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Abstract

This paper addresses the problem of fitting a known distribution function to the

marginal distribution of a stationary long memory moving average random field ob-

served on increasing ν-dimensional “cubic” domains when its mean µ and scale σ are

known or unknown. Using two suitable estimators of µ and a classical estimate of

σ, a modification of the Kolmogorov-Smirnov statistic is defined based on the residual

empirical process and having a Cauchy-type limit distribution, independent of µ, σ and

the long memory parameter d. Based on this result, a simple goodness-of-fit test for

the marginal distribution is constructed, which does not require the estimation of d or

any other underlying nuisance parameters. The result is new even for the case of time

series, i.e., when ν = 1. Findings of a simulation study investigating the finite sample

behavior of size and power of the proposed test is also included in this paper.

1 Introduction

The last two decades have seen an increasing research activity in the areas of spatial statistics

and random fields, see, e.g., the monographs of Ripley (1988), Ivanov and Leonenko (1989),

Cressie (1993), Guyon (1995), and Stein (1999). While many of these works deal with rather

simple autoregressive and point process models with short-range dependence, a number of

empirical studies ranging from astrophysics to agriculture and atmospheric sciences indicate

that spatial data may exhibit nonsummable correlations and strong dependence, see, e.g.,

Kashyap and Lapsa (1988), Gneiting (2000), Percival et al. (2008) and Carlos-Davila et al.

(1985), among others.

Many of the applied works assume Gaussian random field model, which raises the ques-

tion of goodness-of-fit testing. In the case of i.i.d. observations, the goodness-of-fit testing

problem has been well studied, see, e.g., Durbin (1973, 1975), and D’Agostino and Stephens

(1986), among others. Koul and Surgailis (2010) and Koul, Mimoto, and Surgailis (2013)
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discussed the problem of fitting a known distribution function (d.f.) to the marginal d.f. of a

stationary long memory moving average time series when its mean µ is known and unknown.

In particular, Koul et al. (2013) provided a class of weighted least squares estimators of µ for

which the weak limit of the first order difference between the residual empirical and null dis-

tribution functions is a non-degenerate Gaussian distribution, yielding a simple Kolmogorov-

type test for fitting a known distribution up to an unknown mean. In the same context, the

latter paper also obtained the asymptotic chi-square distribution of test statistics based on

integrated square difference between kernel type estimators of the marginal density of long

memory moving averages with discrete time t ∈ Z := {0,±1, · · · } and the expected value of

the density estimator based on errors.

The implementation of these tests involves the estimation of the long memory parameter

d, and some asymptotic variances which in turn depend on d and some other underlying

parameters. The task of estimating the long memory parameter d for random field data is

prohibitive, if not impossible. To circumvent this, the aim of this paper is to propose a test

for fitting a d.f. to the marginal distribution of a long memory random field without needing

to estimate d. We note that the present paper as well as the above-mentioned goodness-

of-fit studies under long memory deal exclusively with the case d > 0, since for d ≤ 0 the

asymptotic behavior of the empirical process is very different (see Koul et al. (2013), p.207).

To be a bit more precise, consider a moving average random field

Xt =
∑

s∈Zν

bt−sζs, t ∈ Z
ν ,(1.1)

indexed by points of ν-dimensional lattice Z
ν := {0,±1,±2, . . .}ν , ν = 1, 2, · · · , where

{ζs, s ∈ Z
ν} are i.i.d. r.v.’s with zero mean and unit variance. The moving-average coef-

ficients {bt, t ∈ Z
ν} satisfy

bt = (B0(t/|t|) + o(1))|t|−(ν−d), t ∈ Z
ν \ {0}, for some 0 < d < ν/2,(1.2)

where B0(x), x ∈ Sν−1 := {y ∈ R
ν : |y| = 1} is a bounded piece-wise continuous function

on the unit sphere Sν−1. Throughout the paper, for any x ∈ R
ν , |x| denotes its Euclidean

norm. The series in (1.1) converges in mean square and defines a stationary random field

{Xt} with EX0 = 0 and

(1.3) Cov(X0, Xt) ∼ R0(t/|t|)|t|−(ν−2d), as |t| → ∞,

where R0 is an even, strictly positive and continuous function on Sν−1, see, e.g., Sur-

gailis (1982). Here, and in the sequel, for any two positive functions h1(t), h2(t), h1(t) ∼
h2(t), |t| → ∞ means lim|t|→∞ h1(t)/h2(t) = 1.

Since
∑

t∈Zν\{0} |t|−(ν−2d) = ∞ for 0 < d < ν/2, the random field {Xt} has long memory

in the sense the sum of its autocovariances diverges.

2



Let F denote the marginal d.f. of X0 having density f , and let F0 be a known d.f. with

density f0. The problem of interest is to test the hypothesis

H0 : F = F0 vs. H1 : F 6= F0.

A motivation for this problem is that often in practice one uses inference procedures that are

valid under the assumption of {Xt} being a Gaussian field. The rejection of this hypothesis

when F0 is standard Gaussian d.f. would cast some doubt about the validity of such inference

procedures.

Throughout the paper, Z denotes a N (0, 1) r.v., →D stands for the convergence in

distribution, and →p stands for the convergence in probability.

Now, define An := [1, n]ν ∩ Z
ν , and

F̂n(x) := n−ν
∑

t∈An

I(Xt ≤ x), x ∈ R, θ := (v(1), d)′, ‖f0‖∞ := sup
x∈R

f0(x),

X̄n := n−ν
∑

t∈An

Xt, v(1) :=

∫

[0,1]ν

∫

[0,1]ν
R0

( u− v

|u− v|
) dudv

|u− v|ν−2d
.

From Surgailis (1982) we obtain

(1.4) Var(X̄n) ∼ v(1)n2d−ν and
nν/2−dX̄n√

v(1)
→D Z.

A test of H0 is the Kolmogorov-Smirnov test based on Dn := supx∈R |F̂n(x)−F0(x)|. The
limit distribution of the empirical process F̂n for long memory moving-average observations

{Xt} with one dimensional time t ∈ Z was studied in Giraitis, Koul, and Surgailis (1996),

Ho and Hsing (1996), and Koul and Surgailis (2002). A similar problem for moving-average

random fields in Z
ν , ν > 1, was investigated in Doukhan, Lang, and Surgailis (2002) (DLS),

where it was shown, under some conditions, that nν/2−dDn/
(√

v(1)‖f0‖∞
)
→D |Z|.

Let v̂n(1), d̂n be consistent and log(n) consistent estimators of v(1) and d, under H0,

respectively. Let zα be 100(1 − α)th percentile of N (0, 1) distribution. From the above

result, we readily obtain that the test that rejects H0 whenever

nν/2−d̂Dn√
v̂n(1)‖f0‖∞

≥ zα/2(1.5)

is of the asymptotic size α.

Next, consider the problem of fitting F0 to F up to an unknown location+scale parame-

ters. In other words now F denotes the marginal d.f. of Yt, which is obeying the model

(1.6) Yt = µ+ σXt, t ∈ Z
ν , for some µ ∈ R, σ > 0,
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with Var(X0) =
∑

t∈Zν b2t = 1, and the problem of interest is to test

H0 : F (x) = F0(
x− µ

σ
), ∀ x ∈ R, for some µ ∈ R, σ > 0, vs.

H1 : H0 is not true.

Let σ̂n be a consistent estimator of σ under H0, F̄n denote the empirical d.f. based on

(Yt − Ȳn)/σ̂n, t ∈ An, and let D̄n := supx |F̄n(x)− F0(x)|. It follows from DSL, similarly as

in the case ν = 1 studied by Koul and Surgailis (2010) and Koul et al. (2013), that under

H0, n
ν/2−dD̄n →p 0, and hence nν/2−dD̄n cannot be used asymptotically to test for H0.

To circumvent this difficulty, in Section 2 we provide a class of weighted least squares

estimators Ỹnϕ of µ for which the normalized weak limit of the spatial empirical process F̃nϕ

based on residuals (Yt − Ỹnϕ)/σ̂n, t ∈ An, has a non-degenerate Gaussian distribution under

H0 (Theorem 2.1), implying

nν/2−dD̃nϕ√
v(ϕ)‖f0‖∞

→D |Z|,(1.7)

where D̃nϕ := supx∈R |D̃nϕ(x)|, D̃nϕ(x) := F̃nϕ(x) − F0(x). Here ϕ is a real valued function

on [0, 1]ν , and

v(ϕ) :=

∫

[0,1]ν

∫

[0,1]ν
ϕ(u)ϕ(v)R0

( u− v

|u− v|
) du dv

|u− v|ν−2d
.(1.8)

It follows from (1.7) that the test that rejects H0 whenever

(√
ṽ(ϕ)‖f0‖∞

)−1
nν/2−d̃D̃nϕ > zα/2(1.9)

is of the asymptotic level α, where ṽ(ϕ), d̃ are, respectively, consistent and log(n)-consistent

estimators of v(ϕ), d, under H0. This test is an extension of the test proposed in Koul et

al. (2013) from the time series case to the random fields.

As indicated earlier, the implementation of the tests (1.5) and (1.9) requires log(n)-

consistent estimators of d and consistent estimators of v(1) and v(ϕ). Several approaches

for estimating the underlying parameters in long memory random fields have been suggested

in the literature. Frias et al. (2008) suggested an averaged periodogram estimator of d for

long memory time series in the two-dimensional spatial case. Wang (2009) investigated the

Geweke and Porter-Hudak estimator of d for long memory random fields. Under some general

conditions these estimators are all log(n)-consistent for d. One can use the HAC estimator

of the long run variance v(1) (Abadir et al. (2009)). An estimator of v(ϕ) is presented in

Sec.4 below. However, because of the slow rate of convergence of the estimators of d, the

finite sample properties of the significance level of the above tests based on these estimators

is not desirable.
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The other papers that discuss the estimation of the long memory intensity d for some fully

observable random field models include Boissy et al. (2005), Leonenko and Sakhno (2006),

Frias et al. (2008), and Guo et al. (2009). However, most of these results do not apply to

the model in (1.1) - (1.2). Examples of the model (1.1) - (1.2) to which our results apply

are given in section 5 below.

Because of the difficulty with the estimation of d for ν > 1, it is highly desirable to avoid

the need to estimate d and the variances v(1) and v(ϕ). With this goal in mind, we propose

the following modification of the test (1.9). Let ϕ1, ϕ2 be two functions like ϕ and define

∆n(ϕ1, ϕ2) :=
σ̂nD̃nϕ1

|Ỹn,ϕ2
− Ȳn|

,(1.10)

where D̃nϕ1
is similar as in (1.9) with ϕ = ϕ1, and Ỹn,ϕ2

− Ȳn is the difference of the

two estimators of µ, see Sec.2. Note that ∆n(ϕ1, ϕ2) does not involve any normalization

depending on d or v(ϕi), i = 1, 2. Under some conditions on weight functions ϕ1, ϕ2, and

under H0, we prove that

∆n(ϕ1, ϕ2) →D ‖f0‖∞

√
v(ϕ1)

v(ϕ2)

∣∣C(ρ(ϕ1, ϕ2))|,(1.11)

where ρ(ϕ1, ϕ2) is as in (2.5) below, v(ϕi) is as in (1.8) with ϕ = ϕi, i = 1, 2, and where

(1.12) C(ρ) := Z1/Z2,

with (Z1, Z2) being a normal random vector with zero means, unit variances and a correlation

coefficient ρ. The distribution of the r.v. C(ρ) is the Cauchy with probability density

(1.13) p(x) :=

√
1− ρ2

π((x− ρ)2 + 1− ρ2)
, x ∈ R, |ρ| < 1,

see, e.g., Johnson, Kotz, and Balakrishnan (1994). A consistent estimator ρ̂n(ϕ1, ϕ2) of

ρ(ϕ1, ϕ2), which avoids the estimation of d and v(ϕ1), v(ϕ2), is discussed in Sec.4.

Thus if v(ϕ1) = v(ϕ2), then the corresponding GOF test of the asymptotic level α based

on (1.11) rejects H0 whenever

(1.14)
∆n(ϕ1, ϕ2)

‖f0‖∞
> cα(ρ̂n(ϕ1, ϕ2)),

where cα(ρ) is the upper α-quantile of the r.v. |C(ρ)|, or the unique solution of

(1.15) α = 1− 1

π

[
arctan(

cα(ρ)− ρ√
1− ρ2

) + arctan(
cα(ρ) + ρ√

1− ρ2
)
]
.
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In general, where v(ϕ1) 6= v(ϕ2), the test that rejects H0 whenever

(1.16) ∆̃n := ‖f0‖−1
∞ ∆n(ϕ1, ϕ2)

√
ṽn(ϕ2)/ṽn(ϕ1) > cα(ρ̂n(ϕ1, ϕ2))

is of the asymptotic size α, where ṽn(ϕi), i = 1, 2 are defined in (3.4) below, which does not

require the estimation of d.

A major advantage of the above class of tests, as ϕ varies, is that they and their null

limit distributions do not depend on the memory parameter d of the underlying random

field. This observation, together with the fact that the limit in (1.11) has a tractable classical

distribution (1.13), represents a major novelty of the present paper. These tests are new even

in the case ν = 1. We also note that our results essentially use only the Uniform Reduction

Principle for the residual empirical process (see Theorem 2.1 and Remark 2.1 below) and

therefore are expected to hold under broader conditions on the random field than in (1.1)–

(1.2), including in particularly anisotropic fractionally integrated fields discussed in Sec. 5

(5.13) and in Boissy et al. (2005) or Guo et al. (2009).

The rest of the paper is organized as follows. The main results about the spatial residual

empirical process along with the limiting null distributions of the proposed test statistics

are presented in section 2. Section 3 describes some consistent estimators of the parameter

ρ(ϕ1, ϕ2) based on a certain smoothing parameter q. Section 4 discusses the consistency

of the proposed tests (1.14) and (1.16) against a class of fixed alternatives and asymptotic

power of these tests against a sequence of local alternatives. Some examples of random fields

to which the results of this paper are applicable are discussed in section 5. A simulation

study was conducted to assess the effect of various underlying entities like q and ϕ on the

finite sample level and power of these tests. These findings are presented in section 6.

2 Asymptotics of the spatial residual empirical process

and test statistics

This section discusses the asymptotic behavior of a class of residual empirical processes and

the above proposed test statistics. To define the residuals, we need to first introduce a class

of estimators of µ. Recall the model (1.6) that includes the assumption EX2
0 = 1. Let ϕ be

a piece-wise continuously differentiable function on [0, 1]ν and let

ϕnt := nν

∫
∏ν

j=1

(
(tj−1)/n,tj/n

] ϕ(u)du, t = (t1, · · · , tν) ∈ An

be its average value on cube
∏ν

j=1

(
(tj − 1)/n, tj/n

]
⊂ [0, 1]ν . Thus, ϕ̄n := n−ν

∑
t∈An

ϕnt =∫
[0,1]ν

ϕ(u)du =: ϕ̄, ∀n ≥ 1. Next, define

Ỹnϕ := n−ν
∑

t∈An

Yt[1 + ϕnt] = µ
(
1 + ϕ̄) + σ(X̄n + W̄nϕ),(2.1)
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where {Yt} is as in (1.6), {Xt} is a zero-mean moving-average random field in (1.1), and

W̄nϕ := n−ν
∑

t∈An

Xtϕnt.(2.2)

A slightly different version of Ỹnϕ was used in Koul et al. (2013), where ϕnt is replaced

by ϕ(t/n). For that version, Theorem 2.1 requires the additional condition that the bias

µϕ̄n = µn−ν
∑

t∈An
ϕ( t

n
) = o(nν/2−d). Therefore the definition in (2.1) is preferable.

Note Ỹn0 = Ȳn, W̄n1 = X̄n, EW̄nϕ = 0, and ϕ̄ = 0 implies that Ỹnϕ is a consistent and

unbiased estimator of µ, i.e., Ỹnϕ →p µ,EỸnϕ = µ. Also note that when ϕ(u) ≥ −1, u ∈
[0, 1]ν and ϕ̄ = 0, Ỹnϕ is a weighted least squares estimator since it minimizes the weighted

sum of squares: Ỹnϕ = argminµ∈R
∑

t∈An
(Yt − µ)2[1 + ϕnt].

The following lemma discusses the asymptotic normality of the joint distributions of

(W̄nϕ1
, W̄nϕ2

).

Lemma 2.1 Let ϕi(x), x ∈ [0, 1]ν, i = 1, 2 be two piecewise continuously differentiable func-

tions and suppose {Xt} satisfy (1.1) and (1.2). Then

nν/2−d(W̄nϕ1
, W̄nϕ2

) →D (W1,W2),(2.3)

where (W1,W2) is a zero mean normal vector with covariance EW1W2 = v(ϕ1, ϕ2), with

(2.4) v(ϕ1, ϕ2) :=

∫

[0,1]ν

∫

[0,1]ν
ϕ1(u)ϕ2(v)R0

( u− v

|u− v|
) du dv

|u− v|ν−2d
,

and variances EW 2
i = v(ϕi, ϕi) ≡ v(ϕi), i = 1, 2 as in (1.8). In addition, if v(ϕi) > 0, i =

1, 2, the limit vector in (2.3) can be represented as (W1,W2) = (
√
v(ϕ1)Z1,

√
v(ϕ2)Z2),

where (Z1, Z2) is a zero mean normal vector with unit variances EZ2
1 = EZ2

2 = 1 and the

correlation coefficient EZ1Z2 =: ρ(ϕ1, ϕ2) equal to

ρ(ϕ1, ϕ2) =
v(ϕ1, ϕ2)√
v(ϕ1)v(ϕ2)

.(2.5)

Proof of Lemma 2.1. By (1.3) and the dominated convergence theorem,

(2.6) Var(W̄nϕ) =
1

n2ν

∑

t,s∈An

ϕntϕnsEXtXs ∼ v(ϕ)n2d−ν , n→ ∞.

Similarly, (1.3), (2.6) and the dominated convergence theorem yield

Cov(nν/2−dW̄nϕ1
, nν/2−dW̄nϕ2

) → v(ϕ1, ϕ2).

The asymptotic normality of (W̄nϕ1
, W̄nϕ2

) can be established following the scheme of discrete

stochastic integrals, see e.g. Surgailis (1982), Koul and Surgailis (2002, Lemma 2.4 (iii)),

Giraitis et al. (2012, Prop.14.3.1). Details are omitted for the sake of brevity.

7



Next, we discuss the limit of the residual empirical process. Let

(2.7) σ̂2
n := n−ν

∑

t∈An

(Yt − Ȳn)
2

be an estimator of σ2 in (1.6) and

F̃nϕ(x) := n−ν
∑

t∈An

I(Yt − Ỹnϕ ≤ σ̂nx) = F̂n(x+ xǫn + δ̃nϕ),(2.8)

δ̃nϕ := (Ỹnϕ − µ)/σ, ǫn := (σ̂n − σ)/σ.

Define

D̃nϕ(x) := F̃nϕ(x)− F0(x), D̃nϕ := sup
x∈R

|D̃nϕ(x)|(2.9)

and ∆n(ϕ1, ϕ2) as in (1.10), where ϕ1, ϕ2 are as in the above lemma.

Let ζ be a copy of ζ0. Assume that the innovation distribution satisfies

Eζ4 <∞,(2.10)

|Eeiuζ | ≤ C(1 + |u|)−δ, for some 0 < C <∞, δ > 0, ∀ u ∈ R.(2.11)

Under (2.11), it is shown in DSL that the d.f. F of X0 is infinitely differentiable and for some

universal positive constant C,

(f(x), |f ′(x)|, |f ′′(x)|, |f ′′′(x)|) ≤ C(1 + |x|)−2, ∀ x ∈ R,

where f ′′, f ′′′ are the second and third derivatives of f , respectively. This fact in turn clearly

implies f and these derivatives are square integrable.

Theorem 2.1 Suppose (1.1), (1.2), (2.10), (2.11) hold. Let ϕ(x), x ∈ [0, 1]ν be a piece-wise

continuously differentiable function satisfying ϕ̄ = 0. Then, with v(ϕ) as in (1.8), under H0,

nν/2−d sup
x∈R

∣∣F̃nϕ(x)− F0(x)− W̄nϕf0(x)
∣∣ = op(1),(2.12)

nν/2−dD̃nϕ = ‖f0‖∞nν/2−d|W̄nϕ|+ op(1) →D

√
v(ϕ)‖f0‖∞|Z|.(2.13)

Remark 2.1 For stationary Gaussian random fields with zero mean, assumptions (1.1),

(1.2), (2.10), (2.11) can be relaxed. Namely, for such random fields {Xt, t ∈ Z
ν}, Theorem

2.1 and the subsequent Corollary 2.1 remain valid under the single condition (1.3). This is

due to the fact that in the Gaussian case, the proof of the Uniform Reduction Principle (see,

e.g., Giraitis et al. (2012), sec.10.2.1) carries over from ν = 1 to ν > 1 with minor changes.
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Proof of Theorem 2.1. Recall in (1.6), Var(X0) = 1. We first estimate the convergence

rate of σ̂n. Note that

(2.14) Cov(X2
0 , X

2
t ) = O((Cov(X0, Xt))

2) = O(|t|−2(ν−2d)) as |t| → ∞.

For ν = 1, this result is well known, see e.g. Giraitis et al. (2012), Lemma 4.5.3. It easily

extends to ν > 1. Next, write σ̂2
n−σ2 = V1−V2, where V1 := σ2n−ν

∑
t∈An

(X2
t −EX2

t ), V2 :=

σ2(X̄n)
2. Using (1.4) and (2.14), similarly as in Giraitis et al. (2012), p.509, we obtain

V2 = Op(n
−(ν−2d)), and

EV 2
1 ≤





n−ν , 0 < d < ν/4,

n4d−2ν , ν/4 < d < ν/2,

(log(n)/n)ν , d = ν/4.

Hence

ǫn = (σ̂n − σ)/σ =





Op(n
−ν/2), 0 < d < ν/4,

Op(n
2d−ν), ν/4 < d < ν/2,

Op((log(n)/n)
ν/2), d = ν/4.

(2.15)

We are now ready to prove (2.12). Let

Un1(x) := F̂n(x+ xǫn + δ̃nϕ)− F0(x+ xǫn + δ̃nϕ) + f0(x+ xǫn + δ̃nϕ)X̄n,

Un2(x) :=

∫ x+xǫn+δ̃nϕ

x

(f0(u)− f0(x+ xǫn + δ̃nϕ))du,

Un3(x) := f0(x+ xǫn + δ̃nϕ)xǫn,

Un4(x) := (f0(x+ xǫn + δ̃nϕ)− f0(x))W̄nϕ.

Using (2.8) and the fact that δ̃nϕ = X̄n + W̄nϕ, rewrite

F̃nϕ(x)− F0(x)− W̄nϕf0(x) =
4∑

i=1

Uni(x).

By (2.15), ǫn = op(n
d−ν/2) for any 0 < d < ν/2. According to (DLS, Cor.1.2), ‖Un1‖∞ =

op(n
d−ν/2). Next, similarly to Giraitis et al. (2012), p. 510,

|Un2(x)| ≤ C(1 + x2)−1(|xǫn|2 + |δ̃nϕ|2) = op(n
d−ν/2),

|Un3(x)| ≤ C(1 + x2)−1|xǫn| = op(n
d−ν/2),

|Un4(x)| ≤ C(1 + x2)−1(|xǫn|+ |δ̃nϕ|)|W̄nϕ| = op(n
d−ν/2)
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uniformly in x ∈ R. This proves (2.12). Relation (2.13) follows from (2.12) and (2.3).

Theorem 2.1 is proved.

Next, we discuss the asymptotic null distribution of ∆n(ϕ1, ϕ2) of (1.10).

Corollary 2.1 Suppose (1.1), (1.2), (2.10), (2.11) hold as in the previous theorem. Let

ϕi(x), x ∈ [0, 1]ν , i = 1, 2 be two piece-wise continuously differentiable functions satisfying

ϕ̄i = 0, v(ϕi) > 0, i = 1, 2. Then, under H0,

(2.16) ∆n(ϕ1, ϕ2) →D ‖f0‖∞

√
v(ϕ1)

v(ϕ2)

∣∣∣Z1

Z2

∣∣∣,

with (Z1, Z2) as in Lemma 2.1.

In particular, if v(ϕ1) = v(ϕ2) then, under H0,

(2.17) ∆n(ϕ1, ϕ2) →D ‖f0‖∞
∣∣Z1

Z2

∣∣.

In general, when v(ϕ1) 6= v(ϕ2), if ṽn(ϕi), i = 1, 2, are two statistics such that under H0,

ṽn(ϕ2)/ṽn(ϕ1) →p v(ϕ2)/v(ϕ1), then, under H0,

∆̃n →p

∣∣∣Z1

Z2

∣∣∣.(2.18)

Proof. By (2.13),

nν/2−dD̃nϕ1
= nν/2−d|W̄nϕ1

|‖f0‖∞ + op(1)

and, in view of (2.1), and because ϕ̄2 = 0,

nν/2−d(Ỹn,ϕ2
− Ȳn) = nν/2−d

[
µ
(
1 + ϕ̄2 − 1) + σW̄n,ϕ2

]
= nν/2−dσW̄nϕ2

.(2.19)

Hence

∆n(ϕ1, ϕ2) =
σ̂n n

ν/2−d|W̄nϕ1
|‖f0‖∞ + op(1)

σ nν/2−d|W̄n(ϕ2)|
→D ‖f0‖∞

√
v(ϕ1)

v(ϕ2)

∣∣∣Z1

Z2

∣∣∣,(2.20)

by the convergence in (2.3) and σ̂n →p σ. This proves (2.16) and hence (2.17), too.

Choice of ϕi, i = 1, 2 in (2.17) and (1.14). Recall the conditions on ϕi in (2.17):

(2.21) ϕ̄1 = ϕ̄2 = 0 and v(ϕ1) = v(ϕ2).

Note the choice ϕ1(x) = ϕ(x), ϕ2(x) = ±ϕ(x) for a given ϕ with ϕ̄ = 0 satisfying (2.21) is

not good since this leads to a degenerate distribution in (2.17). A better choice of ϕi seems

(2.22) ϕ1(x) := ϕ(x), ϕ2(x) := ϕ(1− x)
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where 1 = (1, 1, · · · , 1) ∈ [0, 1]ν and ϕ(x), x ∈ [0, 1]ν is a given piecewise continuously

differentiable function with ϕ̄ = 0. Clearly (2.22) satisfy the first condition in (2.21). The

second one follows from the definition (1.8) by change of variables 1− u→ u, 1− v → v:

v(ϕ2) =

∫

[0,1]ν

∫

[0,1]ν
ϕ(1− u)ϕ(1− v)R0

( u− v

|u− v|
) du dv

|u− v|ν−2d

=

∫

[0,1]ν

∫

[0,1]ν
ϕ(u)ϕ(v)R0

( v − u

|u− v|
) du dv

|u− v|ν−2d
= v(ϕ1)

since R0(−x) = R0(x), x ∈ R
ν is an even function.

A GOF test when v(ϕ1) 6= v(ϕ2). The test (1.14) assumes v(ϕ1) = v(ϕ2) which

restricts the choice of ϕi’s. In order to avoid this restriction, we consider the modified test

(1.16) based on ∆̃n, where ṽn(ϕi), i = 1, 2, are defined in (3.4) below. By (2.18) the test that

rejects H0, whenever ∆̃n > cα(ρ̂n(ϕ1, ϕ2)), is asymptotically of size α, without requiring a

log(n)-consistent estimate of d and regardless of whether v(ϕ1) equals v(ϕ2) or not. Section

3 contains the proof of the fact that ṽn(ϕ2)/ṽn(ϕ1) →p v(ϕ2)/v(ϕ1).

3 Estimation of ρ(ϕ1, ϕ2)

In this section we introduce consistent estimators of v(ϕ) and ρ(ϕ1, ϕ2). By Lemma 2.1,

ρn(ϕ1, ϕ2) := Corr(W̄nϕ1
, W̄nϕ2

) → ρ(ϕ1, ϕ2),(3.1)

Cov(W̄nϕ1
, W̄nϕ2

) = σ−2n−2ν
∑

t,s∈An

ϕ1,ntϕ2,nsCov(Yt, Ys)(3.2)

∼ Cov(
√
v(ϕ1)Z1,

√
v(ϕ2)Z2)n

2d−ν .

Now, let q → ∞, q = 1, 2, · · · , q = o(n) be a bandwidth sequence and γ̂n(u) be the

estimator of the covariance γ(u) := Cov(Y0, Yu):

(3.3) γ̂n(u) :=
1

nν

∑

t,s∈An:t−s=u

(Yt − Ȳn)(Ys − Ȳn).

Note that σ̂2
n of (2.7) equals γ̂n(0). Define

ṽn(ϕ) :=
1

σ̂2
n

∑

u,v∈Aq

ϕquϕqvγ̂n(u− v), ṽn(ϕ1, ϕ2) :=
1

σ̂2
n

∑

u,v∈Aq

ϕ1,quϕ2,qvγ̂n(u− v).(3.4)

vn(ϕ) := q−ν−2d ṽn(ϕ), vn(ϕ1, ϕ2) := q−ν−2d ṽn(ϕ1, ϕ2),

v̂n(ϕ) := q−ν−2d̃ ṽn(ϕ),

where d̃ is a log(n)-consistent estimator of d under H0. Then from (3.1), (3.2), a natural

estimator of ρ(ϕ1, ϕ2) is

ρ̂n(ϕ1, ϕ2) :=
ṽn(ϕ1, ϕ2)√
ṽn(ϕ1)ṽn(ϕ2)

.(3.5)
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Note that

nν σ̂2
nṽn(ϕ1, ϕ2)

=
∑

u,v∈Aq

ϕ1,quϕ2,qv

∑

t,s∈An:t−s=u−v

(Yt − Ȳn)(Ys − Ȳn)

=
∑

k∈An⊖Aq

( ∑

u∈Aq:k+u∈An

ϕ1,qu(Yk+u − Ȳn)
)( ∑

v∈Aq :k+v∈An

ϕ2,qu(Yk+v − Ȳn)
)
,

where An ⊖ Aq := {k ∈ Z
ν : k = t − u, ∃ t ∈ An, ∃ u ∈ Aq}. Hence, ṽn(ϕ) = ṽn(ϕ, ϕ) ≥ 0

and |ṽn(ϕ1, ϕ2)| ≤
√
ṽn(ϕ1)ṽn(ϕ2). In particular, ρ̂n(ϕ1, ϕ2) in (3.5) is well-defined unless

ṽn(ϕ1)ṽn(ϕ2) = 0 (in the latter case, we set ρ̂n(ϕ1, ϕ2) = 0 by definition). Clearly, the

estimator in (3.5) satisfies the property |ρ̂n(ϕ1, ϕ2)| ≤ 1 of a correlation coefficient. Evidently,

ρ̂n(ϕ1, ϕ2) does not involve the long memory parameter d or its estimate, and hence its

computation is relatively simpler.

The following lemma discusses consistency of the estimator ρ̂n(ϕ1, ϕ2).

Lemma 3.1 Let ϕi(x), i = 1, 2 and {Xt} satisfy the conditions of Lemma 2.1. In addition,

assume that v(ϕi) > 0, i = 1, 2 and Eζ4 <∞. Then, as n, q, n/q → ∞,

vn(ϕ1, ϕ2) →p v(ϕ1, ϕ2), vn(ϕi) →p v(ϕi), i = 1, 2,(3.6)

ρ̂n(ϕ1, ϕ2) →p ρ(ϕ1, ϕ2),(3.7)

where v(ϕ1, ϕ2), ρ(ϕ1, ϕ2) are defined in (2.4), (2.5), respectively.

Consequently,
√
ṽn(ϕ2)/ṽn(ϕ1) →p

√
v(ϕ2)/v(ϕ1), and if d̃ is a log(n)-consistent esti-

mator of d, then v̂n(ϕ) →p v(ϕ).

Proof. It suffices to prove the first claim of (3.6) only since the second claim follows

similarly and (3.7) follows from (3.6) and the fact that v(ϕi) = v(ϕi, ϕi) > 0, i = 1, 2. The

remaining claims follow from the second part of (3.6) in a routine fashion. Moreover, since

σ̂2
n →p σ

2 > 0, see (2.15), we can restrict the proof of (3.6) to the case µ = 0, σ = 1, or

Yt = Xt.

The following proof of (3.6) follows the argument in Lavancier, Philippe, and Sur-

gailis (2010, proof of Prop. 4.1) in the case ν = 1. Write vn(ϕ1, ϕ2) = ℓn1 + ℓn2, ℓni :=

q−ν−2d
∑

t,s∈Aq
ϕ1,qtϕ2,qsγ̂ni(t− s), i = 1, 2, where

(3.8) γ̂n1(t− s) :=
1

nν

∑

u,v∈An:u−v=t−s

XuXv,

and γ̂n2(t− s) := γ̂n(t− s)− γ̂n1(t− s). Then (3.6) follows from

ℓn1 →p v(ϕ1, ϕ2), ℓn2 = op(1).(3.9)
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To prove the first relation of (3.9), write ℓn1 =
∑3

i=1 Lni, where Ln1 is obtained by replacing

XuXv in (3.8) by EXuXv = EXtXs = γ(t− s), viz.,

Ln1 := q−ν−2d
∑

t,s∈Aq

ϕ1,qtϕ2,qsγ(t− s)(3.10)

=
1

q2ν

∑

t,s∈Aq

ϕ1,qtϕ2,qsR0

( t
q
− s

q

| t
q
− s

q
|

)
1

| t
q
− s

q
|ν−2d

→ v(ϕ1, ϕ2)

as q → ∞. The terms Lni, i = 2, 3 correspond to the decomposition

XuXv −EXuXv =
∑

w∈Zν

bu+wbv+wηw +
∑

w1,w2∈Zν ,w1 6=w2

bu+w1
bv+w2

ζw1
ζw2

of XuXv in (3.8) with ηw := ζ2w −Eζ2w, yielding

Ln2 := q−ν−2d
∑

w∈Zν

ηw
∑

t,s∈Aq

ϕ1,qtϕ2,qs
1

nν

∑

u,v∈An:u−v=t−s

bu+wbv+w,

Ln3 := q−ν−2d
∑

w1 6=w2

ζw1
ζw2

∑

t,s∈Aq

ϕ1,qtϕ2,qs
1

nν

∑

u,v∈An:u−v=t−s

bu+w1
bv+w2

.

We shall show that Lni → 0, in mean square, for i = 2, 3. To prove this claim for Ln2,

we use the facts that the ϕi,qt’s are bounded, the ηu’s are uncorrelated zero mean r.v.’s with

finite variance, the form of the moving-average coefficients bt’s (1.2) with a bounded B0, and

the Minkowski inequality. Accordingly, then

EL2
n2 ≤ Cq−2ν−4dn−2ν

∑

w∈Zν

( ∑

t,s∈Aq

∑

u,v∈An:u−v=t−s

|bu+wbv+w|
)2

(3.11)

≤ Cq−2ν−4dn−2ν
( ∑

t,s∈Aq

∑

u,v∈An:u−v=t−s

( ∑

w∈Zν

|bu+wbv+w|2
)1/2)2

≤ Cq−2ν−4dn−2ν
( ∑

t,s∈Aq

∑

u,v∈An:u−v=t−s

( ∑

w∈Zν

|u+ w|−2(ν−d)
+ |v + w|−2(ν−d)

+

)1/2)2

≤ Cq−2ν−4dn−2ν
( ∑

t,s∈Aq

∑

u,v∈An:u−v=t−s

(
|u− v|ν−4(ν−d)

+

)1/2)2

≤ Cq−2ν−4d
( ∑

t,s∈Aq

|t− s|(ν/2)−2(ν−d)
+

)2

≤ Cq−2ν−4d
(
q2ν+(ν/p)−2(ν−d)

)2
= Cq−2ν → 0.

Finally, using the facts that for u1 6= u2, the r.v.’s ζu1
, ζu2

have zero mean, finite variance

and are mutually uncorrelated, we obtain

EL2
n3 ≤ Cq−2ν−4dn−2ν

∑

w1,w2∈Zν

( ∑

t,s∈Aq

∑

u∈An

bu+w1
bu−t+s+w2

)2

(3.12)
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≤ Cq−2ν−4dn−2ν
∑

t,s,t′,s′∈Aq

∑

u,u′∈An

∑

w1,w2

|bu+w1
bu−t+s+w2

bu′+w1
bu′−t′+s′+w2

|

≤ Cq−2ν−4dn−2ν
∑

t,s,t′,s′∈Aq

∑

u,u′∈An

|u− u′|2d−ν
+ |u− u′ + s− s′ − t+ t′|2d−ν

+

≤ Cqν−4dn−ν
∑

|u|<n

|u|2d−ν
+

∑

|t|<2q

|u+ t|2d−ν
+ ≤ C(J1 + J2).

Here,

J1 := qν−4dn−ν
∑

|u|<4q

|u|2d−ν
+

∑

|t|<6q

|t|2d−ν
+

≤ Cqν−4dn−νq4d = O((q/n)ν) = o(1),

J2 := Cqν−4d(q/n)ν
∑

4q≤|u|<n

|u|4d−2ν ≤ Cqν−4d(q/n)ν





n4d−ν , 2ν − 4d < ν,

q4d−ν , 2ν − 4d > ν,

log(n/q), 2ν − 4d = ν,

and so J2 = o(1) as q, n, n/q → ∞ in all three cases (in the last case where 2ν− 4d = ν, this

follows from the fact that x → 0 entails xν log(1/x) → 0). Clearly, (3.10)-(3.12) prove the

first relation in (3.9).

It remains to show the second relation in (3.9). It follows from

(3.13) q−2d
∑

|t|≤q

E|γ̂n2(t)| = o(1).

Use the definition γ̂n2(t) = γ̂n(t)−γ̂n1(t), the Cauchy-Schwarz inequality, and (1.4), to obtain

(
E|γ̂n(t)− γ̂n1(t)|

)2

≤ EX̄2
nE

(
n−ν

∑

u,v∈An:u−v=t

Xv

)2

+ EX̄2
nE

(
n−ν

∑

u,v∈An:u−v=t

Xu

)2

+
(
EX̄2

n

)2

≤ Cn4d−2ν ,

with C independent of |t| < n/2. Hence, (3.13) reduces to (q/n)ν−2d = o(1) which is a

consequence of d < ν/2 and q/n→ 0. This proves (3.9) and completes the proof of Lemma

3.1.

4 Consistency and asymptotic power

We shall now discuss the consistency and asymptotic power of the GOF test (1.14). Let

F be another marginal d.f. of the error process {Xt}, and F 6= F0 so that ‖F − F0‖∞ =
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supx∈R |F (x) − F0(x)| > 0, and such that the underlying innovations ζj still satisfy the

assumptions (2.10) and (2.11). The power of the ∆n-test at this F is

P
(∆n(ϕ1, ϕ2)

‖f0‖∞
> cα(ρ̂n(ϕ1, ϕ2))

)
(4.1)

= P
(
nν/2−d σ̂nD̃nϕ1

nν/2−d|W̄nϕ2
| > cα(ρ̂n(ϕ1, ϕ2))‖f0‖∞

)
.

Now, decompose the empirical process D̃nϕ1
(x) in (2.9) as D̃nϕ1

(x) = (F̃nϕ1
(x)−F (x))+

(F (x)− F0(x)). Then D̃nϕ1
= ‖F − F0‖∞ + op(1) and

σ̂nD̃nϕ1
/nν/2−d|W̄nϕ2

| →D σ‖F − F0‖∞/
√
v(ϕ2)|Z2|,

cα(ρ̂n(ϕ1, ϕ2))‖f0‖∞ →p cα(ρ(ϕ1, ϕ2))‖f0‖∞ <∞.

Since nν/2−d → ∞, it immediately follows that the l.h.s. of (4.1) tends to 1 for any 0 < α < 1,

implying that the test in (1.14) is consistent against the above fixed alternative F . A similar

argument establishes the consistency of the ∆̃n-test without requiring v(ϕ1) = v(ϕ2).

The following proposition describes asymptotic distribution of the sequence of the statis-

tics ∆n(ϕ1, ϕ2) and ∆̃n under certain sequences of local alternatives. Analogous to Koul et

al. (2013), Thm.2.5, consider a sequence of stationary moving-average fields

Xtn =
∑

s∈Zν

bt−sζsn, t ∈ Z
ν ,(4.2)

where the bt’s are as in (1.2) and do not depend on n, and {ζsn, s ∈ Z
ν} are standardized

innovations satisfying (2.11) and Eζ40n < C for each n with C, δ independent of n. We

observe Ytn, t ∈ Z
ν , obeying the model

(4.3) Ytn = µ+ σXtn, t ∈ An, for some µ ∈ R, σ > 0.

Let Fn(x) := P (Xtn ≤ x) be the marginal d.f. of (4.2) and Ỹnϕ, W̄nϕ, σ̃n, F̃nϕ(x), be defined

analogously to (2.1), (2.2), (2.7), (2.8), with {Xt}, {Yt} replaced by {Xtn}, {Ytn}, respec-
tively. Then under the same assumptions on ϕi, i = 1, 2 as in Corollary 2.1 by inspecting

the proofs of Lemma 3.1 and Doukhan et al. (2002), Thm.1.1, it follows that

nν/2−d sup
x∈R

∣∣F̃nϕ1
(x)− Fn(x)− W̄nϕ1

fn(x)
∣∣ = op(1),(4.4)

nν/2−d(W̄nϕ1
, W̄nϕ2

) →D (
√
v(ϕ1)Z1,

√
v(ϕ2)Z2),(4.5)

ρ̂n(ϕ1, ϕ2) → ρ(ϕ1, ϕ2), ṽn(ϕ2)/ṽn(ϕ1) → v(ϕ1)/v(ϕ2)(4.6)

analogously to (2.12), (2.3), (3.7), (3.6), where fn := F ′
n is the probability density of Fn and

where v(ϕ), (Z1, Z2) are the same as in Lemma 2.1 and independent of n.
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Proposition 4.1 Let Fn, n ≥ 1 be a sequence of distribution functions on R. Suppose

{Xtn, t ∈ Z
ν} given by (4.2) with bt, ζsn satisfying the stated conditions, and having the

marginal distribution Fn. Assume that there exists a bounded and continuous function G =

G(x), x ∈ R such that

(4.7) ‖nν/2−d(Fn − F0)−G‖∞ → 0, n→ ∞

and ‖fn − f0‖∞ → 0. Let ϕi, Zi, i = 1, 2 be the same as in Corollary 2.1. Then

(4.8) ∆n(ϕ1, ϕ2) →D sup
x∈R

∣∣∣
√
v(ϕ1)Z1f0(x) +G(x)√

v(ϕ2)Z2

∣∣∣.

Consequently, if v(ϕ1) = v(ϕ2), then the asymptotic power of the ∆n-test is

P
(
sup
x∈R

∣∣∣Z1f0(x)

Z2
+

G(x)√
v(ϕ1)Z2

∣∣∣ > cα(ρ(ϕ1, ϕ2))‖f0‖∞
)
,(4.9)

which is also the asymptotic power of the ∆̃n- test, regardless of whether v(ϕ1) equals to

v(ϕ2) or not.

Proof. Decompose F̃nϕ1
(x)− F0(x) = W̄nϕ1

f0(x) + (Fn(x)− F0(x)) + Vn(x), where

Vn(x) := (F̃nϕ1
(x)− Fn(x)− W̄nϕ1

fn(x)) + W̄nϕ1
(fn(x)− f0(x)).

Then supx∈R |Vn(x)| = op(n
d−ν/2) according to (4.4), (4.5) and ‖fn − f0‖∞ = o(1). Using

these facts and (4.7) we obtain, under H1, that

nν/2−dD̃nϕ1
= nν/2−d sup

x∈R
|W̄nϕ1

f0(x) + (Fn(x)− F0(x)) + Vn(x)|

→D sup
x∈R

|
√
v(ϕ1)Z1f0(x) +G(x)|.

and nν/2−d(Ỹn,ϕ2
− Ȳn) = σnν/2−dW̄nϕ2

→D σ
√
v(ϕ2)Z2. This proves (4.8). Relation (4.9)

follows from (4.8) and (4.6).

5 Fractionally integrated random fields

In this section we shall present two examples of fractionally integrated random fields in Z
2,

i.e., examples of the functions B0 and R0, where the results of the previous sections apply.
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Example 1. Isotropic fractionally integrated random field. Let L denote the opera-

tor LXt,s = (1/4)
∑

|u|+|v|=1Xt+u,s+v so that L−1 is the (discrete) Laplacian on Z
2. Consider

the stationary lattice isotropic fractionally integrated random field

(5.1) (1− L)τXt,s = ζt,s,

where {ζt,s, (t, s) ∈ Z
2} are standard i.i.d. r.v.’s, 0 < τ < 1/2 is the order of fractional

integration, (1− z)τ =
∑∞

j=0 ψj(τ)z
j , ψj(τ) := Γ(j − τ)/Γ(j + 1)Γ(−τ). More explicitly,

(1− L)τXt,s =
∞∑

j=0

ψj(τ)L
jXt,s =

∑

(u,v)∈Z2

au,vXt−u,s−v,(5.2)

where au,v :=
∑∞

j=0 ψj(τ)pj(u, v) and pj(u, v) are j-step transition probabilities of the sym-

metric nearest-neighbor random walk {Wk, k = 0, 1, . . . } on Z
2 with equal 1-step probabili-

ties P (W1 = (u, v)|W0 = (0, 0)) = 1/4, |u|+ |v| = 1. Note
∑

(u,v)∈Z2 |au,v| =
∑∞

j=0 |ψj(τ)| <
∞, τ > 0 and therefore the l.h.s. of (5.2) is well-defined for any stationary random field

{Xt,s} with E|X0,0| < ∞. A stationary solution of (5.2) with zero-mean and finite variance

can be defined as a moving-average random field:

(5.3) Xt,s = (1− L)−τζt,s =
∑

(u,v)∈Z2

bu,vζt−u,s−v,

where

(5.4) bu,v :=
∞∑

j=0

ψj(−τ)pj(u, v).

Note the Fourier transform

b̂(x, y) =
∑

(u,v)∈Z2

ei(ux+vy)bu,v =
∞∑

j=0

ψj(−τ)p̂j(x, y)(5.5)

=

∞∑

j=0

ψj(−τ)(p̂1(x, y))j = (1− p̂1(x, y))
−τ ,

where p̂1(x, y) = (1/4)
∑

|u|+|v|=1 e
i(ux+vy) = (cos x+ cos y)/2. Since |1− (cosx+ cos y)/2| ≥

(x2 + y2)/4, (x, y) ∈ [−π, π]2, this implies that
∫
[−π,π]2

|b̂(x, y)|2dxdy < ∞ for 0 < τ < 1/2

and hence
∑

(u,v)∈Z2 b2u,v < ∞ by Parseval’s identity. As a consequence, the random field in

(5.3) is well-defined for any 0 < τ < 1/2 and has spectral density f(x, y) = (2π)−22−2τ |(1−
cosx) + (1− cos y)|−2τ , (x, y) ∈ [−π, π]2, which behaves as const(x2 + y2)−2τ as x2 + y2 → 0.

The following proposition verifies the isotropic behavior of (1.2) with d = 2τ of the moving-

average coefficients in (5.4).

Proposition 5.1 Let 0 < τ < 1/2. Then

(5.6) bt,s = (B0 + o(1))(t2 + s2)−(1−τ), t2 + s2 → ∞,

where B0 := π−1Γ(1− τ)/Γ(τ).
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Proof. We use the factorization pj(u, v) = q(j, u+v)q(j, u−v), where q(j, v) = 2−j
(

j
(j+u)/2

)

if j + u is even, = 0 otherwise, is the distribution of the sum of j Bernoulli r.v.’s taking

values ±1 with probability 1/2. See Puplinskaitė and Surgailis (2014), proof of Lemma 6.1.

Let r := (u2 + v2)1/2. Then (5.4) can be rewritten

bu,v =
∞∑

j=0

ψj(−τ)q(j, u + v)q(j, u− v) =
∑

j>r5/3

+
∑

0≤j≤r5/3

=: b0u,v + b1u,v.(5.7)

The statement of the proposition follows from

lim
r→∞

r2−2d̃b0u,v = B0 and lim
r→∞

r2−2d̃b1u,v = 0.(5.8)

To show the first relation in (5.8), note q(j, u) = bin((j + u)/2, j; 1/2), where bin(k, j; p) :=(
j
k

)
pk(1− p)j−k are binomial probabilities. We shall use the following version of the Moivre-

Laplace theorem (Feller, 1966, ch.7, §2, Thm.1): There exists a constant C such when j → ∞
and k → ∞ vary in such a way that

(5.9)
(k − pj)3

j2
→ 0,

then
∣∣∣∣

bin(k, j; p)
1√

2πjp(1−p)
exp{− (k−jp)2

2jp(1−p)
}
− 1

∣∣∣∣ <
C

j
+
C|k − pj|3

j2
.(5.10)

For q(j, u) (5.9)-(5.10) imply that there exists j0 > 0 and C > 0 such that

(5.11) sup
u∈Z

∣∣∣∣
q(j, u)√
2
πj
e−u2/2j

− 1

∣∣∣∣I
(
|u| < j3/5, u = j mod 2

)
<

C

j1/5
, ∀ j > j0.

Using (5.7), ψj(−τ) = Γ(τ)−1jτ−1(1 + o(1)) and (5.11) for u+ v even as r → ∞ we obtain

r2−2τb0u,v =
2r2−2τ

πΓ(τ)

∑

j>r5/3, j even

jτ−2(1 + o(1))e−r2/j(1 + o(1))

=
2

πΓ(τ)

1

r2

∑

j/r2>r−1/3, j even

(
j

r2
)τ−2e−r2/j

(
1 + o(1)

)

→ 1

πΓ(τ)

∫ ∞

0

xτ−2e−1/xdx =
Γ(1− τ)

πΓ(τ)
= B0.

The above convergence for u+ v odd is analogous. This proves the first relation in (5.8). To

show the second relation in (5.8), we use Hoeffding’s inequality (Hoeffding, 1963), according

to which |b1u,v| ≤ C
∑

0≤j≤r5/3 |ψj(−τ)|e−r2/2j = O(r5/3e−(r1/3/2)) = o(r−(2−2τ)). Proposition

5.1 is proved.
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Example 2. Aggregated causal fractionally integrated random field. Let L1Xt,s =

Xt−1,s, L2Xt,s = Xt,s−1, (t, s) ∈ Z
2 be backward shift operators on Z

2. Consider a stationary

fractionally integrated random field

(5.12) (1− pL1 − qL2)
dXt,s = ζt,s,

where {ζt,s, (t, s) ∈ Z
2} are standard i.i.d. r.v.’s, p, q ≥ 0, p + q = 1 are parameters and

0 < d < 1 is the order of fractional integration. More explicitly,

(1− pL1 − qL2)
dXt,s =

∞∑

j=0

ψj(d)

j∑

k=0

(
j

k

)
pkqj−kLk

1L
j−k
2 Xt,s

=
∑

u,v≥0

au,vXt−u,s−v, au,v := ψu+v(d)bin(u, u+ v; p).

Note
∑

u,v≥0 |au,v| =
∑∞

j=0 |ψj(d)| < ∞, d > 0 and therefore the l.h.s. of (5.12) is well-

defined for any stationary random field {Xt,s} with E|X0,0| < ∞. A stationary solution of

(5.12) with zero-mean and finite variance can be defined as a moving-average random field:

(5.13) Xt,s = (1− pL1 − qL2)
−dζt,s =

∑

u,v≥0

bu,vζt−u,s−v,

where bu,v := ψu+v(−d) bin(u, u + v; p). The random field in (5.13) is well-defined for any

0 < d < 3/4 since

∑

u,v≥0

b2u,v :=

∞∑

j=0

ψ2
j (−d)

j∑

k=0

(bin(k, j; p))2 ≤
∞∑

j=0

ψ2
j (−d) max

0≤k≤j
bin(k, j; p)

≤ C

∞∑

j=0

(j ∨ 1)2(d−1)j
−1/2
+ < ∞, 0 < d < 3/4.(5.14)

It follows from (5.10) that the result in (5.14) cannot be improved, in the sense that for any

d ≥ 3/4,

∑

u,v≥0

b2u,v ≥
∞∑

j=0

ψ2
j (−d)

∑

0≤k≤j:|k−pj|≤c/
√
j

(bin(k, j; p))2 ≥ c
∑

j≥j0

j2(d−1)j−1/2 = ∞,

where c > 0, j0 > 0 are some constants. The moving average coefficients bu,v in (5.13) do

not satisfy the assumption (1.2) since they are very much “concentrated” along the line

uq − vp = 0 and exponentially decay if u, v → ∞ so that |uq − vp| > c > 0. The random

field in (5.13) exhibits strongly anisotropic long memory behavior different from the random

fields in (1.1)-(1.2). See Puplinskaitė and Surgailis (2014). Obviously, the results in the

previous sections do not apply to (5.13).
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Assume now that p ∈ [0, 1] is random and has a bounded probability density ℓ(p) on

[0, 1]. Consider a moving-average random field

(5.15) X̃t,s =
∑

u,v≥0

b̃u,vζt−u,s−v, (t, s) ∈ Z
2,

where

(5.16) b̃u,v := Ebu,v = ψu+v(−d)
(
u+ v

u

)∫ 1

0

pu(1− p)vℓ(p)dp.

It readily follows that

b̃u,v ≤ Cψu+v(−d)
(
u+ v

u

)∫ 1

0

pu(1− p)vdp = Cψu+v(−d)(u+ v)−1,

and therefore
∑

u,v≥0 b̃
2
u,v ≤ C

∑∞
j=0 ψ

2
j (−d)(j + 1)−1 <∞, for any 0 < d < 1.

The random field in (5.15) is of interest since it arises by aggregating N copies

(1− ai(piL1 + qiL2))Y
(i)
t,s = ζt,s, (t, s) ∈ Z

2, i = 1, · · · , N

of random-coefficient autoregressive random field with common innovations {ζt,s} follow-

ing Granger’s (1980) contemporaneous aggregation scheme. Here, (ai, pi, qi = 1 − pi), i =

1, · · · , N are independent copies of (a, p, q = 1− p), where a ∈ [0, 1), p ∈ [0, 1], q = 1− p are

random coefficients, a is independent of p and having a beta distribution with density

(5.17) φ(x) := B(d, 1− d)−1xd−1(1− x)−d, 0 < x < 1, 0 < d < 1.

By the law of large numbers, the limit aggregated random field Yt,s := limN→∞N−1
∑N

i=1 Y
(i)
t,s

satisfies

(5.18) Yt,s =

∞∑

j=0

EajE(pL1 + qL2)
jζt,s =

∑

u,v≥0

Eau+vEbin(u, u+ v; p)ζt−u,s−v

In the case of beta density in (5.17), Eaj = Γ(j + d)/Γ(j + 1)Γ(d) = ψj(−d) and therefore

the moving average coefficients Eau+vEbin(u, u+ v; p) in (5.18) coincide with b̃u,v of (5.16),

implying {Yt,s} = {X̃t,s}.
The following proposition shows that under some regularity conditions on the density ℓ

of p ∈ [0, 1], the random field in (5.15) belongs to the class of random fields (1.1) discussed

in this paper. Let S2 := {(u, v) ∈ R
2 : |(u, v)| =

√
u2 + v2 = 1}, S+

2 := {(u, v) ∈ S2 : u ≥
0, v ≥ 0}.
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Proposition 5.2 Assume that ℓ(x), x ∈ [0, 1] is a continuous function with support in (0, 1).

Then

b̃u,v ∼ 1

Γ(d)
ℓ(

u

u+ v
)

1

(u+ v)2−d
, u+ v → ∞.(5.19)

In particular, b̃u,v in (5.16) satisfy (1.2) with

B0(u, v) :=





1
Γ(d)

ℓ( u
u+v

) 1
(u+v)2−d , (u, v) ∈ S+

2 ,

0, (u, v) ∈ S2 \ S+
2 .

Proof. Let j = u+ v and u/(u+ v) = k/j. Then

b̃u,v = ψj(−d)
∫ 1

0

bin(k, j; p)ℓ(p)dp.

Note that the constant C in (5.10) does not depend on p ∈ (ǫ, 1 − ǫ), ǫ > 0 separated

from 0 and 1. Next, for a small δ > 0, split Ebin(k, j; p) = Ebin(k, j; p)I(|k − pj|3/j2 ≤
δ) + Ebin(k, j; p)I(|k − pj|3/j2 > δ) =: β1(k, j) + β2(k, j). Using (5.10), we can write

β1(k, j) = γ1(k, j) + γ2(k, j), where

γ1(k, j) :=

∫

{|p−k/j|3≤δ/j}

1√
2πjp(1− p)

exp{− (k − jp)2

2jp(1− p)
}ℓ(p)dp

and

|γ2(k, j)|(5.20)

≤ C(δ + j−1)

∫

{|p−k/j|3≤δ/j}

1√
2πjp(1− p)

exp{− (k − jp)2

2jp(1− p)
}ℓ(p)dp

≤ C(δ + j−1)
1√
2πjǫ

∫

R

exp{−(j/2)(p− k/j)2}dp

≤ C(δ + j−1)j−1 = o(1/j),

where we used the facts that 1 ≥ p(1 − p) > ǫ on {p ∈ [0, 1] : ℓ(p) > 0} and that δ > 0 can

be chosen arbitrarily small. Next, using the continuity of ℓ(p) and 1/p(1 − p) we see that

γ1(k, j) = γ̃1(k, j)(1 + o(1)), j → ∞, where

γ̃1(k, j)(5.21)

:=
ℓ(k/j)√

2πj(k/j)(1− (k/j))

∫

{|p−k/j|3≤δ/j}
exp{− (k − jp)2

2(k/j)(1− (k/j))
}dp

=
ℓ(k/j)

j

(
1 + o(1)

)
.
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To estimate β2(k, j), we use Hoeffding’s inequality (Hoeffding, 1963), according to which

β2(k, j) ≤ sup
ǫ<p<1−ǫ

b(k, j; p)I(|k − pj|3/j2 > δ)(5.22)

≤ 2e−2δ1/3j1/6 = o(1/j).
∑

|t−kp|>τ
√
k

b(t; k, p) ≤ 2e−2τ2 .(5.23)

Relations (5.20), (5.21), and (5.22) entail (5.19), hence the proposition.

Remark 5.1 Boissy et al. (2005), Guo et al. (2009) discuss fractionally integrated random

fields satisfying

(5.24) (1− L1)
d1(1− L2)

d2Yt,s = ζt,s, (t, s) ∈ Z
2

with possibly different parameters |di| < 1/2, i = 1, 2. We note that (5.24) form a distinct

class from (1.1) - (1.2) and also from (5.12). Extension of Theorem 2.1 to fractionally

integrated spatial models in (5.12) and (5.24) remains open.

6 A simulation study

This section describes the results of a simulation study investigating performance of the test

in (1.14) based on the statistic ∆n(ϕ1, ϕ2) (1.10), for the two cases ν = 1 and ν = 2, and

the test based on ∆̃n of (1.16) for ν = 1. Throughout the study, we test normality of the

marginal d.f. F of the random field {Yt} in (1.6), i.e., the hypothesis

H0 : F (x) = Φ(
x− µ

σ
), ∀x ∈ R, for some µ ∈ R, σ > 0,

vs. H1 : H0 is not true, where Φ denotes the standard normal d.f. Particularly, for ν = 1,

we compare the performance of the ∆n-test with the test based on the statistic

κn =
nν/2−d̃D̃nϕ√
v̂n(ϕ)‖f0‖∞

,(6.1)

where v̂n(ϕ) is as in (3.4) and d̃ is described later. Contrary to the ∆n-test, the κn-test uses

estimated nuisance parameters d and v(ϕ) and was discussed in Koul et. al. (2013) in the

case when σ is known.

Case ν = 1. We considered two null scenarios and one alternative. In each scenario, the

data was generated according to the model Yt = 3 + 2Xt (or µ = 3, σ = 2), with the error
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process Xt = Ht/
√
EH2

t and Ht given, respectively, by

Null1 : Ht = Ut,where {Ut} is ARFIMA(0,d,0) with standard Gaussian innovations ,

Null2 : Ht = Ut + Zt,where {Ut} is ARFIMA(0,d,0) as in Null1, and {Zt} is i.i.d.

N(0, 4)-distributed and independent of {Ut},
Alt1 : Ht is ARFIMA(0,d,0) with centered-exponential innovations.

Throughout the simulation, d was chosen to be d = .1, .2, .3, .4. Two sample lengths n = 1000

and n = 5000 were used for each scenario, and the number of replications was 1000 in each

numerical experiment. Our choice of weight functions for the ∆n-test are ϕ1 = ϕ(1) and

ϕ2 = ϕ(2), where

ϕ(1)(x) := 2I(x > 2/3)− I(x ≤ 2/3), ϕ(2)(x) := 2I(x < 1/3)− I(x ≥ 1/3), x ∈ [0, 1].

This choice satisfies (2.21) and (2.22). For the κn-test, we chose ϕ = ϕ(0), where

ϕ(0)(x) := I(x > 1/2)− I(x ≤ 1/2), x ∈ [0, 1].

We used the bandwidth q ≈ n.6 for computation of estimated long-run variances and covari-

ances ṽn(ϕ), ρ̂n(ϕ1, ϕ2) given at the (3.4) and (3.5). Throughout the simulation, d̃ was taken

to be the local Whittle estimator with the bandwidth m = n.6. In all tables, α denotes the

asymptotic size.

H0 α = .1 α = .05

n d=.1 .2 .3 .4 d=.1 .2 .3 .4

∆n 1000 0.175 0.129 0.139 0.119 0.080 0.068 0.077 0.052

5000 0.177 0.128 0.125 0.119 0.096 0.066 0.067 0.060

κn 1000 0.399 0.239 0.167 0.122 0.239 0.133 0.083 0.056

5000 0.307 0.159 0.118 0.100 0.179 0.075 0.056 0.054

Table 1: Empirical size of the ∆n- and κn-tests with α = .1 and .05 under Null1 as d and n vary.

Table 1 shows reasonable agreement of the the empirical sizes of the ∆n-test with its

asymptotic size except for the case d = .1. A similar thing can be said about the κn-test

when n = 5000 only and the general impression is that the empirical sizes for the latter test

tend to be much larger than those for the former test.

From Table 2 we see that while the size of the ∆n-test does not change much under Null2,

as compared to the case ofNull1 in Table 1, the empirical size for κn has significantly increased

for all values of d. This very large size of the κn-test seems to be the result of the difficulty of

estimating d and v(ϕ) in the presence of additive i.i.d. noise in the ARFIMA(0, d, 0) process.
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H0 α = .1 α = .05

n d=.1 .2 .3 .4 d=.1 .2 .3 .4

∆n 1000 0.190 0.173 0.157 0.122 0.102 0.087 0.081 0.057

5000 0.166 0.163 0.115 0.128 0.084 0.084 0.060 0.066

κn 1000 0.589 0.502 0.383 0.296 0.396 0.325 0.249 0.177

5000 0.523 0.391 0.306 0.230 0.365 0.240 0.198 0.145

Table 2: Empirical size of the ∆n- and κn-tests with α = .1 and .05 under Null2 as d and n vary.

H1 α = .1 α = .05

n d=.1 .2 .3 .4 d=.1 .2 .3 .4

∆n 1000 0.653 0.427 0.258 0.180 0.351 0.228 0.129 0.085

5000 0.900 0.541 0.315 0.154 0.594 0.298 0.171 0.072

κn 1000 1.000 0.994 0.737 0.284 1.000 0.984 0.576 0.154

5000 1.000 1.000 0.931 0.244 1.000 1.000 0.784 0.149

Table 3: Empirical power of the ∆n- and κn-tests with α = .1 and .05 under Alt1 scenario as d and n vary.

Table 3 reports the empirical powers of the two tests under the Alt1 scenario. The κn-test

shows a higher power. However, due to its very high empirical size, as seen in Table 2, this

fact cannot be readily taken as a sign of good performance of this test.

To see how ‘fine tuning’ of the bandwidth m of the local Whittle estimator affects the

empirical size of κn-test, we used m = na, for a = .4, .5, .6, .7, .8, to compute the empirical

size of this test under Null1 scenario. From Koul et al. (2013) we recall that the bandwidth

m needs to satisfy are m→ ∞ and m/n→ 0. Table 4 lists root mean squared error (RMSE)

of local Whittle estimator d̂ of d, and the resulting empirical size for these values of m. From

this table, it is apparent that the empirical size is not much affected by the choice of m, and

the improvement in RMSE of d̂ does not result in the improved empirical size of κn-test.

It seems that the inefficiency of the estimator of the long-run variance is causing the large

empirical sizes for this test for relatively small values of d.

Robustness of the ∆n-test against the choice of q and ϕi(x), i = 1, 2. Table 5

shows that the ∆n-test is quite robust against the chosen choices of q. On the other hand,

this test is sensitive to the choice of weight functions ϕi(x), i = 1, 2 as is seen in Table 6.

In this table, the empirical size and the power of the ∆n-test is computed under the Null1
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κn RMSE(d̂) α = .1

m d=.1 .2 .3 .4 d=.1 .2 .3 .4

n.4 0.093 0.111 0.113 0.093 0.286 0.128 0.093 0.084

n.5 0.068 0.072 0.075 0.062 0.269 0.118 0.070 0.070

n.6 0.042 0.043 0.042 0.039 0.307 0.159 0.118 0.100

n.7 0.028 0.026 0.028 0.026 0.333 0.166 0.126 0.113

n.8 0.017 0.017 0.018 0.017 0.351 0.181 0.144 0.120

n.9 0.013 0.018 0.023 0.030 0.417 0.209 0.171 0.137

Table 4: Effect of bandwidth m on RMSE(d̂) and empirical size of κn-test under Null1, n = 5000, α = .1.

∆n α = .1 α = .05

n d=.1 .2 .3 .4 d=.1 .2 .3 .4

q = n.4 1000 0.170 0.129 0.137 0.116 0.078 0.068 0.072 0.049

5000 0.176 0.125 0.123 0.113 0.095 0.066 0.064 0.059

q = n.7 1000 0.173 0.127 0.138 0.118 0.080 0.067 0.073 0.054

5000 0.175 0.128 0.121 0.114 0.098 0.064 0.071 0.055

Table 5: Effect of bandwidth q on empirical size of ∆n-test under Null1, α = .1 and .05. To be compared

with the ∆n entries in Table 1.

scenario, using smooth weight functions:

ϕ(3)(x) = 3x2 − 1, ϕ(4) = ϕ(3)(1− x), ϕ(5)(x) = sin(2πx− 1), ϕ(6) = ϕ(5)(1− x).

Table 6 shows that the choice of weight functions ϕ1 = ϕ(3), ϕ2 = ϕ(4) and ϕ1 = ϕ(5), ϕ2 =

ϕ(6) worsens the empirical size of the ∆n-test as compared to the choice ϕ1 = ϕ(1), ϕ2 = ϕ(2)

in Table 1.

Table 7 lists empirical 95% confidence interval for ρ(ϕ(1), ϕ(2)), along with its theoretical

values. These confidence intervals are obtained by taking 50th and 950th ordered realizations

as lower and upper limits, respectively, from the 1000 iteration of the estimate ρ̂n(ϕ(1), ϕ(2))

that arise during the simulation. The table also lists the theoretical values of ρ(ϕ(3), ϕ(4))

and ρ(ϕ(5), ϕ(6)) for various values of d. The power of ∆n-test for all the three choices of

(ϕ1, ϕ2) decreases as d increases. Since value of ρ in the critical value C(ρ) depends on d

as well as on ϕ1, ϕ2, it is natural to suspect a direct relationship between the power and

the values of ρ. However, the relationship seem not to be a straightforward one, because

as in Table 7, values of ρ(ϕ(1), ϕ(2)) and ρ(ϕ(3), ϕ(4)) are quite different, but the powers of

respective tests listed in Table 3 and Table 6 are quite similar. In the choice of (ϕ1, ϕ2), we
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α = .1 α = .05

∆n(ϕ(3), ϕ(4))

n d=.1 .2 .3 .4 d=.1 .2 .3 .4

H0 1000 0.304 0.216 0.170 0.143 0.153 0.102 0.078 0.069

5000 0.295 0.190 0.162 0.126 0.140 0.095 0.094 0.073

H1 1000 0.614 0.414 0.325 0.216 0.350 0.236 0.152 0.123

5000 0.854 0.605 0.397 0.233 0.561 0.350 0.205 0.108

∆n(ϕ(5), ϕ(6))

n d=.1 .2 .3 .4 d=.1 .2 .3 .4

H0 1000 0.247 0.192 0.172 0.138 0.137 0.093 0.091 0.071

5000 0.239 0.180 0.148 0.110 0.130 0.094 0.079 0.058

H1 1000 0.448 0.319 0.239 0.146 0.233 0.170 0.111 0.073

5000 0.676 0.460 0.294 0.176 0.397 0.261 0.150 0.084

Table 6: Effect of ϕ’s on empirical size of the ∆n-test with (ϕ1, ϕ2) = (ϕ(3), ϕ(4)) and (ϕ(5), ϕ(6)), under

Null1 and Alt1, as d and n vary. To be compared with Table 1.

recommend using (ϕ(1), ϕ(2)), because of the sample sizes listed in Table 1 and 2. As seen

in Table 6, smoother choice of (ϕ1, ϕ2) considered has resulted in worse size, and no gain in

the power.

∆n n d=.1 .2 .3 .4

1000 (-0.665, -0.426) (-0.702, -0.491) (-0.737, -0.527) (-0.772, -0.570)

5000 (-0.627, -0.461) (-0.670, -0.505) (-0.709, -0.553) (-0.734, -0.595)

ρ(ϕ(1), ϕ(2)) -0.544 -0.585 -0.627 -0.667

ρ(ϕ(3), ϕ(4)) -0.888 -0.898 -0.909 -0.919

ρ(ϕ(5), ϕ(5)) 0.384 0.344 0.305 0.265

Table 7: Empirical 95% confidence intervals for ρ(ϕ1, ϕ2), for (ϕ1, ϕ2) = (ϕ(1), ϕ(2)), as d varies, and

theoretical values of ρ(ϕ1, ϕ2), for (ϕ1, ϕ2) = (ϕ(1), ϕ(2)), (ϕ(3), ϕ(4)) and (ϕ(5), ϕ(6)).

Case ν = 2. Here we generated random field Yt1,t2 = 3 + 2Xt1,t2 , (t1, t2) ∈ An = [1, n]2 for

n = 150 and n = 300, where Xt1,t2 = Ht1,t2/
√
EH2

t1,t2 and Ht1,t2 are given as follows in the

two different null hypotheses settings.

Null3 : Ht1,t2 = Ut1,t2 ,where {Ut1,t2} is a truncated moving-average random field
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Ut1,t2 =

t1+1000∑

s1=t1−1000

t2+1000∑

s2=t2−1000

bt1−s1,t2−s2ζs1,s2

with i.i.d. standardized normal r.v.’s {ζs1,s2},
Null4 : Ht1,t2 = Ut1,t2 + Zt1,t2 ,where {Ut1,t2} is as in Null3, and {Zt1,t2} is

i.i.d. random field with N(0, 4) innovations and independent of {Ut1,t2},
Alt2 : Ht is truncated moving-average field with {ζs1,s2} being i.i.d. centered-

exponential innovations.

Moving-average coefficients in Ut1,t2 were set to b0,0 := 1, bt1,t2 = 0.25(|t1|2 + |t2|2)(d−2)/2,

(t1, t2) 6= (0, 0) satisfying (1.2) with B(t/|t|) = .25, for d = .2, .4, .6, and .8. For ∆n-test, we

used the statistic as in (1.10), with

ϕ1(x) = 2I(x1 > 2/3)− I(x1 ≤ 2/3), ϕ2(x) = 2I(x1 < 1/3)− I(x1 ≥ 1/3),

for x = (x1, x2) ∈ [0, 1]2, and the bandwidth parameter q = n.6. For κn-test, the statistic in

(6.1) was used with ϕ(x) = I(x1 > 1/2)− I(x1 ≤ 1/2). The long memory parameter d was

estimated using GPH estimator as described in Wang (2009), with bandwidth set as n.6. For

each scenario, 500 replications were used.

The simulation results for the three cases Null3, Null4, and Alt2 are presented in Tables

8, 9, and 10, respectively. From Tables 8 and 9, we see that the empirical sizes of ∆n-test

are much closer to the asymptotic sizes than those of the κn-test at n = 300 for both Null3,

Null4 hypotheses. From Table 10, one sees that in the case of ν = 2, unlike in the case of

ν = 1 (see Table 2) the κn-test does not have large empirical size in the presence of additive

noise in Null4, yet its empirical power at Alt2 is considerably larger than that of the ∆n-test

for d = .2, .4, .6. At d = .8, the ∆n-test appears to be dominating somewhat.

H0 α = .1 α = .05

n d=.2 .4 .6 .8 d=.2 .4 .6 .8

∆n 150 × 150 0.170 0.160 0.130 0.166 0.082 0.078 0.052 0.096

300 × 300 0.114 0.120 0.120 0.112 0.072 0.056 0.058 0.048

κn 150 × 150 0.064 0.066 0.068 0.074 0.032 0.034 0.040 0.034

300 × 300 0.052 0.082 0.080 0.066 0.018 0.042 0.028 0.036

Table 8: Empirical size of the ∆n- and κn-tests with α = .1 and .05 under Null3 as d and n vary.

When v(ϕ1) 6= v(ϕ2). Lastly, we investigated the performance of the test when v(ϕ1) 6=
v(ϕ2) for ν = 1 case. In this case the test statistic is ∆̃n of (1.16). We ran the simulation

with the weight functions (ϕ1, ϕ2) = (ϕ(1), ϕ(4)) and (ϕ(1), ϕ(6)), under Null1 scenario. Table
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H0 α = .1 α = .05

n d=.2 .4 .6 .8 d=.2 .4 .6 .8

∆n 150 × 150 0.136 0.132 0.100 0.136 0.062 0.064 0.044 0.064

300 × 300 0.146 0.128 0.104 0.112 0.094 0.060 0.052 0.052

κn 150 × 150 0.138 0.138 0.142 0.156 0.078 0.064 0.086 0.106

300 × 300 0.114 0.124 0.128 0.132 0.058 0.060 0.074 0.072

Table 9: Empirical size of the ∆n- and κn-tests with α = .1 and .05 under Null4 as d and n vary.

HA α = .1 α = .05

n d=.2 .4 .6 .8 d=.2 .4 .6 .8

∆n 150 × 150 0.508 0.330 0.268 0.190 0.276 0.146 0.146 0.094

300 × 300 0.716 0.528 0.352 0.220 0.376 0.262 0.182 0.110

κn 150 × 150 0.976 0.814 0.320 0.156 0.952 0.634 0.174 0.072

300 × 300 1.000 0.992 0.632 0.208 1.000 0.954 0.438 0.128

Table 10: Empirical power of the ∆n- and κn-tests with α = .1 and .05 under Alt2 as d and n vary.

11 shows the results, which are mixed. The behavior of the empirical sizes of ∆̃n test is

similar to those of the ∆n test corresponding to (ϕ1, ϕ2) = (ϕ(1), ϕ(2)) as seen in Table 1.

∆̃n (ϕ(1), ϕ(4)) ∆̃n (ϕ(1), ϕ(6))

n d=.1 .2 .3 .4 d=.1 .2 .3 .4

α = .1

H0 1000 0.185 0.121 0.114 0.109 0.179 0.133 0.140 0.120

5000 0.168 0.126 0.127 0.120 0.165 0.135 0.134 0.095

α = .05

H0 1000 0.090 0.067 0.054 0.047 0.104 0.063 0.073 0.060

5000 0.085 0.067 0.070 0.058 0.083 0.077 0.056 0.047

Table 11: Empirical size of the ∆̃n test with α = .1 (top) and .05 for ARFIMA(0,d,0) as d and n vary, and

q is changed to n.4 (left) and n.7.

Table 12 shows 95% empirical confidence intervals for θ := v(ϕ2)/v(ϕ1) based on the

estimate ṽn(ϕ2)/ṽn(ϕ1), obtained from simulation, along with the theoretical values of θ

under Null1, obtained by using (1.8) with R0 = B(d, 1−2d)/Γ(d). These confidence intervals

are constructed by collecting the 1000 independent realization of the estimate ṽn(ϕ2)/ṽn(ϕ1)
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that arise during the simulation, and taking 50th and 950th ordered realizations as lower

and upper limits, respectively.

∆n n d=.1 .2 .3 .4

(ϕ(1), ϕ(4)) 1000 (0.379, 0.441) (0.386, 0.449) (0.402, 0.462) (0.411, 0.471)

5000 (0.384, 0.434) (0.397, 0.445) (0.409, 0.456) (0.423, 0.467)

θ 0.418 0.423 0.434 0.445

(ϕ(1), ϕ(6)) 1000 (0.205, 0.288) (0.201, 0.287) (0.191, 0.270) (0.182, 0.264)

5000 (0.216, 0.280) (0.210, 0.272) (0.201, 0.263) (0.190, 0.251)

θ 0.251 0.239 0.230 0.219

Table 12: Empirical 95% confidence intervals for θ := v(ϕ2)/v(ϕ1), (ϕ1, ϕ2) = (ϕ(1), ϕ(4)) and (ϕ(1), ϕ(6))

with the theoretical values of θ.
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