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Abstract

Providing a best linear unbiased predictor (BLUP) is always a challenge for a non-
repetitive, irregularly spaced, spatial data. The estimation process as well as prediction
involves inverting an n × n covariance matrix, which computationally requires O(n3).
Studies showed the potential observed process covariance matrix can be decomposed into
two additive matrix components, measurement error and an underlying process which can
be non-stationary. The non-stationary component is often assumed to be fixed but low
rank. This assumption allows us to write the underlying process as a linear combination of
fixed numbers of spatial random effects, known as fixed rank kriging (FRK). The benefit
of smaller rank has been used to improve the computation time as O(nr2), where r is the
rank of the low rank covariance matrix. In this work we generalize FRK, by rewriting
the underlying process as a linear combination of n random effects, although only a few
among these are actually responsible to quantify the covariance structure. Further, FRK
considers the covariance matrix of the random effect can be represented as product of r× r

cholesky decomposition. The generalization leads us to a n × n cholesky decomposition
and use a group-wise penalized likelihood where each row of the lower triangular matrix
is penalized. More precisely, we present a two-step approach using group LASSO type
shrinkage estimation technique for estimating the rank of the covariance matrix and finally
the matrix itself. We investigate our findings over a set of simulation study and finally apply
to a rainfall data obtained on Colorado, US.
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1 Introduction
For most of statistical prediction problems, obtaining a BLUP is very crucial and generally
modeling and estimating the mean does the trick. Although estimation of the underlying pro-
cess covariance is instrumental for spatial BLUP also known as kriging. The concept of kriging
was first introduced by D.G.Krige, a South African mining engineer (Cressie, 1990) and Math-
eron in 1962 coined the term to honor Krige. Kriging is a very popular tool used in earth climate
modeling and environmental sciences. It uses quantification of spatial variability through co-
variance function and solving the standard kriging equation is often numerically cumbersome,
and involves inversion of a n × n covariance matrix. With large n, which is quite reasonable
for real data observed on global scale since computation cost increases with cubic power of the
dimension n, spatial BLUP becomes challenging.

Hence, there have been several efforts to achieve a computationally feasible estimate. The
foremost challenge of estimating covariance for a spatial set up arises due to absence of repeti-
tion. This may seem absurd if we realize this situation as a multivariate extension of computing
variance from one observation. As odd as may it sound, the trick is to consider a specific spar-
sity structure for the covariance matrix under study. The covariance matrix is sparse when the
covariance function is of finite range and due to sparsity the computation cost to invert a n× n
matrix reduces considerably.

Before we delve in to the discussion of our contribution we would like to put forward a few
other attempts to estimate large covariance matrices through literature review. In 1997 Barry and
Pace used symmetric minimum degree algorithm when n = 916 for kriging. Rue and Tjelme-
land (2002) approximated Σ−1 to be sparse precision matrix of a Gaussian Markov random field
wrapped on a torus. For larger n, the first challenge in applying kriging is, increase in condition
number of the covariance matrix, which plays a major role in building up the computation time
and makes the kriging equation numerically unstable. On the other hand, to handle compu-
tational complexity, Kaufman et.al. (2008), introduced the idea of covariance tapering which
sparsify the covariance matrix element wise to approximate the likelihood. Some other worth
mentioning efforts in tapering are Furrer et.al. (2012), Stein (2013) e.t.c. Covariance tapering
gains immense computational stability, keep interpolating property and also have asymptotic
convergence of the taper estimator. But tapering is restricted only to isotropic covariance struc-
ture and the tapering radius needs to be determined.

Another alternative method, FRK was introduced by Cressie & Johannesson (2008). Unlike
tapering, FRK is applicable to a more flexible class of non-stationary covariance matrix, and
also reduces computational cost of kriging toO(n). For many non-stationary covariance model
like ours, the observed process covariance matrix can be decomposed into two additive matrix
components. The first is a measurement error modeled as white noise. While the second is
an underlying process which can be non-stationary covariance structure and is often assumed
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to be fixed but low rank. The underlying process can be represented as a linear combination
of rn random effects. For FRK rn plays the role of rank of the non-stationary component, is
considered to be known r and fixed over n. In this work we would like to relax this assumption
by allowing rn changing over n.

Our goal in this paper is to achieve a data driven approach for finding the rank rn. To do so
let us assume even though there are unknown rn random effects used to represent the underlying
process, what if we start with some numbers of random effects and as we proceed, our algorithm
will direct us toward a data driven value for rn? Once we figure out that the dispersion matrix
of this n dimensional random effect can be decomposed into cholesky factor, a closer look will
teach us that dropping or selecting a particular random effect boils down to zero or non-zero row
in the corresponding cholesky matrix. We consider a penalized likelihood approach where we
penalize `2− norm within each row of the cholesky matrix and `1− norm between two different
rows of the cholesky matrix.

The low rank non-stationary covariance matrix is decomposed, using a basis components
(not necessarily orthogonal) and another component is dispersion matrix of random effects vec-
tor. The basis component depends primarily on the choice of the class of basis function and
number of knot points. FRK recommends that the choice of basis function should be multi-
resolutional, more precisely they used a local bi-square functions. This use of locally multi-
resolutional knots has also been proved quite useful in the literature of kriging for large spatial
data sets (Nychka (2015)) other than FRK. The choice of number of knot points and their po-
sitions is always crucial. The number of knot points is directly related to rn, the number of
random effects component. The foremost challenge in applying our method is choice of effec-
tive numbers of knot points necessary to construct the basis function under study.

Although our initial objective in this work is to provide a way to estimate the non-zero ran-
dom effects and finally the covariance matrix, but like any other statistical prediction problem
we shall be extending our findings in presence of covariates. Peng and Wu (2010), proved that
condition number of the covariance matrix also increases with increase in input variables. To
handle numerical instability, Peng and Wu (2010), suggested the idea of regularized kriging,
which is a simple modification in the method of estimation. Unlike kriging, regularized kriging
optimizes regularized or penalized likelihood. At this stage we have not considered dimen-
sion reduction challenges while extending our findings in presence of covariates but, for future
studies, this can be a non-trivial and worthwhile extension.

A recent study on limitations of low rank kriging (Stein (2015)) shows an approximation
in which observations are split into contiguous blocks and assumes independence across these
blocks. It provides a much better approximation to the data likelihood than a low rank ap-
proximation requiring similar memory and calculations. It also shows that Kullback-Leibler
divergence for low rank approximation is not reduced as much as it should have been in few
settings. On the contrary the divergence is considerably reduced if there is a block structure.
Keeping this in mind, and considering the fact that selections of knots work better under multi-

3



resolution setup, we consider the knots by superimposing resolutions.
Under some sensible assumptions this paper will motivate our readers to the idea of exis-

tence of a consistent covariance estimator of the spatial process using a low rank modeling,
whose estimation has not been discussed before in any literature to the best of our knowledge.
We will discuss the practical implications of our assumption later but, we still like to point out
that without loss of generality we considered, the location knots for the bi-variate spline matrix
are ordered in a specific way such that the true structure has the first rn non-zero rows and rest
n−rn zero rows. We also discuss how our findings fit in the situations of limitations of low rank
kriging (Stein (2015)). To avoid further mathematical details here, this part of the comparison
is in discussion section 6.

All kinds of approximation of the covariance function introduced so far, has a motive to
reduce the computational cost. Most of these existing methods fail to capture both large scale
(long-range) and small scale (short-range) dependence. However tapering captures small scale
dependence and, low rank techniques captures large scale dependence. A new method is dis-
cussed using adding these two components (Sang and Huang 2012). We would like to point out
our readers that however worthwhile this method of combining both low rank and tapering may
look, this paper provides a more sound theoretical approach to support our algorithm and find-
ings. Although estimation of low rank covariance matrix has it’s limitations, the method has not
always been criticized, rather well established in several situations by various authors. Most of
the interesting work in this field, can be classified in two broad classes: statistics and machine
learning. Among many others in the field of statistics we think, Fan and Li (2012), Banerjee
et.al. (2012), Tzeng and Huang (2015) e.t.c. are worth mentioning. On other the hand, the field
of machine learning focuses on developing algorithms where, Frieze et.al. (2004), Achlioptas
and McSherry (2007), Journée et.al. (2010) are quite reasonable to browse through. Based
on these literatures it is obviously worthwhile to contribute our time and to come up with a
theoretical justification behind the possibility of low rank covariance matrix estimation.

Even when we keep the rank fixed, for a very large data set (order of tens of thousands to
hundreds of thousands), kriging can be quite impossible and ad hoc local kriging neighborhoods
are used (Cressie (1993)). Some recent developments include Nychka et.al. (1996; 2002), Fur-
rer et.al. (2006) and many more. Among other alternative methods, some worth discussing are
Radial basis interpolation functions (Bühlmann, (2004)), inverse distance weighting (Shepard,
(1968)) or regression-based inverse distance weighting used by Joshep and Kang (2009) which
is a fast interpolator and overcomplete basis surrogate method (Chen, Wang, and Wu (2010)).
Surrogate basis representation is similar to lattice kriging (Nychka (2015)) where the basis func-
tions are boundedly supported and over complete. But lattice kriging considers sparsity in the
precision matrix through bounded basis function matrix and a parametric neighborhood matrix
whereas we are considering sparsity in the covariance matrix through low rank factorization and
cholesky decomposition of the low rank covariance matrix.

The rest of this paper is organized as follows. In Section 2, we explain the proposed ap-
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proach for selecting and estimating nonzero rows (rank) and the corresponding low rank covari-
ance matrix. In Section 3, we discuss the main theoretical results on the selection and estimation
consistency. Following which in section 4 we present the block coordinate descent algorithm
for block wise convex regularizing functions. Section 5 contains simulation results along with
a real data example. Finally, we make some concluding remarks in section 6. Proofs of all
theorems and lemmas are provided in the appendix.

2 Group Lasso for estimating low rank covariance matrix
The concept of using `1/`2 - penalty (Yuan et.al. (2006), and Bühlmann et.al. (2011)) compo-
nent had been well established in the context of selecting varibles, if it is believed, that there
exist an inherent group structure in the parameter space. But using this has not been quite clear
in estimating rank of a low-rank matrix and estimating the matrix itself. Here in this section we
want to present an `1/`2 - penalized approach in estimating the low rank non-stationary covari-
ance matrix as an extension of FRK. The goal of FRK is to reduce computation cost of inversion
of a matrix from cubic to linear in sample size. To explain the crucial difference between FRK
and our method, low rank kriging, we need to introduce the following mathematical notations.

Consider Y = {Y (s); s ∈ S } be a spatial process perturbed with measurement error
ε = {ε(s); s ∈ S } and let X = {X(s); s ∈ S } be the process of potential observation
where, ε is a Gaussian process with mean 0 and var (ε(s)) = σ2v(s) ∈ (0,∞), s ∈ S ,
for σ2 > 0 and v(·) known. Now in general the underlying process Y has a mean structure,
Y (s) = Z(s)′β + π(s), for all s ∈ S where, π = {π(s); s ∈ S } follows a Gaussian
distribution with mean 0, 0 < var (π(s)) < ∞, for all s ∈ S , and a non-stationary spatial
covariance function cov (π(s), π(s′)) = σ(s, s′), for all s, s′ ∈ S . Also Z = {Z(s); s ∈ S }
represent known covariates and β be the vector of unknown coefficients. So, finally combining
the underlying process and the measurement error we have,

X(s) = Z(s)′β + π(s) + ε(s) ∀s ∈ S . (1)

The processX(·) is observed only at a finite number of spatial locationsSn = {s1, s2, . . . , sn} ⊂
S . We allow Sn to be any irregular lattice in d-dimension with cardinality n. Now, we can go
back explaining FRK. In general, the covariance function σ(s, s′) has to be a positive definite
function on Rn×Rn. In practice Σ is unknown and being in a spatial sampling design we often
consider σ(s, s′) as stationary covariance function, but in this paper we want to keep it general
and allow the possibility of it being non-stationary. We capture the spatial information through
basis functions [Cressie, N. et al. (2008)],

R(s) = (R1(s), R2(s), . . . , Rrn(s))′, ∀s ∈ Sn

and for a positive definite matrix Ω, we have a model for our covariance function σ(s, s′) as,

σ(s, s′) = R(s)′ΩR(s′), ∀s, s′ ∈ Sn. (2)
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It is quite interesting to observe that above is a consequence of writing π(s) = R(s)′α, where
α is an rn−dimensional vector with var(α) = Ω. The model for π(·) is often refered to as
spatial random-effects model. Define matrixR withR(si)

′ as the ith row and correspondingly,
Σ = RΩR′, where R(Σ) ≤ R(Ω) = rn, where R(·) is used to denote rank of a matrix.
In practice since we do not have prior knowledge about the value of rn, our contribution is to
provide an estimate of the rank parameter rn, while estimating the matrix itself as we start with
L basis for each location sites,

R̃(s) =
(
R̃1(s), R̃2(s), . . . , R̃L(s)

)′
, ∀s ∈ Sn.

In an ideal scenario we select the first rn basis rows and, by dropping the rest we obtain R. So
we start with a model for our covariance function σ(s, s′) as,

σ(s, s′) = R̃(s)′Ω̃R̃(s′), ∀s, s′ ∈ Sn (3)

Similar to equation (2), one can easily see that equation (3) is a consequence of writing
π(s) = R̃(s)′α̃, where α̃ is anL−dimensional vector with var (α̃) = Ω̃. Using this expression
of random effect π(s), in (1) we get,

X(s) = Z(s)′β + R̃(s)′α̃+ ε(s) ∀s ∈ S . (4)

Also for simplicity let us first present our method for the case Zβ = 0. Let us now explain
the relation between two versions of random effects or covariance model and, the method used
to reduce this dimensionality cost. Ideally, Ω is a sub-matrix of Ω̃ with R

(
Ω̃
)

= R(Ω) such
that, (

Ω Orn×(L−rn)

O(L−rn)×rn O(L−rn)×(L−rn)

)
= Ω̃ = Φ̃Φ̃

′
=
(

ΦΦ′ Orn×(L−rn)

O(L−rn)×rn O(L−rn)×(L−rn)

)
, (5)

where, Φrn×rn is the cholesky decomposition of Ω, an unique lower triangular matrix. In prac-
tice, it may be necessary that we reorder the columns in our basis matrix R̃ to achieve the above
structure. This reordering can be taken care by introducing a permutation matrix, explained in
the appendix. So, for rest of the discussion we will consider Σ = R̃Ω̃R̃

′
. As mentioned earlier

due to (5), Φrn×rn is principal sub-matrix of Φ̃n×n but since, we have limited knowledge about
the value of rn we propose to start with all L rows non-zero. Our proposed method allows us
to select non-zero rows of Φ̃, which eventually captures all information required to retreive Σ.
We drop a row from Φ̃ if only if, all the elements in that row are smaller than some preset value.
Hence a group wise penalization is sensible, as the shrinkage equation will have a similar nature
of block-wise optimization. Denote ϕ̃′(j) = (ϕ̃j1, ϕ̃j2, . . . , ϕ̃jj, 0, 0, . . . , 0) = (ϕ̃′j, 0, 0, . . . , 0)

to be the jth row of Φ̃, where number of zeros in jth row is L− j.
Define, Φ̃

vec

Fullset = (ϕ̃′1, ϕ̃
′
2, . . . , ϕ̃

′
L) to be a row-wise vector representation of the lower

triangular part of the matrix Φ̃. For a weight vectorψ = (ψ1, ψ2, . . . , ψL)′, we define a weighted
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`1/`2-norm,
∥∥∥Φ̃vec

Fullset

∥∥∥
2,1,ψ

=
∑L

j=1 ψj‖ϕ̃(j)‖2, where ‖ · ‖2 is the `2-norm of a vector. So, we

propose the following weighted `1/`2-penalized likelihood function,

Qn(Φ̃, σ2, τn,ψn) = X ′Ξ−1X + log det Ξ + τn

∥∥∥Φ̃vec

Fullset

∥∥∥
2,1,ψn

, (6)

where τn is the regularization parameter, ψn = (ψn1, ψn2, . . . , ψnn)′ is a suitable choice of a
weight vector in the penalty term. We allow the possibility that the penalty parameter, τn, and
the weight vector, ψn, can depend on the sample size n. Now using the above covarince mod-

eling for Σ i.e. Σ = R̃Φ̃Φ̃
′
R̃
′

and using, Ξ−1 =
(
σ2I + R̃Φ̃Φ̃

′
R̃
′)−1

, (6) can be rewritten
as,

Qn(Φ̃, σ2, τn,ψn) = Tr
(

Ξ0

(
σ2I + R̃Φ̃Φ̃

′
R̃
′)−1)

+ log det
(
σ2I + R̃Φ̃Φ̃

′
R̃
′)

+ τn

∥∥∥Φ̃vec

Fullset

∥∥∥
2,1,ψn

, (7)

where Ξ0 = XX ′ is the emperical variance covariance matrix. One can observe that the length
of nonzero components in each row of Φ̃ is varying since it is a lower triangular matrix and
hence ideally we should put varying penalty quantity for each row of the matrix. A smart way
to handle the problem is to rescale the jthcolumn of R̃ by 1/ψnj . So we define R̃

?
with jth

column equal to 1/ψnj times the jth coulmn R̃, and accordingly we define Φ̃
?

with jth row
equal to ψnj times the jth row Φ̃ which leads to R̃Φ̃ = R̃

?
Φ̃
?
. This transformation helps us to

acheive invariance in Σ̃ for adaptive group LASSO. Therefore the optimization problem in (7)
boils down to an unweighted `1/`2-penalized likelihood function,

Qn(Φ̃, σ2, τn,1) = Tr
(

Ξ0

(
σ2I + R̃Φ̃Φ̃

′
R̃
′)−1)

+ log det
(
σ2I + R̃Φ̃Φ̃

′
R̃
′)

+ τn

∥∥∥Φ̃vec

Fullset

∥∥∥
2,1,1

, (8)

and we want to restrict our search over the space of lower triangular matrices, with abso-
lutely bounded elements and σ ≤ K < ∞. Let us denote our search space by PN

0 , where
N = 0.5n(n + 1) + 1, the total number of parameters is an increasing function of n. Ob-
serve that with this rescaling, magnitude of our spatial basis matrix R̃ will change over n
which let us think that the largest or smallest eigen value of R̃ may not be fixed for varying
sample size. As a choice for ψnj one might be interested with ψnj = 1/j, i.e. by scaling
down the jth row ϕ̃(j) by its number of nonzero components and then take the `2-norm. De-

fine,
(̂̃

ΦgL(τn), σ̂2

)
= arg minPN

0
Qn(Φ̃, σ2, τn,1). Based on ̂̃ΦgL, σ̂2 and R̃ we compute

Ξ̂gL = σ̂2I + R̃
̂̃
ΦgL

̂̃
Φ
′

gLR̃
′
.
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3 Main Result
In this section, we want to present asymptotic properties of the group Lasso type estimators
obtained in section 2. We observe a single realization of a Gaussian random vector with mean 0

and covariance matrix Ξ = σ2I + R̃Ω̃R̃
′
= σ2I + R̃Φ̃Φ̃

′
R̃
′
, denoted as X = ε+ π such that

ε is a single realization of a Gaussian random vector with mean 0 and covariance matrix σ2I
and π is a single realization of a Gaussian random vector with mean 0 and covariance matrix
Σ. Let us denote the corresponding sample space as Ω0 collection of all possible sample points
ω i.e.,

Ω0 =
{
ω = (ε+ π) ∈ Rn with, Π(n−rn)×nπ = 0n−rn

}
.

Before we can delve in to any further details we need to define two pre-requisite quantities
parameteric search space PN

0 , and domain of the optimizing function Qn. Note that, the para-
metric search space PN

0 , can be defined as,

PN
0 :=

{
ϕ̃ji ∈P0, ∀ i = 1, . . . , j &, ∀ j = 1, . . . , n ; σ ∈P+

0

}
,

where for some bounded subset P 1 ⊂ R and P 2 ⊂ R+ we have, P0 ⊂ P 1 and P+
0 ⊂ P 2. Let

A0 and A? are the sets of zero and non-zero rows of Φ̃ respectively. Without loss of generality,
A? = {1, 2, . . . , rn} and A0 = {rn + 1, . . . , n} . The case of generality is discussed in remark
3. Also, we assume existence of a set Ã0, such that,

∑
j∈Ã0
‖ϕ̃(j)‖2 ≤ η1 for some η1 ≥ 0.

Existence of Ã0 is often refered to as generalized sparsity condition (GSC) in literature of group
Lasso estimation. Define Ã? = {1, . . . , n} \ Ã0, Âϕ =

{
j :
∥∥∥̂̃ϕgL,(j)∥∥∥

2
> 0, 1 ≤ j ≤ n

}
and,

B0 = A? ∪ Âϕ. We know |A?| = rn and
∣∣∣Âϕ∣∣∣ = r̂n, where r̂n = R

(̂̃
ΦgL

)
.

For a m×m non-negative definite symmetric matrixD, we denote q(≤ m) eigen values by
0 ≤ λmin(D) = λ1(D) ≤ λ2(D) ≤ . . . ≤ λq(D) = λmax(D). We denote ‖·‖T1 to define trace
norm of the matrix where, trace norm is the sum of it’s singular values. Therefore for a non-
negative definite matrix, ‖D‖T1 =

∑
λ(·)>0 |λ (D)| = Tr(D) . Since ‖D‖F =

√
Tr (D′D) =(∑

λ(·)>0 λ
2 (D)

)1/2
≤
∑

λ(·)>0 |λ(D)| ≤ qλmax(D). For any subset B ⊂ {1, 2, . . . , n} we

define a lower triangluar matrix, Φ̃B such that, jth row of Φ̃B will take ϕ̃(j) if j ∈ B or, 0 if
j ∈ Bc. The corresponding row-wise vector representation for Φ̃B is Φ̃

vec

B = (ϕ̃′j, j ∈ B)′.

So for B0, we obtain Φ̃B0 and we can define, ΞB0 = σ2I + R̃Φ̃B0Φ̃
′
B0
R̃
′
and correspondingly

we define, Ξ̂gL,B0 = σ̂2I + R̃
̂̃
ΦgL,B0

̂̃
Φ
′

gL,B0
R̃
′
. In what follows, the theorem which supports

consistency for both estimation and selection of the non-zero rows of Φ̃B0 .

Theorem 1 (Estimation consistency of covariance parameters). Let ̂̃ΦgL, σ̂
2 is the minimizer of

(8). Also if ̂̃ϕgL,(j) denotes the group LASSO estimate of the jth row of the minimizer ̂̃ΦgL, then
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for some preassigned %, ς > 0 and, for some M ≥ 1, let us define,

Pc
∞,n =

ω ∈ Ω0 ;

∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2∥∥ϕ̃(j)

∥∥2
2

< %2,∀ j ∈ B0 ;
∣∣σ̂2 − σ2

∣∣ < ς ; |B0| < M rn

 ,

where rn = Dnγ + O(1), with D ≥ 1 and γ < 2/(15 + 11α) for some α > 0. Suppose that
conditions in assumption A hold and, τn < Cn(4+α)γ/2 for a sufficiently large constant C. Then
we have, P

(
Pc
∞,n
) n→∞−→ 1.

The above theorem provides estimation consistency of rows of lower triangular cholesky
decomposition matrix Φ̃, the nugget parameter σ2, and boundedness of cardinality of the set
B0. Despite therorem 1, we do need the following theorem to support consistency of Ξ̂gL.

Theorem 2 (Estimation consistency of Ξ̂gL). Under the same assumptions A as in theorem 1
and additionally if we choose n2ς2 < M 3n10/(15+11α) we have,

1

n2

∥∥∥Ξ̂gL,B0 −ΞB0

∥∥∥2
F

= Op

(
M 3%2

n2( 10+11α
15+11α)

)
.

3.1 Extention to the case Zβ 6= 0

Our first and foremost goal was to estimate the rank and the process matrix Σ, so we first
presented the simplier case with Zβ = 0. But a problem of kriging is incomplete if we are
unable to add predictor variables to the model. So, we present the revised version of `1/`2-
penalized likelihood function,

Qn(Φ̃, σ2,β, τn,ψn) = (X −Zβ)′Ξ−1 (X −Zβ) + log det Ξ + τn

∥∥∥Φ̃vec

Fullset

∥∥∥
2,1,ψn

, (9)

Corresponding to (9) the objective function (8) can be rewritten as,

Qn(Φ̃, σ2,β, τn,1) = Tr
(

Ξβ

(
σ2I + R̃Φ̃Φ̃

′
R̃
′)−1)

+ log det
(
σ2I + R̃Φ̃Φ̃

′
R̃
′)

+ τn

∥∥∥Φ̃vec

Fullset

∥∥∥
2,1,1

, (10)

where, Ξβ = (X −Zβ) (X −Zβ)′. Define,
(̂̃

ΦgL(τn), σ̂2, β̂

)
= arg minPN

0
Qn(Φ̃, σ2,β, τn).

The following theorem provides a similiar selection and estimation consistency of rows of lower
triangular cholesky decomposition matrix Φ̃ as theorem 1, whenZβ 6= 0.While acheiving such
a consistency gives us the benifit of supporting our conjecture of being able to select the correct
non-zero rows of Φ̃, i.e., succesfully estimate true rank of the matrix Σ even when Zβ 6= 0.
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Theorem 3. Let ̂̃ΦgL, σ̂
2 is the minimizer of (10). Also if ̂̃ϕgL,(j) denotes the group LASSO

estimate of the jth row of the minimizer ̂̃ΦgL, then under the same conditions of theorem 1 we
have, P

(
Pc
∞,n
) n→∞−→ 1, and,

n
11+9α
15+11α

2
λmin

(
∆̂gL,B0

)∥∥∥Zβ̂ −Zβ∥∥∥2
2

= Op

(
n(4+2α)γn

22+18α
15+11α

n2
+
nαγn

11+9α
15+11α

n

)
.

The above theorem provides estimation consistency of rows of lower triangular cholesky
decomposition matrix Φ̃ and nugget parameter σ2, similar to theorem 1 even while Zβ 6= 0.

Despite therorem 2, we do need a theorem to support consistency of Ξ̂gL under the case when,
Zβ 6= 0. But presenting a separate theorem is unnecessary given one can easily follow the steps
of theorem 2 to obtain the same rate of consistency.

4 Algorithm
In this section we will present an cost-effective algorithm for the optimization problem posed
in (8). We have a block-wise function, blocks being the rows of a lower triangular matrix Φ̃,
along with a group LASSO type penalty, groups corresponding to each block. There has been
few significant efforts behind building efficient algorithm to minimize a penalized likelihood.
Although group wise penalization is not a completely different ball game, it still requires some
special attention, which exploits the group structure and considers penalizing `2−norm of each
group.

We will be using a Block Coordiante Descent (BCD) method for a block multi-convex
function under regularizing constraints,

min
x∈X

{
F (x1,x2, . . . ,xn) = f(x1,x2, . . . ,xn) +

n∑
j=1

rj(xj)

}
, (11)

where x is decomposed into n blocks and rj(xj) is the regularizing constraint for the jth block.
On comparing (11) with (8) we can see that, in our case we have n blocks, X is the collection
of lower triangular matrices of the form, Φ̃, F (Φ̃) = Qn(Φ̃, τn) with,

f(ϕ̃(1), ϕ̃(2), . . . , ϕ̃(n)) = Tr
(

Ξ0

(
σ2I + R̃Φ̃Φ̃

′
R̃
′)−1)

+ log det
(
σ2I + R̃Φ̃Φ̃

′
R̃
′)

(12a)

rj
(
ϕ̃(j)

)
= τn

∥∥ϕ̃(j)

∥∥
2

j
(12b)

To ease the computation we use Matrix determinant lemma and Sherman-Morisson-
Woddbury matrix indentiy. We follow “prox-linear” algorithm (Xu & Yin (2013)) where the
update for ϕ̃(j) in the kth step is denoted by ϕ̃k(j) and is given by,

ϕ̃k(j) = arg min
ϕ̃(j)

{〈
ĝkj , ϕ̃(j) − ̂̃ϕk−1(j)

〉
+
Lk−1j

2

∥∥∥ϕ̃(j) − ̂̃ϕk−1(j)

∥∥∥2
2

+ rj
(
ϕ̃(j)

)}
, ∀j & k (13)

10



where the extrapolated point ̂̃ϕk−1(j) is given as ̂̃ϕk−1(j) = ϕ̃k−1(j) + ωk−1i

(
ϕ̃k−1(j) − ϕ̃

k−2
(j)

)
, with

ωk−1i ≥ 0 is the extrapolation weight, ĝkj = 5fkj
(̂̃ϕk−1(j)

)
and,

fkj
(
ϕ̃(j)

) def
= f

(̂̃ϕk(1), ̂̃ϕk(2), . . . , ̂̃ϕk(j−1), ϕ̃(j),
̂̃ϕk−1(j+1), . . . ,

̂̃ϕk−1(s)

)
, ∀ j& k.

The second term on the right hand side, is added on the contrary to standard block coordinate
descent algorithm, to make sure that the kth update is not too far from the (k−1)th update in L2

sense. Before we can do that we need to prove block multi-convexity (lemma 4) and Lipschitz
continuity (lemma 5) of f(ϕ1,ϕ2, . . . ,ϕn) and5fkj

(
ϕ̃(j)

)
respectively.

Generally, Lk−1j is some constant greater that zero, and plays the role similar to the penalty
parameter τn in rj(ϕ̃(j)), so if the kth update is too far from (k − 1)th update in L2-sense, our
objective would be to penalize it more and control it, so unlike standard group LASSO problem,
here we have to take care of two penalty parameters rather than just one. So, we have a more
challenging problem to solve, but if scaled properly one can chose constant Lk−1j as a scalar
multiplie of τn. Let us introduce a new quantity η = Lk−1j /τn, which is used to explain the rest
our algorithm and this is refered to as a dual parameter for our optimization method.

To update (13) we use the fact that if, rj can be represented as an indicator function of

convex set Dj , i.e. rj = δDj(ϕ̃(j)) = I
(
ϕ̃(j) ∈ Dj

)
, then ϕ̃k(j) = PDj

(̂̃ϕk−1(j) − ĝkj/L
k−1
j

)
,

where PDj is the projection to the set Dj . Since for a group wise LASSO penalty, rj
(
ϕ̃(j)

)
=

τn
∥∥ϕ̃(j)

∥∥
2
/j, which is equivalent to say that we need our pre-penalized update ̂̃ϕk−1(j) −ĝkj/L

k−1
j ,

first scaled down by its length j, and then project it on a surface of the sphere with radius η.And
for our group wise LASSO penalty, we define our component wise scaled projection function
is, PDj(t) = sgn(t) max(

√
|t|/j − √η, 0). So the update rule (13) can be simplified and the

following can be used component wise to obtain the jth row,

ϕ̃k(j) = sgn
(̂̃ϕk−1(j) − ĝkj/L

k−1
j

)(√
abs
(̂̃ϕk−1(j) − ĝkj/L

k−1
j

)
/j −√η

)
+

, ∀j & k (14)

where all the above functions defined on the vector ̂̃ϕk−1(j) − ĝkj/L
k−1
j are used component wise.

Define the corresponding lower triangular matrix as Φ̃
k

= row-bind(ϕ̃k′(1), ϕ̃
k′
(2), · · · , ϕ̃

k′
(n)) and

now let us present the working algorithm for our optimization and following which we also
provide a small modification in situations where a subsequent extrapolated update does not
reduces the optimizing functional value.
(M 1) In case ofQ(Φ̃

k
) ≥ Q(Φ̃

k−1
) we modify the above algorithm by redoing the kth iteration

with ̂̃ϕk−1i = ϕ̃k−1i , i.e., with out extrapolation.

11



Algorithm 1 Group LASSO algorithm for estimating a low rank covariance matrix
1: Initialization: Φ̃

−1
and Φ̃

0
lower triangular matrices as first two initial roots with no zero rows

2: Prefix: η > 0 and ε > 0 prespecified
3: for k = 1, 2, 3, . . . do
4: for j = 1, 2, 3, . . . , n dỗϕk(j) ←− using (14)
5: end for
6: return Lower triangular matrix ̂̃Φk

Φ̃
−1 ←− Φ̃

0
and Φ̃

0 ←− ̂̃Φk

7: for j = 1, 2, . . . , n do
tempj ←−

∥∥∥̂̃ϕk(j) − ̂̃ϕk−1

(j)

∥∥∥
2

8: end for
9: if max temp < λ then break and go to line 18

10: else
11: Go back to line 4 with k = k + 1

12: end if
13: end for
14: return Lower triangular matrix ̂̃Φk

5 Numerical investigation
5.1 Simulation study

We follow spatial sampling design with an increasing domain asymptotic framework where
sample sizes increases in proportion to the area of the sampling region. So we consider m ×
m square lattices where m = 20, 25, 30, 35 which makes sample sizes n = 400, 625, 900,

respectively. For each choice we need to consider some true value of R(Σ), rank of Σ, for
different n we choose R(Σ) = 30, 35, 40. We generate our error term from a mean zero
and nonstationary Gaussian process from a covariance function given by (3) and we consider
different choices of R̃(s) for example Radial Basis Function (RBF), Wendland Basis Fucntion
(WBF), Fourier Basis Function (FBF) etc. The data has been generated from model (1) for all
possible combination of m, R(Σ) and R̃(s), we generate n data points. From summarizing all
the simulation results we believe that the method starts to work better for larger n.

If one considers a dyadic break of the two dimensional spatial domain, and pick centers
of each of the regions as their knot points, then the first resolution will have 22 knots, second
resolution will have 24 knots, i.e. the kth resolution will have 22k knot points. We have applied
the concept of reversible jumps into our algorithm by considering a starting value of the number
of effective knot points. For example lets say we start by considering all the knot points from
the first two resolutions effective. After every iteration, we let our model to change by either
dropping one of the knots which might have considered to be important earlier or selecting one
of the knots which has not been considered to be important earlier.

5.2 Real data examples

The data set we used is part of a group of R data sets for monthly min-max temperatures and
precipitation over the period 1895 − 1997. It is a subset extracted from the more extensive

12



Lattice size Local bi-square Basis Function Wendland Basis Function
(s) r = 30 r = 35 r = 40 r = 30 r = 35 r = 40

20 27.59 (0.81) 30.87 (0.66) 33.71 (1.60) 29.19 (0.14) 32.17 (0.56) 37.71 (1.05)
25 29.17 (1.49) 31.07 (2.66) 35.87 (1.02) 30.27 (0.91) 34.72 (1.01) 38.27 (0.52)
30 30.01 (1.05) 34.59 (1.89) 40.05 (2.89) 30.11 (1.52) 34.90 (0.91) 40.05 (1.09)
35 30.15 (0.91) 33.12 (0.88) 42.11 (1.05) 30.33 (0.25) 36.59 (1.90) 41.25 (0.29)

Table 1: Mean (Standard Devation) of 200 Monte Carlo simulations for rank estimation of
the nonstationary covariance matrix Σ

US data record described in at (www.image.ucar.edu/Data/US.monthly.met). Ob-
served monthly precipitation, min and max temperatures for the conterminous US 1895−1997.

We have taken a subset of the stations in Colorado. Temperature is in degrees C and precipi-
tation is total monthly accumulation in millimeters. Note that minimum (maximum) monthly
tempertuare is the mean of the daily minimum (maximum) temperatures. A rectagular lon-lat
region [−109.5,−101] × [36.5, 41.5] larger than the boundary of Colorado comprises approxi-
mately 400 stations. Although there are additional stations reported in this domain, stations that
only report preicipitation or only report temperatures have been excluded. In addition stations
that have mismatches between locations and elevations from the two meta data files have also
been excluded. The net result is 367 stations that have colocated temperatures and precipita-
tion. We have used minimum temperature data as the observed process to apply our method and
obtain the image plots below.

6 Discussion
Our work is quite significant from several perspective, although we would like to point out
that it gives a dimension reduction perspective of estimation of low rank covariance matrix. As
mentioned earlier Cressie & Johannesson, (2008) pointed out the benefit of assuming a fixed but
lower rank than the actual dimension of the covariance matrix. They pointed out that inversion
time of n × n covariance matrix, which is O(n3) can now be reduced to O(nr2), where r is
assumed to be the known fixed rank. A previous knowledge about the value of r is quite hard to
believe and our contribution is to figure out a relevant way to get around this. Although at this
point we do not claim that we are able to provide an unbiased estimate of rank, but our result
does provide consistent estimate of the covariance matrix along with linear model parameters.
We also extended the work by Cressie & Johannesson, in the sense that our method allows one
to assume that r can vary over n, the sample size, more precisely r = rn it can increase in a
polynomial of n.

Now let us compare our finding with another recent study (Stein, 2015), which provides
some examples and discusses scenarios where appoximating a true full rank covariance matrix
Ψ0 with a matrix Ψ1 = ρ2I + Υ, where Υ is a low rank matrix, does not reduces the Kulback-
Liebler divergence considerably. As necessary, interesting and relevant this may sound, we
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Figure 1: Quantile Image plot of Ξ̂gL, the estimated covariance matrix of the observed process
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Figure 2: Quantile Image plot of Φ̂gL estimated covariance matrix of the random effects vector
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would like to point out dissimilarties. Firstly, unlike any full rank covariance matrix Ψ0, we
assume true covariance matrix has the structure Ψ0 = ρ2I + Υ and our approach estimates Ψ0

through estimates of ρ and Υ. Using the concept of capturing spatial dependence through a set
of basis functions (Cressie & Johannesson, 2008) our model is further specified by considering
the low rank compnent as, Υ = S̃K̃S̃

′
, where K̃ is a n × n matrix of rank rn. As mentioned

earlier rn is a polynomial in n, we would like to refer our readers to assumption (A 1) which
says rn = Dnγ +O(1), with D > 0 and γ < 2/(15 + 11α) with α > 0. Although one might
feel the necessity of estimating the nuisance parameter α. But let us point out the fact that our
results works for any value of α > 0. Even if we choose α = αn −→ 0, γ < 1/7.5. This
implies our finding covers Case 3 and a subset of Case 2 in Stein (2015). In the paper by Stein
(2015) it is been pointed out KL divergence do not reduces sufficiently enough under a very
special situation of stationary periodic process on line, which can be extended to be a process on
surface, although can be quite challenging even for stationary periodic process. On the contrary
our finding provides theoritical justification of consistent estimation of Ψ0 = ρ2I + S̃K̃S̃

′
in a

more general set up.
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Appendices

A Assumptions
(A 1) Let, the true rank rn = Dnγ + O(1), with D > 0, be increasing with n at some power

γ < 2/(15 + 11α) with α > 0.

(A 2) R̃ belongs to
{
R ; C1rn ≤ λmin

(
R
′
R
)
≤ λmax

(
R
′
R
)
≤ C2rn

}
, a class of well-conditioned

matrices.

(A 3) Define Φ̃W to be collection of n × n lower triangular matrix with `2−norm of first rn
rows nonzero i.e., for any preassigned φ1, φ2 > 0,

Φ̃ ∈ Φ̃W =
{

Φ;φ2
1 <

∥∥ϕ(j)

∥∥2
2
< φ2

2, ∀ j = 1, 2, . . . , rn

}
.

Remark 1. Assumption (A 1) informs us that, the number of non-zero rows of Φ̃ (or, rank rn),
changes in γth order polynomial of n. More precisely γ < 2/(15 + 11α). A more detailed ex-
planation of the need of introducing such a parameter will be discussed later. Although it should
be greater than zero and not depending on n. We leave the choice of α to the user. Observe that
since we do not have a lower bound for γ, it can take any value strictly less that 2/(15 + 11α).

Although γ < 0, refers to cases with a rank 1 process covariance matrix Σ. The choice γ = 0

has a specific significance, in which case rn = r refers to the case of FRK.

Remark 2. The assumption (A 2) implies that, the condition number of the matrix R̃, κ
(
R̃
)
≤

C1/C2. Under assumption (A 1), (A 2) can be rewritten as,

R̃ ∈
{
R ; C1n

γ ≤ λmin

(
R
′
R
)
≤ λmax

(
R
′
R
)
≤ C2n

γ
}
.

Remark 3. Although WLOG, A? = {1, 2, . . . , rn}, in case the data indicate differently i.e.

A? is any subset of {1, 2, . . . , n} with cardinality rn, we can rotate R̃(s) using a projec-
tion (permutation) matrix, P̃ A? with P̃ A?P̃

′
A? = I. We define the rotation as, R̃(s)P̃ A? =(

R̃A?(s), R̃Ac?(s)
)′

. Also corresponding to P̃ A? , we can reorder our data. We denote cor-

responding data vector and sample variance covariance matrix as P̃ A?X and Ξ0(P̃ A?) =

P̃ A?X(P̃ A?X)′ = P̃ A?XX
′P̃
′
A? respectively. Since our theoritical findings are based on

λmin(Ξ0(P̃ A?)) which is invariant over P̃ A? . Correspondingly, we define, Ξ
(
P̃ A?

)
= σ2I +

R̃P̃ A?Φ̃Φ̃
′
P̃
′
A?R̃

′
and, Ξ̂gL

(
P̃ A?

)
= σ̂2I + R̃P̃ A?

̂̃
ΦgL

̂̃
Φ
′

gLP̃
′
A?R̃

′
and observe that both Ξ

and Ξ̂gL remains unaltered. Henceforth with out loss of generality we will drop P̃ A from rest
of our calculations.
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B Proofs of theorems and lemmas
Lemma 1 (Restricted reverse triangle inequality in `1− norm). Let a and b are two real numbers
such that for some A1,A2,B1,B2 > 0, we have either,

I : A1 ≤ a ≤ A2 and B1 ≤ |b| ≤ B2 with, 0 < B1 ≤ |b| ≤ B2 < A1 ≤ a ≤ A2,

or,

II : A1 ≤ |a| ≤ A2 and B1 ≤ |b| ≤ B2 with, 0 < B1 ≤ |b| ≤ B2 < A1 ≤ |a| ≤ A2,

then,
|a+ b| > kA2 (|a|+ |b|)

where, kA2 = C/A2.

Proof. For the case I , we have the condition 0 < |b| < B2 < A1 < a,

a > |b| ⇔ a+ b > |b|+ b.

Now either of the two possibilities, b < 0 in which case b+ |b| = 0 or b > 0, then b+ |b| = 2b.

For both cases we can write, a + b > 0. The strict inequality allows us to say there exists a
C > 0 such that a+ b > 2C and we have the following.

|a+ b| =
|a+ b|
|a|+ |b|

(|a|+ |b|)

≥ |a+ b|
A2 + B2

(|a|+ |b|)

>
C

A2

(|a|+ |b|) ( Since, B2 ≤ A2) .

Similary for the case II , we have conditions 0 < b < B2 < A1 < a, or 0 > −b > −B2 >

−A1 > −a, and for both cases, one can show a + b > 0. Hence we can prove the same as for
case I .

Lemma 2. LetA andB arem×m non-negative definite symmetric matrices with λmin(B) = 0

then,

Tr(A) ≤ Tr(A+B) ≤ Tr(A) +mλmax(B). (15)

Proof. Note that using the famous Weyl’s theorem (Theorem 3.21, Schott (2005)) onA andB
we have,

λh(A) + λmin(B) ≤ λh(A+B) ≤ λh(A) + λmax(B).
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The above statement follows that,

k∑
h=1

λh(A) + kλmin(B) ≤
k∑

h=1

λh(A+B) ≤
k∑

h=1

λh(A) + kλmax(B), ∀k = 1, . . . ,m,

and if we choose k = m we get,

Tr(A) +mλmin(B) ≤ Tr(A+B) ≤ Tr(A) +mλmax(B).

Further if we use λmin(B) = 0 then, we get (15).

The left hand side of (15) gives monotonicity of property of the eigen values of of symmet-
ric matrices where the inequality is strict if B is positive definite. One can also directly use
Courant-Fischer min-max theorem to prove the above. Another important bound for the trace
of a matrix product is given through the following lemma used in several places for the proof of
our theorems.

Lemma 3. IfA andB are m×m nonnegative definite matrices, then,

λmin (B) Tr (A)
LHS

≤ Tr (AB)
RHS

≤ λmax (B) Tr (A) , (16)

where LHS and RHS are acronyms for left hand side and right hand side respectively.

Proof. For proof of this lemma we use the following bounds from Marshall and Olkin (1979),

m∑
i=1

λi(A)λm−i+1(B) ≤
m∑
i=1

λi(AB) ≤
m∑
i=1

λi(A)λi(B).

Using the above we get,

λmin(B)
m∑
i=1

λi(A) ≤
m∑
i=1

λi(AB) ≤ λmax(B)
m∑
i=1

λi(A),

and finally equation (16).

Lemma 4 (Block Multi-convexity). Under assumption (A 2) show that for, f(ϕ̃(1), ϕ̃(2), . . . , ϕ̃(n))

as defined according as (12a), where ϕ̃′(j) =
(
ϕ̃j, 0, 0, . . . , 0

)
= (ϕj1, ϕj2, . . . , ϕjj, 0, 0, . . . , 0)

is a block multi-convex function.

Proof. If for each j, f is a convex function of ϕ̃(j), while the other blocks are fixed we call the
function to be block multi-convex function. Define,

Hj

(
Φ̃0

)
=

((
∂2

∂ϕ̃jk∂ϕ̃jk′
f
(
Φ̃
)

Φ̃=Φ̃0

))j,j
k=1,k′=1

, ∀j = 1, . . . , n, (17)
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as the j × j Hessian matrix, with respect to ˜̃ϕ(j), where Φ̃0 is a solution to,

∂

∂ϕ̃j
f(Φ̃) = 0, ∀j = 1, . . . , n. (18)

It is enough to show that Hj

(
Φ̃0

)
is a positive definite matrix. Note that for all j and k,

∂

∂ϕ̃jk
f(Φ̃) = Tr

[
−
(
Ξ−1Ξ0Ξ

−1) R̃∂Φ̃Φ̃
′

∂ϕ̃jk
R̃
′
]

+ Tr

[
Ξ−1R̃

∂Φ̃Φ̃
′

∂ϕ̃jk
R̃
′
]

= Tr
[
−
(
Ξ−1Ξ0Ξ

−1)∆
(j),k
Σ

]
+ Tr

[
Ξ−1∆

(j),k
Σ

]
= Tr

[(
I−Ξ−1Ξ0

)
Ξ−1∆

(j),k
Σ

]
= Tr

[
Ξ−1 (Ξ−Ξ0) Ξ−1∆

(j),k
Σ

]
, where ∆

(j),k
Σ = R̃

∂Φ̃Φ̃
′

∂ϕ̃jk
R̃
′

= Tr
[
∆

(j),k
Σ Ξ−1 (Ξ−Ξ0) Ξ−1

]
(19)

=
[
vec
(
∆

(j),k
Σ

)]′ (
Ξ−1 ⊗Ξ−1

)
[vec (Ξ−Ξ0)] ,

where, ⊗ is used to denote Kronecker product. The last identity is due to, Tr(V 1V 2V 3V 4) =

[vec(V ′1)]
′
(V ′4⊗V 2) [vec(V 3)] (Theorem 8.12, Schott (2005)) with V 1 = ∆

(j),k
Σ , V 2 = V 4 =

Ξ−1, and V 3 = Ξ − Ξ0. Note that Ξ−1 ⊗ Ξ−1 is positive definite matrix, vec
(
∆

(j),k
Σ

)
≥ 0.

Since Φ̃0 is solution to equation (18), Ξ
(
Φ̃0

)
− Ξ0 = 0 matrix, where Ξ

(
Φ̃0

)
= σ2I +

R̃Φ̃0Φ̃
′
0R̃
′
. Let the (k, k′)th element of the Hessian matrix is denoted as Hj

(
Φ̃
)

[k, k′] and
observe that,

Hj

(
Φ̃
)

[k, k′] =

First Component︷ ︸︸ ︷
−Tr

[
Ξ−1∆

(j),k′

Σ Ξ−1 (Ξ−Ξ0) Ξ−1∆
(j),k
Σ

]
+

Second Component︷ ︸︸ ︷
Tr
[
Ξ−1 (Ξ−Ξ0) Ξ−1∆

(j),kk′

Σ

]

+

Third Component︷ ︸︸ ︷
−Tr

[
Ξ−1 (Ξ−Ξ0) Ξ−1∆

(j),k′

Σ Ξ−1∆
(j),k
Σ

]
+

Fourth Component︷ ︸︸ ︷
Tr
[
Ξ−1∆

(j),k′

Σ Ξ−1∆
(j),k
Σ

]
. (20)

The above equation (20) is obtained by differentiating (19) with respect to ϕ̃jk′ . The first three

component at Φ̃0 in equation (20) are zero. Hence, Hj

(
Φ̃0

)
[k, k′] is just the fourth component

in equation (20) computed under Φ̃0 and as a special case Hj

(
Φ̃0

)
[k, k], the kth diagonal

element equals to Tr
[(

Ξ−1∆
(j),k
Σ

)2∣∣∣∣Φ̃ = Φ̃0

]
which makes all the diagonal elements positive.
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For a vector a = (a1, . . . , aj)
′ 6= 0 of length j,

a′Hj

(
Φ̃0

)
a =

j∑
k=1

j∑
k′=1

ak Tr
[
Ξ−1∆

(j),k′

Σ Ξ−1∆
(j),k
Σ

∣∣∣Φ̃ = Φ̃0

]
ak′

=

j∑
k=1

j∑
k′=1

Tr
[
akΞ

−1∆
(j),k′

Σ Ξ−1∆
(j),k
Σ ak′

∣∣∣Φ̃ = Φ̃0

]
= Tr

[
j∑

k=1

j∑
k′=1

ak′Ξ
−1∆

(j),k′

Σ Ξ−1∆
(j),k
Σ ak

∣∣∣∣∣Φ̃ = Φ̃0

]

= Tr

[
j∑

k=1

akΞ
−1∆

(j),k
Σ

j∑
k′=1

ak′Ξ
−1∆

(j),k′

Σ

∣∣∣∣∣Φ̃ = Φ̃0

]

= Tr

(Ξ−1
j∑

k=1

ak∆
(j),k
Σ

)2
∣∣∣∣∣∣Φ̃ = Φ̃0

 > 0. (21)

Hence Hj

(
Φ̃0

)
is a positive definite matrix.

Lemma 5 (Lipschitz continuity). For fkj (ϕ̃(j)) as defined in section 4, show5fkj (ϕ̃(j)) is Lip-
schitz continuous in ϕ̃(j).

Proof. Once we follow through the steps of lemma 4, we can see, 5fkj (ϕ̃(j)) is a vector of

length j with the kth component as Tr
[
Ξ−1(j)

(
Ξ(j) −Ξ0

)
Ξ−1(j)∆

(j),k
Σ(j)

]
, where Ξ(j) and Σ(j)

are computed using
(̂̃ϕk−1(1) ,

̂̃ϕk−1(2) , . . . ,
̂̃ϕk−1(j−1), ϕ̃(j),

̂̃ϕk−1(j+1), . . . ,
̂̃ϕk−1(n)

)
as the rows of Φ̃. So

5fkj (ϕ̃(j)) is a differentiable function w.r.t ϕ̃(j) and hence it is Lipschitz continuous.

Lemma 6. For the two n× n positive definite matrices ΣB0 and Σ̂B0 ,∑
λ(·)>0

∣∣∣λ(Σ̂gL,B0

)
− λ (ΣB0)

∣∣∣ ≤ |B0|
∑
λ(·)6=0

∣∣∣λ(Σ̂gL,B0 −ΣB0

)∣∣∣ , (22)

where the summation in left side of (22) is over all possible eigen values of ΣB0 and Σ̂gL,B0

and the right side of (22) is over all possible eigen values of Σ̂gL,B0 −ΣB0 .

Proof. By part (b) of Theorem 1.20 in Simon (1979) we know, for any pair of finite dimensional
self-adjoint matrices,A andB if, we denote λn(·) denotes eigen values of a matrix then,

λm (A)− λm (B) =
N∑
n=1

emnλn (A−B)

where, E = (emn)N,Nm=1,n=1 is a doubly sub-stochastic (dss) matrix. We define, a matrix E =

(emn)N,Nm=1,n=1 to be dss iff,

N∑
n=1

|emn| ≤ 1, ∀ m = 1, 2, . . . , N, and
N∑
m=1

|emn| ≤ 1, ∀ n = 1, 2, . . . , N.
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Therefore,

∣∣∣λm (Σ̂gL,B0

)
− λm (ΣB0)

∣∣∣ =

∣∣∣∣∣∣
∑

λn(·) 6=0

emnλn

(
Σ̂gL,B0 −ΣB0

)∣∣∣∣∣∣
≤

 ∑
λn(·)6=0

e2mn

1/2 ∑
λn(·)6=0

λ2n

(
Σ̂gL,B0 −ΣB0

)1/2

≤
∑

λn(·)6=0

|emn|
∑

λn(·)6=0

∣∣∣λn (Σ̂gL,B0 −ΣB0

)∣∣∣
≤

∑
λn(·) 6=0

∣∣∣λn (Σ̂gL,B0 −ΣB0

)∣∣∣ , (23)

where, the first inequality in equation (23) is due to Cauchy-Bunyakovsky-Schwarz (CBS) in-
equality. The second inequality is obtained by using `2− norm is smaller than `1− norm. Finally
the last inequality is due to E = ((em,n))N,Nm=1,n=1 is a dss matrix. So, if we add both sides of
(23) over all non-zero eigen values of both Σ̂gL,B0 and ΣB0 so we have,

∑
λm(·)>0

∣∣∣λm (Σ̂gL,B0

)
− λm (ΣB0)

∣∣∣ ≤ ∑
λm(·)>0

 ∑
λn(·)6=0

∣∣∣λn (Σ̂gL,B0 −ΣB0

)∣∣∣


=
∑

λn(·)6=0

∣∣∣λn (Σ̂gL,B0 −ΣB0

)∣∣∣
 ∑
λm(·)>0

1


= |B0|

∑
λn(·)6=0

∣∣∣λn (Σ̂gL,B0 −ΣB0

)∣∣∣ ,
and thus we have lemma 6.

For an index set Ã1 that satisfies Ãϕ = {j : ‖ϕ̂gL,j‖2 > 0} ⊆ Ã1 ⊆ Ãϕ ∪ Ã?, we consider
the following sets:

“Large” ‖ϕj‖2 (i.e. Ã?) “Small” ‖ϕj‖2 (i.e. Ã0)

Ã1 Ã3 Ã4

Ã2 = Ãc1 Ã5 Ã6

We can deduce some relations from the above table Ã3 = Ã1∩Ã?, Ã4 = Ã1∩Ã0, Ã5 = Ãc1∩Ã?,
Ã6 = Ã2 ∩ Ã0, and hence we have Ã3 ∪ Ã4 = Ã1, Ã5 ∪ Ã6 = Ã2, and Ã3 ∩ Ã4 = Ã5 ∩ Ã6 = φ.
Also, let |Ã1| = r1.
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For some preassigned %, ς > 0,M > 1, and %n = Cnαγ, ςn,Mn = Cnαγ for some generic
constant C, and α > 0, define an increasing sequence of sets, Pn = P1n ∪ P2n ∪ P3n where,

P1n =

ω ∈ Ω0 ; %2 ≤

∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2∥∥ϕ̃(j)

∥∥2
2

≤ %2n, for some j ∈ B0

 ,

P2n =
{
ω ∈ Ω0 ; ς ≤

∣∣σ̂2 − σ2
∣∣ ≤ ςn

}
, and,

P3n = {ω ∈ Ω0 ; M rn ≤ |B0| ≤Mnrn} .

Since, %n, ςn,Mn ↑ ∞,

P1n ↗

ω ∈ Ω0 ; %2 ≤

∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2∥∥ϕ̃(j)

∥∥2
2

, for some j ∈ B0

 def
= P1∞,

P2n ↗
{
ω ∈ Ω0 ; ς ≤

∣∣σ̂2 − σ2
∣∣} def

= P2∞, and,

P3n ↗ {ω ∈ Ω0 ; M rn ≤ |B0|}
def
= P3∞.

Let us now define, P∞,n = P1∞∪P2∞∪P2∞. Hence as n −→∞,Pn∩Pc
∞,n ↘ φ, an empty

set. Define,

Λβ

n =
λmin

(
Ξβ

n

)
λmax

(
Ξ̂gL,B0

)
λmax (ΞB0)

,

where Ξβ = (X −Zβ) (X −Zβ)′ andX has Gaussian process with mean Zβ and variance
covariance matrix Ξ. To prove Theorem 1 and 3 we need boundedness of Λβ

n , which is given in
the following lemma.

Lemma 7 (Boundedness for Λβ

n). Under assumptions (A 1) - (A 3) on Pn, Λβ

n satisfies

1

Λβ

n

≤ Op

(
n(3+4α)γ

)

Proof. Note that under assumption (A 1), on Pn |B0| ≤ Mnrn = Cn(1+α)γ , since Mn =
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Cnαγ . Therefore,

λmax

(
Ξ̂gL,B0

)
= σ̂2 + λmax

(
R̃
̂̃
ΦgL,B0

̂̃
Φ
′

gL,B0
R̃
′
)

≤ σ̂2 + Tr
(
R̃
̂̃
ΦgL,B0

̂̃
Φ
′

gL,B0
R̃
′
)

= σ̂2 + Tr
(̂̃

ΦgL,B0

̂̃
Φ
′

gL,B0
R̃
′
R̃

)
≤ σ̂2 + λmax

(
R̃
′
R̃
)

Tr
(̂̃

ΦgL,B0

̂̃
Φ
′

gL,B0

)
( By RHS of lemma 3 )

≤ σ̂2 + |B0|λmax

(
R̃
′
R̃
)
λmax

(̂̃
ΦgL,B0

̂̃
Φ
′

gL,B0

)
≤ σ̂2 + Cn(1+α)γλmax

(
R̃
′
R̃
)

max
j∈B0

̂̃ϕ2

gL,jj

≤ σ̂2 + Cn(2+α)γ max
j∈B0

∥∥∥̂̃ϕgL,(j)∥∥∥2
2

(By assumption (A 1) and (A 2)) (24)

≤ σ̂2 + Cn(2+α)γ max
j∈B0

{∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2

+
∥∥ϕ̃2

(j)

∥∥2
2

}
≤ σ̂2 + Cn(2+α)γ max

j∈B0

{
%2n
∥∥ϕ̃(j)

∥∥2
2

}
≤ Cn(2+3α)γ, (By assumption (A 3) and %n = Cnαγ) (25)

where C is a generic constant. If we follow the same trick as in equation (24) we have,

λmax (ΞB0) ≤ σ2 + Cn(1+α)γ max
j∈B0

∥∥ϕ̃(j)

∥∥2
2

≤ Cn(1+α)γ.(By assumption (A 3)) (26)

Hence using equations (25) and (26) we have,

Λβ

n ≥
C

n(3+4α)γ
Op

(
λmin

(
(X −Zβ) (X −Zβ)′

)
/n
)
,

where C is a generic constant. We know X = (X1, X2, . . . , Xn)′ follows a Gaussian distribu-
tion with mean Zβ and covariance matrix ΞA? and, c1 = λmin(ΞA?) which gives,

c1λmin

(
(X −Zβ) (X −Zβ)′

n

)
≥ λmin

(
(X −Zβ) Ξ−1A? (X −Zβ)′

n

)
= λmin

(
X0X

′
0

n

)
where, X0 follows a Gaussian distribution with mean 0 and identity as its covariance matrix.

By Theorem 2 and Remark 1 in Bai & Yin (1993), we know that λmin

(
X0X

′
0

n

)
a.s.−→ 1. And

since almost sure convergence implies convergence in probability, we have λmin

(
X0X

′
0

n

)
=

Op (c2),

Λβ

n ≥
C

n(3+4α)γ
λmin

(
X0X

′
0

n

)
= Op

(
1

n(3+4α)γ

)
.
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This also works for the case Zβ = 0, where Λβ=0

n is defined as,

Λβ=0
n =

λmin

(
Ξ0

n

)
λmax

(
Ξ̂gL,B0

)
λmax (ΞB0)

= Λn,

where Ξ0 = XX ′. Hence we have lemma 7.

Lemma 8. Under assumption (A 1) - (A 3) prove that on Pn,

G1n
γ ≤ nγ

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥2
2

≤ λmin

(
R̃
′
R̃
)∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥2
2

≤ Tr
(
Σ̂gL,B0 −ΣB0

)
≤ G2n

(5+α)γ/2,

where, G1, G2 are generic constants. Therefore,

G1n
γ ≤ Tr

(
Σ̂gL,B0 −ΣB0

)
≤ G2n

(5+α)γ/2. (27)

Proof. Let us first define, ∇̂gLΩ̃B0 =
̂̃
ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

and observe that,

∇̂gLΩ̃B0 =
̂̃
ΦgL,B0

̂̃
Φ
′

gL,B0
− ̂̃ΦgL,B0Φ̃

′
B0

+
̂̃
ΦgL,B0Φ̃

′
B0
− Φ̃B0Φ̃

′
B0

=
̂̃
ΦgL,B0

(̂̃
ΦgL,B0 − Φ̃B0

)′
+

(̂̃
ΦgL,B0 − Φ̃B0

)
Φ̃
′
B0

=

(̂̃
ΦgL,B0 − Φ̃B0 + Φ̃B0

)(̂̃
ΦgL,B0 − Φ̃B0

)′
+

(̂̃
ΦgL,B0 − Φ̃B0

)
Φ̃
′
B0

=
(
∇̂gLΦ̃B0

)(
∇̂gLΦ̃B0

)′
+ Φ̃B0

(
∇̂gLΦ̃B0

)′
+
(
∇̂gLΦ̃B0

)
Φ̃
′
B0
, (28)

where, ∇̂gLΦ̃B0 =
̂̃
ΦgL,B0 − Φ̃B0 . Hence, ∇̂gLΩ̃B0 can be represented as sum to two matrices,

U 1 =
(
∇̂gLΦ̃B0

)(
∇̂gLΦ̃B0

)′
and U 2 = Φ̃B0

(
∇̂gLΦ̃B0

)′
+
(
∇̂gLΦ̃B0

)
Φ̃
′
B0

where U 1, U 2

are n × n symmetric matrix with R(U 2) = rn, since Φ̃B0 is a lower triangular matrix with
exactly rn non-zero rows. Note that, under assumption (A 3), P1n can be rewritten as,

P1n =

{
ω ∈ Ω0 ; C1%

2 ≤
∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2
≤ C2%

2
n, for some j ∈ B0

}
,

where,C1, C2 are generic constants. That means there exist one j ∈ B0 such that
∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2
≥
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C1%
2. Hence,

C1% ≤
∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥
2

=

{
j∑
i=1

(̂̃ϕgL,ji − ϕ̃ji)2
}1/2

≤
j∑
i=1

∣∣∣ ̂̃ϕgL,ji − ϕ̃ji∣∣∣
=

j−1∑
i=1

∣∣∣ ̂̃ϕgL,ji − ϕ̃ji∣∣∣+
∣∣∣ ̂̃ϕgL,jj − ϕ̃jj∣∣∣

C1%−
j−1∑
i=1

∣∣∣ ̂̃ϕgL,ji − ϕ̃ji∣∣∣ ≤ ∣∣∣ ̂̃ϕgL,jj − ϕ̃jj∣∣∣ . (29)

So if we choose %, φ1 such that, 2
∑j−1

i=1

∣∣∣ ̂̃ϕgL,ji − ϕ̃ji∣∣∣ ≤ C1%, then under P1n, ∇̂gLΦ̃B0 is

diagonally dominant and hence on Pn, U 1, U 2, and ∇̂gLΩ̃B0 are non-negative definite, so if
we use (28) we get,

Tr
(
Σ̂gL,B0 −ΣB0

)
= Tr

[
R̃

(̂̃
ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

)
R̃
′
]

= Tr
[(̂̃

ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

)
R̃
′
R̃

]
≥ λmin

(
R̃
′
R̃
)

Tr
(̂̃

ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

)
(LHS of lemma 3)

≥ λmin

(
R̃
′
R̃
)

Tr
[(
∇̂gLΦ̃B0

)(
∇̂gLΦ̃B0

)′]
= λmin

(
R̃
′
R̃
)∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥2
2
, (30)

Finally using assumption (A 3) on the set Pn we have,

Tr
(
Σ̂gL,B0 −ΣB0

)
≥ nγ

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥2
2
≥ φ2

1%
2nγ = G1n

γ,
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where, G1 is a generic constant used in (27). On the other hand by right side of equation (16),∣∣∣Tr
(
Σ̂gL,B0 −ΣB0

)∣∣∣ =

∣∣∣∣Tr
[
R̃

(̂̃
ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

)
R̃
′
]∣∣∣∣

=

∣∣∣∣Tr
[(̂̃

ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

)
R̃
′
R̃

]∣∣∣∣
≤ λmax

(
R̃
′
R̃
) ∣∣∣∣∣∣
∑
λ(·) 6=0

λ

(̂̃
ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

)∣∣∣∣∣∣ (RHS of lemma 3)

≤ λmax

(
R̃
′
R̃
) ∑
λ(·)6=0

∣∣∣∣λ(̂̃ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

)∣∣∣∣
≤ λmax

(
R̃
′
R̃
)
|B0|1/2

∑
λ(·)6=0

∣∣∣∣λ2(̂̃ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

)∣∣∣∣


1/2

= λmax

(
R̃
′
R̃
)
|B0|1/2

∥∥∥∥ ̂̃ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

∥∥∥∥
F

≤ nγn(1+α)γ/2

∥∥∥∥ ̂̃ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

∥∥∥∥
F

. (31)

Note that,∥∥∥∥ ̂̃ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

∥∥∥∥
F

=

√∑
i∈B0

∑
j∈B0

{̂̃ϕ′gL,(i) ̂̃ϕgL,(j) − ϕ̃′(i)ϕ̃(j)

}2

=

√∑
i∈B0

∑
j∈B0

{̂̃ϕ′gL,(i) ̂̃ϕgL,(j) − ̂̃ϕ′gL,(i)ϕ̃(j) + ̂̃ϕ′gL,(i)ϕ̃(j) − ϕ̃
′
(i)ϕ̃(j)

}2

=

√√√√∑
i∈B0

∑
j∈B0

{̂̃ϕ′gL,(i) (̂̃ϕgL,(j) − ϕ̃(j)

)
+
(̂̃ϕgL,(i) − ϕ̃(i)

)′
ϕ̃(j)

}2

≤

√√√√2
∑
i∈B0

∑
j∈B0

{̂̃ϕ′gL,(i) (̂̃ϕgL,(j) − ϕ̃(j)

)}2

+

{(̂̃ϕgL,(i) − ϕ̃(i)

)′
ϕ̃(j)

}2

.
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Hence by CBS inequality we have,∥∥∥∥ ̂̃ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

∥∥∥∥
F

≤

√√√√2
∑
i∈B0

∑
j∈B0

(∥∥∥̂̃ϕgL,(i)∥∥∥2
2

∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2

+
∥∥∥̂̃ϕgL,(i) − ϕ̃(i)

∥∥∥2
2

∥∥ϕ̃(j)

∥∥2
2

)

=

√√√√{2
∑
i∈B0

(∥∥∥̂̃ϕgL,(i)∥∥∥2
2

+
∥∥ϕ̃(i)

∥∥2
2

)}{∑
j∈B0

∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2

}

=

√√√√{2
∑
i∈B0

(∥∥∥̂̃ϕgL,(i) − ϕ̃(i) + ϕ̃(i)

∥∥∥2
2

+
∥∥ϕ̃(i)

∥∥2
2

)}{∑
j∈B0

∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2

}

≤

√√√√{2
∑
i∈B0

(∥∥∥̂̃ϕgL,(i) − ϕ̃(i)

∥∥∥2
2

+
∥∥ϕ̃(i)

∥∥2
2

+
∥∥ϕ̃(i)

∥∥2
2

)}{∑
j∈B0

∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2

}

≤ G2

√
nγ%2φ2

2 + %2nφ
2
2

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2

≤ G2n
γ/2
∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥
2
, (32)

where, the last inequality holds only on PN
0 , G2 is a generic constant, and

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥2
2

=∑
j∈B0

∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2
. Therefore combining equation (31) and (32),∣∣∣Tr

(
Σ̂gL,B0 −ΣB0

)∣∣∣ ≤ G2n
γn(1+α)γ/2nγ/2

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2

≤ G2n
(4+α)γ/2

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2
≤ G2n

(5+α)γ/2

on Pn,where the last inequality is due to assumptions (A 1), (A 2) andG2 is a generic constant.
Hence we have equation (27).

PROOF OF THEOREM 1. Note that since, ̂̃ΦgL, σ̂
2 is minimizer to (8) then,

Tr(Ξ0Ξ̂
−1
gL) + log det Ξ̂gL + τn

n∑
j=1

∥∥∥̂̃ϕgL,(j)∥∥∥
2
≤ Tr(Ξ0Ξ

−1) + log det Ξ + τn

n∑
j=1

‖ϕ̃(j)‖2,

and by definition of B0 one can see precisely we need,

Tr(Ξ0Ξ̂
−1
gL,B0

)+log det Ξ̂gL,B0+τn
∑
j∈B0

∥∥∥̂̃ϕgL,(j)∥∥∥
2
≤ Tr(Ξ0Ξ

−1
B0

)+log det ΞB0+τn
∑
j∈B0

∥∥ϕ̃(j)

∥∥
2
.
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By interchanging sides of the above inequality we have,

Tr
(
Ξ0

[
Ξ̂
−1
gL,B0

−Ξ−1B0

])
≤

(
log

det ΞB0

det Ξ̂gL,B0

)
− τn

∑
j∈B0

(∥∥∥̂̃ϕgL,(j)∥∥∥
2
−
∥∥ϕ̃(j)

∥∥
2

)
.(33)

Now using the fact, log(x) is continuously differentiable on [a,∞) for any a > 0, and hence
Lipschitz continuous. Observing that λmin (ΞB0) = σ2 and, λmin

(
Ξ̂gL,B0

)
≥ σ̂2 > 0 therefore

each eigen values of ΞB0 , and, Ξ̂gL,B0 is positive. Hence,∣∣∣log det ΞB0 − log det Ξ̂gL,B0

∣∣∣
=

∣∣∣∣∣∣log

 ∏
λ(·)6=0

λ
(
Ξ̂gL,B0

)− log

 ∏
λ(·)6=0

λ (ΞB0)

∣∣∣∣∣∣
≤
∑
λ(·)>0

∣∣∣log
(
λ
(
Ξ̂gL,B0

))
− log (λ (ΞB0))

∣∣∣
≤M

∑
λ(·)>0

∣∣∣λ(Ξ̂gL,B0

)
− λ (ΞB0)

∣∣∣ ( By Lipschitz continuity )

≤M

∑
λ(·)>0

∣∣∣λ(Σ̂gL,B0

)
− λ (ΣB0)

∣∣∣+ n
∣∣σ̂2 − σ2

∣∣
≤M

|B0|
∑
λ(·)6=0

∣∣∣λ(Σ̂gL,B0 −ΣB0

)∣∣∣+ n
∣∣σ̂2 − σ2

∣∣ ( By lemma 6 )

≤M |B0|

∑
λ(·)6=0

λ2
(
Σ̂gL,B0 −ΣB0

)
1/2

+Mn
∣∣σ̂2 − σ2

∣∣
= M |B0|

∥∥∥Σ̂gL,B0 −ΣB0

∥∥∥
F

+Mn
∣∣σ̂2 − σ2

∣∣
≤M |B0|λmax

(
R̃
′
R̃
)∥∥∥∥ ̂̃ΦgL,B0

̂̃
Φ
′

gL,B0
− Φ̃B0Φ̃

′
B0

∥∥∥∥
F

+Mn
∣∣σ̂2 − σ2

∣∣ , (34)

where, M = (σ̂2 ∧ σ2)
−1. On combining (32) with (34) on Pn we have,∣∣∣log det ΞB0 − log det Ξ̂gL,B0

∣∣∣ ≤ M |B0|nγnγ/2
∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥
2

+Mn
∣∣σ̂2 − σ2

∣∣
≤ MMnrnn

3γ/2
∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥
2

+Mn
∣∣σ̂2 − σ2

∣∣
≤ Mn(5+2α)γ/2

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2

+Mn
∣∣σ̂2 − σ2

∣∣ . (35)
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And now using backward triangle inequality we have,∣∣∣∣∣τn ∑
j∈B0

(∥∥∥̂̃ϕgL,(j)∥∥∥
2
−
∥∥ϕ̃(j)

∥∥
2

)∣∣∣∣∣ ≤ τn
∑
j∈B0

∥∥∥ϕ̃(j) − ̂̃ϕgL,(j)∥∥∥
2

= τn
√
|B0|

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2
. (36)

Combining (33),(35),(36), and since on Pn, |B0| ≤Mnrn = Cn(1+α)γ we have,

Tr
(
Ξ0

[
Ξ̂
−1
gL,B0

−Ξ−1B0

])
≤
(
Mn

(5+2α)γ
2 + τnn

(1+α)γ
2

)∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2

+Mn
∣∣σ̂2 − σ2

∣∣ ,(37)

on Pn. Now for two positive definite matrices,A andB let us observe the identity,

B−1 −A−1 = A−1 (A−B)B−1.

By choosingA = Ξ̂gL,B0 andB = ΞB0 we have,∣∣∣Tr
(
Ξ0

[
Ξ−1B0
− Ξ̂

−1
gL,B0

])∣∣∣
=

∣∣∣∣nTr
(

Ξ0

n

[
Ξ̂
−1
gL,B0

(
Ξ̂gL,B0 −ΞB0

)
Ξ−1B0

])∣∣∣∣
=

∣∣∣∣n [vec(Ξ0

n

)]′ (
Ξ−1B0
⊗ Ξ̂

−1
gLB0

)
vec
(
Ξ̂gL,B0 −ΞB0

)∣∣∣∣ , (38)

where,⊗ is used to denote Kronecker product. The last identity (38) is due to, Tr(V 1V 2V 3V 4) =

[vec(V ′1)]
′
(V ′4 ⊗ V 2) [vec(V 3)] (Theorem 8.12, Schott (2005)) with V 1 = Ξ0/n, V 2 =

Ξ̂
−1
gL,B0

, V 3 = Ξ̂gL,B0 − ΞB0 , and V 4 = Ξ−1B0
. Since Ξ0/n − λmin (Ξ0/n) I, Ξ̂

−1
gL,B0

, and
Ξ−1B0

are positive definite matrices,∣∣∣Tr
(
Ξ0

[
Ξ−1B0
− Ξ̂

−1
gL,B0

])∣∣∣
≥

λmin

(
Ξ0

n

)
λmax

(
Ξ̂gL,B0

)
λmax (ΞB0)

∣∣∣n [vec (I)]′ (I⊗ I) vec
(
Ξ̂gL,B0 −ΞB0

)∣∣∣
= Λn

∣∣∣nTr
(
Ξ̂gL,B0 −ΞB0

)∣∣∣ , (39)

where Λn is defined according as lemma 7. The last identity is obtained by using Theorem
8.12, Schott (2005) with V 1 = V 2 = V 4 = I and V 3 = Ξ̂gL,B0 − ΞB0 . Note that on Pn,
B1 = ς ≤ |σ̂2 − σ2| ≤ ςn = B2, also by lemma 8 on Pn,

A1 = G1n
γ ≤ Tr

(
Σ̂gL,B0 −ΣB0

)
≤ G2n

(5+α)γ/2 = A2.

If we choose ςn such that B2 = ςn < G1n
γ = A1, by using restricted reverse triangle inequality

in `1− norm (lemma 1) with (a, b) =
(
nTr

(
Σ̂gL,B0 −ΣB0

)
, n2 (σ̂2 − σ2)

)
and a sutiable
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choice of k−1n = O(A2), we get a lower bound for the right hand side of (39),

Λn

∣∣∣nTr
(
Ξ̂gL,B0 −ΞB0

)∣∣∣ = Λn

∣∣∣nTr
(
Σ̂gL,B0 −ΣB0

)
+ n2

(
σ̂2 − σ2

)∣∣∣
≥ knΛn

{
n
∣∣∣Tr
(
Σ̂gL,B0 −ΣB0

)∣∣∣+ n2
∣∣σ̂2 − σ2

∣∣}
≥ knΛn

{
nγ+1

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥2
2

+ n2
∣∣σ̂2 − σ2

∣∣} , (40)

where the last inequality is based on lemma 8. Combining equations (40), (38), (37) and as-
sumption (A 1) we have,

knΛnn
γ+1
∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥2
2

+ knΛnn
2
∣∣σ̂2 − σ2

∣∣
≤
(
Mn

(5+2α)γ
2 + τnn

(1+α)γ
2

)∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2

+Mn
∣∣σ̂2 − σ2

∣∣
=

(
Mn

(5+2α)γ
2 + τnn

(1+α)γ
2

)
√
knΛnnγ+1

√
knΛnnγ+1

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2

+Mn
∣∣σ̂2 − σ2

∣∣
≤

(
Mn

(5+2α)γ
2 + τnn

(1+α)γ
2

)2
2knΛnnγ+1

+
knΛnn

γ+1

2

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥2
2

+Mn
∣∣σ̂2 − σ2

∣∣ , (41)

where the last inequality is based on 2ab ≤ a2 + b2. If we choose τn < Cn(4+α)γ/2,

knΛnn
γ+1

2

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥2
2

+ n2knΛn

(
1−Mk−1n Λ−1n

n

) ∣∣σ̂2 − σ2
∣∣ ≤ 2n(5+2α)γ

knΛnnγ+1

or, nγ
∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥2
2

+ 2n

(
1−Mk−1n Λ−1n

n

) ∣∣σ̂2 − σ2
∣∣ ≤ 4n(5+2α)γ

k2nΛ
2
nn

γ+2
.

Finally using 1/Λn ≤ Op

(
n(3+4α)γ

)
(by lemma 7) and k−1n = O

(
n(5+α)γ/2

)
,

k2nΛ
2
nn

γ+2

n(5+2α)γ
≥ Op

(
n2

n(15+11α)γ

)
= Op

(
n2−(15+11α)γ

)
↑ ∞, (42)

since γ < 2/(15 + 11α). Also,

k−1n Λ−1n
n

≤ Op

(
n(3+4α)γn(5+α)γ/2

n

)
= Op

(
n(11+9α)γ/2

n

)
< Op

(
n

11+9α
15+11α

n

)
↓ 0,

since 11 + 9α < 15 + 11α. Therefore,

nγ
∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥2
2

+ 2n
∣∣σ̂2 − σ2

∣∣ ≤ Op

(
1

n2−(15+11α)γ

)
. (43)
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Under assumption (A 1), 2 − (15 + 11α)γ > 0. So if possible, let us assume that there exists
δ > 0, such that for large enough Nδ, ∀ n ≥ Nδ, P(Pn) > δ and hence we have, ∀ n ≥ Nδ,

δ < P(Pn) < P(P∞,n). So on the set P∞,n,{
n
γ
2

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2

}2

+ 2
{
n

1
2

∣∣σ̂2 − σ2
∣∣ 12}2

= Op

(
1

n2−(15+11α)γ

)
.

i.e., both
{
n
γ
2

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2

}2

and,
{
n

1
2 |σ̂2 − σ2|

1
2

}2

goes to 0, which is a contradiction.

Hence our assumption, that there exists n ≥ Nδ such that P(P∞,n) > δ is violated and we can
conclude that, P(Pc

∞,n)
n→∞−→ 1.

PROOF OF THEOREM 2. Note that,∥∥∥Ξ̂gL,B0 −ΞB0

∥∥∥
F

=

{∑
λ 6=0

λ2
(
Ξ̂gL,B0 −ΞB0

)}1/2

≤
∑
λ 6=0

∣∣∣λ(Ξ̂gL,B0 −ΞB0

)∣∣∣
≤

{∑
λ6=0

∣∣∣λ(ΣB0 − Σ̂gL,B0

)∣∣∣+ n
∣∣σ̂2 − σ2

∣∣}
≤ |B0|λmax

(
R̃
′
R̃
)∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥
2

+ n
∣∣σ̂2 − σ2

∣∣ . (By (34) and (32) )

Therefore, again by using (a+ b)2 ≤ 2a2 + 2b2,

1

n2

∥∥∥Ξ̂gL,B0 −ΞB0

∥∥∥2
F
≤ 1

n2

(
|B0|2 λ2max

(
R̃
′
R̃
)∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥2
2

+ n2
∣∣σ̂2 − σ2

∣∣2)

≤ Op

 |B0|3 λ2max

(
R̃
′
R̃
)
%2

n2
+ ς2

 (By theorem 1)

≤ Op

(
M 3n5γ%2

n2
+ ς2

)
.

The above probability bound is achieved using the fact P(Pc
∞) −→ 1 from theorem 1. Since,

ς > 0 can be any preassigned positive number and since since γ < 2/(15 + 11α), if we choose
n2ς2 < M 3n10/(15+11α),

1

n2

∥∥∥Ξ̂gL,B0 −ΞB0

∥∥∥2
F

= Op

(
M 3%2

n2(1− 5
15+11α)

)
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(
M 3%2

n2( 10+11α
15+11α)

)
, (44)

and hence we have theorem 2.
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PROOF OF THEOREM 3. Note that since, ̂̃ΦgL, σ̂
2,&β̂ is minimizer to (10) then,

Tr
(
Ξβ̂Ξ̂

−1
gL

)
+ log det Ξ̂gL + τn

n∑
j=1

∥∥∥̂̃ϕgL,(j)∥∥∥
2
≤ Tr
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ΞβΞ−1
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+ log det Ξ + τn

n∑
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‖ϕ̃(j)‖2,

and by definition of B0 one can see precisely we need,
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∑
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∥∥∥̂̃ϕgL,(j)∥∥∥
2
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(
ΞβΞ−1B0

)
+log det ΞB0+τn

∑
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∥∥ϕ̃(j)

∥∥
2
.

Obeserve that,
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)
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(
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Ξ̂
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)
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{
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{

Ξ̂
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(
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)
, (45)

by defining ξB0
=
{

Ξ̂
−1/2
gL,B0

(X −Zβ)
}

and, ηB0
=
{

Ξ̂
−1/2
gL,B0

Z
(
β̂ − β
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. Hence, changing

sides and combining equations (45) and (36),
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(
Ξβ
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(
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Now,
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2 [By CBS Inequality]
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4
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The last inequality is based on 2ab ≤ a2 + b2. Now using the definition of ξB0
and ηB0

, we

have, ξ′B0
ξB0

= Tr
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−1
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)
and η′B0
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using (35) and (46) on Pn we have,
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By recalling Sherman-Morisson-Woddbury matrix indentiy on Ξ̂gL,B0 = σ̂2I + R̃
̂̃
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′

and, defining F = σ̂2 ̂̃Ω−1gL,B0
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where the last inequality is based on the fact λmax
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)
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by assumption (A 2). Hence using RHS of lemma 3,
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∑
λ(·)>0

λ

(̂̃
Ω
−1

gL,B0

)

= Cn−γλmax (Ξβ)
∑
λ(·)>0

{
λ

(̂̃
ΩgL,B0

)}−1
≤ Cn−γ

∑
j∈B0

{̂̃ϕ2

gL,jj

}−1
≤ Cn−γ|B0|max

j∈B0

{̂̃ϕ2

gL,jj

}−1
= Cn−γ|B0|

{
min
j∈B0

̂̃ϕ2

gL,jj

}−1
, (49)

where C is a generic constant. Note that on Pn,∣∣∣̂̃ϕgL,jj∣∣∣ =
∣∣∣̂̃ϕgL,jj − ϕ̃jj + ϕ̃jj

∣∣∣ ≥ C
(∣∣∣̂̃ϕgL,jj − ϕ̃jj∣∣∣+ |ϕ̃jj|

)
≥ C

∣∣∣̂̃ϕgL,jj − ϕ̃jj∣∣∣ ,
where the first inequality is obtained using lemma 1 with a = ̂̃ϕgL,jj − ϕ̃jj and b = ϕ̃jj . The
choice of constants, B1 and B2 can be obtained if we recall that the elements of the lower
triangular matrix Φ̃ belongs to a bounded set P0 ⊂ P 1,

B1 = φ1 < |ϕ̃jj| < φ2 = B2.

One the other hand, the choice of constants, A1 and A2 can be obtained on Pn using the fact
that ∇̂gLΩ̃B0 is diagonally dominant,

A1 = C1% <
∣∣∣̂̃ϕgL,jj − ϕ̃jj∣∣∣ < C2n

αγ+ 1
2 = A2.

Although we need to choose these constants such that B2 < A1, which can be attained by
using, . Therefore,∣∣∣̂̃ϕgL,jj∣∣∣2 ≥ C

∣∣∣̂̃ϕgL,jj − ϕ̃jj∣∣∣2
≥ C

{
j∑
i=1

∣∣∣̂̃ϕgL,ji − ϕ̃ji∣∣∣
}2 (

Since, ∇̂gLΩ̃B0 is diagonally dominant
)

≥ C

j∑
i=1

∣∣∣̂̃ϕgL,ji − ϕ̃ji∣∣∣2 = C
∥∥∥̂̃ϕgL,(j) − ϕ̃(j)

∥∥∥2
2
≥ C%2. (50)
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Hence combining (49) and (50) on Pn we have,

ξ′B0
ξB0

= Tr
(
ΞβΞ̂

−1
gL,B0

)
≤ Cn−γMnrn ≤ nαγ. (51)

Also observe,

1

2
η′B0

ηB0
=

1

2

(
Zβ̂ −Zβ

)′
Ξ̂
−1
gL,B0

(
Zβ̂ −Zβ

)
=

n

2

(
Zβ̂ −Zβ

)′ [Ξ̂
−1
gL,B0

n

](
Zβ̂ −Zβ

)
=

n

2

(
Zβ̂ −Zβ

)′
∆̂gL,B0

(
Zβ̂ −Zβ

)
≥ λmin

(
∆̂gL,B0

) n
2

(
Zβ̂ −Zβ

)′ (
Zβ̂ −Zβ

)
= λmin

(
∆̂gL,B0

) n
2

∥∥∥Zβ̂ −Zβ∥∥∥2
2
, (52)

where ∆̂gL,B0 = Ξ̂
−1
gL,B0

/n. Finally from what we learned in theorem 1 on the set P∞,we have,∣∣∣Tr
(
Ξβ

[
Ξ−1B0
− Ξ̂

−1
gL,B0

])∣∣∣ ≥ knΛ
β

n

{
nγ+1

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥2
2

+ n2
∣∣σ̂2 − σ2

∣∣} . (53)

Now recall by lemma 7 on Pn, Λβ

n ≥ Op

(
n−(3+4α)γ

)
and using k−1n = O(n(5+α)γ/2) we have

the following,

knΛ
β

n ≥ Op

(
n−(3+4α)γn−(5+α)γ/2

)
= Op

(
n−(11+9α)γ/2

)
≥ Op

(
n−

11+9α
15+11α

)
,

and now if we follows the steps of equation (41) in theorem 1 on Pn we obtain,

nγ
∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥2
2

+ n

(
1−Mn

11+9α
15+11α

n

)∣∣σ̂2 − σ2
∣∣

+λmin

(
∆̂gL,B0

) n 11+9α
15+11α

2

∥∥∥Zβ̂ −Zβ∥∥∥2
2
≤ Op

(
2Mn(5+2α)γ

n−
22+18α
15+11αnγ+2

+
nαγ

n−
11+9α
15+11αn

)
, (54)

if we choose τn < Cn(4+α)γ/2. Since 11 + 9α < 15 + 9α, n
11+9α
15+11α/n −→ 0 we have,

nγ
∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥2
2

+ n
∣∣σ̂2 − σ2

∣∣+
n

11+9α
15+11α

2
λmin

(
∆̂gL,B0

)∥∥∥Zβ̂ −Zβ∥∥∥2
2

≤ Op

(
2Mn(4+2α)γn

22+18α
15+11α

n2
+
nαγn

11+9α
15+11α

n

)
. (55)

If possible, let us assume that there exists δ > 0, such that for large enough Nδ, ∀ n ≥ Nδ,

P(Pn) > δ and hence we have, ∀ n ≥ Nδ, δ < P(Pn) < P(P∞,n). So on P∞,n,

nγ
∥∥∥̂̃ϕgL,B0

− ϕ̃B0

∥∥∥2
2

+ 2n
∣∣σ̂2 − σ2

∣∣ = Op

(
n(4+2α)γn

22+18α
15+11α

n2
+
nαγn

11+9α
15+11α

n

)
,
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and,

n
11+9α
15+11α

2
λmin

(
∆̂gL,B0

)∥∥∥Zβ̂ −Zβ∥∥∥2
2

= Op

(
n(4+2α)γn

22+18α
15+11α

n2
+
nαγn

11+9α
15+11α

n

)
.

Since, γ < 2/(15 + 11α),

Op

(
n(4+2α)γn

22+18α
15+11α

n2

)
< Op

(
n(4+2α) 2

15+11αn
22+18α
15+11α

n2

)
↓ 0,

and,

Op

(
nαγn

22+18α
15+11α

n

)
< Op

(
nα

2
15+11αn

11+9α
15+11α

n

)
= Op

(
n

11+11α
15+11α

n

)
↓ 0.

i.e., both
{
n
γ
2

∥∥∥̂̃ϕgL,B0
− ϕ̃B0

∥∥∥
2

}2

and,
{
n

1
2 |σ̂2 − σ2|

1
2

}2

goes to 0, which is a contradiction.

Hence our assumption, that there exists n ≥ Nδ such that P(P∞,n) > δ is violated and we can
conclude that, P(Pc

∞,n)
n→∞−→ 1. Hence due to (42) we have theorem 3.
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