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Abstract

Partially observed variables are common in scientific research. Ignoring the subjects with
partial information may lead to a biased and or inefficient estimators, and consequently any test
based only on the completely observed subjects may inflate the error probabilities. Missing
data issue has been extensively considered in the regression model, especially in the inde-
pendently identically (IID) data setup. Relatively less attention has been paid for handling
missing covariate data in the linear mixed effect model– a dependent data scenario. In case of
complete data, Kenward-Roger’s F test is a well established method for testing of fixed effects
in a linear mixed model. In this paper, we present a modified Kenward-Roger type test for
testing fixed effects in a linear mixed model when the covariates are missing at random. In
the proposed method, we attempt to reduce bias from three sources, the small sample bias,
the bias due to missing values, and the bias due to estimation of variance components. The
operating characteristics of the method is judged and compared with two existing approaches,
listwise deletion and mean imputation, via simulation studies.

Keywords: Fixed effects; Kenward-Roger test; Likelihood ratio test; Linear mixed models;
Missing covariates; REML; Small sample.

1 Introduction

Linear mixed model (Laird & Ware, 1982) is a popular technique to deal with correlated data such

as longitudinal data. The model parameters are typically estimated using ML or REML estimates

(Patterson & Thompson, 1971 and Harville, 1977). For complete data, to draw inferences on fixed

effects of the model, many testing procedures have been proposed among which likelihood ratio

test and Wald tests are the most commonly used methods. However, it is established (Leeper &

Chang, 1992; Zucker et al. 2000) that these methods do not yield accurate results under small

sample conditions. Any method that ignores the uncertainty of the estimated variance component
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in the inference of the fixed effect parameter β will result in deflated confidence interval, specially

when sample size is small. The first problem of approximating the small sample precision of β̂ has

been studied by Kackar & Harville (1984), Harville (1985) and Harville & Jeske (1992). In order to

address the second problem of underestimation of variance of β̂, the estimator of β, an approximate

t or an F-statistic is used. In general, to test the hypothesis H0 : LTβ = 0, a Wald-type test statistic

is used which is approximated as an F distribution with the numerator degrees of freedom as rank(L)

and the denominator degrees of freedom being estimated from the data. The degrees of freedoms

were used to be estimated by the residual method, containment method or the Satterthwaite-type

approximation. Later Kenward & Roger (1997) addressed both the above mentioned issues. They

proposed a scaled Wald statistic which involved an approximate covariance matrix, hence accounting

for the variability introduced due to estimation of the variance components. Further, they showed

that its small sample distribution can be approximated by an F-distribution with the denominator

degrees of freedom obtained from the data using similar approximations as in Satterthwaite (1941).

This approach has been established to perform exceptionally well under small sample conditions

as compared to the other testing procedures. Alnosaier (2007) and Gregory (2011) illustrated

the superiority of the Kenward Roger method as compared to the Satterthwaite and containment

methods.

Partially missing variable is common in clinical studies. The causes of missingness could vary; for

example, subjects may refuse to provide some information, some observations may not be recorded

due to drop out or it could simply happen due to manual error. Ignoring the subjects with partially

missing observation may distort statistical decision, especially when the sample size is small and or

the proportion of observations with partially missing values is high. Depending on the missingness

mechanishm missing data can be classified into three main categories, missing completely at random

(MCAR) where the missingness mechanism is completely random and does not depend on any

variables, missing at random (MAR) where missingness mechanism depends only on the observed

values of the variables, and missing not at random (MNAR) where the missingness mechanism may
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depend on the unobserved values of the variables along with the completely observed variables.

The first two mechanisms are ignorable in a likelihood framework while the third is not. Missing

values may occur in a response variable, in a covariate or in both. There are several methods of

dealing with missing responses depending on the missing mechanism. Among the most common

methods are listwise deletion where the subject with any missing value is deleted from the study,

mean or multiple imputation and the maximum likelihood method that do not involve modelling

the missing mechanism when the missing mechanism is either MCAR or MAR. Padilla and Algina

(2004) showed that when the responses are missing (MCAR or MAR) in a small sample setup,

Kenward-Roger test preserves the Type I error rates for a single factor within-subject ANOVA as

compared to the Hotelling-Lawley-McKeon procedure (McKeon, 1974). Therefore, Kenward Roger

F test is proven to be superior even in case of missing responses. In several aricles, Ibrahim and

coworkers considered partially missing response or covariate in regression models (Ibrahim, 1990;

Ibrahim & Chen, 2001; Stubbendick & Ibrahim, 2003; Ibrahim et al., 2005; Chen et al., 2008).

However, little has been done in case of missing covariates in a linear mixed model.

In this paper, we only deal with a missing covariate data, and assume that the covariate data are

missing at random (MAR). We assume a parametric distribution on the partially missing covariate.

Under this set up, we derive a Kenward-Roger type adjusted test for the fixed effects in a linear

mixed model in case of small samples. To derive a robust test, we need to overcome three biases:

the variance bias (such that the variability of the variance components is taken into account), the

small sample bias and the bias due to missingness. We consider the bias in the estimation of

the covariance matrix of β̂ and then propose a new Wald statistic that uses this new adjusted

covariance matrix. Further, this Wald statistic is approximated as an F distribution with the

degrees of freedom calculated using the new covariance matrix. To demonstrate the accuracy of

this method, we compare this method to the listwise deletion and imputation methods through

simulation studies.

The rest of the paper is organized as follows. Models and assumptions are given in Section 2.
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Section 3 contains the Kenward Roger type F test by approximating the new covariance matrix

and the denominator degrees of freedom. Section 4 contains the simulation study that assesses the

performance of the proposed method and compare it to other existing methods based on Type-I

error rates. We have applied the proposed method to a real data and the details are collected in

Section 5, followed by concluding remarks given in Section 6.

2 Model and assumptions

Consider a linear mixed model with m groups and ni measurements in the ith group. Denote

n =
∑m

i=1 ni the total number of observations. For each group, we observe an ni × 1 vector of

responses Yi, let Xi be an ni× p fixed-effects matrix, Zi be an ni× q random-effects design matrix,

β be a p×1 vector of fixed-effect coefficients and bi be a group-specific vector of random regression

coefficients. The model can be written as

Yi = Xiβ + Zibi + εi, i = 1, · · · ,m,

assuming that εi ∼ Nni
(0, σ2

eIni
), bi ∼ Nq(0, V ) and εi and bi are independent. We can deduce

that Y1, · · · ,Ym are independent and Yi ∼ Nni
(Xiβ,Σi) with Σi = ZiV Z

T
i + σ2

eIni
. Denote

the stacked vectors Y = (YT
1 , · · · ,YT

m)T , b = (bT1 , · · · ,bTm)T , ε = (εT1 , · · · , εTm)T and the stacked

matrices Xn×p = (XT
1 , · · · , XT

n )T , Zn×mq = diag(Z1, · · · , Zm) and Σn×n = diag(Σ1, · · · ,Σn). Then

the model can be written as

Y = Xβ + ε?,

where ε? = Zb + ε such that ε? ∼ Nn(0,Σ(σ)). The covariance matrix Σ is a function of

1 + q(q + 1)/2 parameters, where the first parameter is the variance of the model errors i.e., σ2
e

and the rest q(q + 1)/2 parameters characterize the random effect covariance matrix V. These

parameters are represented by the vector σ = (σ1, σ2, · · · , σr)T where r = 1 + q(q + 1)/2. Let

X(1) = (X1(1), X2(1), · · · , Xn(1))
T be the first column of the covariate matrix X. Then Xn×p can be

written as X = (X(1) : X(−1)) where X(1) is of dimension n× 1 and X(−1) is a n× (p− 1) matrix of
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the covariates other than the first. Without loss of generality, assume that X(1) contains partially

missing covariates, and define the missing indicator as

Bj =

{
0 if Xj(1) is missing
1 otherwise,

for j = 1, · · · , n. Assume that the partially missing covariate X(1) follows a parametric model

f(X(1)|X(−1),γ) that is known upto a finite dimensional parameter γ = (γ1, · · · , γk)T . In the

presence of missing data, we write

Y = X?β + ε?,

where X?
n×p = (X?

(1) : X(−1)), X?
(1) = (X1(1), · · · , Xn(1))

T such that,

X?
j(1) =

{
E(Xj(1)|Xj(−1),γ) = µ(γ) if Bj = 0
Xj(1) if Bj = 1,

for j = 1, · · · , n.

Now we can estimate γ by maximizing the likelihood

L =
n∏
j=1

fBj(Xi(1)|Xj(−1)γ). (1)

The standard error of the parameter estimates can be determined from the Hessian matrix. We

will be working with the following model setup in the rest of the paper. Now the n-dimensional Y

follows a multivariate normal distribution,

Y ∼ Normal(X?β,Σ),

where X? is an n×p matrix of known/estimated covariates, assumed to be of full rank. β is a p×1

vector of unknown parameters and Σ is an unknown variance covariance matrix whose elements are

functions of σ=(σ1, · · · , σr)T which in turn is a function of γ=(γ1, · · · , γk)T .

The REML based estimated least squares estimator of β is

β̂ = X?T (γ̂)Σ−1(σ̂(γ̂))X?(γ̂)
−1
X?T (γ̂)Σ−1(σ̂(γ̂))Y,

where σ̂(γ̂) is the REML estimator of σ. In our study, β is the parameter of interest and Σ(σ(γ))

is the nuisance parameter. We will test the hypothesis H0 : LTβ = 0, where L is a p× l matrix.
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3 Inference for the fixed effects

3.1 Estimation of the variance of the estimator β̂

In order to make inferences about fixed effects such as confidence interval estimation and testing

of hypothesis, we need to define a test statistic and compute its distribution under small sample

situation. Under the linear mixed model framework, the variance of β̂ is given by Φ̂ = Φ(σ̂(γ̂)) =

XT (γ̂)Σ−1(σ̂(γ̂))X(γ̂)
−1

, where γ̂ is the estimator obtained after maximizing the likelihood given

in (1) and σ̂(γ̂) is the REML estimate of σ obtained after using the imputed data set. There are

three sources of bias when Φ̂ is used as an estimator for the variance of β̂ for small samples: Φ̂ is a

biased estimator of Φ(σ(γ)), Φ does not take the variability of σ̂ and γ̂ into account. We consider

a better approximation to the small sample covariance matrix of β̂ under missing covariates, which

accounts for the variability in both σ̂ and γ̂, thus reducing the small sample bias and any bias due

to the missingness. For complete data, Kackar and Harville (1984) addressed the second source of

bias by partitioning the variance of the estimated β into two components: Φ + Λ. Further Kenward

and Roger (1997) addressed the first source of bias and combined both adjustments thus proposing

a new estimator of Φ,

Φ̂KR = Φ̂ + Λ̂,

where the estimators of Φ and Λ are such that

E(Φ̂) = Φ− Λ̃ +R∗ +O(n−5/2), (2)

E(Λ̂) = Λ̃ +O(n−5/2), (3)

with

Φ = (X?T (γ)Σ−1(σ(γ))X?(γ))
−1
, (4)

Λ̃ =
r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)Φ(Qlm − PlΦPm)Φ, (5)
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and O(nr) denotes O(nr)/nr is a bounded number as n→∞, for some r. In the above expressions

Pl = −X?T (γ)Σ−1(σ(γ))
∂Σ

∂σl
Σ−1(σ(γ))X?(γ),

Qlm = X?T (γ)Σ−1(σ(γ))
∂Σ

∂σl
Σ−1(σ(γ))

∂Σ

∂σm
Σ−1(σ(γ))X?(γ),

Rlm = X?T (γ)Σ−1(σ(γ))
∂2

∂σl∂σm
Σ−1(σ(γ))X?(γ),

R∗ =
1

2

r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)ΦRlmΦ.

We now consider the bias in Φ̂ as an estimator of Φ(σ̂(γ)) thus adjusting for missingness.

Theorem 1 Under the assumptions given in Appendix A.1, the adjusted variance of β̂ can be

approximated as

Φ̂A = Φ̂ + Λ̂ + Ψ̂.

The estimators of Φ, Λ and Ψ are given by Φ̂, Λ̂ and Ψ̂ respectively such that (2)-(5) hold and

E(Ψ̂) = Ψ +O(n−2), where

Ψ =
k∑
i=1

Φ(σ̂(γ))Kivar(γ̂i)K
T
i ΦT (σ̂(γ)) +

k∑
i=1

k∑
j=1

i 6=j

Φ(σ̂(γ))Kicov(γ̂i, γ̂j)K
T
i ΦT (σ̂(γ)).

Proof: The REML based estimator of β using the imputed data set is given by

β̂ = X?T (γ̂)Σ−1(σ̂(γ̂))X?(γ̂)
−1
X?T (γ̂)Σ−1(σ̂(γ̂))Y. (6)

The covariance of β̂ given in (6) can be approximated as var(β̂) = var{H(σ̂)}+var(β̂) = Ψ+Φ+Λ.

The estimators of Ψ,Φ and Λ are derived in Appendix A2.

3.2 Approximating the distribution of the test statistic

Suppose we are interested in making inferences about l linear combinations of the elements β. In

other words, we are interested in testing H0 : LTβ = 0 where LT is a fixed matrix of dimension
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(l × p). A common statistic to test H0 is the Wald statistic given by

F =
1

l
(β̂ − β)TL(LT Φ̂AL)−1LT (β̂ − β), (7)

where Φ̂A is an adjusted covariance matrix for β̂. We will follow a similar procedure as used in

Kenward & Roger (1997) and Alnosaier (2007) by approximating the first two moments of the F

statistic given in (7) and match the moments to approximate the scaling factor and the denominator

degrees of freedom of the test statistic i.e., λ and d such that λF ∼ F (l, d) in distribution. Here

F (l, d) denotes F-distribution with degrees of freedom (l, d).

Theorem 2 Under the assumptions given in (A.1), the first two moments of the test statistic (7)

under H0 : LTβ = 0 are

E(F ) = 1 +
A2

l
− A4

l
+O(n−3/2), (8)

var(F ) =
A1

l2
+

2

l
+

6A2

l2
, (9)

where Θ̂ = L(LT Φ̂L)−1LT , A1 =
∑r

l=1

∑r
m=1 cov(σ̂l, σ̂m)trace(Θ̂Φ̂PlΦ̂)trace(Θ̂Φ̂PmΦ̂),

A2 =
∑r

l=1

∑r
m=1 cov(σ̂l, σ̂m)trace(Θ̂Φ̂PlΦ̂Θ̂Φ̂PmΦ̂),

A3 =
∑r

l=1

∑r
m=1 cov(σ̂l, σ̂m)trace{Θ̂Φ(Qlm − PlΦ̂Pm −Rlm/4)},

A4 =
∑r

l=1

∑r
m=1 cov(σ̂l, σ̂m)trace(Θ̂Ψ̂),

and using (8) and (9), we get d̃ = 4 + (2 + l)/(lρ̃− 1), where ρ̃ = Ṽ /2Ẽ2, and λ̃ = d̃/{Ẽ(d̃− 2)},

where Ẽ and Ṽ are defined in Appendix A3.

Proof: The expectation and variance are approximated using the following conditional arguments

that E(F ) = E{E(F |σ̂)} and var(F ) = E{var(F |σ̂)}+var{E(F |σ̂)}. After using the Taylor series

expansion we obtain

E(F ) = Ẽ +O(n−3/2), and var(F ) = Ṽ +O(n−3/2),
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where the explicit expressions of Ẽ and Ṽ are derived in Appendix A.3. In order to determine λ

and d, we match the first two moments of λF with those of F (l, d) i.e.,

E{F (l, d)} =
d

d− 2
, and var{F (l, d)} = 2

(
d

d− 2

)2
l + d− 2

l(d− 4)
,

to obtain the expressions for d̃ and λ̃.

4 Simulation

Simulation design: We considered a linear mixed model Y = Xβ + Zb + ε, where Y is a n× 1

response vector, X is a n× p fixed covariate matrix, Z is a n× q random covariate matrix, β is a

p× 1 vector of fixed effects, b is the q × 1 vector of random effects that follows a Nq(0, V ) and ε is

the n × 1 error vector that follows a N(0, σ2
e). Also, b and ε are independent. The model can be

rewritten as Y = Xβ + ε?, where ε? ∼ N(0,Σ) with Σ = σ2
eIn + ZV ZT .

In our simulation study, we considered a block design with one random effect (q = 1), whose

variance is σ2
b . Here we considered p = 5. To simulate the data, we generated the covariate

matrix X from a multivariate normal distribution with mean zero and covariance matrix whose

(i, j)th element is given by |0.2|i−j. We introduced 20% and 40% missingness in one of the columns

of X (i.e., missingness in one covariate) using a bernoulli distribution i.e. assuming the missing

mechanism to be MCAR. To relax the MCAR assumption, we considered another case to mimic the

MAR mechanism where we introduced missingness in one of the covariates such that the probability

of an observation being missing depends on the value of another covariate. Then we maximized

the observed likelihood of the partially missing covariate to get the estimate of the mean and the

variance, and replaced the missing values in the covariate matrix by the estimated mean, thus

obtaining the imputed data set. Further, we deployed our method on the imputed data set to test

the hypothesis H0 : β = 0 vs Ha : β 6= 0. To test this, we generated Y from N(0,Σ) for different

values of σ2
b/σ

2
e ranging from 0.25 to 4. For each setting we generated the data 5000 times and

computed the simulated size (Type-I error probabilities). Tables 1 and 2 provide the simulated size
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when the missing mechanism is MCAR for sample sizes 15 and 30 respectively, Table 3 provides

the results for the MAR mechanism.

In practice, the distribution of the partially missing covariate is not known. Therefore, to check

the robustness of our procedure, we generated the partially missing covariate from heavy tailed

distributions like the Laplace distribution with mean parameter as zero and scale parameter as

eight, and the Student’s t-distribution with one degree of freedom. The corresponding results are

given in Table 4.

Implementation: To be able to run the simulation, we need to calculate the following terms:

∂X?(γ)/∂γ and ∂Σ(σ̂(γ))/∂γ. The first term is ∂X?(γ)/∂γ = I(X? = µ(γ)), and using the chain

rule of of derivative the second term is ∂Σ(σ̂(γ))/∂γ = (∂Σ/∂σ̂2
e)×(∂σ̂2

e/∂γ)+(∂Σ/∂σ̂2
b )×(∂σ̂2

b/∂γ).

The detailed expression of these terms are given in the Appendix A4.

In our simulation study, we will compare our testing procedure i.e., Kenward Roger adjustment

for missing covariates (KRM) to the following methods which are used to deal with missing covari-

ates in a linear mixed model setup on the basis of simulated size: 1) listwise deletion followed by

likelihood ratio test (LD-LRT), 2) mean imputation followed by likelihood ratio test (MI-LRT), 3)

mean imputation followed by Kenward Roger F-test with no adjustment for missingness (MI-KRT).

Results: From the results in Tables 1- 4, we observe that listwise deletion of observations does

not work well since by introducing missingness we are making the sample size even smaller. Mean

imputation seems a viable option since it provides a complete data to work with. But the standard

likelihood ratio (MI-LRT) still does not work well, again due to small sample sizes. Kenward Roger

method after using the imputed data set without adjusting for missingness (MI-KRT) performs

reasonably well. We also compared Wald type tests using three different covariance matrices of

β̂ namely (i) Φ̂ which does not take the variability of σ̂ and γ̂ into account and (ii) Φ̂KR which

takes the variability in only σ̂ into account. In these two cases, no approximation is made to the

denominator degrees of freedom of F distribution (we use the residual degrees of freedom). For the

sake of brevity and to avoid redundancy, the results from methods (i) and (ii) are not shown in
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this paper. Finally, our proposed method (KRM) outperforms the other procedures for almost all

values of ρ, n and the type and percentage of missingness. Table 4 shows that our testing procedure

is robust. We also tested for single fixed effect parameter i.e. H0 : β1 = 0 (results not shown here)

in which case the KRM and MI-KRT perform equally well.

5 Real data example

We consider the data from a randomized, double-blind, study of AIDS patients with advanced

immune suppression (CD4 counts of less than or equal to 50 cells/mm3). The data description is

as in the datasets section in Fitzmaurice (2004): Patients in AIDS Clinical Trial Group (ACTG)

Study 193A were randomized to dual or triple combinations of HIV-1 reverse transcriptase in-

hibitors. Specifically, patients were randomized to one of four daily regimens containing 600mg of

zidovudine: zidovudine alternating monthly with 400mg didanosine; zidovudine plus 2.25mg of zal-

citabine; zidovudine plus 400mg of didanosine or zidovudine plus 400mg of didanosine plus 400mg

of nevirapine (triple therapy). The patients characteristics like age and sex were also recorded. The

response variable i.e. measurements of CD4 counts were scheduled to be collected at baseline and

at 8-week intervals during follow-up. However, due to skipped visits and dropouts, the measure-

ments could not be taken at regular intervals therefore we have the weeks as another variable. For

our use, we use the log transformed CD4 counts log(CD4counts+1) as the response variable. The

data is available for 1313 patients, however, since we are testing for small sample studies, we will

truncate the data by randomly choosing 40 patients from the study. We introduce 30% missingness

in the covariate age and deploy the discussed methods on the obtained data. The model under

consideration is

Yij = β0 + β1X1i + β2X2i + β3tij + β20G2i + β30G3i + β40G4i + b0i + εij (10)

with i = 1, 2, · · · , 40 and j = 1, · · · , ni ni varying from 1 to 9, where Yij is the log transformed

CD4 counts, G2i is a dummy variable indicating that the patient was in treatment group 2 and G3i
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is the indicator that patient was in treatment group 3 and G4i is defined likewise, X1i represents

the gender of the patient (1=male, 0=female), X2i represents the age of the patient in years and

tij is the jth time point (in weeks) at which ith patient’s measurement was recorded. Assuming

(b0i)
iid∼ N(0, σ2

b ) and εij
iid∼ N(0, σ2

e) is independent of b0i. In the above model (10), we introduce

missingness in the variable X2i. The goal of our study is to investigate if there is any significant

difference between the impact of the four treatment groups on the CD4 counts. Therefore, we

will test H0 : (β20, β30, β40)
T = 0 against H0 : (β20, β30, β40)

T 6= 0. When we test the hypothesis

using all the data available i.e. 1313 patients, we obtain a p-value of approximately 0.008 which

suggests that treatment group type is significant in the study. However, in the hope of obtaining the

same conclusion from a much smaller size of 40, we run the analysis. The test statistic, denominator

degrees of freedom (ddf) and p-value for testing the above hypothesis for the different test procedures

are (i) KRM: 3.201 (ddf = 62.50, p-value= 0.029), (ii) LD-LRT: 8.068 (p-value= 0.044) (iii) MI-

LRT: 8.775 (p-value= 0.033) (iv) MI-KRT: 3.195 (ddf = 62.51, p-value= 0.031). The p-values for

(ii) and (iii) are based on a χ2
3 distribution while the rest are based on the F-distribution with

different degrees of freedom. All tests yield the same result that the null hypothesis is rejected at

5% significance level i.e. the treatment group type has a significant impact on the CD4 counts.

6 Conclusion

In this paper, we derived a small sample Kenward-Roger type adjusted test for fixed effects in a

linear mixed model with missing covariates. For this purpose, we account for three biases in the

estimation of the covariance matrix of β̂, namely, the variance bias, the small sample bias and the

additional bias introduced due to missingness. We further approximated the null distribution of the

test statistic. By simulation, we were able to show the superiority of our method to other popular

methods. The derivations have been shown for a block design where the number of random effects

is one i.e. q = 1, but the method can be derived for q > 1. Here, we assumed the covariates to be
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missing at random, but it would be interesting to derive the results in case of missing responses.
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Appendix

A1 Assumptions

We impose the following assumptions about the model as done in Alnosaier (2007)

C.1 Σ is a block diagonal and non singular matrix. Also Σ−1, ∂Σ/∂σl, ∂Σ/∂γi, ∂
2Σ/∂σl∂σm and

∂2Σ/∂γi∂γj are bounded.

C.2 E(σ̂) = σ +O(n−3/2).

C.3 The possible dependence between σ̂(γ̂) and β̂ is ignored.

C.4 Φ = (XT (γ)Σ−1(σ(γ))X(γ))−1 = O(n−1), (LTΦL) = O(n).

C.5 ∂β̃/∂σl = O(n−1/2), ∂2β̃/∂σl∂σm = O(n−1/2) where β̃ = {XT (γ)Σ−1(σ(γ))X(γ)}−1XT (γ)Σ−1(σ(γ))Y.
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C.6 The expectation of β̂ exists.

A2 Estimates of Ψ, Φ and Λ in Theorem 1

Let σ=(σ1, · · · , σr)T and γ=(γ1, · · · ,γk)T . We begin by expanding the REML based estimate of β

for the imputed data set which is given by β̂ = (X?T (γ̂)Σ−1(σ̂(γ̂))X?(γ̂))
−1
X?T (γ̂)Σ−1(σ̂(γ̂))Y =

C1 + C2 + C3 + C4 + C5 + C6, where

C1 =(X?T (γ̂)Σ−1(σ̂(γ̂))X?(γ̂))
−1
X?T (γ̂)(Σ−1(σ̂(γ̂))− Σ−1(σ̂(γ)))Y,

C2 =(X?T (γ̂)Σ−1(σ̂(γ̂))X?(γ̂))
−1

(X?T (γ̂)−X?T (γ))Σ−1(σ̂(γ))Y,

C3 =(X?T (γ̂)Σ−1(σ̂(γ̂))X?(γ̂))
−1 − (X?T (γ̂)Σ−1(σ̂(γ̂))X?T (γ))

−1
)X?T (γ)Σ−1(σ̂(γ))Y,

C4 =(X?T (γ̂)Σ−1(σ̂(γ̂))X?(γ))
−1 − (X?T (γ̂)Σ−1(σ̂(γ))X?T (γ))

−1
)X?T (γ)Σ−1(σ̂(γ))Y,

C5 =(X?T (γ̂)Σ−1(σ̂(γ))X?(γ))
−1 − (X?T (γ)Σ−1(σ̂(γ))X?T (γ))

−1
)X?T (γ)Σ−1(σ̂(γ))Y,

C6 =(X?T (γ)Σ−1(σ̂(γ))X?(γ))
−1
X?T (γ)Σ−1(σ̂(γ))Y.

For notational convenience, we will denote X? as X. By the Taylor series expansion around γ,

Σ−1(σ̂(γ̂))− Σ−1(σ̂(γ)) =
k∑
i=1

∂Σ(σ̂)−1

∂γi
(γ̂i − γi) +

1

2

k∑
i=1

k∑
j=1

∂2Σ(σ̂)−1

∂γi∂γj
(γ̂i − γi)(γ̂j − γj) + · · · .

Since E(γ̂) = γ +Op(n
−1/2) and E(Y) = Xβ, we get

Σ−1(σ̂(γ̂))− Σ−1(σ̂(γ)) =
k∑
i=1

∂Σ(σ̂)−1

∂γi
(γ̂i − γi) +Op(n

−1)

= −
k∑
i=1

Σ(σ̂)−1
∂Σ(σ̂)

∂γi
Σ(σ̂)−1(γ̂i − γi) +Op(n

−1). (A1)

Substituting (A1) in the expression for C1 we get C1 = C̃1 +O(n−1/2), where

C̃1 = {XT (γ)Σ(σ̂(γ))X(γ)}−1XT (γ)
∑k

i=1{−Σ(σ̂)−1{∂Σ(σ̂)/∂γi}Σ−1(σ̂)(γ̂i − γi)}Xβ.

Let Φ(σ̂(γ)) = {XT (γ)Σ−1(σ̂(γ))X(γ)}−1, then

C1 = − Φ(σ̂(γ))XT (γ)
k∑
i=1

Σ(σ̂)−1
∂Σ(σ̂)

∂γi
Σ(σ̂)−1(γ̂i − γi)Xβ +Op(n

−1/2). (A2)

16



Consider C2 = (XT (γ̂)Σ−1(σ̂(γ̂))XT (γ̂))
−1

(XT (γ̂)−XT (γ))Σ−1(σ̂(γ))Y .

By the Taylor series expansion,

XT (γ̂)−XT (γ) =
k∑
i=1

∂XT

∂γi
(γ̂i − γi) +Op(n

−1).

Therefore,

C2 = C̃2 +Op(n
−1/2), where

C̃2 = Φ(σ̂,γ)
k∑
i=1

∂XT

∂γi
(γ̂i − γi)Σ−1(σ̂(γ))Xβ. (A3)

Consider C3 = {(XT (γ̂)Σ−1(σ̂(γ̂))XT (γ̂))
−1 − (XT (γ̂)Σ−1(σ̂(γ̂))XT (γ))

−1}XT (γ)Σ−1(σ̂(γ))Y.

Again, using the Taylor series expansion,

(XT (γ̂)Σ−1(σ̂(γ))X(γ̂))−1 − (XT (γ̂)Σ−1(σ̂(γ))X(γ))−1 =
k∑
i=1

∂

∂γi
(XT (γ̂)Σ−1(σ̂(γ̂))X(γ))−1(γ̂i − γi)

+Op(n
−1).

Hence,

C3 = C̃3 +Op(n
−1/2), where

C̃3 =
k∑
i=1

−(XT (γ)Σ−1(σ̂(γ))X(γ))−1XT (γ)Σ−1(σ̂(γ))
∂X(γ)

∂γi
(γ̂i − γi)β

= −Φ(σ̂(γ))
k∑
i=1

XT (γ)Σ−1(σ̂(γ))
∂X(γ)

∂γi
(γ̂i − γi)β. (A4)

Similarly,

C̃4 =
k∑
i=1

−Φ(σ̂,γ)XT (γ)
∂Σ−1(σ̂(γ))

∂γi
X(γ̂i − γi)β

=
k∑
i=1

Φ(σ̂,γ)XT (γ)Σ−1(σ̂(γ))
∂Σ(σ̂(γ))

∂γi
Σ−1(σ̂(γ))X(γ̂i − γi)β, (A5)

C̃5 =
k∑
i=1

−Φ(σ̂,γ)
∂XT

∂γi
Σ−1(σ̂(γ))X(γ̂i − γi)β, (A6)

C6 = (XT (γ)Σ−1(σ̂(γ))XT (γ))
−1
XT (γ)Σ−1(σ̂(γ))Y = β̆.
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Let H(σ̂) = C̃1 + C̃2 + C̃3 + C̃4 + C̃5. Further, we need to compute the variance of β̂.

V (β̂) = V (H(σ̂)) + V (β̆).

To take into account the variability in σ̂(γ) when γ is fixed, we follow the same proof as in Kenward

& Roger (1997) and Alnosaier (2007),

V (β̆) = V (β̃) + V (β̆ − β̃),where β̃ = (XT (γ)Σ(σ(γ))−1X(γ))−1XT (γ)Σ(σ(γ))−1Y.

V (β̆) = Φ + Λ.

The estimates of Φ and Λ are given by Φ̂ and Λ̂ such that

E(Φ̂) = Φ− Λ̃ +R∗ +O(n−5/2),

E(Λ̂) = Λ̃ +O(n−5/2), where

Φ = (XT (γ)Σ−1(σ(γ))X(γ))
−1
,

Λ̃ =
r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)Φ(Qlm − PlΦPm)Φ.

In the above expressions

Pl = −XT (γ)Σ−1(σ(γ))
∂Σ

∂σl
Σ−1(σ(γ))X(γ),

Qlm = XT (γ)Σ−1(σ(γ))
∂Σ

∂σl
Σ−1(σ(γ))

∂Σ

∂σm
Σ−1(σ(γ))X(γ),

Rlm = XT (γ)Σ−1(σ(γ))
∂2

∂σl∂σm
Σ−1(σ(γ))X(γ),

R∗ =
1

2

r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)ΦRlmΦ.
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Now, from (A2)-(A6)

H(σ̂) =
k∑
i=1

Φ(σ̂(γ))
[
{−XT (γ)Σ−1(σ̂(γ))

∂Σ(σ̂)

∂γi
Σ−1(σ̂(γ))X(γ)}+ {∂X

T (γ)

∂γi
Σ−1(σ̂(γ))X(γ)}

−{XT (γ)Σ−1(σ̂(γ))
∂X(γ)

∂γi
}+ {XT (γ)Σ−1(σ̂(γ))

∂Σ(σ̂)

∂γi
Σ−1(σ̂(γ))X(γ)}

−{∂X
T (γ)

∂γi
Σ−1(σ̂(γ))X(γ)}

]
β(γ̂i − γi)

=
k∑
i=1

Φ(σ̂(γ))Ki(γ̂i − γi),

where

Ki =
[
{−XT (γ)Σ−1(σ̂(γ))

∂Σ(σ̂)

∂γi
Σ−1(σ̂(γ))X(γ)}+ {∂X

T (γ)

∂γi
Σ−1(σ̂(γ))X(γ)}

−{XT (γ)Σ−1(σ̂(γ))
∂X(γ)

∂γi
}+ {XT (γ)Σ−1(σ̂(γ))

∂Σ(σ̂)

∂γi
Σ−1(σ̂(γ))X(γ)}

−{∂X
T (γ)

∂γi
Σ−1(σ̂(γ))X(γ)}

]
β,

and

Ψ = V (H(σ̂)) =
k∑
i=1

Φ(σ̂(γ))KiV (γi)K
T
i ΦT (σ̂(γ)) +

k∑
i=1

k∑
j=1

i 6=j

Φ(σ̂(γ))Kicov(γi, γj)K
T
j ΦT (σ̂,γ).

Now using the Taylor series expansion about σ we get,

Ψ(σ̂) = Ψ(σ) +
r∑
l=1

∂Ψ

∂σl
(σ̂l − σl) +

r∑
l=1

r∑
m=1

∂2Ψ

∂σl∂σm
(σ̂l − σl)(σ̂m − σm) + · · · . (A7)

Consider

∂Ψ(σ)

∂σl
=

∂

∂σl

( k∑
i=1

ΦKivar(γ̂i)K
T
i ΦT +

k∑
i=1

k∑
j=1

i 6=j

ΦKicov(γ̂i, γ̂j)K
T
j ΦT

)

=
k∑
i=1

∂ΦKi

∂σl
var(γ̂i)K

T
i ΦT +

k∑
i=1

ΦKivar(γ̂i)
∂KT

i ΦT

∂σl

+
k∑
i=1

k∑
j=1

i 6=j

∂ΦKi

∂σl
cov(γ̂i, γ̂j)ΦKj +

k∑
i=1

k∑
j=1

i 6=j

ΦKicov(γ̂i, γ̂j)
∂KT

j ΦT

∂σl
. (A8)
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Now,

∂ΦKi

∂σl
=

k∑
i=1

∂Φ

∂σl
Ki +

k∑
i=1

Φ
∂Ki

∂σl
=

k∑
i=1

(−ΦPlΦ)Ki +
k∑
i=1

Φ
∂Ki

∂σl
. (A9)

and

∂Ki

∂σl
= {XT (γ)

∂

∂σl
(
∂Σ−1

∂γi
)X(γ) +

∂XT (γ)

∂γi

∂Σ−1

∂σl
X(γ)−XT (γ)

∂Σ−1

∂σl

∂X(γ)

∂γi

−XT (γ)
∂

∂σl

(∂Σ−1

∂γi

)
X(γ)− ∂XT (γ)

∂γi

∂Σ−1

∂σl
X(γ)}β

= −XT (γ)
∂Σ−1

∂σl

∂X(γ)

∂γi
β.

Let us denote Mli = ΦXT (γ)∂Σ−1/∂σl × ∂X(γ)/∂γi × β.

Therefore,

∂ΦKi

∂σl
=

k∑
i=1

(−ΦPlΦ)Ki +
k∑
i=1

Φ−XT (γ)
∂Σ−1

∂σl

∂X(γ)

∂γi
β =

k∑
i=1

(−ΦPlΦ)Ki −Mli. (A10)

Using (A9) and (A10), (A8) becomes,

∂Ψ(σ)

∂σl
=

k∑
i=1

{
(−ΦPlΦKi −Mli)var(γ̂i)K

T
i ΦT + ΦKivar(γ̂i)(−ΦPlΦKi −Mli)

T
}

+
k∑
i=1

k∑
i=1

i 6=j

{
(−ΦPlΦKi −Mli)cov(γ̂i, γ̂j)K

T
j ΦT + ΦKicov(γ̂i, γ̂j)(−ΦPlΦKj −Mlj)

T
}
.

Substituting the above in (A7), we get

Ψ(σ̂) = Ψ(σ) +
r∑
l=1

[ k∑
i=1

{
(−ΦPlΦKi −Mli)var(γ̂i)K

T
i ΦT + ΦKivar(γ̂i)(−ΦPlΦKi −Mli)

T
}

+
k∑
i=1

k∑
i=1

i 6=j

{
(−ΦPlΦKi −Mli)cov(γ̂i, γ̂j)K

T
j ΦT + ΦKicov(γ̂i, γ̂j)(−ΦPlΦKj −Mlj)

T
} ]

+
r∑
l=1

r∑
m=1

∂2Ψ

∂σl∂σm
(σ̂l − σl)(σ̂m − σm)

= Ψ(σ) +Op(n
−2). (A11)

Therefore, the adjusted covariance matrix of β̂ is given by Φ̂A = Φ̂ + 2Λ̂− R̂? + Ψ̂ and E(Φ̂A) =

var(β̂) +O(n−2). This completes the proof.
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A3 Derivation of Ẽ and Ṽ used in Theorem 2

We begin by computing the expected value and variance of the F statistic

F =
1

l
(β̂ − β)TL(LT Φ̂AL)−1LT (β̂ − β).

The expected value is approximated using the conditional expectation arguments.

E(F ) = E{E(F |σ̂)},

E(F |σ̂) = E{1

l
(β̂ − β)TL(LT Φ̂AL)−1LT (β̂ − β)|σ̂}

=
1

l

[
E{(β̂ − β)TL}(LT Φ̂AL)−1E{LT (β̂ − β)}+ trace{(LT Φ̂AL)−1var(LT (β̂ − β))}

]
.

Since β̂ is an unbiased estimator of β, therefore

lE(F |σ̂) = trace{(LT Φ̂AL)−1(LTV L)},where V = var(β̂) = Φ + Λ + Ψ. (A12)

Since Φ̂A = Φ̂ + Â∗ + Ψ̂, where Â∗ = 2Φ̂
{∑r

l=1

∑r
m=1 cov(σ̂l, σ̂m)(Q̂lm − P̂lΦ̂P̂m − 1

4
R̂lm)

}
Φ̂

(Alnosaier 2007), we get

(LT Φ̂AL)−1(LTV L) = {(LT Φ̂L) + (LT Â∗L) + (LT Ψ̂L)}−1(LTV L)

=
[
(LT Φ̂L)

{
I + (LT Φ̂L)−1(LT Â∗L) + (LT Φ̂L)(LT Ψ̂L)

}]−1
(LTV L)

=
{
I + (LT Φ̂L)−1(LT Â∗L) + (LT Φ̂L)(LT Ψ̂L)

}−1
(LT Φ̂L)−1(LTV L)

=
{
I − (LT Φ̂L)−1(LT Â∗L)− (LT Φ̂L)−1(LT Ψ̂L) +Op(n

−2)
}

(LT Φ̂L)−1(LTV L)

= (LT Φ̂L)−1(LTV L)− (LT Φ̂L)−1(LT Â∗L)(LT Φ̂L)−1(LTV L)−

(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTV L).

From Alnosaier (2007), we notice that

E[trace{(LT Φ̂L)−1(LTV L)}] = l + A2 + 2A3 +Op(n
−3/2), (A13)

E[trace{(LT Φ̂L)−1(LT Â∗L)(LT Φ̂L)−1(LTV L)}] = E{trace(ΘÂ∗)} = 2A3 +O(n−3/2),(A14)

21



where

Θ = L(LTΦL)−1LT ,

A2 =
r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)trace(ΘΦPlΦΘΦPmΦ),

A3 =
r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)trace
(
ΘΦ(Qlm − PlΦPm −

1

4
Rlm)

)
.

Next, we need to consider

(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTV L) = (LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTΦL) +

(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTΛL) +

(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTΨL) +

= (LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTΦL) +O(n−2).

Using the Taylor series expansion for (LT Φ̂L)−1 about σ, we get

(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTΦL) +O(n−2)

=

{
(LTΦL)−1 +

r∑
l=1

(σ̂l − σl)
∂(LTΦL)−1

∂σl
+

1

2

r∑
l=1

r∑
m=1

(σ̂l − σl)(σ̂m − σm)
∂2(LTΦL)−1

∂σl∂σm

}
(LT Ψ̂L)−1

×
{

(LTΦL)−1 +
r∑
l=1

(σ̂l − σl)
∂(LTΦL)−1

∂σl
+

1

2

r∑
l=1

r∑
m=1

(σ̂l − σl)(σ̂m − σm)
∂2(LTΦL)−1

∂σl∂σm

}
(LTΦL) +Op(n

−2)

= (LTΦL)−1(LT Ψ̂L) +Op(n
−3/2).

As shown in Theorem 1, E(Ψ̂) = Ψ +Op(n
−2), therefore

E[trace{(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTV L)}] = E{trace(ΘΨ̂)} = A4 +O(n−3/2), (A15)

where

A4 =
r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)trace(ΘΨ̂).

Therefore, substituting (A13)-(A15) in (A12), we obtain the approximation of the expected

value of the F statistics (7).

E(F ) = 1 +
A2

l
− A4

l
+O(n−3/2). (A16)
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Now, we need to compute the variance of the F statistic.

var(F ) = E{var(F |σ̂)}+ var{E(F |σ̂)}. (A17)

Consider

var(F |σ̂) =
1

l2
var
{

(β̂ − β)TL(LT Φ̂AL)−1LT (β̂)|σ̂
}

=
2

l2
trace

{
(LT Φ̂AL)−1(LTV L)

}2
, since it is a quadratic form. (A18)

Using similar arguments as used in Alnosaier (2007), we approximate the following

(LT Φ̂AL)−1(LTV L) = {(LT Φ̂L) + (LT Â∗L) + (LT Ψ̂L)}−1(LTV L)

=
{

(LT Φ̂L)
(
I + (LT Φ̂L)−1(LT Â∗L) + (LT Φ̂L)(LT Ψ̂L)

)}−1
(LTV L)

=
{
I + (LT Φ̂L)−1(LT Â∗L) + (LT Φ̂L)(LT Ψ̂L)

}−1
(LT Φ̂L)−1(LTV L)

=
{
I − (LT Φ̂L)−1(LT Â∗L)− (LT Φ̂L)−1(LT Ψ̂L) +Op(n

−2)
}

(LT Φ̂L)−1(LTV L)

= (LT Φ̂L)−1(LTV L)− (LT Φ̂L)−1(LT Â∗L)(LT Φ̂L)−1(LTV L)−

(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTV L).
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Therefore

trace
{

(LT Φ̂AL)−1(LTV L)
}2

= trace
{

(LT Φ̂L)−1(LTV L)
}2 − 2trace{(LT Φ̂L)−1(LTV L)(LT Φ̂L)−1(LT Â∗L)(LT Φ̂L)−1(LTV L)} −

2trace{(LT Φ̂L)−1(LTV L)(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTV L)}+Op(n
−2)

= trace
{

(LT Φ̂L)−1(LTΦL+ LTΛL+ LTΨL)(LT Φ̂L)−1(LTΦL+ LTΛL+ LTΨL)
}
−

2trace
{

(LT Φ̂L)−1(LTΦL+ LTΛL+ LTΨL)(LT Φ̂L)−1(LT Â∗L)(LT Φ̂L)−1(LTΦL+ LTΛL+ LTΨL)
}
−

2trace
{

(LT Φ̂L)−1(LTΦL+ LTΛL+ LTΨL)(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)−1(LTΦL+ LTΛL+ LTΨL)
}

+

Op(n
−2)

= trace
{

(LT Φ̂L)−1(LTΦL)(LT Φ̂L)−1(LTΦL)
}

+ trace
{

(LT Φ̂L)−1(LTΦL)(LT Φ̂L)−1(LTΛL)
}

+

2trace
{

(LT Φ̂L)−1(LTΦL)(LT Φ̂L)−1(LTΨL)
}
−

2trace
{

(LT Φ̂L)−1(LTΦL)(LT Φ̂L)−1(LT Â∗L)(LT Φ̂L)−1(LTΦL)
}
−

2trace
{

(LT Φ̂L)−1(LTΦL)(LT Φ̂L)−1(LT Ψ̂L)(LT Φ̂L)1(LTΦL)
}

+Op(n
−2)

Using the Taylor series expansion about σ, we get

= trace
{
I + 2

r∑
l=1

(σ̂l − σl)
∂

∂σl
(LT Φ̂L)−1(LTΦL) +

r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)
∂2

∂σl∂σm
(LT Φ̂L)−1(LTΦL)

}
+

trace
{ r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)
∂

∂σl
(LT Φ̂L)−1(LTΦL)

∂

∂σm
(LT Φ̂L)−1(LTΦL)

}
+ 2trace

{
(LT Φ̂L)−1(LTΛL)

}
+

2trace
{

(LT Φ̂L)−1(LTΨL)
}
−

2trace
{

(LT Φ̂L)−1(LT Â∗L)
}
− 2trace

{
(LT Φ̂L)−1(LT Ψ̂L)

}
+Op(n

−3/2).

Using E(Ψ̂) = Ψ+O(n−2) and (A18), we approximate the expected value of the conditional variance

as follows,

E{var(F |σ̂)} =
2

l2
(l + 3A2) +O(n−3/2). (A19)

Also, using the expression of the mean i.e. (A16), we obtain

var{E(F |σ̂)} =
A1

l2
+O(n−3/2), where (A20)
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A1 =
r∑
l=1

r∑
m=1

cov(σ̂l, σ̂m)trace(ΘΦPlΦ)trace(ΘΦPmΦ).

Using (A19) and (A20) in (A17) we obtain

var(F ) =
A1

l2
+

2

l
+

6A2

l2
+O(n−3/2).

Therefore the approximate expected value and variance of the F statistic that will be used for

matching moments of λF with those of F (l, d) distribution are given as

Ẽ = 1 +
A2

l
− A4

l
,

Ṽ =
A1

l2
+

2

l
+

6A2

l2
.

This completes the proof.

A4 Implementation of Simulation Study

We derive the the required quantities for a block design experiment, where the fixed effect covariates

are generated from a Gaussian distribution. Therefore,

∂X?(γ)

∂γ1

=

(
0 : X? = X
1 : X? = γ1

)
and

∂X?(γ)

∂γ2

= 0.

Also, now we need to compute ∂σ̂2
e

∂γ and
∂σ̂2

b

∂γ . In the following, Σ = σ2
eD2 + σ2

bD1, and for our

case we take D2 = I; therefore

∂Σ

∂σ̂2
e

= D2 = I

∂Σ

∂σ̂2
b

= D1.
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The REML equations are given by:

2
∂l(σ)

∂σ2
e

= −trace(G) + YTGGY sinceD2 = I,(A21)

2
∂l(σ)

∂σ2
b

= −trace(GD1) + YTGD1GY, (A22)

where G = Σ−1 − Σ−1X?(X?Σ−1X?)−1X?TΣ−1.

Again, for notational convenience, we will replace X? by X. To obtain MLE of σ2
e and σ2

b , we

need to set the equations (A21) and (A22) to zero.∣∣∣∣ ∂l∂σ2
e

∣∣∣∣
σ2
e=σ̂

2
e ,σ

2
b=σ̂

2
b

= 0,

=⇒ trace(G(σ̂(γ))) = YTG(σ̂(γ))G(σ̂(γ))Y

=⇒ ∂

∂γ
trace(G(σ̂(γ))) =

∂

∂γ
{YTG(σ̂(γ))G(σ̂(γ))Y}. (A23)

and ∣∣∣∣ ∂l∂σ2
b

∣∣∣∣
σ2
e=σ̂

2
e ,σ

2
b=σ̂

2
b

= 0,

=⇒ trace(G(σ̂(γ))D1) = YTG(σ̂(γ))D1G(σ̂(γ))Y

=⇒ ∂

∂γ
trace(G(σ̂(γ))D1) =

∂

∂γ
{YTG(σ̂(γ))D1G(σ̂(γ))Y}. (A24)

Let us consider the LHS (left hand side) of equation (A21)

∂

∂γ
trace{G(σ̂(γ))}

= [trace(Σ−1(σ̂(γ)))− trace{Σ−1(σ̂(γ))X(γ)(XT (γ)Σ−1(σ̂(γ))X)−1XT (γ)Σ−1(σ̂(γ))}]

= { ∂

∂σ̂2
e

trace(Σ−1(σ̂(γ)))
∂σ̂2

e

∂γ
+

∂

∂σ̂2
b

trace(Σ−1(σ̂(γ)))
∂σ̂2

b

∂γ
} − ∂

∂γ
(trace(M(γ))),where

M = Σ−1(σ̂(γ))X(γ)(XT (γ)Σ−1(σ̂(γ))X)−1)XT (γ)Σ−1(σ̂(γ)),

= trace(
∂traceΣ−1(σ̂(γ))

∂Σ

∂Σ

∂σ̂2
e

)
∂σ̂2

e

∂γ
+ trace(

∂trace(Σ−1(σ̂(γ)))

∂Σ

∂Σ

∂σ̂2
b

)− ∂

∂γ
(trace(M(γ)))

= trace(−Σ(σ̂(γ))−2TD2)
∂σ̂2

e

∂γ
+ trace(−Σ(σ̂(γ))−2TD1)

∂σ̂2
b

∂γ
− trace(

∂M(γ)

∂γ
). (A25)
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We need to explicitly solve one of the terms in (A25),

∂M(σ̂(γ))

∂γ
=

∂Σ−1(σ̂(γ))

∂γ
X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ)) + (A26)

Σ−1(σ̂(γ))(
∂X(γ)

∂γ
){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ)) + (A27)

Σ−1(σ̂(γ))X(γ)
∂{XT (γ)Σ−1(σ̂(γ))X(γ)}−1

∂γ
XT (γ)Σ−1(σ̂(γ)) + (A28)

Σ−1(σ̂(γ))X{XT (γ)Σ−1(σ̂(γ))X(γ)}−1∂X(γ)

∂γ
Σ−1(σ̂(γ)) + (A29)

Σ−1(σ̂(γ))X{XT (γ)Σ−1(σ̂(γ))X(γ)}−1∂Σ−1(σ̂(γ))

∂γ
. (A30)

Further, we need to solve all the terms A26-A30 separately using standard matrix calculus.

Therefore consider (A26),(
∂Σ−1(σ̂(γ))

∂σ̂2
e

· ∂σ
2
e

∂γ
+
∂Σ−1(σ̂(γ))

∂σ̂2
b

· ∂σ̂
2
b

∂γ

)
X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

=

{
(−Σ−1(σ̂(γ))D2Σ

−1(σ̂(γ))
∂σ̂2

e

∂γ
)− (Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ))
∂σ̂2

b

∂γ
)

}
·X{XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ)). (A31)

Solving (A28) we get,

−Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1
{
∂XT (γ)

∂γ
Σ−1(σ̂(γ))X(γ)

−XT (γ)Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))X(γ)

∂σ̂2
e

∂γ
−XT (γ)Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ))X
∂σ̂2

b

∂γ

+XTΣ−1(σ̂(γ))
∂X(γ)

∂γ

}
{XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ)). (A32)

Solving (A30) we get,

Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1
{
− Σ−1(σ̂(γ))D2Σ

−1(σ̂(γ))
∂σ̂2

e

∂γ

−Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))

∂σ̂2
b

∂γ

}
. (A33)
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Substituting the expressions from (A27), (A29), (A31), (A32) and (A33) we get,

∂M(σ̂(γ))

∂γ

=
∂σ̂2

e

∂γ

{
− Σ−1(σ̂(γ))D2Σ

−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))

}
+
∂σ̂2

b

∂γ

{
− Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))

}
+Σ−1(σ̂(γ))

∂X(γ)

∂γ
{XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))
∂XT (γ)

∂γ
Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))XT (γ)Σ−1(σ̂(γ))
∂X

∂γ
Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1∂X
T (γ)

∂γ
Σ−1(σ̂(γ)). (A34)
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Now substituting (A34) in (A25), we obtain the following,

∂trace(G(σ̂(γ)))

∂γ

=
∂σ̂2

e

∂γ

{
trace(−Σ(σ̂(γ))−2TD2)

+trace(Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ)))

−trace(Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ)))

+trace(Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ)))

}
+
∂σ̂2

b

∂γ

{
trace(−Σ(σ̂(γ))−2TD1)

+trace(Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ)))

−trace(Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ)))

+trace(Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ)))

}
−trace(Σ−1(σ̂(γ))

∂X(γ)

∂γ
{XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ)))

+trace(Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))
∂XT (γ)

∂γ
Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ)))

+trace(Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))
∂X(γ)

∂γ
Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ)))

−trace(Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1∂X
T (γ)

∂γ
Σ−1(σ̂(γ))). (A35)

Moving on, we compute the RHS (right hand side) of equation (A23),

∂

∂γ
(YTG(σ̂(γ))G(σ̂(γ))Y) = YT ∂G(σ̂(γ))

∂γ
G(σ̂(γ))Y + YTG(σ̂(γ))

∂G(σ̂(γ))

∂γ
Y. (A36)

Consider,

∂G(σ̂(γ))

∂γ
=

∂

∂γ
{Σ−1(σ̂(γ))− Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))}

= −Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))

∂σ̂2
e

∂γ
− ∂M(σ̂(γ))

∂γ
. (A37)
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Now using (A34) in (A37), we get,

∂

∂γ
(YTG(σ̂(γ))G(σ̂(γ))Y)

=
∂σ̂2

e

∂γ

{
− Σ−1(σ̂(γ))D2Σ

−1(σ̂(γ))

+Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))

}
+
∂σ̂2

b

∂γ

{
− Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ))

+Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))

}
−Σ−1(σ̂(γ))

∂X(γ)

∂γ
{XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))
∂XT (γ)

∂γ
Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))
∂X(γ)

∂γ
Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1∂X
T (γ)

∂γ
Σ−1(σ̂(γ)). (A38)

For notational convenience let us define three new quantities U, U1 and V as follows,

U =

{
Σ−1(σ̂(γ))D2Σ

−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1Σ−1(σ̂(γ))D2Σ
−1(σ̂(γ))

}
, (A39)
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U1 =

{
Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1Σ−1(σ̂(γ))D1Σ
−1(σ̂(γ))

}
, (A40)

and

V = −Σ−1(σ̂(γ))
∂X(γ)

∂γ
{XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))
∂XT (γ)

∂γ
Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

+Σ−1(σ̂(γ))X(γ)Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))
∂X(γ)

∂γ
Φ(σ̂(γ))XT (γ)Σ−1(σ̂(γ))

−Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1∂X
T (γ)

∂γ
Σ−1(σ̂(γ)). (A41)

Now, substituting the equations (A38), (A39), (A40), (A41) in (A36) we get RHS of (A23) as

YT{∂σ̂
2
e

∂γ
(−Σ−1(σ̂(γ))D2Σ

−1(σ̂(γ)) + U) +
∂σ̂2

b

∂γ
(−Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ)) + U1) + V }G(σ̂(γ))Y

+YTG(σ̂(γ)){∂σ̂
2
e

∂γ
(−Σ−1(σ̂(γ))D2Σ

−1(σ̂(γ)) + U) +
∂σ̂2

b

∂γ
(−Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ)) + U1) + V }Y

=
∂σ̂2

e

∂γ
{YTUGY + YTGUY −YTΣ−1(σ̂(γ))D2Σ

−1(σ̂(γ))−YTGΣ−1(σ̂(γ))D2Σ
−1(σ̂(γ))Y}

+
∂σ̂2

b

∂γ
{YTU1GY + YTGU1Y −YTΣ−1(σ̂(γ))D1Σ

−1(σ̂(γ))−YTGΣ−1(σ̂(γ))D1Σ
−1(σ̂(γ))Y}

+YTV GY + YTGVY. (A42)
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Equating the RHS (A42) and LHS (A35) of (A21) we get,

∂σ̂2
e

∂γ

{
trace(−Σ(σ̂(γ))−2TD2)

+trace(U)−YTUGY −YTGUY + YTΣ−1(σ̂(γ))D2Σ
−1(σ̂(γ))GY + YTGΣ−1(σ̂(γ))D2Y

}
+
∂σ̂2

b

∂γ

{
trace(−Σ(σ̂(γ))−2TD1)

+trace(U1)−YTU1GY −YTGU1Y + YTΣ−1(σ̂(γ))D1Σ
−1(σ̂(γ))GY + YTGΣ−1(σ̂(γ))D1Y

}
= YTV GY + YTGVY − trace(V ). (A43)

Similarly, we need to solve both sides of the equation (A22). Consider the LHS

∂

∂γ
{trace(Σ−1(σ̂(γ))D1 − Σ−1(σ̂(γ))X(γ){XT (γ)Σ−1(σ̂(γ))X(γ)}−1XT (γ)Σ−1(σ̂(γ))D1)}

=
∂

∂σ̂2
e

trace(Σ−1(σ̂(γ))D1)
∂σ̂2

e

∂γ
+

∂

∂σ̂2
b

trace(Σ−1(σ̂(γ))D1)
∂σ̂2

b

∂γ
− ∂

∂γ
(trace(M(γ)D1))

= trace{ ∂
∂Σ

trace(Σ−1(σ̂(γ))D1)
∂Σ

∂σ̂2
e

}+ trace{ ∂
∂Σ

trace(Σ−1(σ̂(γ))D1)
∂Σ

∂σ̂2
b

}∂σ̂
2
b

∂γ

− ∂

∂γ
trace(M(γ)D1). (A44)

Now,

∂

∂γ
trace(M(γ)D1) = trace(

∂MD1

γ
)

= trace(
∂M

∂γ
·D1)

= trace{(−∂σ̂
2
e

∂γ
U − ∂σ̂2

b

∂γ
U1 − V ) ·D1}

= trace(−UD1)
∂σ̂2

e

∂γ
− trace(U1D1)

∂σ̂2
b

∂γ
− trace(V D1). (A45)

Using (A45) in (A44), we get

∂

∂γ
trace(GD1) =

∂σ̂2
e

∂γ
{−trace(−Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ)))TD2 + trace(UD1)}

+
∂σ̂2

b

∂γ
{−trace(−Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ)))TD1 + trace(U1D1)}

+trace(V D1). (A46)
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Solving RHS of (A24) we get,

∂

∂γ
(YTGD1GY)

= YT (
∂G

∂γ
)D1GY + YTGD1

∂G

∂γ
Y

= YT

{
∂σ̂2

e

∂γ
(U − Σ−1(σ̂(γ))D2Σ

−1(σ̂(γ)))

+
∂σ̂2

b

∂γ
(U1 − Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ))) + V

}
D1GY

+YTGD1

{
∂σ̂2

e

∂γ
(U − Σ−1(σ̂(γ))D2Σ

−1(σ̂(γ)))

+
∂σ̂2

b

∂γ
(U1 − Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ))) + V

}
Y

=
∂σ̂2

e

∂γ

{
YTUD1GY + YTGD1UY −YTΣ−1(σ̂(γ))D2Σ

−1(σ̂(γ))D1GY

−YTGD1Σ
−1(σ̂(γ))D2Σ

−1(σ̂(γ))Y

}
+
∂σ̂2

b

∂γ

{
YTU1D1GY + YTGD1U1Y

−YTΣ−1(σ̂(γ))D1Σ
−1(σ̂(γ))D1GY −YTGD1Σ

−1(σ̂(γ))D1Σ
−1(σ̂(γ))Y

}
+YTV D1GY −YTGD1VY. (A47)

Therefore, equating LHS (A46) = RHS (A47) we get,

∂σ̂2
e

∂γ

{
− trace((Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ)))TD2) + trace(UD1)−YTUD1GY

−YTGD1UY + YTΣ−1(σ̂(γ))D2Σ
−1(σ̂(γ))D1GY + YTGD1Σ

−1(σ̂(γ))D2Σ
−1(σ̂(γ))Y

}
+
∂σ̂2

b

∂γ

{
− trace((Σ−1(σ̂(γ))D1Σ

−1(σ̂(γ)))TD1) + trace(U1D1)−YTU1D1GY

−YTGD1U1Y + YTΣ−1(σ̂(γ))D1Σ
−1(σ̂(γ))D1GY + YTGD1Σ

−1(σ̂(γ))D1Σ
−1(σ̂(γ))Y

}
= YTV D1GY + YTGD1VY − trace(V D1). (A48)

Finally, we can solve the equations (A43) and (A48) simultaneously to obtain ∂σ̂2
e/∂γ and

∂σ̂2
b/∂γ.

Remark: Here we have derived the quantities to implement the simulation for a study with
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one random effect. In the studies, which have more than one random effect, similar method can be

used to derive the required quantities.
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Simulation Study Results

Table 1: Here we present Type-I error probabilities for the test H0 : β = 0 at the 5% level of
significance when ρ = σ2

b/σ
2
e , m = 15 and ni = 2 for all i = 1, . . . , 15. Here KRM, LD-LRT,

MI-LRT and MI-KRT refer to Kenward-Roger adjustment for missing covariates, listwise deletion
followed by likelihood ratio test, mean imputation followed by likelihood ratio test, mean imputation
followed by Kenward-Roger test with no adjustment for missingness.

Percentage of ρ KRM LD-LRT MI-LRT MI-KRT
missing data

20 0.25 0.049 0.148 0.113 0.057
0.5 0.055 0.246 0.122 0.065

1 0.059 0.152 0.120 0.068
2 0.057 0.188 0.127 0.067
4 0.063 0.173 0.129 0.075

40 0.25 0.042 0.298 0.112 0.054
0.5 0.057 0.205 0.126 0.070

1 0.052 0.375 0.123 0.066
2 0.058 0.375 0.130 0.070
4 0.063 0.415 0.124 0.073
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Table 2: Here we present Type-I error probabilities for the test H0 : β = 0 at the 5% level of
significance when ρ = σ2

b/σ
2
e , m = 30 and ni = 2 for all i = 1, . . . , 30. Here KRM, LD-LRT,

MI-LRT, MI-KRT and MI-WT refer to Kenward-Roger adjustment for missing covariates, listwise
deletion followed by likelihood ratio test, mean imputation followed by likelihood ratio test, mean
imputation followed by Kenward-Roger test with no adjustment for missingness.

Percentage of ρ KRM LD-LRT MI-LRT MI-KRT
missing data

20 0.25 0.044 0.085 0.078 0.049
0.5 0.055 0.083 0.087 0.060

1 0.050 0.094 0.082 0.056
2 0.055 0.106 0.083 0.059
4 0.047 0.088 0.079 0.052

40 0.25 0.047 0.100 0.073 0.045
0.5 0.048 0.143 0.081 0.053

1 0.048 0.104 0.072 0.051
2 0.051 0.217 0.079 0.055
4 0.048 0.169 0.076 0.053
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Table 3: Here we present Type-I error probabilities for the test H0 : β = 0 at the 5% level of
significance when ρ = σ2

b/σ
2
e , m = 15 and ni = 2 for all i = 1, . . . , 30 when the missing mechanism

is MAR. Here KRM, LD-LRT, MI-LRT and MI-KRT refer to Kenward-Roger adjustment for missing
covariates, listwise deletion followed by likelihood ratio test, mean imputation followed by likelihood
ratio test, mean imputation followed by Kenward-Roger test with no adjustment for missingness.

ρ KRM LD-LRT MI-LRT MI-KRT
0.25 0.058 0.103 0.102 0.057
0.5 0.053 0.114 0.091 0.051

1 0.050 0.164 0.103 0.063
2 0.049 0.117 0.089 0.047
4 0.063 0.141 0.099 0.065
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Table 4: Here we present Type-I error probabilities for the test H0 : β = 0 at the 5% level of
significance when ρ = σ2

b/σ
2
e , m = 15 and ni = 2 for all i = 1, . . . , 30 when the partially missing

(20% missing) covariate is generated from heavy tailed distributions. Here KRM, LD-LRT, MI-LRT
and MI-KRT refer to Kenward-Roger adjustment for missing covariates, listwise deletion followed by
likelihood ratio test, mean imputation followed by likelihood ratio test, mean imputation followed
by Kenward-Roger test with no adjustment for missingness.

Distribution ρ KRM LD-LRT MI-LRT MI-KRT
Laplace(0,2) 0.25 0.052 0.106 0.095 0.053

0.5 0.056 0.115 0.102 0.056
1 0.049 0.185 0.094 0.047
2 0.049 0.170 0.099 0.047
4 0.051 0.199 0.100 0.055

Student’s t(1) 0.25 0.050 0.153 0.099 0.046
0.5 0.051 0.105 0.096 0.057

1 0.047 0.137 0.104 0.047
2 0.055 0.142 0.105 0.061
4 0.059 0.139 0.107 0.061
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