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Abstract. The Gini index and its variant are widely used as a mea-

sure of income inequality. Finding reliable estimators of these measures

and studying its asymptotic properties has been an important area of

research in the last two decades. Due to the fragmentation of literature

among statistician and economist, several results in this direction have

been republished often with a clear lack of reference to previous work. In

this paper, we propose a simple unique approach to find the estimators

of different income inequality measures. Asymptotic properties of these

estimators can be proved in an identical way. The method described here

provides an explicit formula for finding the asymptotic variance of the

proposed estimators. A consistent estimator of the asymptotic variance

can also find by plug-in method. We bring several research problems

related to the estimation of Gini index and related concepts into our

uniform framework. The asymptotic distribution obtained for Gini co-

variance has far reaching consequence due to its potential application in

non-linear time series analysis.
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1. Introduction

Large number of indices of economic inequality, compatible with various ax-

ioms of fairness, has been proposed in the literature. Most of these measures

are generalizations of the Gini mean difference, placing smaller or greater

weights on various portions of the income distribution. We refer readers

to Yitzhaki and Schechtman (2005, 2013), Davidson (2009), Peng (2011),

Shelef and Schechtman (2011), Ceriani and Verme (2012), Langel and Tille

(2013), Kattumannil and Dewan (2013) and Carcea and Serfling (2014) for

the discussion of the area and main references. Among these Ceriani and

Verme (2012) has given an overview on the origin and development of Gini

index and provided a list of different expressions of the Gini index. Langel

and Tille (2013) survey a large part of the literature related to the topic and

show that the same results, as well as the same errors, have been repub-

lished several times, often with a clear lack of reference to previous work.

They also reviewed several linearization techniques for approximating the

variance of a non-linear statistic to derive the variance estimator of the Gini

index.

Yitzhaki and Schechtman (2013) depicted the development and the under-

standing of the Gini index and its applications in statistics and economics.

This book by Yitzhaki and Schechtman (2013) represents a useful primer on

the Gini methodology. The first part of the book (Chapters 2-12) presented

the development and inference procedure related to a family of parameters

based on Gini mean difference: the Gini index, the Gini covariance, the Gini

correlation, the Extended Gini index and the Gini parameters of a regres-

sion, among others. The second part (Chapters 12-22) is devoted to discuss
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the applications of these inequality indices in statistics, finance and econom-

ics. In Chapter 23, they discuss several open problems related to regression

and time series analysis.

Based on Gini autocovariance function (GACF), Serfling (2010) and Carcea

and Serfling (2014) have laid a theoretical foundation for analysing time se-

ries with heavy tail innovations. Using GACF they developed a general esti-

mation procedure to find the parameters involved in the linear model where

they illustrated their technique for the autoregressive, moving average, and

ARMA models. They also illustrated the role of the GACF in analyzing the

nonlinear autoregressive Pareto process. In parallel to (GACF), Shelef and

Schechtman (2011) defined Gini partial autocovariance function (GPACF)

and used the Gini-based methodology for identifying and analyzing time

series with non-normal innovations. Since the Gini methodology is a rank

based methodology, which takes into account both the variate values and

the ranks it has great significance in time series analysis. As it relies only

on first order moment assumptions it is a valid tool for analysis time series

with stable innovations.

Shelef (2014) developed a new Gini based unit root test. This test is based

on the well-known Dickey-Fuller test, where the ordinary least squares re-

gression coefficient is replaced by Gini parameter of regression. Shelef (2014)

used the bootstrap technique for finding the critical values of the test as it

is difficult to find the exact or/and asymptotic null distribution of the test

statistic. This motivate us to propose a general method to find the asymp-

totic properties of the estimators of Gini index and its variant. In due course

we propose a class of estimators where the estimators of different inequality

indices can be derived from it. Moreover, making use of the asymptotic the-

ory developed here one can solve the most of the open problems involving

Gini index and its variant.
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The paper is organized as follows. In Section 2 we propose a class of

estimators for finding the estimators of several income inequality measures.

It enables us to find the asymptotic distribution of the estimators so ob-

tained in a unified fashion. The method also suggest a tool for finding the

asymptotic variance of the proposed estimators. We bring several research

problems related to the estimation of Gini index and related indices into our

uniform framework. In Section 3, we discuss some open problems that can

be carried out as further research in this area.

2. Estimation and Asymptotic of income inequality measures

Mainly two methods are available in literature for finding the estimators of

Gini index and its variants; one based on U-statistics and another based on

empirical distribution function. In the first case, the Gini index is expressed

as an expectation of a function of random variables and then one finds a

U-statistic which is an unbiased estimator of the Gini index. In this method

studying asymptotic properties of the estimators are simple and straight

forward. See Xu (2007) and Kattumannil and Dewan (2013) for a detailed

discussion of estimation of Gini index based on U-statistics.

In the second case, the Gini index is expressed as an integral of a quantity

involving the underlying distribution function, which is then estimated by

replacing the distribution function by the empirical distribution function.

Studying the asymptotic properties of these estimators is not simple and

requires several algebraic manipulations, see Davidson (2009) to get a flavour

of it. Since the empirical distribution function is a consistent and sufficient

estimator of the cumulative distribution function, this method has its own

relevance. We refer to Peng (2011) for a recent discussion on the inference

of Gini index based on empirical distribution function.
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As pointed out earlier, finding the reliable estimators of the Gini index

has been subject to numerous publications. Hence an attempt is made here

to propose (rediscover) a class of estimators that can be used to find the

estimators of different inequality indices.

Let (X,Y ) be a bivariate random vector with joint distribution function

FXY . Also let FX and FY be the respective marginal distribution functions.

We assume that the first moment of these random variables is finite. Sup-

pose (X1, Y1), ...,(Xn, Yn) are independent and identically distributed as the

bivariate random vector (X,Y ). Then the i-th ordered X variate is denoted

by Xi:n and associate Y variate paired with the Xi:n, the concomitant of

the i-th order statistics by Y[i:n]. Under the above formulation, consider the

statistic of the form

T (Fn) =
1

n

n∑
i=1

J(
i

n
)h(Xi:n, Y[i:n]), (1)

where J is a bounded smooth function, h(x, y) is a real valued function of

(x, y) and Fn is the empirical distribution function of F . Clearly T (Fn) is a

natural plug-in estimator of the integral of the form

T (F ) =

∫ ∞
0

∫ ∞
0

J(FX(x))h(x, y)dFXY (x, y). (2)

Some of the properties of T (Fn) are first discussed by Yang (1981) in the

context of non-parametric estimation of a regression function.

The form of the estimator (1) gives a unique way to find the estimators

of different income inequality measures. Consequently, while finding the

estimators our task is reduces to rewrite these inequality measures in the

form of T (F ). The consistency of T (Fn) is proved in the following theorem.

Theorem 1. If E|h(x, y)| < ∞, then as n → ∞, T (Fn) converge to T (F )

in probability.
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Proof: Note that J(.) is a smooth function bounded by one. It is well-

known that the Fn(x, y) converges uniformly to FXY (x, y). Hence the proof

of the theorem is trivial.

The asymptotic distributions of T (Fn) have been obtained by Yang (1981)

and Sandstrom (1987). Under quite mild conditions Yang (1981) established

the asymptotic normality of
√
n(T (Fn)−E(T (Fn))) using Hajek’s projection

lemma. Using a stochastic Gateaux differential, Sandstrom (1987) proved

the asymptotic normality of
√
n(T (Fn)− T (F )).

Next we introduce some notation. Let

αh(x) = E(h(X,Y )|X = x) (3)

and

τ2h(x) = V (h(X,Y )|X = x). (4)

Also let

σ2 = σ211 + σ222, (5)

where

σ211 =

∫ ∞
0

∫ ∞
0

[
min{FX(x), FX(z)} − FX(X)FX(z)

]
J(FX(x))J(FX(z))dαh(x)dαh(z) (6)

and

σ222 =

∫ ∞
0

J2(FX(x))τ2h(x)dFX(x). (7)

Theorem 1. Assume αh(x) is right continuous and that J is bounded in

[0, 1] and differentiable. Also assume that αh(x) and τ2h(x) are finite. Sup-

pose, σ2 is as defined in (5), then as n→∞, the distribution of
√
n((T (Fn)−

T (F ))/σ converges to standard normal distribution.
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Proof: The proof is immediate from Theorem 1 of Sandstrom (1987) by

taking uniform weight in weighted empirical distribution function proposed

by Koul (1970).

We will use this theorem to derive the asymptotic distribution of the

estimators of different inequality measures. This shows the advantages of

our task over the work done by Davidson (2009), Peng (2011), among others.

2.1. Estimation of Gini index. Before presenting the methodology, we

briefly review the concepts of Gini mean difference and Gini index which

will be the main focus of the present study.

Definition 1. The Gini mean difference is defined as

GMD = E|X1 −X2|, (8)

where X1 and X2 are the independent and identical copies of X.

The Gini mean difference was first introduced by Corrado Gini in 1912

as an alternative measure of variability. Gini mean difference and different

parameters which are derived from it have been widely using in the area of

income distribution. Note that

|X1 −X2| = max(X1, X2)−min(X1, X2).

Hence Gini mean difference can be expressed as

GMD = E(max(X1, X2)−min(X1, X2)). (9)

Accordingly, Gini mean difference can be interpreted as the expected differ-

ence between the maximum and the minimum of two random draws from

FX . The Gini index is defined in connection with the Gini mean difference

as below.
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Definition 2. The Gini index is defined as

GI =
E|X1 −X2|

2µ
, (10)

where µ =
∫
xdFX(x).

Clearly, the Gini index is the scaled version of half of the Gini mean

difference. The estimation problem of the Gini index mainly concentrated

on finding plug-in estimators of the Gini index with reliable standard errors.

This is achieved by expressing the Gini index in different forms involving

cumulative distribution function (Yitzhaki, 1998) and then finds a plug-in

estimator of it.

Even though the expression (9) is useful to connect the Gini index to

the Gini mean difference, Gini index is usually defined either through the

Lorenz curve or through covariance identity involving cumulative distribu-

tion function. The Lorenz curve denoted by L(.) is defined by the equation

L(F (x)) =
1

µ

∫ x

0
ydF (y). (11)

If X represents the annual income, L(p)(p = FX(x)) is the proportion of the

total income that accrues to the individuals having 100p% lowest income.

In terms of Loreze curve the Gini index is defined as

GI = 2

∫ 1

0
(z − L(z)))dz

= 1− 2

∫ 1

0
L(z)dz. (12)

In fact, from equation (12), it can be seen that the Gini index is the twice

the area between the Lorenz curve and egalitarian line. This interpretation

makes the Gini index as the most popular measure of income inequality.
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By simple algebra, we can show that the expression given in (12) is same

as

GI =
2

µ

∫ ∞
0

yF (y)dF (y)− 1.

One can also write the above expression as follows:

G =
2

µ
Cov(X,FX(X)). (13)

That is, for given FX , the Gini index is simply the covariance between X

and FX . This expression has great significance while studying the estimation

problem related to the regression parameters as one needs to decompose the

population Gini index.

Next we derive the estimators of Gini mean difference and Gini index

from (1).

By simple algebra we can rewrite the equation (9) as

GMD =

∫ ∞
0

2xFX(x)dFX(x)−
∫ ∞
0

2x(1− FX(x))dFX(x)

= 4

∫ ∞
0

xFX(x)dFX(x)− 2

∫ ∞
0

xdFX(x)

= 2

∫ ∞
0

(2FX(x)− 1)xdFX(x)

= 2

∫ ∞
0

∫ ∞
0

(2FX(x)− 1)xdFXY (x, y). (14)

By taking J = (2FX(x)− 1), h(x, y) = 2x, the equation (14) coincides with

(2). Hence from (1), we obtain the following estimator of the Gini mean

difference

ĜMD =
2

n2

n∑
i=1

(2i− n)Xi:n. (15)
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Note that 1
n

∑n
i=1Xi is an unbiased estimator of µ. Hence an estimator of

Gini index is given by

ĜI =

∑n
i=1(2i− n)Xi:n

n
∑n

i=1Xi
. (16)

Next we obtain the asymptotic distribution of the above estimators using

Theorem 2.

Corollary 1. As n → ∞, the distribution of
√
n(ĜMD − GMD)/σ1 con-

verges to standard normal distribution, where σ1 is given by

σ21 = 4

∫ ∞
0

∫ ∞
0

[
min{FX(x), FX(z)} − FX(x)FX(z)

]
(2FX(x)− 1)(2FX(z)− 1)dxdz.

Proof: The asymptotic normality follows from Theorem 2. Note that

αh(x) = 2x, τ2h(x) = 0 and J = (2FX(x) − 1), hence from (5) we have

the variance expression given as in Corollary 1.

Corollary 2. As n→∞, the distribution of
√
n(ĜI −GI)/σ2 converges to

standard normal, where σ2 is given by

σ22 =
σ21
4µ2

.

Proof: Clearly X̄ = 1
n

∑n
i=1Xi is a consistent estimator of µ. Hence the

proof follows by applying the Slutsky’s theorem in the Corollary 1.

We realize that several estimators of the Gini mean difference and the Gini

index available in literature can be obtained from (1) and we illustrated it for

Davidson (2009) estimator. Davidson (2009) obtained a plug-in estimator

of the Gini index by expressing it in the form

GI =
2

µ

∫ ∞
0

xFX(x)dFX(x)− 1,
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which is can be rewritten as

GI =
1

µ

∫ ∞
0

∫ ∞
0

x(2FX(x)− 1)dFXY (x, y).

Note that the above equation is of the form T (F ). Hence the asymptotic

normality of Davidson (2009) estimator follows from Theorem 2. In fact it

reduces to the mathematical complexity involving in finding the asymptotic

variance of Davidson estimator. This shows the advantages of our task over

the work done by Davidson (2009).

2.2. Estimation of Extended Gini index. The extended Gini index is a

family of inequality measures that depends on one parameter, the extended

Gini parameter. This measure is widely used in finance. By choosing a

member of the family, the investigator can perform a sensitivity analysis and

can evaluate the robustness of the result. For more details see Chapter 6 of

Yitzhaki and Schechtman (2013). Next we give the definition of extended

Gini index and relative extended Gini index.

Definition 3. The extended Gini index is defined as (Yitzhaki, 1983)

EG(v) = −vCov(X, F̄ v−1
X (X)), v > 0 v 6= 1, (17)

where F̄X(x) = 1− FX(x).

Definition 4. The relative extended Gini index is defined as

REG(v) =
−v
µ
Cov(X, F̄ v−1

X (X)), v > 0 v 6= 1. (18)

Similar to the Gini index, the value of the relative extended Gini index for

non-negative distributions lies between zero and one where only difference

is in the weighting scheme that applied to the vertical distance between the

egalitarian line and the Lorenz curve. In view of the equation (13), it can
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be easily verified that the relative extended Gini index with v = 2 reduces

to the Gini index.

Next, to find the estimator of the extended Gini index we express it in

the form of (2). The expression (17) can be rewritten as

EG(v) =

∫ ∞
0

∫ ∞
0

x(1− vF̄ v−1(x))dFXY (x, y).

For J = (1 − vF̄ v−1), h(x, y) = x the above expression coincides with (2).

Then from (1) we obtain the following estimator of the extended Gini index

ÊG(v) =

∑n
i=1(n

v−1 − v(n− i)v−1)Xi:n

nv
. (19)

The estimator of the relative extended Gini index is given by

ÊG(v) =

∑n
i=1(n

v−1 − v(n− i)v−1)Xi:n

nv−1
∑n

i=1Xi
. (20)

Since the above estimators are obtained from (1), the asymptotic normality

of these estimators can be established using the Theorem 2.

Corollary 3. As n→∞, the distribution of
√
n(ÊG(v)−EG(v))/σ3 con-

verges to standard normal, where σ3 is given by

σ23 =

∫ ∞
0

∫ ∞
0

[
min{FX(x), FX(z)} − FX(x)FX(z)

]
(1− vF̄ (v−1)

X (x))(1− vF̄ (v−1)
X (z))dxdz.

Proof: The proof is similar to that of the Corollary 1.

Since X̄ = 1
n

∑n
i=1 is a consistent estimator of µ we have the following

result for the asymptotic normality of the relative extended Gini index.



13

Corollary 4. As n → ∞, the distribution of
√
n(R̂EG(v) − REG(v))/σ4

converges to standard normal, where σ4 is given by

σ24 =
σ23
µ2
.

Next we show that some of the existing result related to the estimation of

extended Gini index can be brought in to our uniform framework.

Zitikis and Gastwirth (2002) obtained the asymptotic distribution of the

relative extended Gini index by expressing it as

REG(v) = 1− v

µ

∫ 1

0
F−1X (1− t)v−1dt.

By substituting t = F̄ (x) and rearranging terms we obtain

REG(v) =
1

µ

∫ ∞
0

x(1− vF̄ v−1(x))dFX(x).

Equivalently

REG(v) =
1

µ

∫ ∞
0

∫ ∞
0

x(1− vF̄ v−1(x))dFXY (x, y),

which is of the form (2). Hence their asymptotic result can be obtained from

Theorem 2.

Remark 1. Using the empirical quantile process approach Barrett and Don-

ald (2009) developed a general large sample asymptotic theory for various

indices of inequality, including relative extended Gini index. As their result

of relative extended Gini index is based on the expression provided by Zitikis

and Gastwirth (2002), their work on relative extended Gini index also comes

under our uniform frame work.

2.3. Estimation of Gini covariance. The representation of Gini mean

difference in terms of covariance between X and FX(X) leads to number

of parameters similar to covariance, correlation and regression coefficient.
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This parameters are very much useful in non-linear regression and time

series analysis. The following definitions are essential for our discussion.

Definition 5. The Gini covariance between Y and X is defined as

C(Y,X) = 4Cov(Y, FX(X)). (21)

Definition 6. The Gini correlation between Y and X is defined as

ρg(Y,X) =
Cov(Y, FX(X))

Cov(Y, FY (Y ))
. (22)

Definition 7. The Gini regression parameter of Y on X is defined as

βg(Y,X) =
Cov(Y, FX(X))

Cov(X,FX(X))
. (23)

Similarly, one can define the Gini covariance, Gini correlation betweenX and

Y and regression parameter ofX on Y and we denote it as C(X,Y ), ρg(X,Y )

and βg(X,Y ), respectively.

Remark 2. Note that ρg(X,Y ) 6= ρg(Y,X) in general. If the distribution

of (X,Y ) is exchangeable up to a linear transformation then ρg(X,Y ) =

ρg(Y,X). Moreover, if the distribution of (X,Y ) is bivariate normal, then

ρg(X,Y ) = ρg(Y,X) = ρ, where ρ is the Pearson’s correlation coefficient.

For more details about Gini covariance and Gini correlation we refer to

Schechtman and Yitzhaki (1987). Under bivariate normal assumption of

the random vector (X,Y), the Gini regression parameter of Y on X reduces

to the ordinary least square regression coefficient of Y on X.
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Next we obtain the estimators of these parameters from (1). Rewrite the

expression given in (21) as

C(Y,X) = 4Cov(Y, FX(X))

= 4

∫ ∞
0

∫ ∞
0

yFX(x)dFXY (x, y)− 4

2

∫ ∞
0

ydFY (y)

= 2

∫ ∞
0

∫ ∞
0

y(2FX(x)− 1)dFXY (x, y). (24)

By taking J = (2FX(x) − 1) and h(x, y) = 2y, the equation (24) takes the

form (2). Hence an estimator of C(Y,X) is given by

Ĉ(Y,X) =
2

n2

n∑
i=1

(2i− n)Y[i:n]. (25)

From equations (15) and (25) we have the estimator of ρg(Y,X) given by

ρ̂g(Y,X) =

∑n
i=1(2i− n)Y[i:n]∑n
i=1(2i− n)Yi:n

, (26)

where Yi:n is the i-th order statistics from the sample Y1, ..., Yn. Similarly an

estimator of the βg(Y,X) is given by

β̂g(Y,X) =

∑n
i=1(2i− n)Y[i:n]∑n
i=1(2i− n)Xi:n

. (27)

Using the above estimators and the asymptotic theory developed here one

can solve the most of the open problems related to hypothesis testing in-

volving Gini based parameters. For example, the estimator of βg(Y,X) can

be used in the Gini based unit root test introduced by Shelef (2014). The

critical values of the respective test can be obtained using the following

asymptotic result.
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Corollary 5. As n → ∞, the distribution of
√
n(Ĉ(Y,X) − C(Y,X))/σ5

converges to standard normal, where σ5 is given by

σ25 =

∫ ∞
0

∫ ∞
0

[
min{FX(x), FX(z)} − FX(x), FX(z)

]
(2FX(x)− 1)(2FX(z)− 1)dαh(x)dαh(z)

+

∫ ∞
0

(2FX(x)− 1)2dFX(x),

where αh(x) = 2E(Y |X = x) and τ2h(x) = 4V ar(Y |X = x).

Proof: For J = (2FX(x) − 1) and h(x, y) = 2y, we noticed that Ĉ(Y,X)

is of the form (1). Hence the asymptotic normality follows from Theorem

2. Moreover we have αh(x) = 2E(Y |X = x) and τ2h(x) = 4V ar(Y |X = x).

Hence the variance expression stated in the corollary can be easily obtained

from (5).

Corollary 6. As n → ∞, the distribution of
√
n(ρ̂g(Y,X) − ρg(Y,X))/σ6

converges to standard normal, where σ6 is given by

σ26 =
σ25

16Cov2(Y, FY (Y ))
.

Proof: By Theorem 1, 1
n

∑n
i=1(2i − n)Yi:n is a consistent estimator of

Cov(Y, FY (Y )). Hence using Slutsky’s theorem the results follows from

Corollary 5.

In similar line of the proof of Corollary 6 we can prove the following result

for β̂g(Y,X).

Corollary 7. As n → ∞, the distribution of
√
n(β̂g(Y,X) − βg(Y,X))/σ7

converges to standard normal, where σ7 is given by

σ27 =
σ25

16Cov2(X,FX(X))
.
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Remark 3. Schechtman and Yitzhaki (2003) defined family of correlation

coefficients based on the extended Gini index. The estimators of these family

can be derived from (1). Moreover, in similar line of Corollary 6 one can

find the asymptotic distributions of these family of correlation coefficients

using Theorem 2.

3. Conclusion

Even though, Gini index is the most widely used indicator of income in-

equality in a population, it is not a trivial measure to handle. Hence a large

number of techniques for finding the reliable estimators and computing an

asymptotically valid standard error have been proposed, of varying degrees

of complexity. In fact several of them are the reproduction of the existing

estimator with a clear lack of references to earlier work as pointed out by

Langel and Tille (2013). This motivates us to propose a unique way for

finding the estimators of different income inequality measures.

In this paper, we proposed a class of estimators that can be used to obtain

the natural plug-in estimators of different inequality indices including Gini

index. The proposed method permits us to find the asymptotic distribution

of the estimators so obtained in a unified fashion. This method also gave

an explicit expression for the variance of the estimators. We derived sev-

eral existing results on the estimation of Gini mean difference and related

parameters as special cases of our general result.

The asymptotic distribution obtained for Gini correlation has great signif-

icance due to its potential application in infinite variance time series analysis.

Recently, using Gini correlation, Carcea and Serfling (2014) gave a theoret-

ical foundation for analysing time series with heavy tail innovations. Using
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the asymptotic theory developed here one can propose different test pro-

cedure which involves Gini index and its variants. For example, using the

asymptotic distribution of Gini correlation, one can develop a test for se-

rial dependence and stationarity in the non-linear non-Gaussian time series

setup. We can also develop a Gini based unit root test using the estimator

of Gini regression parameter obtained in this paper and the ongoing work

related to this will be reported else-where.
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