
Varying Kernel Density Estimator
for a Positive Time Series

N. Balakrishna and Hira L. Koul

Technical University of Cochin, Kerala and Michigan State University

Abstract

This paper analyzes the large sample of a varying kernel density estimator of

the marginal density of a nonnegative stationary and ergodic time series that is also

strongly mixing. In particular we obtain an approximation for bias, mean square error

and establish asymptotic normality of this density estimator.

1 Introduction

Nonnegative time series often arise in real world applications. A class of nonnegative time

series that have seen increased research activity in the last two decades are the so called mul-

tiplicative error models. Engle and Russell (1998), Engle (2002), Manganelli (2005), Chou

(2005), Engle and Gallo (2006), and Brownlees, Cipollini and Gallo (2012) used these models

for analyzing financial durations, trading volume of orders, high-low range of asset prices,

absolute value of daily returns, and realized volatility, respectively. Several other applica-

tions and properties of these models are discussed in Bauwens and Giot (2001), Bauwens and

Veredas (2004), Fernandes and Gramg (2006), Gao, Kim and Saart (2015), among others.

Pacarur (2006) and Hautsch (2011) discuss numerous examples of nonegative time series

useful in economics and finance, and some of their theoretical properties.

It is of interest to estimate the stationary density of a give nonnegative stationary time

series nonparametrically. One way to proceed would be to use a conventional non-parametric

kernel estimation method based on a symmetric kernel. There is a vast literature on the

asymptotic properties of the nonparametric density estimators based on symmetric kernel

for i.i.d. r.v.’s as well as for strongly mixing stationary time series, see, e.g., and Härdle,

Litkepohn and Chen (1997), Bosq (1998) and Nze and Doukhan (2004), and references

therein.

If the underlying r.v.’s are nonnegative or belong to a finite set, then the use of symmetric

kernel for its estimation is not fully justified as it assigns positive mass outside the support

set, which leads to the so called the edge effect problem. Such estimators are heavily biased

in the tails of the bounded support set. To overcome this problem of boundary bias, several

asymmetric kernels have been introduced in the literature in the last two decades. Bagai and

Prakasa Rao (1995) proposed kernel type estimators for the density function of nonnegative
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r.v.’s, where the kernel function is a probability density function on (0,∞). Chen (1999,

2000) used beta kernel, Chen (2000a) proposed gamma kernel, and Scaillet (2004) introduced

inverse gaussian kernel for estimating density functions of non-negative random variables.

Chaubey et al. (2012) proposed a density estimator for nonnegative r.v.’s via smoothing of

the empirical distribution function using a generalization of Hilles lemma.

Manatsaknov and Sarkasian (2012) (MS) used an inverse gamma type kernel to estimate

density of positive i.i.d. r.v.’s. They analyzed its bias and means square error while Koul

and Song (2013) (KS) established its asymptotic normality, under the i.i.d. set up. This

kernel is given by

(1.1) Kα(y, u) =
1

uΓ(α + 1)

(αy
u

)α+1
exp{−(

αy

u
)}, α > 0, u > 0, y > 0.

Several properties of this kernel have been nicely described in the papers of MN and KS.

As mentioned in KS, for each x, Kα(x, ·) is the density of an Inverse Gamma r.v. with shape

parameter α + 1 and scale parameter αx, having mean x; for each t, αKα(x, t)/(α + 1) is a

Gamma density with shape parameter α + 2 and scale parameter t/α. If we let Tα and Xα

be a r.v.’s having density Kα(x, ·) and αKα(·, t)/(α + 1), respectively, then

√
α
(
Tα/x− 1

)
→d N(0, 1),

√
α
(
Xα/t− 1

)
→d N(0, 1), as α→ ∞.

Here, and in the following, →d denotes the convergence in distribution. If we let h = 1/
√
α,

then from the above facts it follows that as α→ ∞,

Kα(x, t) ≈
1

h
ϕ
(x/t− 1

h

)
or Kα(x, t) ≈

1

h
ϕ
(t/x− 1

h

)
,

where ϕ denotes the standard normal density. Therefore, the M-S kernel Kα approximately

behaves like the standard normal kernel, while the distance between x and t is not the usual

Euclidean distance |x − t|, but rather the relative distance |x − t|/t or |x − t|/x; for the

commonly used kernel function, x and t are symmetric in the sense of difference, while in the

kernel Kα(x, t), x and t are asymptotically symmetric in the sense of division; the parameter

1/
√
α plays the role of bandwidth as in commonly used kernel set up.

Now, let {Yi, i ∈ Z} be a strictly stationary and ergodic time series taking values in the

state-space R={y : 0 ≤ y < ∞} with marginal stationary density function f . The proposed

density estimator for f based on the kernel specified by (1.1) is

f̂n(y) =
1

n

n∑
i=1

Kαn(y, Yi) =
1

n

n∑
i=1

1

YiΓ(αn + 1)

(αny
Yi

)αn+1
e−αny/Yi .(1.2)

In the next section, we study asymptotic behavior of the bias and the mean square error

of f̂n(y), for each y ≥ 0. We also establish the asymptotic normality of the estimator f̂n(y).

All limits are taken as n→ ∞, unless specified otherwise.
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2 Main results

In this section we present an approximation to the bias and mean square error of f̂n(y) for

each y fixed, and an asymptotic normality result, under some assumptions, which we shall

now state.

Assumption 1 (C1) The time series {Yi, i ∈ Z} is a nonnegative, stationary, and ergodic.

(C2) The joint density fi(., .) of (Y0, Yi) and the marginal density f of Y0 are bounded, for

all i ∈ Z.

(C3) The densities fi and f are twice continuously differentiable with the bounded first and

second order derivatives.

(C4) αn → ∞,
√
αn/n→ 0.

(C5) {Yi, i ∈ Z} is strongly mixing with mixing coefficients ρ(k) such that ρ(k) = O(k−β),

for some β > 3.

Assumptions (C1)-(C4) are used to analyze bias and means square error, while all assump-

tions are used to establish the asymptotic normality of f̂n(y).

The following two lemmas are fundamental for establishing the asymptotic behavior of

the bias and mean square error of f̂n(y). The first lemma below is proved in KS.

Lemma 2.1 Let g(u, pk, λk) be a sequence of probability density functions of inverse gamma

distributions with shape parameters pk and rate parameters λk, i.e.,

g(u, pk, λk) =
λpk

Γ(pk)

(1
u

)pk+1
exp

(
− λk

u

)
, u > 0, k = 1, 2, ...

Define pk = k(αn + 2)− 1, λk = kαny, k = 1, 2, ..., y > 0 and let ℓ(u) be a function such that

its second order derivative is continuous and bounded on (0,∞). Then for large αn and for

all y > 0 and k ≥ 1,∫ ∞

0

g(u, pk, λk)ℓ(u)du = ℓ(y) +
(2− 2k)yℓ′(y)

pk − 1
+

[(2− 2k)2(pk − 2) + k2α2
n]y

2ℓ′′(y)

2(pk − 1)2(pk − 2)
+ o(

1

αn
).

In order to analyze the variance and the mean square error of the above density estimator

f̂n(y), we need to be able obtain a useful expression for the Cov(Kα(y, Y0), Kα(y, Yi)), which

in turn motivates one to obtain an extension of the above lemma to a bivariate setting where

ℓ is a function of two variables. The following lemma gives the needed result in this case.

For any function ℓ(u, v), its partial derivatives, whenever they exist, are denoted as follows:

ℓu =
∂
∂u
ℓ(., .), ℓv =

∂
∂v
ℓ(., .), ℓuu =

∂2

∂u2
ℓ(., .), ℓvv =

∂2

∂v2
ℓ(., .), ℓuv =

∂2

∂u∂v
ℓ(., .).
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Lemma 2.2 Suppose assumptions (C1) and (C4) hold. Let y, µk, λk and g be as in Lemma

2.1. Let ℓ(u, v) be a nonnegative function that is twice continuously differentiable on (0,∞)2

with all its derivatives up to the second order assumed to be bounded. Then,∫ ∞

0

∫ ∞

0

ℓ(u, v)g(u, pk, λk)g(v, pk, λk)dudv(2.1)

= ℓ(y, y) +
(2− 2k)y

pk − 1

[
ℓu(y, y) + ℓv(y, y)

]
+
[(2− 2k)2(pk − 2) + k2α2

n

2(pk − 1)2(pk − 2)

]
y2[ℓuu(y, y) + ℓvv(y, y)]

+
(2− 2k)2y2ℓuv(y, y)

(pk − 1)2
+ o

( 1

αn

)
.

The proof of this lemmas uses bivariate Taylor expansion and arguments similar to those

used in the proof of Lemma 2.1. Details are given in the last section below.

To proceed further we need to define

vn =
f(y)

2y
√
π
, wn =

2
√
αn

n−1∑
i=1

(1− i

n
)
(
fi(y, y)− f 2(y)

)
.(2.2)

We are now ready to analyze the bias and MSE of f̂n(y), as given in the next lemma.

Lemma 2.3 Assumpe (C1)-(C4) hold. Then

Bn(y) := E
(
f̂n(y)− f(y)

)
=

1

αn − 1

y2f ′′(y)

2
+ o

( 1

αn

)
,(2.3)

Var(f̂n(y)) =

√
αn
n

(vn + wn) + o
(√αn
n

)
+ o

( 1

αn

)
,(2.4)

MSE(f̂n(y)) =

√
αn
n

(vn + wn) + o
(√αn

n

)
+ o

( 1

αn

)
.(2.5)

Proof. To begin with we have

E
(
f̂n(y)

)
= E

(
Kαn(y, Y1)

)
(2.6)

=

∫ ∞

0

1

zΓ(αn + 1)

(αny
z

)αn+1
e−αny/zf(z)dz

= f(y) +
1

αn − 1

(y2f ′′(y)

2

)
+ o

( 1

αn

)
.

The last equation is obtained by using Lemma 2.1 with k=1. This equation readily yields

that the bias Bn(y) of f̂n(y) satisfies (2.3).

Following the arguments of KS, for all 0 < u < 1, we have

E
[
f̂n
( u
αn

)]
=

∫ ∞

0

g(z, p, λ)f(z)dz = f
( u
αn

)
+O(

1

αn
),
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and hence f̂n(y) does not suffer from the boundary effect.

Next, we evaluate the variance and the mean square error (MSE) of f̂n(y). Clearly

Var(f̂n(y)) =
1

n
Var(Kαn(y, Y1)) +

2

n

n−1∑
i=1

(1− i

n
)Cov

(
Kαn(y, Y0), Kαn(y, Yi)

)
(2.7)

= Ṽn(y) + Cn(y), say.

To obtain an approximation for Ṽn(y) = n−1Var(Kαn(y, Y1)), consider

E
(
Kαn(y, Y1)

)2
=

∫ ∞

0

1

z2Γ2(αn + 1)

(αny
z

)2(αn+1)
e−2αny/zf(z)dz

=
Γ(2αn + 3)

Γ2(αn + 1)22αn+2

1

2αny

∫ ∞

0

(2αny)
2αn+3

z2αn+4
e−2αny/zf(z)dz

=
Γ(2αn + 3)

Γ2(αn + 1)22αn+2

1

2αny

∫ ∞

0

g(z; 2αn + 3, 2αny)f(z)dz.

Now applying Lemma 2.1 with k = 2, the last integral equals to

f(y) +
(−2)yf ′(y)

2αn + 2
+

[4(αn + 1) + 4α2
n]y

2f ′′(y)

2(2αn + 2)2(2αn + 1)
+ o

( 1

αn

)
= f(y)− yf ′(y)

αn + 1
+

y2f ′′(y)

2(2αn + 1)
+ o

( 1

αn

)
.

By Stirling approximation,

Γ(2αn + 3)

Γ2(αn + 1)
≈ 22αn+2+1/2(αn + 1)2αn+2+1/2e−2

√
2παn2αn+1

=
e−2

2y
√
π

(
1 +

1

αn

)2αn
(
1 +

1

αn

)5/2√
αn.

Thus

E
(
Kαn(y, Y1)

)2
=

√
αn

2y
√
π

[
1 + o(1)

][
f(y)− yf ′(y)

αn + 1
+

y2f ′′(y)

2(2αn + 1)
+ o

( 1

αn

)]
,

and hence

1

n
E
(
Kαn(y, Y1)

)2
=

√
αnf(y)

2y
√
πn

+ o
(√αn
n

)
.

Upon combining this with (2.6), we obtain

Ṽn(y) =

√
αnf(y)

2y
√
πn

+ o
(√αn
n

)
= O

(√αn
n

)
.(2.8)

Next consider the Cn(y) term that involves the covariances. With fi(u, v) denoting the

joint density of (Y0, Yi), let fi,uv denote their partial derivatives etc. We have

Cov
(
Kαn(y, Y0), Kαn(y, Yi)

)
= E

(
Kαn(y, Y0)Kαn(y, Yi)

)
−

(
E(Kαn(y, Y0))

)2

.
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For the sake of brevity, write gk(u) = g(u, pk, λk). Note that for k = 1, from (2.1) of

Lemma 2.2, we obtain∫ ∞

0

∫ ∞

0

ℓ(u, v)g1(u)g1(v)dudv(2.9)

= ℓ(y, y) +
y2

2(αn − 1)

[
ℓuu(y, y) + ℓvv(y, y)

]
+ o

( 1

αn

)
.

Now take ℓ(u, v) = fi(u, v) in (2.9) to obtain

E
(
Kαn(y, Y0)Kαn(y, Yi)

)
=

∫ ∞

0

∫ ∞

0

Kαn(y, u)Kαn(y, v)fi(u, v)dudv

=

∫ ∞

0

∫ ∞

0

1

uΓ(αn + 1)

(αny
u

)αn+1
e−αny/u

1

vΓ(αn + 1)

(αny
v

)αn+1
e−αny/vfi(u, v)dudv

=

∫ ∞

0

∫ ∞

0

g(u, p1, λ1)g(v, p1, λ1)fi(u, v)dudv

= fi(y, y) +
y2

2(αn − 1)

[
fi,uu(y, y) + fi,vv(y, y)

]
+ o

( 1

αn

)
.

Note that we used assumptions (C2)-(C4) here. This fact together with (2.6) yields

Cov
(
Kαn(y, Y0), Kαn(y, Yi)

)
= fi(y, y) +

y2

2(αn − 1)

[
fi,uu(y, y) + fi,vv(y, y)

]
+ o

( 1

αn

)
−
(
f(y) +

1

αn − 1

(y2f ′′(y)

2

)
+ o

( 1

αn

))2

.

= fi(y, y)− f 2(y) +
y2

2(αn − 1)

[
fi,uu(y, y) + fi,vv(y, y)− 2f(y)f ′′(y)

]
+o

( 1

αn

)
+ o

( 1

α2
n

)
.

Hence,

Cn(y) =
2

n

n−1∑
i=1

(1− i

n
)Cov

(
Kαn(y, Y0), Kαn(y, Yi)

)
=

2

n

n−1∑
i=1

(1− i

n
)
(
fi(y, y)− f 2(y)

)
+
2

n

n−1∑
i=1

(
(1− i

n
)

y2

2(αn − 1)

[
fi,uu(y, y) + fi,vv(y, y)− 2f(y)f ′′(y)

])
+o

( 1

αn

)
+ o

( 1

α2
n

)
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=
2

n

n−1∑
i=1

(1− i

n
)
(
fi(y, y)− f 2(y) + o

( 1

αn

))
.

Again, the last equation is a result of boundedness of the functions and their derivatives

guaranteed by the assumptions (C2) and (C3). This result, combined with (2.6), (2.8) and

the definition (4.12), readily yields (2.4).

The claim (2.5) about the mean square error now readily follows from (2.3), (2.4) and

the fact that MSE(f̂n(y)) := E
(
f̂n(y)− f(y)

)2
= B2

n(y) + Var(f̂n(y)).

Asymptotic normality of f̂n. Here we shall establish the asymptotic normality of the

density estimator f̂n(y) by applying the central limit theorem for strongly mixing triangular

arrays proved by Ekstrom (2014), which is stated here for the sake of completeness as the

following lemma.

Lemma 2.4 Let {Xn,i, 1 ≤ i ≤ dn} be a triangular array of strongly mixing sequences, with

ρn(.) as the mixing coefficients corresponding to the n-th row. Define X̄n,dn = 1
dn

∑dn
i=1Xn,i,

and assume the following two conditions. (B1) E|Xn,i−E(Xn,i)|2+δ < c for some c > 0 and

δ > 0, for all n, i

(B2)
∑∞

k=0(k + 1)2ρ
δ/(4+δ)
n (k) < c for some c > 0 and all n.

Then

X̄n,dn − E(X̄n,dn)√
Var(X̄n,dn)

w−→ N(0, 1).

We apply this lemma to obtain the following theorem:

Theorem 2.1 Suppose the conditions (C1) - (C6) hold. Then,(
n/

√
αn

)1/2(
vn + wn

)−1/2(
f̂n(y)− f(y)− y2f ′′(y)

2(αn − 1)

) w−→ N(0, 1).(2.10)

where vn and wn are defined in (4.12).

Proof: The strongly mixing property of {Yi} implies that of the triangle array Xn,i :=

{Kαn(y, Yi)}. Assumptions (C5) and (C6) imply conditions (B1) and (B2) for these {Xn,i}.
Now applying Lemma 2.4 to these Xni with dn ≡ n and substituting for the expectation and

variance, we obtain (2.10).

3 Proof of Lemma 2.2

Proof of Lemma 2.2. The proof of this lemmas uses bivariate Taylor expansion and

arguments similar to those used in the proof of Lemma 2.1. Accordingly, for y > 0 let µk be
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the mean of the inverse gamma distribution with parameters pk and λk and express

µk =
λk

pk − 1
= y +

(2− 2k)y

pk − 1
.

Let ℓ(u, v) be a bivariate function satisfying the assumed conditions. Expanding ℓ(µk, µk)

around (y, y) and using Taylor’s theorem for bivariate function we rewrite,

ℓ(µk, µk)(3.1)

= ℓ(y, y) +
(2− 2k)yℓu(y, y)

pk − 1
+

(2− 2k)yℓv(y, y)

pk − 1

+
1

2

[(2− 2k)2y2ℓuu(ξ, ξ)

(pk − 1)2
+

(2− 2k)2y2ℓvv(ξ, ξ)

(pk − 1)2
+ 2

(2− 2k)2y2ℓuv(ξ, ξ)

(pk − 1)2

]
= ℓ(y) + Ak(y) +

1

2
Bk(y), say,

where ξ is a value between µk = y + (2− 2k)y/(pk − 1) and y.

Next, consider the Taylor series expansion of ℓ(u, v) around (µk, µk).

ℓ(u, v)(3.2)

= ℓ(µk, µk) + (u− µk)ℓu(µk, µk) + (v − µk)ℓv(µk, µk)

+
1

2

[
(u− µk)

2ℓuu(ũ, ṽ) + (v − µk)
2ℓvv(ũ, ṽ) + 2(u− µk)(v − µk)ℓuv(ũ, ṽ)

]
,

= ℓ(µk, µk) + Ck(u, v) +
1

2
Dk(u, v), say,

where ũ and ṽ are the values between u and µk and v and µk, respectively.

Now rewrite

ℓuu(ũ, ṽ) = ℓuu(µk, µk) + [ℓuu(ũ, ṽ)− ℓuu(µk, µk)],

ℓuv(ũ, ṽ) = ℓuv(µk, µk) + [ℓuv(ũ, ṽ)− ℓuv(µk, µk)],

ℓvv(ũ, ṽ) = ℓvv(µk, µk) + [ℓvv(ũ, ṽ)− ℓvv(µk, µk)].

Then we have the decomposition Dk = Dk1 +Dk2 +Dk3 +Dk4 +Dk5 +Dk6, where

Dk1(u, v) := (u− µk)
2ℓuu(µk, µk), Dk2 := (v − µk)

2ℓvv(µk, µk),

Dk3(u, v) := 2(u− µk)(v − µk)ℓuv(µk, µk),

Dk4(u, v) := (u− µk)
2[ℓuu(ũ, ṽ)− ℓuu(µk, µk)],

Dk5(u, v) := (u− µk)
2[ℓvv(ũ, ṽ)− ℓvv(µk, µk)],

Dk6(u, v) := 2(u− µk)(v − µk)[ℓuv(ũ, ṽ)− ℓuv(µk, µk)].

For the sake brevity, let gk(u) ≡ g(u, pk, λk). In what follows, the range of integration

is over (0,∞), unless specified otherwise. Note that
∫ ∫

Ck(u, v)gk(u)gk(v)dudv = 0. Thus
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from (3.2) and the above derivation we obtain∫ ∞

0

∫ ∞

0

ℓ(u, v)gk(u)gk(v)dudv

= ℓ(µk, µk) +
1

2

∫ ∞

0

∫ ∞

0

Dk(u, v)gk(u)gk(v)dudv

= ℓ(µk, µk) +
1

2

(
I1 + I2 + I3

)
+

1

2

(
I4 + I5 + I6

)
, (say),

where Ij :=
∫ ∫

Dkj(u, v)dudv, j = 1, · · · , 6. Because gk is a density with mean µk and

variance τ 2(k, αn) = k2α2
ny

2
/
(pk − 1)2(pk − 2), I3 = 0, and

I1 = ℓuu(µk, µk)

∫ ∞

0

(u− µk)
2gk(u)gk(v)du = ℓuu(µk, µk)τ

2(k, αn).

Similarly, I2 = ℓvv(µk, µk)τ
2(k, αn).

Next, arguing as in the proof of Lemma 2.1, see (10), (12), (14) and (15) in KS, one can

show that

Ij = o(
1

αn
), j = 4, 5, 6.

Thus∫ ∫
ℓ(u, v)gk(u)gk(v)dudv = ℓ(µk, µk) +

1

2

[
ℓuu(µk, µk) + ℓvv(µk, µk)

]
τ 2(k, αn) + o

( 1

αn

)
.

Because ξ and µk approach y for large αn and all the partial derivatives are assumed to

be continuous, one can replace ℓ(µk, µk) by the expression given in the right hand side of

(3.1). Hence, upon plugging in the value of τ 2(k, αn), for αn large, to obtain∫ ∞

0

∫ ∞

0

ℓ(u, v)gk(u)gk(v)dudv

= ℓ(y, y) +
(2− 2k)yℓu(y, y)

pk − 1
+

(2− 2k)yℓv(y, y)

pk − 1

+
1

2

[(2− 2k)2y2ℓuu(y, y)

(pk − 1)2
+

(2− 2k)2y2ℓvv(y, y)

(pk − 1)2
+ 2

(2− 2k)2y2ℓuv(y, y)

(pk − 1)2

]
+
1

2

[
ℓuu(y, y) + ℓvv(y, y)

]
τ(k, αn) + o

( 1

αn

)
= ℓ(y, y) +

(2− 2k)y

pk − 1

[
ℓu(y, y) + ℓv(y, y)

]
+
[(2− 2k)2(pk − 2) + k2α2

n

2(pk − 1)2(pk − 2)

]
y2[ℓuu(y, y) + ℓvv(y, y)]

+
(2− 2k)2y2ℓuv(y, y)

(pk − 1)2
+ o

( 1

αn

)
.

This completes the proof of the Lemma 2.2.
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4 Estimation of the autoregressive function in MEM

model.

We shall now consider the problem of estimating the conditional mean function, given the

past, of a Markovian multiplicative error time series model. To describe the multiplicative

error model of interest here, let Yi, i ∈ Z := {0,±1,±2, · · · }, be a discrete time nonnegative

stationary process. A Markovian multiplicative error model takes the form

Yi = τ(Yi−1)εi, i ∈ Z,(4.1)

for some positive measurable function τ defined on R+ := [0,∞). Here εi, i ∈ Z are inde-

pendent and identically distributed (i.i.d.) non-negative error random variables (r.v.’s) with

E(ε0) = 1, E(ε20) < ∞. Moreover, εi is assumed to be independent of the past information

Yj, j < i, for all i ∈ Z. Thus τ(y) = E(Yi|Yi−1 = y).

The problem of interest here is to estimate τ . We propose the following estimator for

this function based on the kernel Kαn .

ψ̂n(y) =

∑n
i=1Kαn(y, Yi−1)Yi∑n
i=1Kαn(y, Yi)

=
ϕ̂n(y)

f̂n(y)
,(4.2)

where ϕ̂n(y) = n−1
∑n

i=1Kαn(y, Yi−1)Yi. Let ϕ(y) = E(Kαn(y, Y0)Y1), and ψ(y) := ϕ(y)/f(y).

The following decomposition (Bosq (1998), pp 70) is useful for analyzing the asymptotic

properties of the estimator ψ̂n. Consider, suppressing y for simplicity,

ψ̂n − ψ =
(
ψ̂n − ψ

)(f − f̂n
f

)
+
ψ

f
(f − f̂n) +

ϕ̂n − ϕ

f
.

Hence

E
(
ψ̂n − ψ

)2
= An +Bn + Cn,(4.3)

where

An :=
ψ2

f 2
E(f − f̂n)

2 +
1

f 2
E(ϕ̂n − ϕ)2 +

2ψ

f 2
E
(
(f − f̂n)(ϕ̂n − ϕ))

)
,

Bn :=
1

f 2
E
(
(ψ̂n − ψ)2(f − f̂n)

2
)
+

2ψ

f 2
E
(
(ψ̂n − ψ)(f − f̂n)

2
)

Cn :=
2

f 2
E
(
(ψ̂n − ψ)(f − f̂n)(ϕ̂n − ϕ))

)
.

We have already analyzed E(f − f̂n)
2, in (2.5). Now consider the second term of An,

E(ϕ̂n − ϕ)2 = Bias2(ϕ̂n) + Var
(
ϕ̂n(y)

)
.(4.4)

10



Calculations similar to the one used in analyzing the bias of f̂n yields that

Bias
(
ϕ̂n(y)

)
= E(ϕ̂n(y))− ϕ(y)(4.5)

= E(Kαn(y, Y0)ψ(Y0))− ψ(y)f(y) = O
( 1

αn

)
.

Now consider the

Var(ϕ̂n(y))(4.6)

=
1

n
Var

(
Kαn(y, Y0)Y1

)
+

2

n

n−1∑
i=1

(1− i

n
)Cov

(
Kαn(y, Y1)Y2, Kαn(y, Y1+i)Yi+2

)
.

Recall from (4.1) that εi are i.i.d. with mean 1 and constant variance, σ2, and that εi is

independent of Yi−1, for all i ∈ Z. Now, consider

Var
(
Kαn(y, Y0)Y1

)
= Var

(
Kαn(y, Y0)τ(Y0)ε1

)
= σ2E

(
K2
αn
(y, Y0)τ

2(Y0)
)
−
[
E(Kαn(y, Y0)τ(Y0))

]2
.

But

E
(
K2
αn
(y, Y0)τ

2(Y0)
)

=

∫ ∞

0

K2
αn
(y, z)τ 2(z)f(z)dz

=
Γ(2αn + 3)

Γ2(αn + 1)22αn+1(2αny)

∫ ∞

0

g(z, 2αn + 3, 2αny)τ
2(z)f(z)dz

≈
√
αn

2
√
πy
f(y)ψ2(y) +O

( 1
√
αn

)
.

We used Stirling approximation for gamma functions and Lemma 2.1 for the integral with

ℓ(z) = τ 2(z)f(z).

(NB: Assumption should take care of the twice differentiability of F and ψ.)) Hence

Var
(
Kαn(y, Y0)Y1

)
≈

√
αn

2
√
πy
f(y)ψ2(y) +O

( 1
√
αn

)
+ (ψ(y)f(y))2 +O

( 1

α2
n

)
+O

( 1

αn

)
,

so that

1

n
Var

(
Kαn(y, Y0)Y1

)
= O

(√αn
n

)
.(4.7)
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Next, we shall obtain a bound for the covariance term in (4.6) via Devydov’s inequality

as before.

2

n

n−1∑
i=1

(1− i

n
)Cov

(
Kαn(y, Y1)Y2, Kαn(y, Y1+i)Yi+2

)
≤ 4

n−1∑
i=1

(1− i

n
)
√
ρ(i)

[
E(Kαn(y, Y1)Y2)

4
]1/2

≤ 8

(2π)3/4y3/2
(α3/4

n

n

)[
ψ4(y)f(y) +O(

1

αn
)
]1/2√

2
n−1∑
i=1

(1− i

n
)
√
ρ(i).

Upon combining this with (4.7) and (4.6) we obtain that

Var(ϕ̂n(y)) ≈
√
αn

2n
√
πy
f(y)ψ2(y) +O

( 1

n
√
αn

)
+

1

n
(ψ(y)f(y))2 +O

( 1

nαn

)
+

8

(2π)3/4y3/2
(α3/4

n

n

)[
ψ4(y)f(y) +O(

1

αn
)
]1/2√

2
n−1∑
i=1

(1− i

n
)
√
ρ(i).

Hence

Var(ϕ̂n(y)) = O
(α3/4

n

n

)
= o

(αn
n

)
.

This bound together with (4.5) gives that

E(ϕ̂n − ϕ)2 = Var(ϕ̂n(y)) +O
( 1

αn

)
= O

(α3/4
n

n

)
+O

( 1

αn

)
.(4.8)

The Cauchy-Schwarz inequality yields that the absolute value of the third term of An is

bounded above as follows.

∣∣E((f − f̂n)(ϕ̂n − ϕ))
)∣∣ ≤

√
E(f − f̂n)2E(ϕ̂n − ϕ)2 = O

(α3/4
n

n

)
= o

(αn
n

)
.

Hence

An = O
(α3/4

n

n

)
= o

(αn
n

)
.(4.9)

Next consider Bn and for γ > 0, we write

f 2Bn = E
(
(ψ̂2

n − ψ2)(f̂n − f)2.I(|ψ̂n|>nγ)

)
+ E

(
(ψ̂2

n − ψ2)(f̂n − f)2.I(|ψ̂n|≤nγ)

)
= B1n +B2n, say

12



where

|B1n| = |E
(
(ψ̂2

n − ψ2)(f̂n − f)2.I(|ψ̂n|>nγ)

)
|

≤ E
(
ψ̂2
n(f̂n − f)2.I(|ψ̂n|>nγ)

)
≤ E

(
(maxYi)

2(f̂n − f)2.I(|ψ̂n|>nγ)

)
.

The last inequality follows from the definition (4.2) of ψ̂n. Now by the condition (to be

aded in the Assumptions)it follows that B1n is negligible. (NB: Write in terms of o())

Next consider

|B2n| = |E
(
(ψ̂2

n − ψ2)(f̂n − f)2.I(|ψ̂n|≤nγ)

)
|

≤ (nγ + |ψ|)E
(
|ψ̂n − ψ)|I(|ψ̂n|≤nγ)(f̂n − f)2

)
≤ (nγ + |ψ|)E

(
|ψ̂n − ψ)|I(|ψ̂n|≤nγ)(f̂n − f)2

[
I(|ψ̂n−ψ|≤n−(1+ϵ)γ) + I(|ψ̂n−ψ|>n−(1+ϵ)γ)

])
≤ 2nγ

[
n−(1+ϵ)γE

(
f̂n − f

)2
+ E

(
(f̂n − f)2|ψ̂n − ψ|I(|ψ̂n|≤nγ)I(|ψ̂n−ψ|>n−(1+ϵ)γ)

)]
≤ 2nγ

[
n−(1+ϵ)γE

(
f̂n − f

)2]
+ 2nγ

[
E(f̂n − f)4

]1/2[
E
(
|ψ̂n − ψ|I(|ψ̂n|≤nγ)I(|ψ̂n−ψ|>n−(1+ϵ)γ)

)2]1/2
≤ 2n−ϵγE

(
f̂n − f

)2
+ 2nγ

[
E(f̂n − f)4

]1/2[
E
(
|ψ̂n − ψ|2vI(|ψ̂n|≤nγ)

)]1/2v|[
P
(
(|ψ̂n − ψ| > n−(1+ϵ)γ, |ψ̂n| ≤ nγ

)]1/2w
,

(4.10)

where we have used Schwarz inequality initially and then the Holder inequality with 1
v
+ 1
w
= 1

We have already analyzed E
(
f̂n − f

)2
and we can write[

E(f̂n − f)4
]1/2

=
[
E(f̂n − f)2.(f̂n − f)2

]1/2
≤

[
E((supf̂n(y))

2 + f 2).(f̂n − f)2
]1/2

≤
(c2αn
y2

+ f 2
)1/2[

E(f̂n − f)2
]1/2

,

where c is a constant (cf K-S). (NB: Write in terms of O or o).

To simplify the next term consider[
E
(
|ψ̂n − ψ|I(|ψ̂n|≤nγ)

)2]1/2
=

[
E
(
(ψ̂n − ψ)2I(|ψ̂n|≤nγ)

)]1/2
From the decomposition (4.3), we can write

|ψ̂n − ψ| ≤ |ψ̂n|
f

(
|f̂n − E(f̂n)|+ |E(f̂n)− f |

)
+

1

f

(
|ϕ̂n − E(ϕ̂n)|+ |E(ϕ̂n)− ϕ|

)
=

|ψ̂n|
f

(
|f̂n − E(f̂n)|+Bias(f̂n)

)
+

1

f

(
|ϕ̂n − E(ϕ̂n)|+Bias(ϕ̂n)

)
=

|ψ̂n|
f

(
|f̂n − E(f̂n)|

)
+
(
|ϕ̂n − E(ϕ̂n)|

)
+ o(1)(4.11)
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So

E
(
(ψ̂n − ψ)2I(|ψ̂n|≤nγ)

)
≤ n2γ

f 2

(
Var(ϕ̂n)

)
+ V ar(f̂n) + 2

nγ

f
Cov(ϕ̂n, f̂n) + o(1)

≤ n2γ

f 2

(
Var(ϕ̂n)

)
+ V ar(f̂n) + 2

nγ

f

√
Var(ϕ̂n)Var(f̂n)

]
+O

( 1

αn

)

(NB: It should be expressed in terms of O(.), powers of n)

Thus we have

E
(
(ψ̂n − ψ)2I(|ψ̂n|≤nγ)

)
= n2γO

(α3/4
n

n

)
+O

(α3/4
n

n

)
+ nγO

(α3/4
n

n

)
+O

( 1

αn

)

Next consider the last term in (4.10)

P
(
(|ψ̂n − ψ| > n−(1+ϵ)γ, |ψ̂n| ≤ nγ

)
≤ P

(
(|ψ̂n − ψ| > n−(1+ϵ)γ

)
.

But from (4.11), we can write

P
(
(|ψ̂n − ψ| > n−(1+ϵ)γ

)
≤ P

[ |ψ̂n|
f

(
|f̂n − E(f̂n)|

)
+ 1

f

(
|ϕ̂n − E(ϕ̂n)|

)
≥ n−(1+ϵ)γ

]
So,

P
(
(|ψ̂n − ψ|I(|ψ̂n|≤nγ) > n−(1+ϵ)γ

)
≤ P

[ |ψ̂n|
f

(
|f̂n − E(f̂n)|I(|ψ̂n|≤nγ)

)
>
n−(1+ϵ)γ

2

]
+ P

[ 1
f

(
|ϕ̂n − E(ϕ̂n)|I(|ψ̂n|≤nγ)

)
>
n−(1+ϵ)γ

2

]
≤ P

[
nγ

(
|f̂n − E(f̂n)|I(|ψ̂n|≤nγ)

)
>
f.n−(1+ϵ)γ

2

]
+ P

[(
|ϕ̂n − E(ϕ̂n)|I(|ψ̂n|≤nγ)

)
>
f.n−(1+ϵ)γ

2

]

To simplify further we need a bound for the second term. Let δn = f.n−(1+ϵ)γ)

2
and define

Vi = Kαn(y, Yi−1)YiI(|ψ̂n|≤nγ)

Wi = Kαn(y, Yi−1)YiI(|ψ̂n|>nγ)(4.12)

so that ϕ̂n = 1
n

∑n
i=1 (Vi +Wi)

Now

P (|ϕ̂n − E(ϕ̂n)| > δn) = P
[
|

n∑
i=1

(
(Vi +Wi)− E(Vi +Wi)

)
| > nδn

]
= P

[
|

n∑
i=1

(Vi − E(Vi)| >
nδn
2

]
+ P

[
|

n∑
i=1

(Wi − E(Wi)| >
nδn
2

]
(4.13)
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If we define

En =
{
|

n∑
i=1

(
Wi − E(Wi)

)
| > nδn

2

}
=

{
|

n∑
i=1

(
Kαn(y, Yi−1)YiI(Yi>nγ) − E(Kαn(y, Yi−1)YiI(Yi>nγ))| >

nδn
2

})
then for a > 0,

P (En) ≤
n∑
i=1

P (|Yi| > nγ)

≤ ne−an
γ

E(ea|Yi|)(4.14)

Next consider Vi in (4.12) and let Xi = Vi − E(Vi) [NB: to use Theorem 4.1, Bosq,

p.31, with E(Xi) = 0]. Consider

E(Vi − E(Vi))
2 ≤ E(V 2

i )

≤ E
(
Kαn(y, Yi−1)YiI(Yi≤nγ)

)2
≤ E

(
Kαn(y, Yi−1)ψ(Yi−1)εi

)2
= (σ2 + 1)E

(
K2
αn
(y, Yi−1)ψ

2(Yi−1)
)

≈ (σ2 + 1)

√
αn

2
√
πy
f(y)ψ2(y) +O

( 1
√
αn

)
= O

(√
αn

)
Consider

|Vi − E(Vi)| ≤
(
|Kαn(y, Yi−1)YiI(Yi≤nγ)|+ E|Kαn(y, Yi−1)YiI(Yi≤nγ)|

)
≤ 2nγK∗

αn

where K∗
αn

= max{Kαn(y, Yi−1)} =
c
√
αn

y
, and c is a constant.

For k ≥ 3 we can write

E(|Vi − E(Vi)|)k = E
(
|Vi − E(Vi)|k−2.|Vi − E(Vi)|2

)
≤

(
2nγK∗

αn

)k−2
.E(Vi − E(Vi))

2

≤ k!
(
2nγ

c
√
αn
y

)k−2
.E(Vi − E(Vi))

2

(NB: after verifying many conditions and checking the required algebra we can

apply Lemma 1.4 of Bosq. We also have to fix αn in terms of n for simplification.)

Now applying Lemma 1.4 of Bosq (1998), p. 31, we can show that Bn = o(n1/5)??. The last

term Cn in (4.3) can be simplified (to be done) similarly. Thus the MSE of ψ̂(y) tends to

zero.
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