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Abstract

The bootstrap method is a uniquely ubiquitous tool with great potential for statistical
analyses when closed form solutions are unavailable. There is a great deal of literature
on it, empirical as well as theoretical, when the underlying variables are independent
and identically distributed (IID case). Although there have been adhoc efforts to extend
the bootstrap in the nonlID case, there remains a pressing need to develop a parallel
set of analogous results in the nonIID case. In this paper, we present a brief account of
the bootstrap method in the specific context of sampling without replacement when the
independence assumption is violated. We furnish a few illustrative numerical examples
based on real data to demonstrate potentials and challenges of the bootstrap method

when sampling from finite populations.
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1. Introduction

A time-honored problem in statistical inference is the estimation of population parameters.
For example, sample proportion, mean, median, ratio of means, variance, correlation etc. are
generally used as estimators of the corresponding population parameters. In order to eval-
uate performance characteristics of these estimators and to ascertain their margin of error,
one needs to calculate their standard errors. For linear-type estimators, a closed form vari-
ance formula is easily derived. For nonlinear-type estimators, only large-sample asymptotic
expressions are generally available and made use of. The bootstrap method of estimating
the performance characteristics of nonlinear-type estimators in the IID case has received
considerable attention during the recent past. Here we focus on the nonlID case in the
context of sampling from a finite population. To do so, we first introduce an artifice of a
super-population model, a technique commonly used in sampling from finite populations.

For simplicity in exposition, consider an infinite population (random variable) € defined
on the real line. Let A; and A, respectively denote its mean and variance. Let Xy denote a
simple random sample of size N from 2. Without loss of generality, let Xn=(X1,..., Xy)
in which the X; denotes the ith X-variate value from €. Let Oy = (Xn) be a lincar-type
estimator of an unknown parameter 6. Then for a large class of estimators, such as the
sample mean, variance etc.

R A
V(y)) = ﬁ

Now let X,, be a simple random sample without replacement (SRSWOR) of size n from
Xn = (X1,...,XN). Then X, is also a simple random sample with replacement (SRSWR)

of size n from . Let 6,, be the corresponding estimator of #, based on X,,. Then



A remarkable property of a large class of linear-type estimators is the following Rao-

Blackwellization identity:

E(0,|XN) = On

It can be shown that if # is an estimable parameter, such a 0, always exists. In the sequel,
we will refer to such estimators as the RB-estimator. The Rao-Blackwell theorem (1945)

entails the following variance decomposition formula:

V(0n) = V(On) + B0 — On)°

Therefore

E[E{(6, — On)’[Xn}] = E(0, —0y)* =V (0,) — V(by)
A2 A2 _ (1 n) é

2

n N

- (1.1)

n

It is worth noting that E{(6, — Ox)?|Xn} is the variance of the RB-estimator 6, under
SRSWOR of size n from Xy while Ay /n represents its approximate variance under SRSWR.
The above equation shows that in general the variance of an estimator under SRSWOR
can be expected to be less than the corresponding estimator under SRSWR by a factor of
(1—n/N).

When an estimator is not an RB-estimator, theoretical calculations of this kind become
more complex. Bootstrap method pioneered by Efron (1979) in the IID case is a popular
resampling technique which is used to estimate performance characteristics of any statistic
for which theoretical derivation is complex. This method replaces rigorous mathematical
calculations by computer calculations. In the IID case, the bootstrap has made great em-
pirical and theoretical strides, e.g. see Singh (1981), Bickel and Freedman (1981), Shao and
Tu (1995). Chernick (1999) and Hall (2003) provide an excellent overview of the history of

the bootstrap. The bootstrap resampling methods are now an indispensable statistical tools



in current state of data analysis. Nonetheless much remains to be done in the nonlID case
as compared to the IID case.

Efron’s bootstrap assumes that the observed sample consists of independent and iden-
tically distributed variates. When sampling from a finite population, this assumption is
satisfied when the underlying target population is either virtually infinite or when we have
an SRSWR sample from a finite population. Efron’s bootstrap method, if used in the nonlID
case, is likely to furnish inaccurate estimates. There is a pressing need for further refinement
of resampling methodology in the nonlID case. The primary focus of this article is to give
a brief account of resampling methods in the context of SRSWOR from finite populations.
Section 2 includes the bootstrap methodology for this case as well as the IID case. A few

illustrative examples are presented in Section 3.

2. The Bootstrap Method

2.1 The Naive Bootstrap For IID Samples

The naive bootstrap can be thought of as a two-stage sampling design. At the first stage, a
simple random sample X,, is drawn from the target population Xn = (X3, Xo, ..., Xy), and
at the second stage an SRSWR sample of size n, X} = (X7,..., X}) is drawn from X,,, in
which the X represents the X-variate values associated with the units in X} . The second
stage is repeated a large number of times, say about B = 1000. The conditional variability
of bootstrap estimates 0% = 0(X?) given X, is used as an estimate of the variability of 6.
Listed below is a bootstrap algorithm for estimating the standard error of 6 for an SRSWR
sample X,, from Xx.

Let X:P = (X7, ..., X®) represent X-variate values of the units in the bth random

sample drawn by SRSWR from the original sample X,, and é;’fbb represent the bootstrap

parameter estimate calculated from this resample.



1. Select a random sample X} from X,,. Let X' = (X7, ..., X!) be n X-variate values

from this first bootstrap sample.
2. Calculate the bootstrap parameter estimate 6! from XL
3. Repeat Steps 1 and 2, B times.

4. Estimate the standard error of 6 by the standard deviation of é*, using the following

formula:

B N ~ B A
G*b — @*)2 = g*b
a_* _ \/szlé — ) Where 9* — Zbg (21)

Let us turn now to the case of sampling from finite populations. Suppose that X,
is an SRSWOR sample from Xpy. Because of sampling without replacement, successive
sample units in X,, are negatively correlated. The correlation between any pairs of units
equals =V (X;)/(N — 1). Now consider applying the naive bootstrap method in this context.
This entails simple random sampling with replacement, violating the dependency among the
observations in the original sample. If we resample without replacement of size n, then
the set of bootstrap sample units is identical to the corresponding set of the original first
stage sample of units, evidentally a degenerate outcome. There is a need here to modify
the naive bootstrap resampling scheme so that resampling from the observed sample reflects
the key characteristics of SRSWOR from a finite population. At a minimum, the inclusion
probability of each unit in the sample should be closest to (n/N) and the inclusion probability
of each pair of units should be closest to (n/N)(1 —n/N).

One of the most common problems in survey sampling is the estimation of population
mean 4. Sample mean X is a commonly used estimator with a closed form formula for
its standard error for infinite as well as finite populations. Consider SRSWR, in this case
for large n and sampling from a population with mean g and standard deviation o, the
sample mean X, is asymptotically normally distributed with mean z and standard deviation

ox = 0/+/n. For SRSWOR, under certain mild conditions [Erdés and Renyi (1959), Hajek



(1960), and Mitra and Pathak (1984)], the sample mean X,, of an SRSWOR sample of size

n is asymptotically normally distributed with mean p and standard error:

GWOR \/V()_(n|(X1, L XN) = \/1 (1 - %) S2 (2.2)

n
where S% = No?/(N — 1) is the population variance with divisor (N — 1). The ratio n/N

WOR
Xn

is called the sampling ratio/fraction. og_ and o are asymptotically equal when the
sampling ratio is small and approaches zero. Consider the bootstrap estimate of sample
mean X calculated from bootstrap samples drawn with replacement. Then the conditional
distribution of X* given X,, is asymptotically normal with mean X,, and standard deviation
6%, = Sn//n where s2 = S (X; — X)?/(n — 1) is the sample variance, an unbiased
estimator of finite population variance S% . As noted by Shao (2003), unless n/N — 0,
the empirical distribution of X* does not provide valid asymptotic approximation to the
distribution of X,, when X is SRSWR sample and the original sample X,, is SRSWOR
sample. What one needs is a bootstrap sample for which the probability of inclusion of
each unit and each pair of units from the original sample to be approximately n/N and
[n(n—1)]/[N(N—1)] respectively. This can be done in a number of ways. There are a number
of resampling methods in the current literature specifically proposed for finite populations,
see for example, Gross (1980), Bickel and Freedman (1984), Chao and Lo (1985), McCarthy
and Snowden (1985), Sitter (1992) and Boot et al.(1994). As an illustrative example, listed
below is an algorithm for the method proposed by Gross (1980) and Chao and Lo (1985).

For simplicity, we first assume that the population size N is a multiple of sample size n, i.e.

N = kn where k is an integer.
1. Create a virtual population of size N by replicating each X;,..., X, k times.

2. Draw a simple random sample of size n without replacement from this virtual popula-

tion.

3. Calculate the bootstrap parameter estimate 0*1 for this sample.
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4. Repeat steps 2 and 3, B times.

5. Estimate the standard error of 0 by the standard deviation of 6*, using Eq (2.1).

Chao and Lo (1985) state that if X is the bootstrap sample mean based on the above
approach, the conditional distribution of X* given X,,, is asymptotically normal with mean

X,, and standard deviation

wore |1 nN(n—l)2
0)—(”0 = \/E(l - N)ms” (2.3)

Note that a%OR* is asymptotically the same as UE{IOR (Shao, 2003). Thus, the empirical
distribution of X* provides an asymptotically valid approximation to the distribution of X,.
The approach proposed by McCarthy and Snowden (1985) is, on the other hand, based on
selecting a sample of size n* = (n — 1)/(1 — n/N) from X,, with replacement so that the
variance of X* will be approximately the same as that of O')VE{IOR. They studied properties of
their method for other statistics as well, including the ratio estimator.

For simplicity we earlier assumed N to be an integer multiple of n. Consider now the
the case when the population size is not an integer multiple of n. There are a number of
ways this can be handled. Here we propose a minor modification to the Chao-Lo approach
(1985). If N is not a multiple of n, use the integer part k& = [N/n], without rounding up
and replicate as in the original approach. For the remaining observations in the virtual

population of size N, draw an SRSWOR sample of size N — nk from X,, so that we have of

N virtual observations in all. We study two approaches for this method: 1) adding the same

*
n’

set of observations of size N — nk to each bootstrap sample X%, or 2) for each bootstrap
sample, adding a new set of observations of size N — nk drawn by SRSWOR.

The following section includes numerical comparison of methods proposed by Chao and
Lo (1985), McCarthy and Snowden (1985), naive bootstrap and our modified approach for

the case where N is not an integer multiple of n. Moreover, we have also estimated the

standard error of X,, by multiplying the naive bootstrap estimator of standard error by



/(1 =n/N). This is based on Eq.(1.1) in which Ay/n replaced by the naive bootstrap
variance estimator. As illustrative examples, we consider the estimation of sample mean for
which a closed form variance formula is known, as well as the estimattion of median and

correlation coeflicient for which closed form variance formulae are unavailable.

3. Numerical Results

We use the LSAT-GPA and Score data sets from Efron (1993). The population size for
the LSAT-GPA data is 82. Efron used the Score data as a sample. But for this study,
we assume that it is a finite population of size of 88. Only Algebra (ALG) and Statistics
(STA) variables from the Score data set are used for numerical calculations. For each of
these populations we have drawn SRSWOR sample of size 15. Table 1 is for parameters
and Table 2 - Table 6 include summary statistics for bootstrap samples. The bootstrap
summary results are obtained from 10, 000 simulations and 2,000 bootstrap resamples, i.e.
for each population, 10,000 different samples were drawn, and for each of these samples
2,000 bootstrap resamples were drawn. For the standard errors of median and correlation
coefficient estimators, there are no closed form formulae. Hence, we ran separate 1,000, 000
simulations to estimate the true standard error in each case.

Concerning bias, all methods show similar performances. Relative error column is ob-
tained as (Estimated standard error-True standard error)/True standard error. Naive boot-
strap overestimates the true standard error all the time. The original Chao-Lo method
underestimates the true standard error for the sample mean, while the McCarthy-Snowden
approach comes closest to the true standard error followed by our second modified approach
to the Chao-Lo method. On the other hand, for median and correlation coefficient, the Chao-
Lo method and our first modified approach outperform the McCarthy-Snowden method. The
standard error estimate that we get by multiplying the naive bootstrap variance estimator

by finite sample correction factor gives us a smaller relative error compared to the Chao-Lo



approach. The simulations also seem to suggest that the general approach based on the Rao-
Blacwell theorem and the naive bootstrap furnishes satisfactory results for simple random

sampling without replacement.

4. Concluding Remarks

The bootstrap is an immensely popular computer-intensive resampling technique to evaluate
the performace characteristics of statistical methods. Its theoretical and empirical justifica-
tions are largely based on the assumption that the observed data consists of IID observations.
On the other hand, most sample surveys in practice are based on samples selected without
replacement. Thus a naive application of the bootstrap resampling techniques in sampling
from finite populations raises interesting issues about its validity. In this article we briefly
touched upon the need for refinements of the bootstrap in the context of sample surveys.
In the case of simple random sampling without replacement, we discussed how the naive
bootstrap can be modified to make it applicable in the context of simple random sampling
without replacement. There is a great potential for the bootstrap technology in sample

surveys and much remains to be done.



Table 1: Summary statistics for LSAT, GPA, Algebra, and Stat data (Efron, 1993)

GPA LSAT ALG STA
o 3.133714  597.548800 50.602270  42.306820
M 3.140239  597.500000 50.000000 40.000000
o 0.186727  38.48814  10.62478  17.255590
oWOR 0.043580  8.982801  2.498587  4.057927
oWOE (.054622 11.102005  2.539547  4.219431
p 0.759998 0.664736
oWOR 0.118439 0.152822

Table 2: Bootstrap statistics for GPA data (Efron, 1993)

X m
E(X,) o%. Rel. Err  E(m) or, Rel. Err.
Chao and Lo(1985) 3.135418 0.042019  -0.035  3.140692 0.057873 0.059
Proposed method 1 3.135415 0.042417  -0.027  3.140655 0.058512 0.071
Proposed method 2 3.135407 0.042650  -0.021  3.140681 0.058817 0.077
Naive Bootstrap 3.135423 0.046660  0.071  3.140667 0.064598 0.182
McCarthy and Snowden (1985) 3.135432 0.043828  0.005  3.140701 0.060982 0.116
VI =1/N)o% e 0.042177  -0.032
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Table 3: Bootstrap statistics for LSAT data (Efron, 1993)

X m
E(X,) 0% Rel. Err E(m) oy, Rel. Err.
Chao and Lo(1985) 597.545263 8.501012  -0.054  597.350201 11.300989 0.018
Proposed method 1 597.529890 8.584461  -0.044  597.327145 11.419015 0.029
Proposed method 2 097.544045 8.628486  -0.039  597.343727 11.470277 0.033
Naive Bootstrap 597.546463  9.440499 0.051 597.318733  12.560376 0.131

McCarthy and Snowden (1985) 597.543479 8.868013  -0.012  597.338412 11.883407  0.070
VA=1/N)T% e 8.533465  -0.050

Table 4: Bootstrap statistics for ALG data (Efron, 1993)

X m
E(X,) 0%, Rel. Err E(m) o, Rel. Err.
Chao and Lo(1985) 00.579120 2.338481  -0.064  50.639679 2.781551 0.095
Proposed method 1 50.580308 2.378387  -0.048  50.642924 2.836133 0.117
Proposed method 2 50.580839 2.383586  -0.046  50.645280 2.841580 0.119
Naive Bootstrap 50.581198  2.597346 0.040 50.656265 3.127341 0.231

McCarthy and Snowden(1985) 50.580501 2.514615  0.006  50.656005 2.894557  0.140
VI=N)T% i 2.365647  -0.053
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Table 5: Bootstrap statistics for STA data (Efron, 1993)

X m
E(X,) %, Rel. Err E(m) oy, Rel. Err.
Chao and Lo(1985) 42.250435 3.817832  -0.059  40.425025 4.764754 0.129
Proposed method 1 42.256931 3.883556  -0.043  40.440078 4.865164 0.153
Proposed method 2 42.249008 3.891133  -0.041  40.435715 4.874323 0.155
Naive Bootstrap 42.249924  4.240786 0.045 40.494368 5.411338 0.282

McCarthy and Snowden(1985) 42.251100 4.106820  0.012 40496215 4.996672  0.184
VI=1/N)T% e 3.862482  -0.053

Table 6: Bootstrap statistics for correlations (Efron, 1993)

LSAT-GPA ALG-STA
E(X,) o%. Rel. Err  E(m) oy, Rel. Err.
Chao and Lo(1985) 0.737771 0.112980  -0.046  0.637011 0.147596 -0.034
Proposed method 1 0.737542 0.114214  -0.036  0.636542 0.150250 -0.017
Proposed method 2 0.737576  0.114820  -0.031  0.636524 0.150519  -0.015
Naive Bootstrap 0.735830  0.126337 0.067 0.634132  0.164498 0.076

McCarthy and Snowden (1985) 0.737427 0.115922  -0.021  0.635330 0.157298 0.029
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