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Abstract. The mean time to failure is a widely used concept to de-

scribe the reliability characteristic of a repairable system. In this paper,

we develop a non-parametric method to test exponentiality against de-

creasing mean time to failure class. We derive the exact null distribution

of the test statistic and then find the critical values for different sample

sizes. Asymptotic properties of the proposed test statistic are studied.

The test statistic is shown to be asymptotically normal and consistent

against the alternatives. The Pitman’s asymptotic efficacy shows that

our test performs better than the other tests available in the literature.

We also discuss how does the proposed method take the censoring in-

formation into consideration. Some numerical results are presented to

demonstrate the performance of the testing method. Finally, we illus-

trate the test procedure using two real data sets.

Keywords: Exponential distribution; Mean time to failure; Pitman’s
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1. Introduction

Many results in life testing are based on the assumption that the lifetime of

a product is described through exponential distribution. This assumption

essentially implies that a used item is stochastically as good as a new one.

† The author is visiting Department of Statistics and Probability, Michigan State Univer-
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2 AN EXACT TEST AGAINST DMTTF CLASS

That is, the unit in question does not age with time. Hence, there is no

reason to replace a unit which is working. However, this is not always

a realistic assumption and it is important to know which life distribution

deserves membership benefits of an ageing class. In this scenario, tests

for exponentiality designed to detect the appropriate alternative hypothesis

have relevance in reliability theory. As constant failure rate characterizes the

exponential distribution, the test is normally designed in such a way that

our interest is to test the null hypothesis of constant failure rate against

different ageing classes. The problem of testing exponentiality against a

particular ageing class has been well studied in the literature; see Lai and

Xie (2006) for an overview of such procedures.

The class which deals with failure with replacement distribution plays a

key role in reliability theory in connection with maintenance strategies and

renewal theory as reliability engineers can design appropriate maintenance

policies for a particular task. Planned replacements are generally preferred

to unscheduled maintenance to reduce in-service costs that are inherent in

unexpected failures. In such cases, one strategy is to resort an age replace-

ment policy in which an item is replaced either when it fails or at an age

t whichever is earlier. In this context, Barlow and Proschan (1965) intro-

duced the concept of mean time to failure (MTTF) to describe the reliability

characteristics of a repairable system and studied the monotonic behaviour

of MTTF. In engineering circles, MTTF is used extensively to understand

expected product life cycles. Due to its potential applications in reliability

engineering, the study of decreasing mean time to failure (DMTTF) classes

of life distributions have been received much attention in recent time; see

Knopik (2005, 2006), Li and Xu (2008), Asha and Nair (2010) and Kayid et

al. (2013) and the references therein.

Barlow and Proschan (1965) showed that DMTTF class is situated be-

tween increasing failure rate (IFR) and new better than used in expectation
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(NBUE) classes. In a further development Knopik (2006) proved that in-

creasing failure rate average (IFRA) class belongs to DMTTF class, hence

the DMTTF class is situated between IFRA and NBUE classes. Preserva-

tion of the DMTTF classes under various reliability operations have been

studied by Knopik (2005, 2006). It includes the formation of parallel and

series systems, weak convergence of distributions, mixture of distributions

and convolution of distributions. In a different context, Li and Xu (2008)

proposed a new class called new better than renewal used in reversed hazard

order (NBURrh) which is equivalent to the DMTTF class, studied various

properties and developed a test for exponentiality against DMTTF class.

Asha and Nair (2010) considered the problem of stochastic orders in terms of

MTTF to compare the life distributions and to understand the conditions on

cumulative distribution function that render the monotone MTTFs. Kayid

et al. (2013) presented new characterizations of the MTTF order in terms of

the well-known hazard rate and reversed hazard rate orders. The problem

of testing exponentiality against DMTTF class is also discussed in Kayid et

al. (2013).

If the average waiting time between the consecutive failures is an impor-

tant criterion in deciding whether to adopt an age replacement policy over

the failure replacement policy for a given system, then a reasonable way to

decide would be to test whether the life distribution of the given system is

exponential. Rejection of the null hypothesis of exponentiality on the ba-

sis of the observed data would suggest as favoring the adoption of an age

replacement plan. In this context, the problem of testing exponentiality

against DMTTF class has great importance. As mentioned above, Li and

Xu (2008) and Kayid et al. (2013) have initiated some work in this direc-

tion. Their test statistics are computationally complex. Motivated by these

works, we develop a non-parametric test for testing exponentiality against

DMTTF class. The test proposed here is simple and has very good efficiency.
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The rest of the paper is organized as follows. In Section 2, based on U-

statistics we propose a simple non-parametric test for testing exponentiality

against DMTTF class. In Section 3, we derive the exact null distribution of

the test statistic and then calculated the critical values for different sample

sizes. The asymptotic normality and the consistency of the proposed test

statistic are proved in Section 4. The comparison of our test with some

other tests in terms of Pitman’s asymptotic efficacy is also given. In Section

5, we report the result of the simulation study carried out to assess the

performance of the proposed test. We illustrate our test procedure using

two real data sets. Finally, in Section 6 we give conclusions of our study.

2. Test statistic

Let X be a non-negative random variable with an absolutely continuous

distribution function F (.). Suppose F̄ (x) = P (X > x) denotes the survival

function of X at x. Also let µ = E(X) =
∫∞
0 F̄ (t)dt <∞.

Consider an age replacement policy in which a unit is replaced by a new

one (whose lifetime distribution is the same as F ) at failure or t time units

after installation, whichever occurs first and let X[t] be the associated ran-

dom variable of interest. The survival function of X[t] is given by (Barlow

and Proschan, 1965)

St(x) =
∞∑
n=0

F̄n(t)F̄ (x− nt)I[nt,(n+1)t](x), x > 0,

where I denotes the indicator function. The effectiveness of the age re-

placement policy is evaluated by studying the properties of St(x). One

characteristic that is extensively discussed in the context of age replacement

policies is the mean of X[t].

The expected value of X[t], denoted by M(t) is given by

M(t) =

∫ t
0 F̄ (x)dx

F (t)
, for all t > 0.
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The function M(.) is known as MTTF. The above result enables us to cal-

culate the MTTF using the distribution function of the random variable X.

By observing the behaviour of MTTF one may realize the optimal time for

which the replacement has to be done. Hence the purpose of this paper is

to develop a criterion based on MTTF that helps the reliability engineers to

devise a maintenance strategy that spells out schemes of replacement before

failure occurs. In this direction, next we define decreasing mean time to

failure class.

Definition 2.1. Random variable X belongs to the DMTTF class if the

function M(.) is non-increasing for all t > 0.

Next, we develop a simple method for testing exponentiality against

DMTTF class. In fact this test procedure enables engineers to develop

a better replace policy for efficient running of several systems under consid-

eration.

We are interested to test the hypothesis

H0 : F is exponential

against

H1 : F is DMTTF (and not exponential),

on the basis of a random sample X1, X2, ..., Xn; from F .

First, we propose a measure of departure from the null hypothesis towards

the alternative hypothesis. Make use of this measure, we develop a new non-

parametric test. Our approach is based on U-statistics. The following lemma

is useful in this direction and the proof is simple and hence omitted.

Lemma 2.1. Let X be a non-negative random variable with an absolutely

continuous distribution function F (.), then X belongs to DMTTF class if

and only if

δ(x) = f(x)

∫ x

0
F̄ (t)dt− F (x)F̄ (x) ≥ 0, for all x > 0. (1)
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Note that H0 holds if and only if equality attains in (1), whereas H1

holds if and only if inequality in (1) is strict for some x > 0. Accordingly,

the quantity δ(x) is a good measure of departure from the null hypothesis

H0 towards the alternative hypothesis H1.

We define

∆(F ) =

∫ ∞
0

{
f(x)

∫ x

0
F̄ (t)dt− F (x)F̄ (x)

}
dx.

From Lemma 2.1, it is clear that ∆(F ) is zero under H0 and is positive

under H1. The more ∆(F ) differs from zero, the more there is evidence in

favor of an F belongs to H1.

To find the test statistic, we express ∆(F ), in a more convenient way.

The following observation is useful in this direction. The survival function

of the random variable X(1:n) = min(X1, X2, ..., Xn) is given by

F̄X(1:n)
(x) = (F̄ (x))n.

Hence

E(X(1:n)) =

∫ ∞
0

(F̄ (x))ndx.

In particular, when n = 2

E(X(1:2)) =

∫ ∞
0

(F̄ (x))2dx. (2)

We use Fubini’s theorem to obtain

∆(F ) =

∫ ∞
0

f(x)

∫ x

0
F̄ (t)dtdx−

∫ ∞
0

F (x)F̄ (x)dx

=

∫ ∞
0

F̄ (t)

∫ ∞
t

f(x)dxdt−
∫ ∞
0

(1− F̄ (x))F̄ (x)dx

=

∫ ∞
0

F̄ 2(t)dt−
∫ ∞
0

F̄ (x)dx+

∫ ∞
0

F̄ 2(x)dx

= 2

∫ ∞
0

F̄ 2(x)dx−
∫ ∞
0

F̄ (x)dx

= 2E(X(1:2))− µ.
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To obtain the test statistic, note that X(1:2) = X1I(X1 < X2) +X2I(X2 <

X1). Hence for h∗(X1, X2) = 2X1I(X1 < X2) + 2X2I(X2 < X1) −X1, we

have E(h∗(X1, X2)) = ∆(F ). A U-statistic based on a symmetric kernel

h(.) is given by

∆̂(F ) =
1(
n
2

) n∑
i=1

n∑
j<i;j=1

h(Xi, Xj), (3)

where h(X1, X2) = 1
2(4X1I(X1 < X2)+4X2I(X2 < X1)−X1−X2). Clearly

∆̂(F ) is an unbiased estimator of ∆(F ). After simplification, we can rewrite

the above expression as

∆̂(F ) =
4

n(n− 1)

n∑
i=1

(n− i)X(i) −
1

n

n∑
i=1

Xi

=
1

n(n− 1)

n∑
i=1

(3n− 4i+ 1)X(i), (4)

where X(i), i = 1, 2, ..., n, is the i-th order statistics based on the random

sample X1, X2, ...Xn; from F . To make the test scale invariant, we consider

∆∗(F ) =
∆(F )

µ
, (5)

which can be estimated by

∆̂∗(F ) =
1

(n− 1)

∑n
i=1(3n− 4i+ 1)X(i)∑n

i=1Xi
. (6)

Note that, under the null hypothesis H0, the test ∆̂∗(F ) is asymptotically

distribution free which we will prove in Section 4. Hence the test procedure

is to reject the null hypothesis H0 in favour of the alternative hypothesis H1

for large values of ∆̂∗(F ).

3. Exact null distribution

In this section, we derive the exact null distribution of the test statistic.

Then we calculate the critical values for different sample size. We use Theo-

rem 3.1 of Box (1954) to find the exact null distribution of the test statistic.



8 AN EXACT TEST AGAINST DMTTF CLASS

Theorem 3.1. Let X be continuous non-negative random variable with

F̄ (x) = e−
x
2 . Let X1, X2, ..., Xn be independent and identical samples from

F . Then for fixed n

P (∆∗(F ) > x) =
n∑
i=1

n∏
j=1,j 6=i

( di,n − x
di,n − dj,n

)
I(x, di,n),

provided di,n 6= dj,n for i 6= j, where

I(x, y) =

 1 if x ≤ y

0 if x > y
and di,n =

(n− 2i+ 1)

(n− 1)
.

Proof: Rewrite the test statistic given in equation (4) as

∆̂(F ) =
n∑
i=1

2X(i)

[(n− i+ 1)2

n(n− 1)
− (n− i)2

n(n− 1)
− (n+ 1)

2n(n− 1)

]
.

Or

∆̂(F ) =
2n

(n− 1)

n∑
i=1

X(i)

[(n− i+ 1)2

n2
− (n− i)2

n2
− (n+ 1)

2n2

]
. (7)

Hence, in terms of the normalized spacings, Di = (n− i+ 1)(X(i)−X(i−1)),

with X0 = 0, we obtain

∆̂∗(F ) =

∑n
i=1 di,nDi∑n
i=1Di

,

where di,n’s are given by

di,n =
2

(n− 1)

[
(n− i+ 1)− (n+ 1)

2

]
=

(n− 2i+ 1)

(n− 1)
.

Note that the exponential random variable with rate 1
2 is distritbuted same

as χ2 random variable with 2 degrees of freedom. Hence the result follows

from Theorem 3.1 of Box (1954) by taking s = gi = 1.

The critical values of the test for different n under the null distribution

is tabulated in Table 1.
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Table 1. Critical Values

n 90% level 95% level 97.5% level 99% level

3 0.5264 0.5919 0.6382 0.6792

4 0.3855 0.4435 0.4896 0.5361

5 0.3134 0.3633 0.4050 0.4501

6 0.2679 0.3131 0.3507 0.3925

7 0.2362 0.2777 0.3126 0.3516

8 0.2127 0.2513 0.2840 0.3205

9 0.1945 0.2307 0.2615 0.2962

10 0.1798 0.2141 0.2432 0.2763

15 0.1351 0.1628 0.1865 0.2135

20 0.1115 0.1353 0.1558 0.1795

25 0.0966 0.1178 0.1361 0.1573

30 0.0861 0.1054 0.1221 0.1415

40 0.0722 0.0889 0.1033 0.1201

50 0.0631 0.0781 0.0909 0.1059

75 0.0498 0.0620 0.0725 0.0847

100 0.0423 0.0528 0.0619 0.0725

4. Asymptotic properties

In this section, we investigate the asymptotic properties of the proposed test

statistic. The test statistic is asymptotically normal and consistent against

the alternatives. The null variance of the test statistic is shown to be free

from the parameter. Making use of asymptotic distribution we calculate the

Pitman’s asymptotic efficacy and then compare our test with the other tests

available in the literature.

4.1. Consistency and asymptotic normality. As the proposed test is

based on U-statistics, we use the asymptotic theory of U-statistics to discuss

the limiting behaviour of ∆̂(F ). The consistency of the test statistic is due

to Lehmann(1951) and we state it as next result.

Theorem 4.1. The ∆̂(F ) is a consistent estimator of ∆(F ).

Corollary 4.1. The ∆̂∗(F ) is a consistent estimator of ∆∗(F ).

Proof: Note that X̄ is consistent estimator of µ. As we can write

∆̂∗(F ) =
∆̂(F )

∆(F )
.
∆(F )

µ
.
µ

X̄
,

the proof is an immediate consequence of Theorem 4.1.
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Next we find the asymptotic distribution of the test statistic.

Theorem 4.2. The distribution of
√
n(∆̂(F )−∆(F )), as n→∞, is Gauss-

ian with mean zero and variance 4σ21, where σ21 is the asymptotic variance

of ∆̂(F ) and is given by

σ21 =
1

4
V ar

(
4XF̄ (X) + 4

∫ X

0
ydF (y)−X

)
. (8)

Proof: Since the kernel has degree 2, using the central limit theorem for

U-statistics (Hoeffding, 1948),
√
n(∆̂(F )−∆(F )) has limiting distribution

N
(
0, 4σ21), as n→∞,

where the value of σ21 is specified in the theorem. For finding σ21, consider

E(h(x,X2)) =
1

2
E
(

4xI(x < X2) + 4X2I(X2 < x)− x−X2

)
=

1

2

(
4xF̄ (x) + 4

∫ x

0
ydF (y)− x− µ

)

Hence

σ21 =
1

4
V
(

4XF̄ (X)− 4

∫ X

0
ydF (y)−X

)
,

which completes the proof.

Corollary 4.2. Let X be continuous non-negative random variable with

F̄ (x) = e−
x
λ , then under H0, as n → ∞,

√
n(∆̂(F ) − ∆(F )) is Gaussian

random variable with mean zero and variance σ20 = λ2

3 .

Proof: Under H0, we have

E(X − x|X > x) = λ. (9)

That is
1

F̄ (x)

∫ ∞
x

ydF (y)− x = λ
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or ∫ ∞
x

ydF (y) = (x+ λ)F̄ (x).

Since ∫ x

0
ydF (y) +

∫ ∞
x

ydF (y) = λ,

we have ∫ x

0
ydF (y) = λ− (x+ λ)F̄ (x).

Hence using (8) we obtain

σ20 = 4σ21

= V
(

4XF̄ (X)− 4λ− 4(X + λ)F̄ (X)−X
)

= V
(
− 4λF̄ (X)−X

)
=
λ2

3
.

Using Slutsky’s theorem, the following result can be easily obtained from

Corollary 4.2.

Corollary 4.3. Let X be continuous non-negative random variable with

F̄ (x) = e−
x
λ , then under H0, as n → ∞,

√
n(∆̂∗(F ) −∆∗(F )) is Gaussian

random variable with mean zero and variance σ20 = 1
3 .

Hence in case of the asymptotic test, for large values of n, we reject the null

hypothesis H0 in favour of the alternative hypothesis H1, if

√
3n(∆̂∗(F )) > Zα,

where Zα is the upper α-percentile of N(0, 1).

Remark 4.1. One can also look at the problem of testing exponentiality

against the dual concept increasing mean time to failure (IMTTF) class.

We reject the null hypothesis H0 in favour of IMTTF class, if

√
3n(∆̂∗(F )) < −Zα.
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4.2. Pitman’s asymptotic efficacy. The Pitman efficiency is the most

frequently used index to make a quantitative comparison of two distinct

asymptotic tests for a certain statistical hypothesis. The efficacy value of

a test statistic can be interpreted as a power measure of the corresponding

test. The Pitman’s asymptotic efficacy (PAE) is defined as

PAE(∆∗(F )) =
| ddλ∆∗(F )|λ→λ0

σ0
, (10)

where λ0 is the value of λ under H0 and σ20 is the asymptotic variance of

∆∗(F ) under the null hypothesis. In our case, the PAE is given by

PAE(∆∗(F )) =
| ddλ∆∗(F )|λ→λ0

σ0

=
√

3(W ′(λ0)−W (λ0)µ
′
a(λ0)),

where W = 2E(X(1:2)) and µa is the mean of X under the alternative

hypothesis and the prime denotes the differentiation with respect to λ. We

calculate the PAE value for three commonly used alternatives which are the

members of DMTTF class

(i) the Weibull family: F̄ (x) = e−x
λ

for λ > 1, x ≥ 0

(ii) the linear failure rate family: F̄ (x) = e(−x−
λ
2
x2) for λ > 0, x ≥ 0

(iii) the Makeham family: F̄ (x) = e−x−λ(e
−x+x−1) for λ > 0, x ≥ 0.

For the first case we obtain the exponential distribution when λ = 1 and

the other two cases the distributions become exponential when λ = 0.

By direct calculations, we observe that the PAE for Weibull distribution

is equal to 1.2005; while for linear failure rate distribution and the Makeham

distribution these values are, 0.8660 and 0.2828, respectively.

Next we compare the performance of the proposed test with other tests

available in the literature by evaluating the PAE of the respective tests. Li

and Xu (2008) proposed a new class called NBURrh and developed a test

for exponentiality against NBURrh class. Asha and Nair (2010) observed

that the NBURrh class is equivalent to DMTTF class. Hence we compare
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our test with tests proposed by Li and Xu (2008) and Kayid et al. (2013).

The Table 2 gives the PAE values for different test procedures.

Table 2. Pitman’s asymptotic efficacy (PAE)

Distribution Proposed test Li and Xu (2008) Kayid et al. (2013)

Weibull 1.2005 1.1215 0.4822

Linear failure rate 0.8660 0.5032 0.4564

Makeham 0.2828 0.2414 2.084

From the Table 2, it is clear that our test is quite efficient for the Weibull

and linear failure rate alternatives. In this case, PAE values of our test

are greater than the test proposed by Li and Xu (2008) and Kayid et al.

(2013). Our test performs better than that of Li and Xu (2008) for Makeham

alternative also. Note that the test proposed by Kayid et al. (2013) has

good efficacy for Makeham alternative even though their test shows poor

performance against the other two given alternatives.

Remark 4.2. The PAE value reported here against Li and Xu (2008) is the

square root of the values given in their paper as Li and Xu (2008) considered

the squared values of the PAE values defined in equation (10). We noted

that the claim made by Kayid et al. (2013) about the linear failure rate

distribution is not correct as they compared with the original values appeared

in Li and Xu (2008). Accordingly, Li and Xu (2008) test is better than that

of Kayid et al. (2013) against the linear failure rate alternative.

Next we discuss the case with censored observation which are very com-

mon in lifetime data. Note that the methods proposed by Li and Xu (2008)

and Kayid et al. (2013) can not handle censoring situation.

5. The case of censored observations

Next we discuss the case with censored observations which are very common

in lifetime data. Suppose we have randomly right-censored observations such

that the censoring times are independent of the lifetimes. Under this set up

the observed data are n independent and identical copies of (X∗, δ), with
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X∗ = min(X,C), where C is the censoring time and δ = I(X ≤ C). Now

we need to address the testing problem mentioned in Section 2 based on

n independent and identical observation {(Xi, δi), 1 ≤ i ≤ n}. Observe

that δi = 1 means ith object is not censored, whereas δi = 0 means that

ith object is censored by C, on the right. Usually we need to redefine the

measure ∆(F ) to incorporates the censored observations. We refer to Koul

and Susarla (1980) for more details. The U-statistics formulations helps us

to solve the problem using the ∆(F ) in an easy way. Using the right-censored

version of a U-statistic introduced by Datta et al. (2010) an estimator ∆(F )

with censored observation is given by

∆̂c(F ) =
1(
n
2

) ∑
i∈Pn,2

h(X∗i1 , Xi∗2
)
∏
l∈i δl∏

l∈iKc(X∗l )
, (11)

where h(X∗1 , X
∗
2 ) = 1

2(4X∗1I(X∗1 < X∗2 ) + 4X∗2I(X∗2 < X∗1 )−X∗1 −X∗2 ), pro-

vided Kc(X
∗
l ) > 0, with probability 1, where Pn,m denotes the number of

permutation of m object from n, the notation i is used to indicate that l is

one of the integers {i1, ..., im}, and Kc is the survival function of the censor-

ing variable C. As Kc is un-known one can find a Kaplan-Meier estimator

K̂c of Kc, where the role of censored and failed observations are reversed.

Similarly an estimator of µ is given by

X̂c =
1

n

n∑
i=1

X∗i δi
Kc(X∗i )

. (12)

Hence in right censoring situation, the test statistic is given by

∆̂∗c(F ) =
∆̂c(F )

X̂c(F )
, (13)

and the test procedure is to reject H0 in favour of H1 for large values of

∆̂∗c(F ).

Remark 5.1. In the estimation problem discussed above we are forced to

treat the largest observations as failures. If one of the largest observations is

censored observation, estimating the tail of the survival distribution becomes
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an issue since the KaplanMeier does not drop to zero. The same issue

is inherited here as we need to substitute the Kaplan-Meier estimator for

the survival function of censoring variable C. Note that when the largest

observations are indeed true failures, for such a sample, this assumption is

irrelevant. Moreover, censoring occurs rarely in the age replace models.

Next we obtain the limiting distribution of the test statistic. Let N c
i (t) =

I(X∗i ≤ t, δi = 0) be the counting process corresponds to the censoring

variable for the ith individual, Yi(u) = I(X∗i ≥ u). Also let λc be the hazard

rate of C. The martingale associated with this counting process is given by

M c
i (t) = N c

i (t)−
∫ t

0
Yi(u)λc(u)du. (14)

Let G(x) = P (X1 ≤ x, δ = 1) and

w(t) =
1

Ḡ(t)

∫
X

h1(x,X
∗
2 )

Kc(x)
I(x > t)dG(x) (15)

where h1(x,X
∗
2 ) = Eh(x,X∗2 ).

Theorem 5.1. If Eh2(X∗1 , X
∗
2 ) <∞,

∫ h1(x,X∗2 )
K2
c (x)

dG(x) <∞ and
∫∞
0 w2(t)λc(t)dt <

∞, then the distribution of
√
n(∆̂c(F )−∆(F )), as n→∞, is Gaussian with

mean zero and variance 4σ21c, where σ21c is given by

σ21c = V ar
(h1(X,X∗2 )δ1

Kc(X∗)
+

∫
w(t)dM c

1(t)
)
. (16)

Corollary 5.1. Under the assumptions of Theorem 5.1, if E(X2
1 ) <∞, the

distribution of
√
n(∆̂∗c(F ) − ∆∗), as n → ∞, is Gaussian with mean zero

and variance σ2c , where

σ2c =
σ21c
µ2
. (17)

Proof. Note that X̂c is a consistent estimator for µ (Zhao and Tsiatis,

2000). Hence the result follows from Theorem 5.1 by applying Slutsky’s

theorem.
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6. Simulation and data analysis

Next, we report a simulation study done to evaluate the performance of our

test against various alternatives. The simulation was done using R program.

Finally, we illustrate our test procedure using two real data sets.

6.1. Monte carlo study. First we find the empirical type 1 error of the

proposed test. we simulate random sample from the exponential distribution

with cumulative distribution function F (x) = 1− exp(−x), x ≥ 0. Since the

test is scale invariant, we can take the scale parameter to be unity, while

performing the simulations. A random sample of different sample size is

drawn from the exponential distribution specified above and the value of

the test statistic is calculated. We check whether this particular realization

of the test statistic accepts or rejects the null hypothesis of exponentiality.

Then we repeat the whole procedure ten thousand times and observe the

proportion of times the proposed test statistic takes the correct decision of

rejecting the null hypothesis of exponentiality and this gives the empirical

type I error. The procedure has been repeated for different values of n and

is reported in Table 3. The Table 3 shows that the empirical type 1 error is

a very good estimator of the size of the test.

For finding empirical power against different alternatives, we simulate ob-

servations from the Weibull, linear failure rate and Makeham distributions

with various values of λ > 1 ( λ < 1 corresponds to the distribution having

increasing MTTF) where the distribution functions were given in the Sec-

tion 4. As pointed out earlier these are typical members of the DMTTF

class. The empirical powers for the above mentioned alternatives are given

in Tables 4, 5 and 6. From these tables we can see that empirical powers of

the test approaches to one when the θ values are going away from the null

hypothesis value as well as when n takes large values.

Next we illustrate our test procedure using two real data sets.
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Table 3. Empirical type 1 error of the test

n 5% level 1% level
10 0.0605 0.0195
20 0.0537 0.0162
30 0.0532 0.0134
40 0.0503 0.0142
50 0.0514 0.0116
60 0.0508 0.0126
70 0.0504 0.0103
80 0.0495 0.0098
90 0.0484 0.0097
100 0.0482 0.0097

Table 4. Empirical power: Weibull distribution

λ (5% level) (1%level)
1.2 0.6733 0.3783
1.4 0.9918 0.9409
1.6 1 0.999
1.8 1 1
2 1 1

Table 5. Empirical power: Linear failure rate distribution

λ (5% level) (1%level)
1.2 0.4379 0.2830
1.4 0.8618 0.7409
1.6 0.9946 0.9658
1.8 1 0.9997
2 1 1

Table 6. Empirical Power : Makeham distribution

λ (5% level) (1%level)
1.2 0.386 0.1793
1.4 0.8029 0.5895
1.6 0.9715 0.9035
1.8 0.9979 0.9897
2 0.9998 0.9992

6.2. Data analysis. To demonstrate our testing method, we first apply it

to the data set consists of n = 27 observations of the intervals between

successive failures (in hours) of the air-conditioning systems of 7913 jet air

planes of a fleet of Boeing 720 jet air planes as reported in Proschan (1963).

The data is given in Table 7. The value of the test statistic corresponds to
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Table 7. The time of successive failures of the air-
conditioning systems of 7913 jet air planes

97 51 11 4 141 18 142
68 77 80 1 16 106 206
82 54 31 216 46 111 39
63 18 191 18 163 24

Table 8. Survival days of chronic granulocytic leukemia

7 47 58 74 177 232 273 285
317 429 440 445 455 468 495 497
532 571 579 581 650 702 715 779
881 930 900 968 1,077 1,109 1,314 1,334

1,367 1,534 1,712 1,784 1,877 1,886 2,045 2,056
2,260 2,429 2,509

this particular data set is 0.06668645. The critical values of the exact test

statistic corresponds to n = 27 is 0.1863, hence we can not reject the null

hypothesis of exponentially in favour of DMTTF class at 0.05 level. This

suggest that there is no advantage in adopting an age replacement policy in

this example.

The second data set is taken from Bryson and Siddiqui (1969). It repre-

sents the survival times, in days from diagnosis, of 43 patients suffering from

chronic granulocytic leukemia and given in Table 8. The calculated value of

the test statistic is 0.1479901. The critical values of the exact test statistic

correspond to n = 43 is 0.1466. Hence the test suggests to reject the null

hypothesis gainst DMTTF alternatives at 0.05 level.

7. Conclusions

In order that a device or system is able to perform its intended functions

without disruption due to failure, several types of maintenance strategies

that spell out schemes of replacement before failure occurs, have been de-

vised in reliability engineering. In this context, the MTTF gave an idea

about the optimal time for the replacement to be done. Testing exponen-

tiality against DMTTF class enables reliability engineers to decide whether
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to adopt a planned replacement policy over unscheduled one. To address

this issue, a new testing procedures for exponentiality against DMTTF class

was introduced and studied. It is simple to devise, calculate and have ex-

ceptionally high efficiency for some of the well-known alternatives relative

to other more complicated tests.

We obtained the exact null distribution of the test statistic. We studied

the asymptotic properties of the test statistic. Using asymptotic theory of U-

statistics, we showed that the test statistic was unbiased, consistent and has

limiting normal distribution. A comparison between the proposed test and

two other related ones in the literature was conducted through evaluating

the Pitman’s asymptotic efficacy. We illustrated our test procedure using

two real data sets. We also discussed how does the proposed method deals

with the right censored observations which arise commonly in lifetime study.
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