,m−1

)
→P t,

This show that the second condition is satisfied, and hence, completes the proof.

Lemma 5.4

||Sn,(n·) − S̃n,(n·)||∞ ≤
n∑

m=1

∣∣∣E(Xn,m

∣∣Fn,m−1

)∣∣∣
Proof. Note that if we prove this lemma, then, since

∑n
m=1

∣∣∣E(Xn,m

∣∣Fn,m−1

)∣∣∣→P

0(we will show this), and we construct a Brownian motion with ||S̃n,(n·) −
W (·)||∞ → 0, the desired result follows from the triangle inequality.
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Since Xn,m is martingale difference array, we know that E
(
Xn,m

∣∣Fn,m−1

)
=

−E
(
X̂n,m

∣∣Fn,m−1

)
, and hence,

n∑
m=1

∣∣∣∣∣E(Xn,m

∣∣Fn,m−1

)∣∣∣∣∣ =

n∑
m=1

∣∣∣∣∣E(X̂n,m

∣∣Fn,m−1

)∣∣∣∣∣
≤

n∑
m=1

E
(∣∣X̂n,m

∣∣∣∣Fn,m−1

)
by Jensen

≤ 1

εn

n∑
m=1

E
(
X̂2
n,m

∣∣Fn,m−1

)
(if |Xn,m| > εn, X̂n,m ≤

X2
n,m

εn
=

X̂2
n,m

εn
)

=
V̂ (εn)

εn
→p 0 (by lemma (5.2) )

On {|Xn,m| ≤ εn, 1 ≤ m ≤ n}, we have Xn,m = Xn,m, and hence, Sn,(n·) =

Sn,(n·). Thus,

||Sn,(n·) − S̃n,(n·)||∞ = ||Sn,(n·) − Sn,(n·) +

[n·]∑
m=1

E
(
Xn,m

∣∣Fn,m−1

)
||∞

≤
[n·]∑
m=1

∣∣∣E(Xn,m

∣∣Fn,m−1

)∣∣∣→P 0

Now, complete the proof, we have to show that lemma (5.4) holds on {|Xn,m| >
εn, 1 ≤ m ≤ n}. It suffices to show that

Lemma 5.5

P
(
|Xn,m| > εn, for some m, 1 ≤ m ≤ n

)
→ 0

To prove lemma (5.5), we use Dvoretsky’s proposition.

Proposition 5.1 (Dvoretsky) Let {Gn} be a sequence of σ−fields with Gn ⊂
Gn+1. If An ∈ Gn for each n, then for each δ ≥ 0, measurable with respect to
G0,

P
( n⋃
m=1

Am
∣∣G0

)
≤ δ + P

( n∑
m=1

P (Am|Gm−1) > δ|G0

)
(64)

Proof. We use induction.
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i) n = 1
We want to show

P
(
A1

∣∣G0

)
≤ δ + P

(
P (A1|G0) > δ|G0

)
(65)

Consider Ω	 = {ω : P (A1|G0) ≤ δ}. Then (65) holds. Also, consider Ω⊕ = {ω :
P (A1|G0) > δ}. Then

P
(
P (A1|G0) > δ|G0

)
= E

(
1
(
P (A1|G0) > δ

)
|G0

)
= 1

(
P (A1|G0) > δ

)
= 1

and hence (65) also holds.

ii) n > 1
Consider ω ∈ Ω⊕. Then

P
( n∑
m=1

P (Am|Gm−1) > δ|G0

)
≥ P

(
P (A1|G0) > δ|G0

)
= 1Ω⊕(ω)

= 1

Then, (64) holds. Consider ω ∈ Ω	. Let Bm = Am ∩ Ω	. Then, for m ≥ 1,

P (Bm|Gm−1) = P (Am ∩ Ω	|Gm−1)

= P (Am|Gm−1) · P (Ω	|Gm−1)

= P (Am|Gm−1) · 1Ω	(ω)

= P (Am|Gm−1)

Now suppose γ = δ − P (B1|G0) ≥ 0, and apply the last result for n − 1
sets(induction hypothesis).

P
( n⋃
m=2

Bm
∣∣G1

)
≤ γ + P

( n∑
m=2

P (Bm|Gm−1) > γ|G1

)
.

Recall E
(
E(X|G0)

∣∣G1

)
= E(X|G0) if G0 ⊂ G1. Taking conditional expectation

w.r.t G0 and noting γ ∈ G0,

P
( n⋃
m=2

Bm
∣∣G0

)
≤ P

(
γ + P

( n∑
m=2

P (Bm|Gm−1) > γ|G1

)∣∣G0

)

= γ + P
( n∑
m=2

P (Bm|Gm−1) > γ|G0

)
= γ + P

( n∑
m=1

P (Bm|Gm−1) > δ|G0

)
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Since ∪Bm = (∪Am) ∩ Ω	, on Ω	 we have

n∑
m=1

P (Bm|Gm−1) =

n∑
m=1

P (Am|Gm−1).

Thus, on Ω	,

P
( n⋃
m=2

Am
∣∣G0

)
≤ δ − P (A1|G0) + P

( n∑
m=1

P (Am|Gm−1) > δ|G0

)
.

The result follows from

P
( n⋃
m=1

Am
∣∣G0

)
≤ P (A1|G0) + P

( n⋃
m=2

Am
∣∣G0

)
by using monotonicity of conditional expectation and 1A∪B ≤ 1A + 1B .

Proof of lemma (5.5). Let Am = {|Xn,m| > εn}, Gm = Fn,m, and let δ
be a positive number. Then, lemma (4.3.3) implies

P (|Xn,m| > εn for some m ≤ n) ≤ δ + P
( n∑
m=1

P (|Xn,m| > εn|Fn,m−1) > δ
)

To estimate the right-hand side, we observe that ”Chebyshev’s inequality” im-
plies

n∑
m=1

P (|Xn,m| > εn|Fn,m−1) ≤ ε−2
n

n∑
m=1

E(X̂2
n,m|Fn,m−1)→ 0

so lim supP (|Xn,m| > εn for some m ≤ n) ≤ δ. Since δ is arbitrary, the proof
of lemma and theorem is complete.

Theorem 5.4 (Martingale cental limit theorem) Let {Xn,Fn} be Mar-

tingale difference sequence, Xn,m = Xm/
√
n, and Vk =

∑k
n=1E

(
X2
n

∣∣∣Fn−1

)
.

Assume that

1. Vk/k →P σ
2

2. n−1
∑
m≤nE

(
X2
m1
(
|Xm| > ε

√
n
))
→ 0

Then,
S(n·)√
n
⇒ σW (·)

Definition 5.2 A process {Xn, n ≥ 0} is called stationary if

{Xm, Xm+1, ..., Xm+k} =D {X0, X1, ..., Xk}

for any m, k.
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Definition 5.3 Let (Ω,F , P ) be a probability space. A measurable map ϕ :
Ω→ Ω is said to be measure preserving if P (ϕ−1A) = P (A) for all A ∈ F .

Theorem 5.5 If X0, X1, ... is a stationary sequence and g : RN → R is mea-
surable then Yk = g(Xk, Xk+1, ...) is a stationary sequence.

Proof. If x ∈ RN, let gk(x) = g(xk, xk+1, ...), and if B ∈ RN let

A = {x : (g0(x), g1(x), ...) ∈ B}

To check stationarity now, we observe:

P
(
{ω : (Y0, Y1, ...) ∈ B}

)
= P

(
{ω : (g(X0, X1, ...), g(X1, X2, ...), ...) ∈ B}

)
= P

(
{ω : (g0(X), g1(X), ...) ∈ B}

)
= P

(
{ω : (X0, X1, ...) ∈ A}

)
= P

(
{ω : (Xk, Xk+1, ...) ∈ A}

)
( since X0, X1, ... is a stationary sequence)

= P
(
{ω : (Yk, Yk+1, ...) ∈ B}

)
( Check this!)

Definition 5.4 Assume that θ is measure preserving. A set A ∈ F is said to
be invariant if θ−1A = A.

Definition 5.5 A measure preserving transformation on (Ω,F , P ) is said to be
ergodic if I is trivial, i.e., for every A ∈ I, P (A) ∈ {0, 1}.

Example. Let X0, X1, ... be i.i.d. sequence. If Ω = RN and θ is the shift op-
erator, then an invariant set A has {ω : ω ∈ A} = {ω : θω ∈ A} ∈ σ(X1, X2, ...).
Iterating gives

A ∈
∞⋂
n=1

σ(Xn, Xn+1, ...) = T , the tail σ−field

so I ⊂ T . For an i.i.d. sequence, Kolmogorov’s 0-1 law implies T is trivial, so
I is trivial and the sequence is ergodic. We call θ is ergodic transformation.

Theorem 5.6 Let g : RN → R be measurable. If X0, X1, ... is an ergodic
stationary sequence, then Yk = g(Xk, Xk+1, ...) is ergodic.

Proof. Suppose X0, X1, ... is defined on sequence space with Xn(ω) = ωn. If B
has {ω : (Y0, Y1, ...) ∈ B} = {ω : (Y1, Y2, ...) ∈ B}, then A = {ω : (Y0, Y1, ...) ∈
B} is shift invariant.
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Theorem 5.7 Birkhoff’s Ergodic Theorem. For any f ∈ L1(P ),

1

n

n−1∑
m=0

f(θmω)→ E(f |G) a.s. and in L1(P )

where θ is measure preserving transformation on (Ω,F , P ) and G = {A ∈ F :
θ−1A = A}.

The proof is based on an odd integration inequality due to Yosida and Kaku-
tani(1939).

Theorem 5.8 Suppose {Xn, n ∈ Z} is an ergodic stationary sequence of mar-
tingale differences, i.e., σ2 = EX2

n < ∞ and E(Xn|Fn−1) = 0 with respect to
Fn = σ(Xm,m ≤ n). Let Sn = X1 + · · ·+Xn. Then,

S(n·)√
n
⇒ σW (·)

Proof. Let un = E(X2
n|Fn−1). Then un can be written as θ(Xn−1, Xn−2, ...),

and hence by theorem (5.6), un is stationary and ergodic. By Birkhoff’s ergodic
theorem(G = {∅,Ω}),

1

n

n∑
m=1

um → Eu0 = EX2
0 = σ2 a.s.

The last conclusion shows that (i) of theorem (5.4) holds. To show (ii), we
observe

1

n

n∑
m=1

E
(
X2
m1
(
|Xm| > ε

√
n
))

=
1

n

n∑
m=1

E
(
X2

0 1
(
|X0| > ε

√
n
))

( because of stationarity)

= E
(
X2

0 1
(
|X0| > ε

√
n
))
→ 0

by the dominated convergence theorem. This completes the proof.

Let’s consider stationary process

Xn =

∞∑
k=0

ckξn−k ξiare i.i.d.

If ξi are i.i.d., Xn is not definitely stationary but it is not martingale difference
process. This is called Moving Average Process. What we will do is we start
with stationary ergodic process, and then we will show that limit of this process
is the limit of martingale difference sequence. Then this satisfies the conditions
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of martingale central limit theorem.

We can separate phenomena into two parts: new information(non-deterministic)
and non-new information(deterministic).

EXnX0 =

∫ 2π

0

einλdF (λ)

where F is spectral measure. In case Xn =
∑∞
k=0 ckξn−k, then F � Lebesgue

measure.

Theorem 5.9 There exist c̄k and φ such that

• f(eiλ) =
∣∣∣φ(eiλ)

∣∣∣2
• φ(eiλ) =

∑∞
k=0 c̄ke

ikλ

if and only if∫ 2π

0

log f(λ)dF (λ) > −∞

(
or

∫ ∞
−∞

log f(λ)

1 + λ2
dF (λ) > −∞

)

Now we start with {Xn : n ∈ Z} ergodic stationary sequence such that

• EXn = 0, EX2
n <∞

•
∑∞
n=1 ||E(X0|F−n)||2∞

Idea is if we go back then Xn will be independent X0.

Let

Hn = {Y ∈ Fn with EY 2 <∞} = L2(Ω,Fn, P )

Kn = {Y ∈ Hn with EY Z = 0 for all Z ∈ Hn−1} = Hn 	Hn−1

Geometrically, H0 ⊃ H−1 ⊃ H−2 . . . is a sequence of subspaces of L2 and Kn is
the orthogonal complement of Hn−1. If Y is a random variable, let

(θnY )(ω) = Y (θnω),

i.e., θ is isometry(measure-preserving) on L2. Generalizing from the example
Y = f(X−j , ..., Xk), which has θnY = f(Xn−j , ..., Xn+k), it is easy to see that
if Y ∈ Hk, then θnY ∈ Hk+n, and hence Y ∈ Kj then θnY ∈ Kn+j .

Lemma 5.6 Let P be a projection such that Xj ∈ H−j implies PH−jXj = Xj.
Then,

θPH−1
Xj = PH0

Xj+1

= PH0
θXj
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Proof. For j ≤ −1,
θ PH−jXj︸ ︷︷ ︸

Xj

= θXj = Xj+1

We will use this property. For Y ∈ H−1,

Xj − PH−1
Xj⊥Y

⇒
(
Xj − PH−1

Xj , Y
)

2
= 0

⇒
(
θ
(
Xj − PH−1

Xj

)
, θY

)
2

= 0 ( since θ is isometry on L2)

Since Y ∈ H−1, θY generates H0. Therefore, for all Z ∈ H0, we have((
θXj − θPH−1

Xj

)
, Z
)

2
= 0

⇒
(
θXj − θPH−1Xj

)
⊥Z

⇒ θPH−1Xj = PH0θXj = PH0Xj+1

We come now to the central limit theorem for stationary sequences.

Theorem 5.10 Suppose {Xn, n ∈ Z}is an ergodic stationary sequence with
EXn = 0 and EX2

n <∞. Assume

∞∑
n=1

||E(X0|F−n)||2 <∞

Let Sn = X1 + ...+Xn. Then

S(n·)√
n
⇒ σW (·)

where we do not know what σ is.

Proof. If X0 happened to be in K0 since Xn = θnX0 ∈ Kn for all n, and
taking Z = 1A ∈ Hn−1 we would have E(Xn1A) = 0 for all A ∈ Fn−1 and
hence E(Xn|Fn−1) = 0. The next best thing to having Xn ∈ K0 is to have

X0 = Y0 + Z0 − θZ0 (∗)

with Y0 ∈ K0 and Z0 ∈ L2. Let

Z0 =

∞∑
j=0

E(Xj |F−1)

θZ0 =

∞∑
j=0

E(Xj+1|F0)

Y0 =

∞∑
j=0

(
E(Xj |F0)− E(Xj |F−1)

)
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Then we can solve (∗) formally

Y0 + Z0 − θZ0 = E(X0|F0) = X0. (66)

We let

Sn =

n∑
m=1

Xm =

n∑
m=1

θmX0 and Tn =

n∑
m=1

θmY0.

We want to show that Tn is martingale difference sequence. We have Sn =
Tn + θZ0 − θn+1Z0. The θmY0 are a stationary ergodic martingale difference
sequence (ergodicity follows from (5.6) ), so (5.8) implies

T(n·)√
n
⇒ σW (·) where σ2 = EY 2

0 .

To get rid of the other term, we observe

θZ0√
n
→ 0 a.s.

and

P
(

max
0≤m≤n−1

∣∣θm+1Z0

∣∣ > ε
√
n
)
≤

n−1∑
m=0

P
(∣∣θm+1Z0

∣∣ > ε
√
n
)

= nP
(∣∣Z0

∣∣ > ε
√
n
)

≤ ε−2E
(
Z2

01{|Z0|>ε
√
n}

)
→ 0

The last inequality follows from the stronger form of Chevyshev,

E
(
Z2

01{|Z0|>ε
√
n}

)
≥ ε2nP

(∣∣Z0

∣∣ > ε
√
n
)
.

Therefore,

Sn√
n

=
Tn√
n

+
θZ0√
n︸︷︷︸

→p0

− θn+1Z0√
n︸ ︷︷ ︸

→p0

⇒ Sn√
n
→p

Tn√
n

⇒ lim
n→∞

S(n·)√
n

= lim
n→∞

T(n·)√
n

= σW (·).

Theorem 5.11 Suppose {Xn, n ∈ Z}is an ergodic stationary sequence with
EXn = 0 and EX2

n <∞. Assume

∞∑
n=1

||E(X0|F−n)||2 <∞
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Let Sn = X1 + ...+Xn. Then

S(n·)√
n
⇒ σW (·)

where

σ2 = EX2
0 + 2

∞∑
n=1

EX0Xn.

If
∑∞
n=1EX0Xn diverges, theorem will not be true. We will show that

∑∞
n=1

∣∣EX0Xn

∣∣ <
∞. This theorem is different from previous theorem since we now specify σ2.

Proof. First,∣∣∣EX0Xm

∣∣∣ =

∣∣∣∣∣E(E(X0Xm|F0

))∣∣∣∣∣
≤ E

∣∣∣X0E
(
Xm|F0

)∣∣∣
≤ ||X0||2 ·

∣∣∣∣E(Xm|F0

)∣∣∣∣
2

( by Cauchy Schwarz inequality )

= ||X0||2 ·
∣∣∣∣E(X0|F−m

)∣∣∣∣
2

( by shift invariance )

Therefore, by assumption,

∞∑
n=1

∣∣EX0Xn

∣∣ ≤ ||X0||2
∞∑
n=1

∣∣∣∣E(X0|F−m
)∣∣∣∣

2
<∞.

Next,

ES2
n =

n∑
j=1

n∑
k=1

EXjXk

= nEX2
0 + 2

n−1∑
m=1

(n−m)E0Xm

From this, it follows easily that

ES2
n

n
→ EX2

0 + 2

∞∑
m=1

E0Xm.

To finish the proof, let Tn =
∑n
m=1 θ

mY0, observe σ2 = EY 2
0 (we proved), and

n−1E(Sn − Tn)2 = n−1E(θZ0 − θn+1Z0)2

≤ 3EZ2
0

n
→ 0

since (a− b)2 ≤ (2a)2 + (2b)2.
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We proved central limit theorem of ergodic stationary process. We will dis-
cuss examples: M-dependence and Moving Average.

Example 1. M-dependent sequences. Let Xn, n ∈ Z be a station-
ary sequence with EXn = 0, EX2

n < ∞. Assume that σ({Xj , j ≤ 0}) and
σ({Xj , j ≥ M}) are independent. In this case, E(X0|F−n) = 0 for n > M ,
and

∑∞
n=0 ||E(X0|F−n)||2 < ∞. Let F−∞ = ∩mσ({Xj , j ≥ M}) and Fk =

σ({Xj , j ≤ k}). If m − k > M , then F−∞⊥Fk. Recall Kolmogorov 0-1 law.
If A ∈ Fk and B ∈ F−∞, then P (A ∩ B) = P (A) · P (B). For all A ∈ ∪kFk,
A ∈ σ

(
∪k Fk

)
. Also, A ∈ F−∞ where F−∞ ⊂ ∪kF−k. Therefore, by Kol-

mogorov 0-1 law, P (A ∩ A) = P (A) · P (A), and hence, {Xn} is stationary. So,
(5.8) implies

Sn,(n·)√
n
⇒ σW (·)

where

σ2 = E2
0 + 2

M∑
m=1

EX0Xm.

Example 2. Moving Average. Suppose

Xm =
∑
k≥0

ckξm−k where
∑
k≥0

c2k <∞

and ξi, i ∈ Z are i.i.d. with Eξi = 0 and Eξ2
i = 1. Clearly {Xn} is stationary

sequence since series converges. Check whether {Xn} is ergodic. We have⋂
n

σ
(
{Xm,m ≤ n}

)
︸ ︷︷ ︸

trvivial algebra

⊂
⋂
n

σ
(
{ξk, k ≤ n}

)
︸ ︷︷ ︸
trvivial algebra

,

therefore, by Kolmogorov 0-1 law, {Xn} is ergodic. Next, if F−n = σ
(
{ξm,m ≤

−n}
)
, then

||E(X0|F−n)||2 = ||
∑
k≥n

ckξk||2

=
(∑
k≥n

c2k

)1/2

If, for example, ck = (1 + k)−p, ||E(X0|F−n)||2 ∼ n(1/2−p), and (5.11) applies if
p > 3/2.
Mixing Properties
Let G,H ⊂ F , and

α(G,H) = sup
A∈G,B∈H

{∣∣P (A ∩B)− P (A)P (B)
∣∣}
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If α = 0, G and H are independent so α measures the dependence of two
σ−algebras.

Lemma 5.7 Let p, q, r ∈ (1,∞] with 1/p+ 1/q + 1/r = 1, and suppose X ∈ G,
Y ∈ H have E|X|p, E|Y |q <∞. Then

|EXY − EXEY | ≤ 8||X||p||Y ||q
(
α(G,H)

)1/r

Here, we interpret x0 = 1 for x > 0 and 00 = 0.

Proof. If α = 0, X and Y are independent and the result is true, so we can
suppose α > 0. We build up to the result in three steps, starting with the case
r =∞.

(a). r =∞
|EXY − EXEY | ≤ 2||X||p||Y ||q

Proof of (a) Hölder’s inequality implies |EXY | ≤ ||X||p||Y ||q, and Jensen’s
inequality implies

||X||p||Y ||q ≥
∣∣E|X|E|Y |∣∣ ≥ |EXEY |

so the result follows from the triangle inequality.

(b). X,Y ∈ L∞

|EXY − EXEY | ≤ 4||X||∞||Y ||∞α(G,H)

Proof of (b) Let η = sgn
(
E(Y |G)− EY

)
∈ G. EXY = E(XE(Y |G)), so

|EXY − EXEY | = |E(X(E(Y |G)− EY ))|
≤ ||X||∞E|E(Y |G)− EY |
= ||X||∞E(ηE(Y |G)− EY )

= ||X||∞(E(ηY )− EηEY )

Applying the last result with X = Y and Y = η gives

|E(Y η)− EY Eη| ≤ ||Y ||∞|E(ζη)− EζEη|

where ζ = sgn(E(η|H)− Eη). Now η = 1A − 1B and ζ = 1C − 1D, so

|E(ζη)− EζEη| = |P (A ∩ C)− P (B ∩ C)− P (A ∩D) + P (B ∩D)

−P (A)P (C) + P (B)P (C) + P (A)P (D)− P (B)P (D)|
≤ 4α(G,H)
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Combining the last three displays gives the desired result.

(c) q =∞, 1/p+ 1/r = 1

|EXY − EXEY | ≤ 6||X||p||Y ||∞
(
α(G,H)

)1−1/p

Proof of (c) Let C = α−1/p||X||p, X1 = X1(|X|≤C), and X2 = X −X1.

|EXY − EXEY | ≤ |EX1Y − EX1EY |+ |EX2Y − EX2EY |
≤ 4αC||Y ||∞ + 2||Y ||∞E|X2|

by (a) and (b). Now

E|X2| ≤ C−(p−1)E(|X|p1(|X|≤C)) ≤ C−p+1E|X|p

Combining the last two inequalities and using the definition of C gives

|EXY − EXEY | ≤ 4α1−1/p||X||p||Y ||∞ + 2||Y ||∞α1−1/p||X||−p+1+p
p

which is the desired result.

Finally, to prove (5.7), let C = α−1/q||Y ||q, Y1 = Y 1(|Y |≤C), and Y2 = Y − Y1.

|EXY − EXEY | ≤ |EXY1 − EXEY1|+ |EXY2 − EXEY2|
≤ 6C||X||pα1−1/p + 2||X||p||Y2||θ

where θ = (1− 1/p)−1 by (c) and (a). Now

E|Y |θ ≤ C−q+θE(|Y |q1(|Y |≤C)) ≤ C−1+θE|Y |q

Taking the 1/θ root of each side and recalling the definition of C

||Y2||θ ≤ C−(q−θ)||Y ||q/θq ≤ α(q−θ)/qθ||Y ||q

so we have

|EXY − EXEY | ≤ 6α−1/q||Y ||q||X||pα1−1/p + 2||X||pα1/θ−1/q||Y ||1/θ+1/q
q

proving (5.7).

Combining (5.11) and (5.7) gives:

Theorem 5.12 Suppose Xn, n ∈ Z is an ergodic stationary sequence with
EXn = 0, E|X0|2+δ <∞. Let α(n) = α(F−n, σ(X0)), where F−n = σ({Xm,m ≤
−n}), and suppose

∞∑
n=1

α(n)δ/2(2+δ) <∞
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If Sn = X1 + · · ·Xn, then
S(n·)√
n
⇒ σW (·),

where

σ2 = EX2
0 + 2

∞∑
n=1

EX0Xn.

Proof. To use (5.7) to estimate the quantity in (5.11) we begin with

||E(X|F)||2 = sup{E(XY ) : Y ∈ F , ||Y ||2 = 1} (∗)

Proof of (*) If Y ∈ F with ||Y ||2 = 1, then using a by now familiar property
of conditional expectation and the Cauchy-Schwarz inequality

EXY = E(E(XY |F)) = E(Y E(X|F)) ≤ ||E(X|F)||2||Y ||2

Equality holds when Y = E(X|F)/||E(X|F)||2.

Letting p = 2 + δ and q = 2 in (5.7), noticing

1

r
= 1− 1

p
− 1

q
=

δ

2(2 + δ)

and recalling EX0 = 0, showing that if Y ∈ F−n

|EX0Y | ≤ 8||X0||2+δ||Y ||2α(n)δ/2(2+δ)

Combining this with (*) gives

||E(X0|F−n)||2 ≤ 8||X0||2+δα(n)δ/2(2+δ)

and it follows that the hypotheses of (5.11) are satisfied.
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6 Empirical Process

Let (Ω,A, P ) be an arbitrary probability space and T : Ω → R̄ am arbitrary
map. The outer integral of T with respect to P is defined as

E∗T = inf{EU : U ≥ T,U : Ω→ R̄ measurable and EU exists}.

Here, as usual, EU is understood to exist if at least one of EU+ or EU− is
finite. The outer probability of an arbitrary subset B of Ω is

P ∗(B) = inf{P (A) : A ⊃ B,A ∈ A}.

Note that the functions U in the definition of outer integral are allowed to take
the value ∞, so that the infimum is never empty.

Inner integral and inner probability can be defined in a similar fashion. Equiv-
alently, they can be defined by E∗T = −E∗(−T ) and P∗(B) = 1 − P ∗(B),
respectively.

In this section, D is metric space with a metric d. The set of all continuous,
bounded functions f : D→ R is denoted by Cb(D).

Definition 6.1 Let (Ωα,Aα, Pα), α ∈ I be a net of probability space, Xα :
Ωα → D, and Pα = P ◦X−1

α . Then we say that the net Xα converges weakly to
a Borel measure L, i.e., Pα ⇒ L if

E∗f(Xα)→
∫
fdL, for every f ∈ Cb(D)

Theorem 6.1 (Portmanteau) The following statements are equivalent:
(i) Pα ⇒ L;
(ii) lim inf P∗(Xα ∈ G) ≥ L(G) for every open G;
(iii) lim supP ∗(Xα ∈ F ) ≤ L(F ) for every open F ;
(iv) lim inf E∗f(Xα) ≥

∫
fdL for every lower semicontinuous f that is bounded

below;
(v) lim supE∗f(Xα) ≤

∫
fdL for everyupper semicontinuous f that is bounded

above;
(vi) limP ∗(Xα ∈ B) = limP∗(Xα ∈ B) = L(B) for every Borel set B with
L(∂B) = 0.
(vii) lim inf E∗f(Xα) ≥

∫
fdL for every bounded, Lipschitz continuous, nonneg-

ative f .

Definition 6.2 The net of maps Xα is asymptotically measurable if and only
if

E∗f(Xα)− E∗f(Xα)→ 0, for every f ∈ Cb(D).
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The net Xα is asymptotically tight if for every ε > 0 there exists a compact set
K such that

lim inf P∗(Xα ∈ Kδ) ≥ 1− ε, for every δ > 0.

Here Kδ = {y ∈ D : d(y,K) < δ} is the ”δ−enlargement” around K. A collec-
tion of Borel measurable maps Xα is called uniformly tight if, for every ε > 0,
there is a compact K with P (Xα ∈ K) ≥ 1− ε for every α.

The δ in the definition of tightness may seem a bit overdone. It is not-asymptotic
tightness as defined is essentially weaker than the same condition but with K
instead of Kδ. This is caused by a second difference with the classical concept
of uniform tightness: the enlarged compacts need to contain mass 1− ε only in
the limit.

On the other hand, nothing is gained in simple cases: for Borel measurable
maps in a Polish space, asymptotic tightness and uniform tightness are the
same. It may also be noted that, although Kδ is dependent on the metric,
the property of asymptotic tightness depends on the topology only. One nice
consequence of the present tightness concept is that weak convergence usually
implies asymptotic measurability and tightness.

Lemma 6.1 (i) Xα ⇒ X, then Xα is asymptotically measurable.
(ii) If Xα ⇒ X, then Xα is asymptotically tight if and only if X is tight.

Proof. (i). This follows upon applying the definition of weak convergence to
both f and −f .

(ii). Fix ε > 0. If X is tight, then there is a compact K with P (X ∈ K) > 1− ε.
By the portmanteau theorem, lim inf P∗(Xα ∈ Kδ) ≥ P (X ∈ Kδ), which is
larger than 1 − ε for every δ > 0. Conversely, if Xα is tight, then there is a
compact K with lim inf P∗(Xα ∈ Kδ) ≥ 1 − ε. By the portmanteau theorem,

P (X ∈ Kδ) ≥ 1− ε. Let δ ↓ 0.

The next version of Prohorov’s theorem may be considered a converse of the
previous lemma. It comes in two parts, one for nets and one for sequences,
neither one of which implies the other. The sequence case is the deepest of the
two.

Theorem 6.2 (Prohorov’s theorem.) (i) If the net Xα is asymptotically
tight and asymptotically measurable, then it has a subnet Xα(β) that converges
in law to a tight Borel law.
(ii) If the sequence Xn is asymptotically tight and asymptotically measurable,
then it has a subsequence Xnj that converges weakly to a tight Borel law.
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6.1 Spaces of Bounded Functions

A vector lattice F ⊂ Cb(D) is a vector space that is closed under taking positive
parts: if f ∈ F , then f = f∨0 ∈ F . Then automatically f∨g ∈ F and f∧g ∈ F
for every f, g ∈ F . A set of functions on D separates points of D if, for every
pair x 6= y ∈ D, there is f ∈ F with f(x) 6= f(y).

Lemma 6.2 Let L1 and L2 be finite Borel measures on D.

(i) If
∫
fdL1 =

∫
fdL2 for every f ∈ Cb(D), then L1 = L2.

Let L1 and L2 be tight Borel probability measures on D.

(ii) If
∫
fdL1 =

∫
fdL2 for every f in a vector lattice F ⊂ Cb(D) that contains

the constant functions and separates points of D, then L1 = L2.

Lemma 6.3 Let the net Xα be asymptotically tight, and suppose E∗f(Xα) −
E∗f(Xα) → 0 for every f in a subalgebra F of Cb(D) that separates points of
D. Then the net Xα is asymptotically measurable.

Let T be an arbitrary set. The space l∞(T ) is defined as the set of all uniformly
bounded, real functions on T : all functions z : T → R such that

||z||T := sup
t∈T
|z(t)| <∞

It is a metric space with respect to the uniform distance d(z1, z2) = ||z1− z2||T .

The space l∞(T ), or a suitable subspace of it, is a natural space for stochas-
tic processes with bounded sample paths. A stochastic process is simply an
indexed collection {X(t) : t ∈ T} of random variables defined on the same prob-
ability space: every X(t) : Ω → R is a measurable map. If every sample path
t 7→ X(t, ω) is bounded, then a stochastic process yields a map X : Ω→ l∞(T ).
Sometimes the sample paths have additional properties, such as measurability
or continuity, and it may be fruitful to consider X as a map into a subspace
of l∞(T ). If in either case the uniform metric is used, this does not make a
difference for weak convergence of a net; but for measurability it can.

In most cases a map X : Ω→ l∞(T ) is a stochastic process. The small amount
of measurability this gives may already be enough for asymptotic measura-
bility. The special role played by the marginals (X(t1), ..., X(tk)), which are
considered as maps into Rk, is underlined by the following three results. Weak
convergence in l∞(T ) can be characterized as asymptotic tightness plus conver-
gence of marginals.

Lemma 6.4 Let Xα : Ωα → l∞(T ) be asymptotically tight. Then it is asymp-
totically measurable if and only if Xα(t) is asymptotically measurable for every
t ∈ T .
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Lemma 6.5 Let X and Y be tight Borel measurable maps into l∞(T ). Then
X and Y are equal in Borel law if and only if all corresponding marginals of X
and Y are equal in law.

Theorem 6.3 Let Xα : Ωα → l∞(T ) be arbitrary. Then Xα converges weakly
to a tight limit if and only if Xα is asymptotically tight and the marginals
(X(t1), ..., X(tk)) converge weakly to a limit for every finite subset t1, ..., tk of T .
If Xα is asymptotically tight and its marginals converge weakly to the marginals
(X(t1), ..., X(tk)) of a stochastic process X, then there is a version of X with
uniformly bounded sample paths and Xα ⇒ X.

Proof. For the proof of both lemmas, consider the collection F of all functions
f : l∞(T )→ R of the form

f(z) = g(z(t1), ..., z(tk)), g ∈ Cb(Rk), t1, ..., tk ∈ T, k ∈ N.

This forms an algebra and a vector lattice, contains the constant functions, and
separates points of l∞(T ). Therefore, the lemmas are corollaries of (6.2) and
(6.3), respectively. If Xα is asymptotically tight and marginals converge, then
Xα is asymptotically measurable by the first lemma. By Prohorov’s theorem,
Xα is relatively compact. To prove weak convergence, it suffices to show that
all limit points are the same. This follows from marginal convergence and the
second lemma.

Marginal convergence can be established by any of the well-known methods
for proving weak convergence on Euclidean space. Tightness can be given a
more concrete form, either through finite approximation or with the help of the
Arzelà-Ascoli theorem. Finite approximation leads to the simpler of the two
characterizations, but the second approach is perhaps of more interest, because
it connects tightness to continuity of the sample paths t 7→ Xα(t).

The idea of finite approximation is that for any ε > 0 the index set T can
be partitioned into finitely many subsets Ti such that the variation of the sam-
ple paths t 7→ Xα(t) is less than ε on every one of the sets Ti. More precisely, it
is assumed that for every ε, η > 0, there exists a partition T = ∪ki=1Ti such that

lim sup
α

P ∗
(

sup
i

sup
s,t∈Ti

∣∣Xα(s)−Xα(t)
∣∣ > ε

)
< η.

Clearly, under this condition the asymptotic behavior of the process can be de-
scribed within error margin ε, η by the behavior of the marginal (Xα(t1), ..., Xα(tk))
for arbitrary fixed points ti ∈ Ti. If the process can thus be reduced to a finite
set of coordinates for any ε, η > 0 and the nets or marginal distributions are
tight, then the net Xα is asymptotically tight.
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Theorem 6.4 A net Xα : Ωα → l∞(T ) is asymptotically tight if and only if
Xα(t) is asymptotically tight in R for every t and, for all ε, η > 0, there exists
a finite partition T = ∪ki=1Ti such that (6.1) holds.

Proof. The necessity of the conditions follows easily from the next theorem.
For instance, take the partition equal to disjointified balls of radius δ for a semi-
metric on T as in the next theorem. We prove sufficiency.

For any partition, as in the condition of the theorem, the norm ||Xα||T is
bounded by maxi|Xα(ti)|+ ε, with inner probability at least 1− η, if ti ∈ Ti for
each i. Since a maximum of finitely many tight nets of real variables is tight, it
follows that the net ||Xα||T is asymptotically tight in R.

Fix ζ > 0 and a sequence εm ↓ 0. Take a constantM such that lim supP ∗(||Xα||T >
M) < ζ, and for each ε = εm and η = 2−mζ, take a partition T = ∪ki=1Ti as in
(6.1). For the moment m is fixed and we do not let it appear in the notation.
Let z1, ..., zp be the set of all functions in l∞(T ) that are constant on each Ti
and take on only the values 0,±εm, ...,±[M/εm]εm. Let Km be the union of
the p closed balls of radius εm around the zi. Then, by construction, the two
conditions

||Xα||T ≤M and sup
i

sup
s,t∈Ti

∣∣Xα(s)−Xα(t)
∣∣ ≤ εm

imply that Xα ∈ Km. This is true for each fixed m.

Let K = ∩∞m=1Km. Then K is closed and totally bounded(by construction
of the Km and because ε ↓ 0) and hence compact. Furthermore for every δ > 0,
there is an m with Kδ ⊃ ∩mm=1Ki. If not, then there would be a sequence zm
not in Kδ, but with zm ∈ ∩mm=1Ki for every m. This would have a subsequence
contained in one of the balls making up K1, a further subsequence eventually
contained in one of the balls making up K2, and so on. The ”diagonal” se-
quence, formed by taking the first of the first subsequence, the second of the
second subsequence and so on, would eventually be contained in a ball of radius
εm for every m; hence Cauchy. Its limit would be in K, contradicting the fact
that d(zm,K) ≥ δ for every m.

Conclude that if Xα is not in Kδ, then it is not in ∩mm=1Ki for some fixed
m. Then

lim supP ∗(Xα /∈ Kδ) ≤ lim supP ∗
(
Xα /∈ ∩mm=1Ki

)
≤ ζ +

m∑
i=1

ζ2−m < 2ζ

This concludes the proof of the theorem.

The second type of characterization of asymptotic tightness is deeper and re-
lates the concept to asymptotic continuity of the sample paths. Suppose ρ
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is a semimetric on T A net Xα : Ωα → l∞(T ) is asymptotically uniformly
ρ−equicontinuous in probability if for every ε, η > 0 there exists a δ > 0 such
that

lim sup
α

P ∗
(

sup
ρ(s,t)<δ

∣∣Xα(s)−Xα(t)
∣∣ > ε

)
< η.

Theorem 6.5 A net Xα : Ωα → l∞(T ) is asymptotically tight if and only if
Xα(t) is asymptotically tight in R for every t and there exists a semimetric ρ
on T such that (T, ρ) is totally bounded and Xα is asymptotically uniformly
ρ−equicontinuous in probability. If, moreover, Xα ⇒ X, then almost all paths
t 7→ X(t, ω) are uniformly ρ−continuous; and the semimetric ρ can without loss
of generality be taken equal to any semimetric ρ for which this is true and (T, ρ)
is totally bounded.

Proof. (⇐). The sufficiency follows from the previous theorem. First take
δ > 0 sufficiently small so that the last displayed inequality is valid. Since T
is totally bounded, it can be covered with finitely many balls of radius δ. Con-
struct a partition of T by disjointifying these balls.

(⇒). If Xα is asymptotically tight, then g(Xα) is asymptotically tight for
every continuous map g; in particular, for each coordinate projection. Let
K1 ⊂ K2 ⊂ ... be compacts with lim inf P∗(Xα ∈ Kε

m)1 − 1/m for every ε > 0.
For every fixed m, define a semimetric ρm on T by

ρm(s, t) = sup
z∈Km

|z(s)− z(t)|, s, t ∈ T

Then (T, ρm) is totally bounded. Indeed, cover Km by finitely many balls of
radius η, centered at z1, ..., zk. Partition Rk into cubes of edge η, and for
every cube pick at most one t ∈ T such that (z1(t), ..., zk(t)) is in the cube.
Since z1, ..., zk are uniformly bounded, this gives finitely many points t1, ..., tp.
Now the balls {t : ρ(t, ti) < 3η} cover T : t is in the ball around ti for which
(z1(t), ..., zk(t)) and (z1(ti), ..., zk(ti)) fall in the same cube. This follows because
ρm(t, ti) can be bounded by 2 supz∈Km infi ||z−zi||T +supj |zj(ti)−zj(t)|. Next
set

ρ(s, t) =

∞∑
m=1

2−m(ρm(s, t) ∧ 1).

Fix η > 0. Take a natural number m with 2−m < η. Cover T with finitely many
ρm−balls of radius η. Let t1, ..., tp be their centers. Since ρ1 ≤ ρ2 ≤ ..., there
is for every t a ti with ρ(t, ti) ≤

∑m
k=1 2−kρk(t, ti) + 2−m < 2η. Thus (T, ρ) is

totally bounded for ρ, too. It is clear from the definitions that |z(s) − z(t)| ≤
ρm(s, t) for every z ∈ Km and that ρm(s, t)∧1 ≤ 2mρ(s, t). Also, if ||z0−z||T < ε
for z ∈ Km then |z0(s)− z0(t)| < 2ε+ |z(s)− z(t)| for any pair s, t. Deduce that

Kε
m ⊂

{
z : sup

ρ(s,t)<2−mε

|z(s)− z(t)| ≤ 3ε
}
.
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Thus for given ε and m, and for δ < 2−mε,

lim inf
α

P∗

(
sup

ρ(s,t)<δ

∣∣Xα(s)−Xα(t)
∣∣ ≤ 3ε

)
≥ 1− 1

m
.

Finally, if Xα ⇒ X, then with notation as in the second part of the proof,
P (X ∈ Km) ≥ 1 − 1/m; hence X concentrates on ∪∞m=1Km. The elements of
Km are uniformly ρm-equicontinuous and hence also uniformly ρ-continuous.
This yields the first statement. The set of uniformly continuous functions on
a totally bounded, semimetric space is complete and separable, so a map X
that takes its values in this set is tight. Next if Xα ⇒ X and X is tight, the
Xα is asymptotically tight and the compacts for asymptotical tightness can be
shosen equal to the compacts for tightness of X If X has uniformly continuous
paths, then the latter compacts can be chosen within the space of uniformly
continuous functions. Since a compact is totally bounded, every one of the
compacts is necesaarily uniformly equicontinuous. Combination of these facts
proves the second statement.

6.2 Maximal Inequalities and Covering Numbers

We derive a class of maximal inequalities that can be used to establish the
asymptotic equicontinuity of the empirical process. Since the ineualities have
much wider applicability, we temporarily leave the empirical framework.

Let ψ be a nondecreasing, convex function with ψ(0) = 0 and X a random
variable. Then the Orlicz norm ||X||ψ is defined as

||X||ψ = inf

{
C > 0 : Eψ

( |X|
C

)
≤ 1

}
.

Here the infimum over the empty set is ∞. Using Jensen’s inequality, it is not
difficult to check that this indeed defines a norm. The best-known examples of
Orlicz norms are those corresponding to the functions x 7→ xp for p ≥ 1: the
corresponding Orlicz norm is simply the Lp−norm

||X||p =
(
E|X|p

)1/p

For our purpose, Orlicz norms of more interest are the ones given by ψp(x) =
ex
p − 1 for p ≥ 1, which give much more weight to the tails of X. The bound

xp ≤ ψp(x) for all nonnegative x implies that ||X||p ≤ ||X||ψp for each p. It is
not true that the exponential Orlicz norms are all bigger than all Lp−norms.
However, we have the inequalities

||X||ψp ≤ ||X||ψp(log 2)1/q−1/p, p ≤ q
||X||p ≤ p!||X||ψ1
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Since for the present purposes fixed constants in inequalities are irrelevant, this
means that a bound on an exponential Orlicz norm always gives a better result
than a bound on an Lp−norm.

Any Orlicz norm can be used to obtain an estimate of the tail of a distribution.
By Markov’s inequality,

P (|X| > x) ≤ P
(
ψ(|X|/||X||ψ) ≥ ψ(x/||X||ψ)

)
≤ 1

ψ(x/||X||ψ)

For ψp(x) = ex
p − 1, this leads to tail estimates exp(−Cxp) for any random

variable with a finite ψp−norm. Conversely, an exponential tail bound of this
type shows that ||X||ψp is finite.

Lemma 6.6 Let X be a random variable with P (|X| > x) ≤ Ke−Cxp for every
x, for constants K and C, and for p ≥ 1. Then its Orlicz norm satisfies

||X||ψp ≤
(

(1 +K)/C
)1/p

.

Proof. By Fubini’s theorem,

E
(
eD|X|

p

− 1
)

= E

∫ |X|p
0

DeDsds =

∫ ∞
0

P (|X| > s1/p)DeDsds

Now insert the inequality on the tails of |X| and obtain the explicit upper bound
KD/(C −D). This is less than or equal to 1 for D−1/p greater than or equal

to
(

(1 +K)/C
)1/p

. This completes the proof.

Next consider the ψ−norm of a maximum of finitely many random variables.
Using the fact that max |Xi|p ≤

∑
|Xi|p, one easily obtains for the Lp−norms

∣∣∣∣∣∣ max
1≤i≤m

Xi

∣∣∣∣∣∣
p

=

(
E max

1≤i≤m
Xp
i

)1/p

≤ m1/p max
1≤i≤m

||Xi||p

A similar inequality is valid for many Orlicz norms, in particular the exponential
ones. Here, in the general case, the factor m1/p becomes ψ−1(m).

Lemma 6.7 Let ψ be a convex, nondecreasing, nonzero function with ψ(0) = 0
and lim supx,y∞ ψ(x)ψ(y)/ψ(cxy) < ∞ for some constant c. Then for any
random variables X1, ..., Xn,∣∣∣∣∣∣ max

1≤i≤m
Xi

∣∣∣∣∣∣
ψ

=≤ Kψ−1(m) max
1≤i≤m

||Xi||p

for a constant K depending only on ψ.
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Proof. For simplicity of notation assume first that ψ(x)ψ(y) ≤ ψ(cxy) for all
x, y ≥ 1. In that case, ψ(x/y) ≤ ψ(cx)/ψ(y) for all x ≥ y ≥ 1. Thus, for y ≥ 1
and any C,

maxψ

(
|Xi|
Cy

)
≤ max

[
ψ(c|Xi|/C)

ψ(y)
+ ψ

( |Xi|
Cy

)
1
{ |Xi|
Cy

< 1
}]

≤
∑ ψ(c|Xi|/C)

ψ(y)
+ ψ(1).

Set C = cmax ||Xi||ψ, and take expectations to get

Eψ

(
max |Xi|
Cy

)
≤ m

ψ(y)
+ ψ(1)

When ψ(1) ≤ 1/2, this is less than or equal to 1 for y = ψ−1(2m), which is
greater than 1 under the same condition. Thus,∣∣∣∣∣∣ max

1≤i≤m
Xi

∣∣∣∣∣∣
ψ
≤ ψ−1(2m)cmax ||Xi||ψ.

By the convexity of ψ and the fact that ψ(0) = 0, it follows that ψ−1(2m) ≤
2ψ−1(m). The proof is complete for every special ψ that meets the conditions
made previously. For a general ψ, there are constants σ ≤ 1 and τ > 0 such
that φ(x) = σψ(τx) satisfies the conditions of the previous paragraph. Apply
the inequality to φ, and observe that ||X||ψ ≤ ||X||φ/(στ) ≤ ||X||ψ/σ.

For the present purposes, the value of the constant in the previous lemma is
irrelevant. The important conclusion is that the inverse of the ψ−function de-
termines the size of the ψ−norm of a maximum in comparison to the ψ−norms
of the individual terms. The ψ−norms grows slowest for rapidly increasing ψ.
For ψ(x) = ex

p − 1, the growth is at most logarithmic, because

ψ−1
p (m) = (log(1 +m))1/p

The previous lemma is useless in the case of a maximum over infinitely many
variables. However, such a case can be handled via repeated application of
the lemma via a method known as chaining. Every random variable in the
supremum is written as a sum of ”little links,” and the bound depends on the
number and size of the little links needed. For a stochastic process {Xt : t ∈ T},
the number of links depends on the entropy of the index set for the semimetric

d(s, t) = ||Xs −Xt||ψ.

The general definition of ”metric entropy” is as follows.

117



Definition 6.3 (Covering numbers) Let (T, d) be an arbitrary semi-metric
space. Then the covering number N(ε, d) is the minimal number of balls of
radius ε needed to cover T . Call a collection of points ε−separated if the distance
between each pair of points is strictly larger than ε. The packing number D(ε, d)
is the maximum number of ε−separated points in T . The corresponding entropy
numbers are the logarithms of the covering and packing numbers, respectively.

For the present purposes, both covering and packing numbers can be used. In
all arguments one can be replaced by the other through the inequalities

N(ε, d) ≤ D(ε, d) ≤ N
( ε

2
, d
)

Clearly, covering and packing numbers become bigger as ε ↓ 0. By definition,
the semimetric space T is totally bounded if and only if the covering and packing
numbers are finite for every ε > 0. The upper bound in the following maximal
inequality depends on the rate at which D(ε, d) grows as ε ↓ 0, as measured
through an integral criterion.

Theorem 6.6 Let ψ be a convex, nondecreasing, nonzero function with ψ(0) =
0 and lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) < ∞, for some constant c. Let {Xt : t ∈
T} be a separable stochastic process with

||Xs −Xt||ψ ≤ Cd(s, t), for every s, t

for some semimetric d on T and a constant C. Then, for any η, δ > 0,

∣∣∣∣∣∣ sup
d(s,t)≤δ

|Xs −Xt|
∣∣∣∣∣∣
ψ
≤ K

[∫ η

0

ψ−1(D(ε, d))dε+ δψ−1(D2(η, d))

]
,

for a constant K depending on ψ and C only.

Corollary 6.1 The constant K can be chosen such that∣∣∣∣∣∣ sup
s,t
|Xs −Xt|

∣∣∣∣∣∣
ψ
≤ K

∫ diamT

0

ψ−1(D(ε, d))dε,

where diam T is the diameter of T .

Proof. Assume without loss of generality that the packing numbers and the as-
sociated ”covering integral” are finite. Construct nested sets T0 ⊂ T1 ⊂ · · · ⊂ T
such that every Tj is a maximal set of points such that d(s, t) > η2−j for every
s, t ∈ Tj where ”maximal” means that no point can be added without destroying
the validity of the inequality. By the definition of packing numbers, the number
of points in Tj is less than or equal to D(η2−j , d).
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”Link” every point tj+1 ∈ Tj+1 to a unique tj ∈ Tj such that d(tj , tj+1) ≤ η2−j .
Thus, obtain for every tk+1 a chain tk+1, tk, ..., t0 that connects it to a point in
T0. For arbitrary points sk+1, tk+1 in Tk+1, the difference in increments along
their chains can be bounded by

|(Xsk+1
−Xs0)− (Xtk+1

−Xt0)| =
∣∣∣ k∑
j=0

(Xsj+1
−Xsj )−

k∑
j=0

(Xtj+1
−Xtj )

∣∣∣
≤ 2

k∑
j=0

max |Xu −Xv|

where for fixed j the maximum is taken over ll links (u, v) from Tj+1 to Tj . Thus
the jth maximum is taken over at most #Tj+1 links, with each link having a
ψ−norm ||Xu −Xv||ψ bounded by Cd(u, v) ≤ Cη2−j . It follows with the help
of lemma (6.7) that , for a constant depending only on ψ and C,

∣∣∣∣∣∣ max
s,t∈Tk+1

|(Xs −Xs0)− (Xt −Xt0)|
∣∣∣∣∣∣
ψ
≤ K

k∑
j=0

ψ−1(D(η2−j−1, d))η2−j

≤ 4K

∫ η

0

ψ−1(D(ε, d))dε.

In this bound, s0 and t0 are the endpoints of the chains starting at s and t,
respectively.

The maximum of the increments |Xsk+1
−Xtk+1

| can be bounded by the maxi-
mum on the left side of (67) plus the maximum of the discrepancies |Xs0 −Xt0 |
at the end of the chains. The maximum of the latter discrepancies will be an-
alyzed by a seemingly circular argument. For every pair of endpoints s0, t0 of
chains starting at two points in Tk+1 within distance δ of each other, choose
exactly one pair sk+1, tk+1 in Tk+1, with d(sk+1, tk+1) < δ, whose chains end
at s0, t0. By definition of T0, this gives at most D2(η, d) pairs. By the triangle
inequality,

|Xs0 −Xt0 | ≤ |(Xs0 −Xsk+1
)− (Xt0 −Xtk+1

)|+ |Xsk+1
−Xtk+1

|

Take the maximum over all pairs of endpoints s0, t0 as above. Then the corre-
sponding maximum over the first term on the right in the last display is bounded
by the maximum in the left side of (67). It ψ−norm can be bounded by the
right side of this equation. Combine this with (67) to find that∣∣∣∣∣∣ max
s,t∈Tk+1,d(s,t)<δ

|(Xs−Xs0)−(Xt−Xt0)|
∣∣∣∣∣∣
ψ
≤ 8K

∫ η

0

ψ−1(D(ε, d))dε+
∣∣∣∣max |Xsk+1

−Xtk+1
|
∣∣∣∣
ψ

Here the maximum on the right is taken over the pairs sk+1, tk+1 in Tk+1

uniquely attached to the pairs s0, t0 as above. Thus the maximum is over at
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most D2(η, d) terms, each of whose ψ−norm is bounded by δ. Its ψ−norm is
bounded by Kψ−1(D2(η, d))δ.

Thus the upper bound given by the theorem is a bound for the maximum of in-
crements over Tk+1. Let k tend to infinity to conclude the proof. The corollary
follows immediately from the previous proof, after noting that, for η equal to
the diameter of T , the set T0 consists of exactly one point. In that case s0 = t0
for every pair s, t, and the increments at the end of the chains are zero. The
corollary also follows from the theorem upon taking η = δ = diamT and noting
that D(η, d) = 1, so that the second term in the maximal inequality can also be
written δψ−1(D(η, d)). Since the function ε 7→ ψ−1(D(ε, d)) is decreasing, this
term can be absorbed into the integral, perhaps at the cost of increasing the
constant K.

Though the theorem gives a bound on the continuity modulus of the process, a
bound on the maximum of the process will be needed. Of course, for any t0,∣∣∣∣∣∣ sup

t
|Xt|

∣∣∣∣∣∣
ψ
≤ ||Xt0 ||ψ +K

∫ diamT

0

ψ−1(D(ε, d))dε

Nevertheless, to state the maximal inequality in terms of the increments ap-
pears natural. The increment bound shows that the process X is continuous in
ψ−norm, whenever the covering integral

∫ η
0
ψ−1(D(ε, d))dε converges for some

η > 0. It is a small step to deduce the continuity of almost all sample paths
from this inequality, but this is not needed at this point.

6.3 Sub-Gaussian Inequalities

A standard normal variable has tails of the order x−1 exp
(
− x2

2

)
and satisfies

P (|X| > x) ≤ 2 exp
(
− x2

2

)
for every x. By direct calculation one finds a

ψ2−norm of
√

8/3. In this section we study random variables satisfying similar
tail bounds.

Hoeffding’s inequality asserts a ”sub-Gaussian” tail bound for random variables
of the form X =

∑
Xi with X1, ..., Xn i.i.d. with zero means and bounded

range. The following special case of Hoeffding’s inequality will be needed.

Theorem 6.7 (Hoeffding’s inequality) Let a1, ..., an be constants and ε1, ..., εn
be independent Rademacher random variables; i.e., with P (εi = 1) = P (εi =
−1) = 1/2. Then

P
(
|
∑

εiai| > x
)
≤ 2e

− x2

2||a||2 ,

for the Euclidean norm ||a||. Consequently, ||
∑
εiai||ψ2

≤
√

6||a||.
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Proof. For any λ and Rademacher variable ε, one has Eeλε = (eλ + e−λ) ≤
eλ

2/2, where the last inequality follows after writing out the power series. Thus
by Markov’s inequality, for any λ > 0,

P
(∑

εiai > x
)
≤ e−λxEeλ

∑n

i=1
aiεi ≤ e(λ2/2)||a||2 − λx.

The best upper bound is obtained for λ = x/||a||2 and is the exponential in
the probability bound of the lemma. Combination with a similar bound for
the lower tail yields the probability bound. The bound on the ψ−norm is a
consequence of the probability bound in view of (6.6).

A stochastic process is called sub-Gaussian with respect to the semi-metric d
on its index set if

P (|Xs −Xt| > x) ≤ 2e
− x2

2d2(s,t) , for every s, t ∈ T, x > 0

any Gaussian process is sub-Gaussian for the standard deviation semimetric
d(s, t) = σ(Xs −Xt). another example is Rademacher process

Xa =

n∑
i=1

aiεi, a ∈ Rn

for Rademacher variables ε1, ..., εn. By Hoeffding’s inequality, this is sub-Gaussian
for the Euclidean distance d(a, b) = ||a− b||.

Sub-Gaussian processes satisfy the increment bound ||Xs −Xt||ψ2 ≤
√

6d(s, t).
Since the inverse of the ψ2−function is essentially the square root of the log-
arithm, the genereal maximal inequality leads for sub-Gaussian processes to a
bound in terms of an entropy integral. Furthermore, because of the special
properties of the logarithm, the statement can be slightly simplified.

Corollary 6.2 Let {Xt : t ∈ T} be a separable sub-Gaussian process. Then for
every δ > 0,

E sup
d(s,t)≤δ

|Xs −Xt| ≤ K
∫ δ

0

√
logD(ε, d)dε,

for a universal constant K. In particular, for any t0,

E sup
t
|Xt| ≤ E|Xt0 |+K

∫ ∞
0

√
logD(ε, d)dε.

Proof. Apply the general maximal inequality with ψ2(x) = ex
2 −1 and η = δ.

Since ψ−1
2 (m) =

√
log(1 +m), we have ψ−1

2 (D2(δ, d)) ≤
√

2ψ−1
2 (D(δ, d)). Thus
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the second term in the maximal inequality can first be replaced by
√

2δψ−1(D(η, d))
and next be incorporated in the first at the cost of increasing the constant. We
obtain ∣∣∣∣∣∣ sup

d(s,t)≤δ
|Xs −Xt|

∣∣∣∣∣∣
ψ2

≤ K
∫ δ

0

√
log(1 +D(ε, d))dε.

Here D(ε, d) ≥ 2 for every ε that is strictly less than the diameter of T . Since
log(1 + m) ≤ 2 logm for m ≥ 2, the 1 inside the logarithm can be removed at
the cost of increasing K.

6.4 Symmetrization

Let ε1, ..., εn be i.i.d. Rademacher random variables. Instead of the empirical
process

f 7→ (Pn − P )f =
1

n

n∑
i=1

(f(Xi)− Pf),

consider the symmetrized process

f 7→ P onf =
1

n

n∑
i=1

εif(Xi),

where ε1, ..., εn are independent of (X1, ..., Xn). Both processes have mean func-
tion zero. It turns out that the law of large numbers or the central limit theorem
for one of these processes holds if and only if the corresponding result is true
for the other process. One main approach to proving empirical limit theorems
is to pass from Pn − P to P on and next apply arguments conditionally on the
original X’s. The idea is that, for fixed X1, ..., Xn, the symmetrized empirical
measure is a Rademacher process, hence a sub-Gaussian process, to which (6.2)
can be applied.

Thus we need to bound maxima and moduli of the process Pn−P by those of the
symmetrized process. To formulate such bounds, we must be careful about the
possible nonmeasurability of suprema of the type ||Pn−P ||F . The result will be
formulated in terms of outer expectation, but it does nto hold for every choice
of an underlying probability space on which X1, ..., Xn are defined. Throughout
this part, if outer expectations are involved, it is assumed that X1, ..., Xn are
the coordinate projections on the product space (Xn,An, Pn), and the outer
expectations of functions (X1, ..., Xn) 7→ h(X1, ..., Xn) are computed for Pn.
thus ”independent” is understood in terms of a product probability space. If
auxiliary variables, independent of the X’s, are involved, as in the next lemma,
we use a similar convention. In that case, the underlying probability space is
assumed to be of the form (Xn,An, Pn)× (Z, C, Q) with X1, ..., Xn equal to the
coordinate projections on the first n coordinates and the additional variables
depending only on the (n+ 1)st coordinate.
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The following lemma will be used mostly with the choice Φ(x) = x.

Lemma 6.8 (Symmetrization) For every nondecreasing, convex Φ : R → R
and class of measurable functions F ,

E∗Φ
(
||Pn − P ||F

)
≤ E∗Φ

(
2||P 0

n ||F
)
,

where the outer expectations are computed as indicated in the preceding para-
graph.

Proof. Let Y1, ..., Yn be independent copies of X1, ..., Xn, defined formally
as the coordinate projections on the last n coordinates in the product space
(Xn,An, Pn) × (Z, C, Q) × (Xn,An, Pn). The outer expectations in the state-
ment of the lemma are unaffected by this enlargement of the underlying proba-
bility space, because coordinate projections are perfect maps. For fixed values
X1, ..., Xn,

||Pn − P ||F = sup
f∈F

1

n

∣∣∣ n∑
i=1

(
f(Xi)− Ef(Yi)

)∣∣∣
≤ E∗Y sup

f∈F

1

n

∣∣∣ n∑
i=1

(
f(Xi)− f(Yi)

)∣∣∣
where E∗Y is the outer expectation with respect to Y1, ..., Yn computed for Pn for
given, fixed values of X1, ..., Xn. Combination with Jensen’s inequality yields

Φ
(
||Pn − P ||F

)
≤ EY Φ

(∣∣∣∣∣∣ 1
n

n∑
i=1

(
f(Xi)− f(Yi)

)∣∣∣∣∣∣∗Y
F

)
,

where ∗Y denotes the minimal measurable majorant of the supremum with
respect to Y1, ..., Yn, still with X1, ..., Xn fixed. Because Φ is nondecreasing and
continuous, the ∗Y inside Φ can be moved to E∗Y . Next take the expectation
with respect to X1, ..., Xn to get

E∗Φ
(
||Pn − P ||F

)
≤ E∗XE∗Y Φ

(∣∣∣∣∣∣ 1
n

n∑
i=1

(
f(Xi)− f(Yi)

)∣∣∣∣∣∣
F

)
.

Here the repeated outer expectation can be bounded above by the joint outer
expectation E∗ by Fubini’s theorem.

Adding a minus sign in front of a term
(
f(Xi) − f(Yi)

)
has the effect of ex-

changing Xi and Yi. By construction of the underlying probability space as a
product space, the outer expectation of any function f(X1, ..., Xn, Y1, ..., Yn) re-
mains unchanged under permutations of its 2n arguments. hence the expression

E∗Φ

(∣∣∣∣∣∣ 1
n

n∑
i=1

ei
(
f(Xi)− f(Yi)

)∣∣∣∣∣∣
F

)
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is the same for any n−tuple (e1, ..., en) ∈ {−1, 1}n. Deduce that

E∗Φ
(
||Pn − P ||F

)
≤ EεE∗X,Y Φ

(∣∣∣∣∣∣ 1
n

n∑
i=1

εi
(
f(Xi)− f(Yi)

)∣∣∣∣∣∣
F

)
.

Use the triangle inequality to separate the contributions of the X’s and the Y ’s
and next use the convexity of Φ to bound the previous expression by

1

2
EεE

∗
X,Y Φ

(
2
∣∣∣∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣∣∣∣
F

)
+

1

2
EεE

∗
X,Y Φ

(
2
∣∣∣∣∣∣ 1
n

n∑
i=1

εif(Yi)
∣∣∣∣∣∣
F

)

By perfectness of coordinate projections, the expectation E∗X,Y is the same as
E∗X and E∗Y in the two terms, respectively. Finally, replace the repeated outer
expectations by a joint outer expectation. This completes the proof.

The symmetrization lemma is valid for any class F . In the proofs of Glivenko-
Cantelli and Donsker theorems, it will be applied not only to the original set of
functions of interest, but also to several classes constructed from such a set F .
The next step in these proofs is to apply a maximal inequality to the right side
of the lemma, conditionally on X1, ..., Xn. At that point we need to write the
joint outer expectation as the repeated expectation E∗XEε, where the indices
remaining variables. Unfortunately, Fubini’s theorem is not valid for outer ex-
pectations. To overcome this problem, it is assumed that the integrand in the
right side of the lemma is jointly measurable in (X1, ..., Xn, ε1, ..., εn). Since the
Rademacher variables are discrete, this is the case if and only if the maps

(X1, ..., Xn) 7→
∣∣∣∣∣∣ n∑
i=1

eif(Xi)
∣∣∣∣∣∣
F

are measurable for every n−tuple (e1, ..., en) ∈ {−1, 1}n. For the intended ap-
plication of Fubini’s theorem, it suffices that this is the case for the completion
of (Xn,An, Pn).

Definition 6.4 (Measurable Class) A class F of measurable functions f :
X → R on a probability space (X ,A, P ) is called a P−measurable class if the
function (6.4) is measurable on the completion of (Xn,An, Pn) for every n and
every vector (e1, ..., en) ∈ Rn.

Glivenko-Cantelli Theorems

In this section we prove two types of Glivenko-Cantelli theorems. The first
theorem is the simplest and is based on entropy with bracketing. Its proof relies
on finite approximation and the law of large numbers for real variables. The
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second theorem uses random L1−entropy numbers and is proved through sym-
metrization followed by a maximal inequality.

Definition 6.5 (Covering numbers) The covering number N(ε,F , || · ||) is
the minimal number of balls {g : ||g − f || < ε} of radius ε needed to cover
the set F . The centers of the balls need not belong to F , but they should have
finite norms. The entropy(without bracketing) is the logarithm of the covering
number.

Definition 6.6 (Bracketing numbers) Given two functions l and u, the bracket
[l, u] is the set of all functions f with l ≤ f ≤ u. An ε−bracket is a bracket [l, u]
with ||u− l|| < ε. The bracketing number N[](ε,F , || · ||) is the minimum number
of ε−brackets needed to cover F . The entropy with bracketing is the logarithm
of the bracketing number. In the definition of the bracketing is the logarithm
of the bracketing number. In the definition of the bracketing number, the upper
and lower bounds u and l of the brackets need not belong to F themselves but
are assumed to have finite norms.

Theorem 6.8 Let F be a class of measurable functions such that N[](ε,F , L1(P )) <
∞ for every ε > 0. Then F is Glivenko-Cantelli.

Proof. Fix ε > 0. Choose finitely many ε−brackets [li, ui] whose union
contains F and such that P (ui− li) < ε for every i. Then for every f ∈ F , there
is a bracket such that

(Pn − P )f ≤ (Pn − P )ui + P (ui − f) ≤ (Pn − P )ui + ε

Consequently,
sup
f∈F

(Pn − P )f ≤ max
i

(Pn − P )ui + ε.

The right side converges almost surely to ε by the strong law of large numbers
for real variables. Combination with a similar argument for inff∈F (Pn − P )f
yields that lim sup ||Pn − P ||∗F ≤ ε almost surely, for every ε > 0. Take a se-
quence εm ↓ 0 to see that the limsup must actually be zero almost surely. This
completes the proof.

An envelope function of a class F is any function x 7→ F (x) such that |f(x)| ≤
F (x), for every x and f . The minimal envelope function is x 7→ supf |f(x)|. It
will usually be assumed that this function is finite for every x.

Theorem 6.9 Let F be a P-measurable class of measurable functions with en-
velope F such that P ∗F < ∞. Let FM be the class of functions f1{F ≤ M}
when f ranges over F . If logN(ε,FM , L1(Pn)) = o∗P (n) for every ε and M > 0,
then ||Pn − P ||∗F → 0 both almost surely and in mean. In particular, F is
Glivenko-Cantelli.
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Proof. By the symmetrization lemma, measurability of the class F , and
Fubini’s theorem,

E∗||Pn − P ||F ≤ 2EXEε

∣∣∣∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣∣∣∣
F

≤ 2EXEε

∣∣∣∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣∣∣∣
FM

+ 2P ∗F{F > M}

by the triangle inequality, for every M > 0. For sufficiently large M , the last
term is arbitrarily small. To prove convergence in mean, it suffices to show that
the first term converges to zero for fixed M . Fix X1, ..., Xn. If G is an ε−net in
L1(Pn) over FM , then

Eε

∣∣∣∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣∣∣∣
FM
≤ Eε

∣∣∣∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣∣∣∣
G

+ ε.

The cardinality of G can be chosen equal to N(ε,FM , L1(Pn)). Bound the
L1−norm on the right by the Orlicz-norm for ψ2(x) = exp(x2) − 1, and use
the maximal inequality (6.7) to find that the last expression does not exceed a
multiple of√

1 + logN(ε,FM , L1(Pn)) sup
f∈G

∣∣∣∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣∣∣∣
ψ2|X

+ ε,

where the Orlicz norms || · ||ψ2|X are taken over ε1, ..., εn with X1, ..., Xn fixed.

By Hoeffding’s inequality, they can be bounded by
√

6/n(Pnf
2)1/2, which is

less than
√

6/nM . Thus the last displayed expression is bounded by√
1 + logN(ε,FM , L1(Pn))

√
6

n
M + ε→P∗ ε

It has been shown that the left side of (6.4) converges to zero in probability.
Since it is bounded by M , its expectation with respect to X1, ..., Xn converges
to zero by the dominated convergence theorem. This concludes the proof that
||Pn − P ||∗F in mean. That it also converges almost surely follows from the fact
that the sequence ||Pn − P ||∗F is a reverse martingale with respect to a suitable
filtration.

Donsker Theorems

Uniform Entropy In this section weak convergence of the empirical process
will be established under the condition that the envelope function F be squre
integrable, combined with the uniform entropy bound∫ ∞

0

sup
Q

√
logN(ε||F ||Q,2,F , L2(Q))dε <∞.
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Here the supremum is taken over all finitely discrete probability measures Q on
(X ,A) with ||F ||2Q,2 =

∫
F 2dQ > 0. These conditions are by no means neces-

sary, but they suffice for many examples. Finiteness of the previous integral will
be referred to as the uniform entropy condition.

Theorem 6.10 Let F be a class of measurable functions that satisfies the uni-
form entropy bound (6.4). Let the class Fδ = {f − g : f, g ∈ F , ||f − g||P,2 < δ}
and F2

∞ be P−measurable for every δ > 0. If P ∗F 2 <∞, then F is P−Donsker.

Proof. Let δn ↓ 0 be arbitrary. By Markov’s inequality and the symmetriza-
tion lemma,

P ∗(||Gn||Fδn > x) ≤ 2

x
E∗
∣∣∣∣∣∣ 1√

n

n∑
i=1

εif(Xi)
∣∣∣∣∣∣
Fδn

.

Since the supremum in the right-hand side is measurable by assumption, Fu-
bini’s theorem applies and the outer expectation can be calculated as EXEε. Fix
X1, ..., Xn. By Hoeffding’s inequality, the stochastic process f 7→ {n−1/2

∑n
i=1 εif(Xi)}

is sub-Gaussian for the L2(Pn)−seminorm

||f ||n =

√√√√ 1

n

n∑
i=1

f2(Xi).

Use the second part of the maximal inequality (6.2) to find that

Eε

∣∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)
∣∣∣∣∣∣
Fδn
≤
∫ ∞

0

√
logN(ε,Fδn , L2(Pn))dε.

For large values of ε the set Fδn fits in a single ball of radius ε around the origin,
in which case the integrand is zero. This is certainly the case for values of ε
larger than θn, where

θ2
n = sup

f∈Fδn
||f ||2n =

∣∣∣∣∣∣ 1
n

n∑
i=1

f2(Xi)
∣∣∣∣∣∣
Fδn

.

Furthermore, covering numbers of the class Fδ are bounded by covering num-
bers of F∞ = {f − g : f, g ∈ F}. The latter satisfy N(ε,F∞, L2(Q)) ≤
N2(ε/2,F , L2(Q)) for every measure Q.

Limit the integral in (6.4) to the interval (0, θn), make a chagne of variables,
and bound the integrand to obtain the bound∫ θn/||F ||n

0

sup
Q

√
logN(ε||F ||Q,2,F , L2(Q))dε||F ||n.
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Here the supremum is taken over all discrete probability measures. The in-
tegrand is integrable by assumption. Furthermore, ||F ||n is bounded below by
||F∗||n, which converges almost surely to its expectation, which may be assumed
positive. Use the Cauch-Schwarz inequality and the dominated convergence
theorem to see that the expectation of this integral converges to zero provided
θn →P∗ 0. This would conclude the proof of asymptotic equicontinuity.

Since sup{Pf2 : f ∈ Fδn} → 0 and Fδn ⊂ F∞, it is certainly enough to
prove that

||Pnf2 − Pf2||F∞ →P∗ 0.

This is a uniform law of large numbers for the class F2
∞. This class has integrable

envelope (2F )2 and is measurable by assumption. For any pair f, g of functions
in F∞,

Pn|f2 − g2| ≤ Pn|f − g|4F ≤ ||f − g||n||4F ||n
It follows that the covering number N(ε||2F ||2n,F2

∞, L1(Pn)) is bounded by the
covering number N(ε||F ||n,F∞, L2(Pn)). By assumption, the latter number is
bounded by a fixed number, so its logarithm is certainly o∗P (n), as required for
the uniform law of large numbers, (6.9). This concludes the proof of asymptotic
equicontinuity.

Finally we show that F is totally bounded in L2(P ). By the result of the last
paragraph, there exists a sequence of discrete measures Pn with ||(Pn−P )f2||F∞
converging to zero. Take n sufficiently large so that the supremum is bounded
by ε2. by assumption, N(ε,F , L2(Pn)) is finite. Any ε−net for F in L2(Pn) is
a
√

2ε−net in L2(P ). This completes the proof.
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