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Abstract

This paper discusses the consistency and asymptotic distribution of the bias cor-

rected least squares estimators of regression parameters in linear regression models

when covariates have measurement error and errors and covariates form mutually in-

dependent long memory moving average processes. In the structural measurement

error linear regression model, the nature of the asymptotic distribution of suitably

standardized bias corrected least squares estimators depends on the range of the val-

ues of δmax = max{dX+dε, dX+du, du+dε, 2du}, where dX , du, dε, are the long memory

parameters of the covariate, measurement error and regression error processes, respec-

tively. This limiting distribution is Gaussian when δmax < 1/2 and non-Gaussian in

the case δmax > 1/2. The paper also discusses the asymptotic distribution of these

estimators in some functional measurement error linear regression models, where the

unobservable covariate is non-random. In these models, the limiting distribution of

LSEs is always a Gaussian distribution determined by the range of the values of dε−du.

1 Introduction

The classical regression analysis often assumes that both the response variable and the

predicting variables are fully observable and that the errors are independent. But, as is evi-

denced in the monographs of Fuller (1987), Cheng and Van Ness (1999), Carroll, Ruppert,

Stefanski and Craineceanu (2006), and the references therein, there are numerous exam-

ples of practical importance where the predicting variables are not observable. Instead one

observes surrogates that provide estimates of the true predictors. Such models are known

as the regression models with measurement error. On the other hand there are examples

from the various scientific disciplines where observed data do not obey the assumption of
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independence. Instead one observes data that is generated by some long memory processes.

In economics the first authors to point out the usefulness of long memory processes were

Granger and Joyeux (1980) and Hosking (1981). The monographs of Giraitis, Koul and Sur-

gailis (2012) and Beran, Feng, Ghosh and Kulik (2013), and the references therein, contain

numerous other examples of long memory processes and relevant theoretical results.

The focus of this paper is to study the consistency and asymptotic distribution theory

of the bias corrected least squares estimators (LSEs) of the parameters in linear regression

models when predicting variables are measured with error and when the covariate and the

regression and measurement error processes have long memory. We discuss both structural

and functional models. In the former, the predicting variables are random while in the latter

they are non-random.

For the sake of relative transparency, we first discuss the simple structural measurement

error (ME) linear regression model in the next section, where the long memory models along

with the needed assumptions are also described. It also contains the proof of the consistency

of the bias corrected LSEs in this model. The derivation of the asymptotic distribution of

suitably standardized versions of these estimators is facilitated by the derivation of the lim-

iting distributions of some general quadratic forms of long memory moving average processes

given in Section 3. These results in turn are used in Sections 4 and 5 to derive the limiting

distributions of the bias corrected LSEs in the simple and multiple structural ME linear

regression models, respectively. Section 6 derives similar results for the functional ME sim-

ple linear regression model where the true unobservable predicting variable is nonrandom.

Section 7 contains the proofs of some of the results of Sections 3 and 4.

2 Simple structural ME linear regression model and

long memory

In this section we shall focus on the simple structural ME linear regression model and

establish the consistency of the bias corrected LSEs. In this model the unobserved predicting

r.v. Xi, the observable random surrogate Zi and the response Yi are related to each other by

the following relations.

Yi = α + βXi + εi, Zi = Xi + ui, Eεi = 0, Eui = 0, i ∈ Z := {0,±1, · · · }.(2.1)

Moreover, we assume that the process {(εi, Xi, ui); i ∈ Z} is strictly stationary and

ergodic and each of these processes form a long memory moving average (LMMA) as in the

following assumptions.
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Assumption (E) Errors {εi} form a moving average process

εi =
∞∑
k=0

bkζi−k, i ∈ Z,(2.2)

where {ζs; s ∈ Z} are i.i.d., with zero mean and unit variance, with coefficients

bj ∼ κε j
−(1−dε), as j → ∞, for some 0 < κε < ∞ and 0 < dε < 1/2.(2.3)

Assumption (X) Covariates {Xi} form a LMMA process

(2.4) Xi = µX +
∞∑
k=0

akξi−k, i ∈ Z, with MA coefficients aj ∼ κXj
−(1−dX), j → ∞,

for some µX ∈ R, κX > 0, 0 < dX < 1/2, and standardized i.i.d. innovations {ξs}.

Assumption (U) Measurement errors {ui} form a LMMA process

(2.5) ui =
∞∑
k=0

ckηi−k, i ∈ Z, with MA coefficients cj ∼ κuj
−(1−du), j → ∞

for some κu > 0, 0 < du < 1/2, and standardized i.i.d. innovations {ηs}. Moreover, Var(u0)

is known.

Assumption (I) The innovation sequences {ζs; s ∈ Z}, {ξs; s ∈ Z} and {ηs; s ∈ Z} are

mutually independent.

From now on let ε,X, u denote copies of ε0, X0, u0, respectively. For any r.v. η with finite

variance, let σ2
η := Var(η).

The above assumptions imply that the r.v.’s εi, Xi, ui are mutually independent for each

i ∈ Z and

0 < σ2
ε = Eε2 =

∞∑
k=0

b2k < ∞, 0 < σ2
X = EX2 =

∞∑
k=0

a2k < ∞.

0 < σ2
u = Eu2 =

∞∑
k=0

c2k < ∞.

Let B(a, b) :=
∫ 1

0
xa−1(1 − x)b−1dx, a > 0, b > 0 denote Beta function. From (7.2.10) of

Giraitis, Koul and Surgailis (2012) (GKS), we obtain that

Cov(ε0, εk) ∼ κ2
εB(dε, 1− 2dε)k

−(1−2dε), Cov(X0, Xk) ∼ κ2
XB(dX , 1− 2dε)k

−(1−2dX),(2.6)

Cov(u0, uk) ∼ κ2
uB(du, 1− 2du)k

−(1−2du), k → ∞.

The sum of the absolute values of these covariance diverge. Hence each of these processes

has long memory.
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We shall now describe the bias corrected LSEs. For any two sets of variables Ui, Vi, 1 ≤
i ≤ n, let

Ū :=
1

n

n∑
i=1

Ui, SUV :=
1

n

n∑
i=1

(Ui − Ū)(Vi − V̄ ).

Then the naive LSEs of α, β, where one simply replaces Xi’s in the classical LSE by Zi’s, are

β̃ := SZY /SZZ , α̃ := Ȳ − β̃Z̄.

As argued say in Fuller (1987), under the classical i.i.d. and finite variance set up,

β̃ − β → −β
σ2
u

σ2
X + σ2

u

, a.s.

Hence these estimators are inconsistent. The bias correct estimators suitable here are

β̂ :=
SZY

SZZ − σ2
u

, α̂ := Ȳ − β̂Z̄.(2.7)

We shall first establish the consistency of these estimators under the assumed stationarity,

ergodicity and long memory set up. Rewrite

Yi = α + βZi + εi − βui, Zi = Xi + ui.(2.8)

Let

Tn :=
1

n

n∑
i=1

(Zi − Z̄)(εi − βui).

Use the relation Zi = Xi + ui, to obtain the decomposition

Tn =
1

n

n∑
i=1

(Xi − X̄)(εi − βui) +
1

n

n∑
i=1

(ui − ū)εi − β
1

n

n∑
i=1

(ui − ū)2(2.9)

= SXε − βSXu + Suε − βSuu.

By the mutual independence of εi, Xi, ui and the assumption that Eεi ≡ 0, Eui ≡ 0,

E(Tn) = −βE(Suu) = −β
[
σ2
u − Var(ū)

]
.

By (2.6), Var(ū) = O(n2du−1) → 0 and by the Ergodic Theorem and the assumed stationarity,

Tn → −βσ2
u, SZZ − σ2

u → σ2
X > 0, a.s.

These facts now clearly imply that

β̂ − β =
SZY

SZZ − σ2
u

− β =
Tn + βσ2

u

SZZ − σ2
u

→ 0, a.s.,(2.10)
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thereby proving the strong consistency of β̂ for β. This fact and the Ergodic Theorem in

turn imply that α̂ → α, a.s.

The derivation of the asymptotic distribution of suitably standardized versions of these

estimators and their analogs in multiple linear regression models is facilitated by the more

general asymptotic distributional results about certain quadratic forms established in the

next section.

3 Limit theorem for quadratic forms

Let γt,i =
∑∞

k=0 bk,iξt−k,i, t ∈ Z, i = 1, · · · ,m be m mutually independent LMMA processes

with MA coefficients bk,i ∼ κik
di−1, di ∈ (0, 1/2), κi > 0 with i.i.d. mutually independent

innovations {ξs,i} ∼ IID(0, 1), i = 1, · · · ,m. Let Πm ⊂ {(i, j); 1 ≤ i ≤ j ≤ m} be a non-

empty subset of the set of all ordered pairs (i, j), 1 ≤ i ≤ j ≤ m and γi := {γt,i; t ∈ Z}.
Define the sample cross-covariance between γi and γj to be

Sγi,γj = n−1

n∑
t=1

(γt,i − γ̄i)(γt,j − γ̄j), (i, j) ∈ Πm.

We also need to define the normalizing sequence as follows.

δmax := max{di + dj; (i, j) ∈ Πm},(3.1)

A(n) :=


n1−δmax , δmax > 1/2,

n1/2, δmax < 1/2,

(n/ log n)1/2, δmax = 1/2.

We are interested in deriving the asymptotic joint distribution of normalized quadratic forms

Sn :=
{
A(n)

(
Sγi,γj − ESγi,γj

)
; (i, j) ∈ Πm

}
.(3.2)

As shown below, the limit distribution of Sn is Gaussian or non-Gaussian depending on

whether δmax ≤ 1/2 or δmax > 1/2. Before describing this distribution, we need to recall some

preliminaries. From GKS, pp.410-411, we recall the definition of the stochastic integrals

(3.3) Ii(f) =

∫
R
f(s)Wi(ds), Iij(g) =

∫
R2

g(s1, s2)Wi(ds1)Wj(ds2)

w.r.t. independent Brownian motions Wi, i = 1, · · · ,m (for i = j the second integral in (3.3)

coincides with the usual double Wiener-Itô integral w.r.t. Wi). The integrals Ii(f), Iij(g),

(i, j) ∈ Πm are jointly defined for any non-random integrands f ∈ L2(R), g ∈ L2(R2).

Moreover, EI(f) = EIij(g) = 0 and

5



EIi(f)Ii′(f
′) =

0, i ̸= i′,

⟨f, f ′⟩, i = i′,
f, f ′ ∈ L2(R),(3.4)

EIi(f)Ii′j′(g) = 0, ∀i, i′, j′, f ∈ L2(R), g ∈ L2(R2),

EIij(g)Ii′j′(g
′) =


0, (i, j) ̸= (i′, j′),

⟨g, g′⟩, (i, j) = (i′, j′), i ̸= j,

2⟨g, symg′⟩, i = i′ = j = j′,

g, g′ ∈ L2(R2),

where ⟨f, f ′⟩ =
∫
R f(s)f

′(s)ds (∥f∥ :=
√

⟨f, f⟩), ⟨g, g′⟩ =
∫
R2 g(s1, s2)g

′(s1, s2)ds1ds2 (∥g∥
:=
√
⟨g, g⟩) denote scalar products (norms) in L2(R) and L2(R2), respectively, and sym

denotes the symmetrization, see GKS, sections 11.5 and 14.3.

Let Π+
m := {(i, j) ∈ Πm; di + dj > 1/2}. Introduce

fdi(s) := κi

∫ 1

0

(t− s)di−1
+ dt, 1 ≤ i ≤ m,(3.5)

g̃di,dj(s1, s2) := κiκj

∫ 1

0

(t− s1)
di−1
+ (t− s2)

dj−1
+ dt,

gdi,dj(s1, s2) := g̃di,dj(s1, s2)− fdi(s1)fdj(s2), (i, j) ∈ Π+
m.

Then fdi ∈ L2(R), g̃di,dj ∈ L2(R2), gdi,dj ∈ L2(R2), see GKS, Prop.11.5.6. Observe that

⟨g̃di,dj , fdi ⊗ fdj⟩/κ2
iκ

2
j

=

∫
R2

ds1ds2

∫ 1

0

(t− s1)
di−1
+ (t− s2)

dj−1
+ dt

∫ 1

0

(t1 − s1)
di−1
+ dt1

∫ 1

0

(t2 − s2)
dj−1
+ dt2

=

∫
(0,1]3

dtdt1dt2

∫
R
(t− s1)

di−1
+ (t1 − s1)

di−1
+ ds1

∫
R
(t− s2)

dj−1
+ (t2 − s2)

dj−1
+ ds2

= B(di, 1− 2di)B(dj, 1− 2dj)

∫
(0,1]3

dtdt1dt2
|t− t1|1−2di |t− t2|1−2dj

=
B(di, 1− 2di)B(dj, 1− 2dj)

4didj

∫ 1

0

(t2di + (1− t)2di)(t2dj + (1− t)2dj)dt

=
B(di, 1− 2di)B(dj, 1− 2dj)

2didj

( 1

1 + 2(di + dj)
+B(2di + 1, 2dj + 1)

)
.

From this fact we obtain

∥fdi∥2 =
κ2
iB(di, 1− 2di)

di(1 + 2di)
,(3.6)

∥g̃di,dj∥2 =
κ2
iκ

2
jB(di, 1− 2di)B(dj, 1− 2dj)

(di + dj)(2(di + dj) + 1)
,

∥gdi,dj∥2 = ∥g̃di,dj∥2 − 2⟨g̃di,dj , fdi ⊗ fdj⟩+ ∥fdi∥2∥fdj∥2,
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= κ2
iκ

2
jB(di, 1− 2di)B(dj, 1− 2dj)

{ 1

(di + dj)(2(di + dj)− 1)

+
1

didj(1 + 2di)(1 + 2dj)
− 1

didj(1 + 2(di + dj))
− B(2di + 1, 2dj + 1)

didj

}
.

Consequently, the r.v.’s Iij(gdi,dj), di + dj > 1/2 in (3.10) below are jointly well-defined and

their second order characteristics can be obtained from (3.4).

We are now ready to state the main result of this section. Its proof appears in Section 7.

Theorem 3.1 Let γi = {γt,i; t ∈ Z}, i = 1, · · · ,m, be m stationary LMMA processes as

above and Sn be as in (3.2). Assume in addition that

(3.7) E|ξ0,i|2+ϵ < ∞, (∃ ϵ > 0) for all 1 ≤ i ≤ m,

and

(3.8) Eξ40,i < ∞, for any 1 ≤ i ≤ m such that (i, i) ∈ Πm.

Then

Sn →D Rm =
{
Rij; (i, j) ∈ Πm

}
,(3.9)

where, for any (i, j) ∈ Πm,

Rij :=


Iij(gdi,dj)1(di + dj = δmax), δmax > 1/2,

σijZij1(di + dj = 1/2), δmax = 1/2,

σijZij, δmax < 1/2,

(3.10)

with gdi,dj ∈ L2(R2), fi ∈ L2(R) as in (3.5), σij ≥ 0 as in (7.5) below, and Zij as independent

N(0, 1) r.v.’s, EZijZi′j′ = 0, for (i, j) ̸= (i′, j′), (i, j), (i′, j′) ∈ Πm.

Let Π0m ⊂ {1, · · · ,m} be a non-empty set, dmax := max{dk; k ∈ Π0m} and S0n :=

{n(1/2)−dmax γ̄k; k ∈ Π0m} be a collection of normalized sample means. Then from Remark

4.3.1 in GKS, we obtain

S0n →D R0m = {R0k, k ∈ Π0m} := {Ik(fdk)1(dk = dmax); k ∈ Π0m}(3.11)

=D {σkZk1(dk = dmax); k ∈ Π0m},

where Zk are independent standard normal r.v.’s and σ2
k = ∥fdk∥2 as in (3.6). The following

corollary extends Theorem 3.1 to joint convergence of normalized sample means S0n and

sample cross-covariances Sn.
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Corollary 3.1 Under the assumptions of Theorem 3.1,

(3.12) (S0n,Sn) →D (R0m,Rm).

The joint distribution of (R0m,Rm) is Gaussian if δmax ≤ 1/2. Moreover, for any k ∈
Π0m, (i, j) ∈ Πm,

(3.13)

E(R0kRij) =

(κk

/
dk(1 + dk))E(ξ0,kξ0,iξ0,j)

∑∞
s=0 bs,ibs,j1(dk = dmax), δmax < 1/2,

0, δmax ≥ 1/2.

Remark 3.1 Note that under the assumption of independence of γi, i = 1, · · · ,m the co-

variance in (3.13) when δmax < 1/2 vanishes unless k = i = j and Eξ30,k ̸= 0 and the Zk, Zij

in (3.10), (3.11) are independent N(0, 1) r.v.’s.

Remark 3.2 Theorem 3.1 and Remark 3.1 can be extended to mutually dependent LMMA

processes γt,i =
∑∞

k=0 bk,iξt−k,i, i = 1, · · · ,m with MA coefficients bk,i ∼ κik
di−1, di ∈

(0, 1/2), κi > 0 with innovations forming a Rm-valued i.i.d. sequence {(ξs,1, · · · , ξs,m); s ∈ Z}
with zero mean, whose components are mutually dependent, viz., Eξ0,iξ0,j =: σξ,ij, i, j =

1, · · · , p where Σξ = Eξ0ξ
′
0 is a general positive definite matrix. In such a case if (3.8) is

strengthened to Eξ20,iξ
2
0,j < ∞, (i, j) ∈ Πm the convergences in (3.9) and (3.12) hold under

the same normalizations except that the limit r.v.’s there are generally correlated and have

a representation w.r.t. mutually correlated Brownian motions Wi,Wj, EWi(t)Wj(t) = t σξ,ij.

The double stochastic integral

(3.14) Iij(g) =

∫
R2

g(s1, s2)Wi(ds1)Wj(ds2)

w.r.t. such Brownian motion is well-defined for any g ∈ L2(R2) and has zero mean and a

finite variance EI2ij(g) = σξ,iiσξ,jj∥g∥2+σ2
ξ,ij⟨g, g∗⟩ where g∗(s1, s2) := g(s2, s1). In particular,

the variance of the double Wiener-Itô integral Iij(gdi,dj) =
∫
R2 gdi,dj(s1, s2)Wi(ds1)Wj(ds2) in

(3.6) equals

EI2ij(gdi,dj) = σξ,iiσξ,jj∥gdi,dj∥2 + σ2
ξ,ij⟨gdi,dj , gdj ,di⟩,(3.15)

where (with Bij := B(di, 1− di − dj), Bji := B(dj, 1− di − dj))

⟨gdi,dj , gdj ,di⟩
κ2
iκ

2
j

=
BijBji

(d1 + dj)(2(di + dj)− 1)
+
( Bij +Bji

(di + dj)(di + dj + 1)

)2
− 2

(di + dj)2
( 2BijBji

2(di + dj) + 1
+ (B2

ij +B2
ji)B(di + dj + 1, di + dj + 1)

)
.

Note that for i = j the last expression agrees with ∥gdi,dj∥2/κ2
iκ

2
j in (3.6).
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Remark 3.3 The 4th moment condition in (3.8) is required only for those LMMA processes

γi which enter sample variances Sγi,γi in the collection Sn (3.2). For instance for Π3 in (4.2)

the 4th moment condition applies to the innovations of the measurement errors {ut} alone

whereas {Xt} and {εt} may have infinite 4th moment. Condition (3.8) is crucial for the

validity of (3.9). Indeed if Eξ40,i = ∞ for some i = 1, · · · ,m then ES2
γi,γi

= ∞ and the limit

distribution of Sγi,γi may be α-stable with α < 2, see Surgailis (2004), and Horvath and

Kokoszka (2008).

4 Limit distribution of α̂, β̂

In this we shall use the results of the previous section to derive the limiting distribution of

a suitably standardized α̂, β̂.

To begin with note that from (2.9) we obtain

Tn + βσ2
u = SXε − βSXu + Suε − β(Suu − σ2

u)(4.1)

= SXε − βSXu + Suε − β(Suu − ESuu) + βEū2.

According to (2.10), (4.1), the limit distribution of β̂−β coincides with that of the quadratic

form T̃n := (Tn + βσ2
u)/σ

2
X . Under Assumptions (E), (X), and (U), T̃n is a particular case of

the quadratic forms studied in Theorem 3.1. More specifically, T̃n corresponds to the case

m = 3, γt,1 ≡ εt, γt,2 ≡ Xt, γt,3 ≡ ut and the set

(4.2) Π3 = {(X, ε), (X, u), (u, ε), (u, u)}.

Accordingly, the limit distribution of T̃n and β̂−β is essentially determined by the maximum

(4.3) δmax = max{dX + dε, dX + du, du + dε, 2du},

with the convergence rate β̂ − β = Op

(
n−(1−min{1/2,1−δmax})(1 + 1(δmax = 1/2) log n)

)
. From

(2.7) we obtain

α̂− α = ε̄− βū− (β̂ − β)Z̄.(4.4)

Note that in the decomposition (4.4), the linear term ε̄− βū = Op(n
max{dε,du}−1/2), where

(1/2)−max{dε, du} < min{1/2, 1− δmax}.

Since Z̄ = X̄ + ū = Op(1) (µX := EX ̸= 0), = op(1) (µX = 0), the above facts imply that

the term (β̂ − β)Z̄ in (4.4) is asymptotically negligible independent of the value of µX , and

the limit distribution of α̂− α is determined by that of ε̄− βū.
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Under suitable assumptions on the innovations, see (4.6) below, Theorem 3.1 and Remark

3.1 completely describes the limit distribution of (ε̄− βū, T̃n), or that of (α̂−α, β̂− β). The

description of this limiting distribution is relatively simpler and more transparent if we

assume that the LM parameters dX , dε and du are all different, i.e.,

(4.5) du ̸= dε ̸= dX .

This assumption guarantees that the maximum in (4.3) is achieved by a single pair in Π3 of

(4.2), i.e., either by (X, ε), or by (X, u), or by (u, ε), or by (u, u).

In order to apply Theorem 3.1, in addition to Assumptions (E), (X), (U), we need the

following conditions on the innovations:

(4.6) E|ζ0|2+ϵ + E|ξ0|2+ϵ < ∞ (∃ ϵ > 0), E|η0|4 < ∞.

Corollary 4.1 Let Assumptions (E), (X), (U) and (I) be satisfied. In addition, assume

(4.5) and (4.6) hold. Let dmax := max{dε, dX , du}, dmin := min{dε, dX , du}.
(i) Case δmax = 2du > 1/2 (this implies dmax = du). Then(

n1/2−du(α̂− α), n1−2du(β̂ − β)
)
→D

(
− βIu(fu),

β

σ2
X

(κ2
uB(du, 1− du)

du(1 + 2du)
− Iuu(gdu,du)

))
,

where Iuu (Iu) are the double (single) Wiener-Itô integrals in (3.3) w.r.t. the same standard

Brownian motion Wi = Wj ≡ Wu and the integrand gdu,du = gdi,dj (fdu = fdi) in (3.5), where

di = dj = du, κi = κj = κu.

(ii) Case δmax = dX + du > 1/2 (this implies dmax = dX > du > dε). Then

(4.7)
(
n1/2−du(α̂− α), n1−dX−du(β̂ − β)

)
→D

(
− βIu(fu),−

β

σ2
X

IXu(gdX ,du)
)
,

where IXu (Iu) is the double (single) Wiener-Itô integral in (3.3) w.r.t. independent standard

Brownian motions Wi ≡ WX , Wj ≡ Wu and the integrand gdX ,du = gdi,dj (fdu = fdj) in (3.5),

where di = dX , κi = κX , dj = du, κj = κu.

(iii) Case δmax = du + dε > 1/2 (this implies dmax = dε > du > dX). Then

(4.8)
(
n1/2−dε(α̂− α), n1−du−dε(β̂ − β)

)
→D

(
Iε(fdε),

1

σ2
X

Iuε(gdu,dε)
)
,

where Iuε (Iε) is the double (single) Wiener-Itô integral in (3.3) w.r.t. independent standard

Brownian motions Wi ≡ Wu, Wj ≡ Wε and the integrand gdu,dε = gdi,dj (fdε = fdj) in (3.5)

where di = du, κi = κu, dj = dε, κj = κε.
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(iv) Case δmax = dX + dε > 1/2 (this implies dmin = du < dε). Then

(4.9)
(
n1/2−dε(α̂− α), n1−dX−dε(β̂ − β)

)
→D

(
Iε(fdε),

1

σ2
X

IXε(gdX ,dε)
)
,

where IXε (Iε) is the double (single) Wiener-Itô integral in (3.3) w.r.t. independent standard

Brownian motions Wi ≡ WX , Wj ≡ Wε and the integrand gdX ,dε = gdi,dj (fdε = fdj) in (3.5),

where di = dX , κi = κX , dj = dε, κj = κε.

(v) Case δmax < 1/2. In addition, assume that the innovations of ut have 3rd moment zero:

Eη3 = 0 when du > dε. Then(
n1/2−(du∨dε)(α̂− α), n1/2(β̂ − β)

)
→D

(
σαZα, σβZβ

)
,(4.10)

where Zα, Zβ are independent N(0, 1) r.v.’s,

σ2
α :=

β2∥fdu∥2, du > dε,

∥fdε∥2, dε > du,
, σ2

β := σ2
R/σ

4
X ,

where σ2
R :=

∑
t∈ZCov(R0, Rt) and

Rt := (εt − βut)(Xt + ut) = (εt − βut)Zt, t ∈ Z

is a stationary process with ERt = −βσ2
u and

∑
t∈Z |Cov(R0, Rt)| < ∞.

Remark 4.1 It is of some interest to compare the above asymptotic distributional results

with those available in the case of i.i.d. set up. For that reason we shall first recall the

results available in the i.i.d. case. Accordingly, suppose {ε, εi}, {X,Xi}, {u, ui} are mutually

independent sequences of i.i.d.r.v.’s with positive and finite variances σ2
ε , σ

2
X , σ

2
u, respectively.

Suppose further that Eε = Eu = 0 and µ4 = Eu4 < ∞. Let µX = EX, µ3 = Eu3. Let

φ :=
1

σ4
X

[
σ2
X(σ

2
ε + β2σ2

u) + σ2
uσ

2
ε + β2(µ4 − σ4

u)
]
.

Γ :=

(
(σ2

ε + β2σ2
u) + 2 1

σ2
X
β2µ3µX + φµ2

X − 1
σ2
X
β2µ3 − φµX

− 1
σ2
X
β2µ3 − φµX φ

)
.

Using the classical CLT, we obtain

n1/2(α̂− α, β̂ − β) →D N(0,Γ).(4.11)

For the sake of completeness a sketch of the proof of (4.11) is included in the last section.

In the case of no measurement errors, σ2
u = 0, µ4 = µ3 = 0, φ = σ2

ε/σ
2
X and

Γ =

(
σ2
ε + µ2

X(σ
2
ε/σ

2
X) −µX(σ

2
ε/σ

2
X)

−µX(σ
2
ε/σ

2
X) (σ2

ε/σ
2
X)

)
=

σ2
ε

σ2
X

(
σ2
X + µ2

X −µX

−µX 1

)
.
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Now suppose µ3 = 0. Then in the i.i.d. set up the above LSEs are asymptotically

correlated and normally distributed, regardless of whether there is measurement error in the

covariate or not. But, surprisingly, under the above assumed long memory set up with δmax <

1/2, by (4.10), these estimators are asymptotically independent and normally distributed

even when there is no measurement error. In the case µ3 ̸= 0, then the limiting r.v.’s in

(4.10) are correlated. The correlation can be obtained from (3.13).

For δmax > 1/2, Corollary 3.1 and (3.13) yield that these r.v.’s are still asymptotically

uncorrelated but have non-Gaussian distribution.

5 Structural ME multiple linear regression model

Here we shall now discuss the asymptotic distributions of the bias adjusted LSEs in the

structural multiple linear regression model. Accordingly, now β,Xt, Zt, ut are p-dimensional

random vectors and the model of interest is

(5.1) Yt = α +X ′
tβ + εt, Zt = Xt + ut, t ∈ Z,

where X and u are vector-valued LMMA processes satisfying the following assumptions and

x′ denotes the transpose of a vector x ∈ Rp.

Assumption (X)p Covariates Xt = (Xt,1, · · · , Xt,p)
′ form a LMMA process

(5.2) Xt,i = µX,i +
∞∑
k=0

ak,iξt−k,i, t ∈ Z, with ak,i ∼ κX,ik
−(1−dX,i), k → ∞,

where µX,i ∈ R, κX,i > 0, 0 < dX,i < 1/2, and i.i.d. innovations {ξs = (ξs,1, · · · , ξs,p)′; s ∈ Z}
with Eξ0,i = 0, Eξ0,iξ0,j = σξ,ij, i, j = 1, · · · , p.

Assumption (U)p Measurement errors ut = (ut,1, · · · , ut,p)
′ form a LMMA process

(5.3) ut,i =
∞∑
k=0

ck,iηt−k,i, t ∈ Z, with ck,i ∼ κu,ik
−(1−du,i), k → ∞,

where κu,i > 0, 0 < du,i < 1/2, and i.i.d. innovations {ηs = (ηs,1, · · · , ηs,p)′; s ∈ Z} with

Eη0,i = 0, Eη0,iη0,j = ση,ij, i, j = 1, · · · , p. Moreover, Σu := E(u0u
′
0) is known and positive

definite.

Assumption (I)p The innovation sequences {ζs; s ∈ Z}, {ξs; s ∈ Z}, and {ηs; s ∈ Z} in

Assumptions (E), (X)p and (U)p are mutually independent.

We also assume that

(5.4) E|ζ0,i|2+ϵ + E|ξ0,i|2+ϵ < ∞ (∃ ϵ > 0), Eη40,i < ∞, ∀ 1 ≤ i ≤ p.

12



Similarly as in the simple linear regression case, the bias corrected estimators of α, β in

the multiple linear regression model (5.1) are defined as

SZZ :=
1

n

n∑
i=1

(Zi − Z̄)(Zi − Z̄)′, SZY :=
1

n

n∑
i=1

(Zi − Z̄)(Yi − Ȳ ),

β̂ :=
(
SZZ − Σu

)−1
SZY , α̂ := Ȳ − Z̄ ′β̂.

Whence as in the case of simple linear regression model we obtain

β̂ − β = (SZZ − Σu)
−1
(
SXε + Suε − SXuβ − (Suu − Σu)β

)
,(5.5)

α̂− α = ε̄− ū′β − Z̄ ′(β̂ − β)

Since SZZ − Σu →p ΣX := EX0X
′
0, we see from (5.5) that the limit distribution of β̂ − β

coincides with that of T̃n := Σ−1
X (Tn + E(ūū′)β), where

Tn := SXε + Suε − SXuβ − (Suu − ESuu)β

is a zero-mean quadratic form in LMMA satisfying Assumptions (E), (X)p and (U)p. As it

follows from Theorem 3.1 and Remark 3.2, under these assumptions the limit distribution

of Tn and T̃n is essentially determined by the maximum

(5.6) δmax := max{dX,i + dε, du,i + dε, dX,i + du,j, du,i + du,j; 1 ≤ i, j ≤ p}.

Accordingly, the limit distribution of β̂−β is non-gaussian or Gaussian depending on whether

δmax > 1/2 or δmax ≤ 1/2. In general, α̂ and β̂i, 1 ≤ i ≤ p may have different convergence

rates and a complicated joint limit distribution. We first discuss the case δmax < 1/2 where

the limit result admits a relatively simple formulation as seen in the following corollary.

Corollary 5.1 Let Assumptions (E), (X)p, (U)p and (I)p be satisfied and δmax < 1/2. In

addition, assume that du,i, 1 ≤ i ≤ p are all different, du,max := max{du,i, 1 ≤ i ≤ p}, the 3rd

moment of the innovations of ut,i with du,i = du,max is zero when du,max > dε, and (5.4) hold.

Then (
n1/2−(dε∨du,max)(α̂− α), n1/2(β̂ − β)

)
→D

(
σαZα, Σ

−1
X Zβ

)
,(5.7)

where Zα ∼ N(0, 1),

σ2
α :=

β2
i ∥fdu,i∥2, du,max = du,i > dε, i = 1, · · · , p,

∥fdε∥2, dε > du,max,
,

and Zβ is a normal vector independent of Zα, with EZβ = 0 and covariance matrix EZβZ
′
β :=∑

t∈ZCov(R0, Rt) and

Rt := (εi − β′ut)(Xt + ut) = (εt − β′ut)Zt, t ∈ Z

is a stationary Rp-valued process with ERt = −Σuβ and
∑

t∈Z ∥Cov(R0, Rt)∥ < ∞.
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Next, we discuss the limit distribution of the LSE (α̂, β̂) in (5.5) when δmax > 1/2. The

description of this limit distribution is complicated for the case p ≥ 2 and when long memory

parameters of components of {Xt} and {ut} are all different. For this reason we shall describe

these distributions only in the case when these long memory parameters are equal, viz.,

dX,i ≡ dX , du,i ≡ du, i = 1, · · · , p, and in the case when p = 2 but dX,,1 ̸= dX,2, du,1 ̸= du,2.

We note that in the latter case, the convergence rates of β̂1, β̂2 are generally different.

Consider first the former case, p ≥ 1 arbitrary. Let Ση = Eη0η
′
0,Σξ = Eξ0ξ

′
0 denote

the respective covariance matrices of innovations in Assumption (U)p and (X)p. Introduce

a scalar-valued standard Brownian motion Wε = Wε(t), t ∈ R, and vector-valued Brown-

ian motions WX(t) = (WX,1(t), · · · ,WX,p(t))
′, Wu(t) = (Wu,1(t), · · · ,Wu,p(t))

′, t ∈ R with

respective covariance matrices EWX(t)WX(t)
′ = |t|Σξ, EWu(t)Wu(t)

′ = |t|Ση, Wε,WX ,Wu

mutually independent. Recall from (3.3), (3.14) the definition of the stochastic integrals

with respect to these Brownian motions: Iu(f) =
( ∫

R fi(s)Wu,i(ds)
)
1≤i≤p

, f = (f1, · · · , fp)′,
Iuu(g) =

( ∫
R2 gij(s1, s2)Wu,i(ds1)Wu,j(ds2)

)
1≤i,j≤p

, g = (gij)1≤i,j≤p defined for vector- and

matrix-valued valued integrands from L2(R) and L2(R2), respectively, the stochastic inte-

grals IX(f), IXε(g), Iuε(g) defined in a similar fashion. Note Iuu, IXu are matrix-valued and

IX , Iu, IXε, IXε are vector-valued r.v.’s.

Corollary 5.2 Let Assumptions (E), (X)p, (U)p and (I)p be satisfied. In addition, assume

that du,i = du, dX,i = dX , 1 ≤ i ≤ p and (5.4) hold.

(i) Case δmax = 2du > 1/2. Then

(5.8)
(
n1/2−du(α̂− α), n1−2du(β̂ − β)

)
→D

(
− β′Iu(fu), Σ

−1
X

(
⟨fu, f ′

u⟩ − Iuu(gdu,du)
)
β
)
,

where fu = (fd1 , · · · , fdp)′ and gdu,du = (gdi,dj)1≤i,j≤p are defined as in (3.5) where di = dj :=

du, κi := κu,i, κj := κu,j.

(ii) Case δmax = dX + du > 1/2. Then

(5.9)
(
n1/2−du(α̂− α), n1−dX−du(β̂ − β)

)
→D

(
− β′Iu(fu),−Σ−1

X IXu(gdX ,du)β
)
,

where fu is the same as in (5.8) and gdX ,du = (gdi,dj)1≤i,j≤p as in (3.5) where di := dX , dj :=

du, κi := κX,i, κj := κu,j.

(iii) Case δmax = du + dε > 1/2. Then

(5.10)
(
n1/2−dε(α̂− α), n1−du−dε(β̂ − β)

)
→D

(
Iε(fdε), Σ−1

X Iuε(gdu,dε)
)
,

where gdu,dε = (gdi,dj)1≤i≤p and fdε = fdj as in (3.5) where di := du,i = du, κi := κu,i, dj :=

dε, κj := κε.
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(iv) Case δmax = dX + dε > 1/2. Then

(5.11)
(
n1/2−dε(α̂− α), n1−dX−dε(β̂ − β)

)
→D

(
Iε(fdε),Σ

−1
X IXε(gdX ,dε)

)
,

where fdε is the same as in (5.10) and gdX ,dε = (gdi,dj)1≤i≤p as in (3.5) where di := dX,i =

dX , κi := κX,i, dj := dε, κj := κε.

Next, consider the case p = 2, β̂ = (β̂1, β̂2)
′, dX,1 ̸= dX,2, du,1 ̸= du,2 and δmax > 1/2,

where δmax is defined in (5.6). Let Σ−1
X = (ρX,ij)1≤i,j≤2. As noted above, the limit distribution

of β̂ − β coincides with that of T̃n := Σ−1
X (Tn + E(ūū′)β) = (T̃n1, T̃n2)

′ where

T̃n1 = ρX,11

(
SX1,ε + Su1,ε − SX1u1β1 − SX1u2β2 − (Su1u1 − ESu1u1)β1(5.12)

− (Su1u2 − ESu1u2)β2 + (ū1)
2β1 + ū1ū2β2

)
+ρX,12

(
SX2,ε + Su2,ε − SX2u1β1 − SX2u2β2 − (Su2u1 − ESu2u1)β1

− (Su2u2 − ESu2u2)β2 + ū1ū2β1 + (ū2)
2β2

)
.

We omit a similar expression for T̃n2, where the only difference is that ρX,11, ρX,12 in (5.12)

are replaced by ρX,21, ρX,22, respectively. We have the two cases: (a) ρX,12 = ρX,21 ̸= 0

(or ΣX is not a diagonal matrix), and (b) ρX,12 = ρX,21 = 0 (ΣX is diagonal). From these

formulas it is easy to see that in case (a) that the convergence rate of T̃ni, i = 1, 2 hence

also of β̂i, i = 1, 2 is the same and is equal to n1−δmax . In case (b), β̂i, i = 1, 2 may have

different convergence rates and their limit distribution is more complex. As an illustration,

the following corollary details this limit distribution when δmax = 2du,1. In other cases (when

δmax is achieved at other pairs of LM indices in (5.6)) this limit distribution can be derived

in a similar fashion.

Corollary 5.3 Let p = 2 and Assumptions (E), (X)2, (U)2, (I)2 and (5.4) be satisfied. In

addition, assume that du,1 > max{du,2, dX,1, dX,2, dε} and δmax = 2du,1 > 1/2.

(a) Let σX,12 = Cov(X0,1, X0,2) ̸= 0. Then(
n1/2−du,1(α̂− α), n1−2du,1(β̂i − βi), i = 1, 2

)
→D β1

(
− Iu1(fdu,1), ρX,1i

(
∥fdu,1∥ − Iu1u1(gdu1 ,du1 )

)
, i = 1, 2

)
.

(b) Let σX,12 = Cov(X0,1, X0,2) = 0 and dX,2 ̸= du,2. Then(
n1/2−du,1(α̂− α), n1−2du,1(β̂1 − β1), n

1−du,1−dX,2∨du,2(β̂2 − β2)
)

→D β1

(
− Iu1(fdu,1), ρX,11

(
∥fdu,1∥ − Iu1u1(gdu1 ,du1 )

)
, ρX,22W

)
,

where

W :=

−Iu1,X2(gdu,1,dX,2
), dX,2 > du,2,

⟨fdu,1 , fdu,2⟩ − Iu1u2(gdu1 ,du2 ), dX,2 < du,2.
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6 Functional ME model: nonrandom design

In this section we describe the analogs of the previous results in the functional linear regres-

sion model with LMMA regression and measurement errors, and nonrandom design satisfying

the following assumption. For clarity of exposition, the subsequent discussion is confined to

the case p = 1, or the simple linear regression model in (2.1).

Assumption (X)det There exists a (nonrandom) piece-wise continuous function V : [0, 1] →
R such that Xt = V (t/n), t = 1, · · · , n.

The above form of regressors also assumes that V is not a constant so that σ2
V :=∫ 1

0
(V (t) − V̄ )2dt > 0, where V̄ :=

∫ 1

0
V (t)dt. As shown below, the limit behavior of LSE

(α̂, β̂) in the nonrandom design case is Gaussian and generally simpler than in the random

design case. The dominating role in the limit distribution now is being played by terms

SXε, SXu, ε̄, ū in (4.1) and (4.4).

Note first that Assumption (X)det implies X̄ → V̄ and SXX → σ2
V as n → ∞. Moreover,

SXu = Op(n
du−1/2) = op(1), SXε = Op(n

dε−1/2) = op(1), see (6.2) below, while Suu → σ2
u.

Therefore the normalization matrix SZZ − σ2
u in (2.10) tends to σ2

V , viz.,

(6.1) SZZ − σ2
u →p σ

2
V .

Let Vc(t) := V (t)− V̄ , t ∈ [0, 1]. Assumptions (X)det, (E), and (U) imply

n1/2−dεSXε →D Iε(fVc,ε), n1/2−duSXu →D Iu(fVc,u),(6.2)

where Iε, Iu are the same (Gaussian) stochastic integrals as in Corollary 4.1 with respective

integrands

fVc,ε(s) := κε

∫ 1

0

Vc(t)(t− s)dε−1
+ dt, fVc,u(s) := κu

∫ 1

0

Vc(t)(t− s)du−1
+ dt.(6.3)

Note Iε(fVc,ε), Iu(fVc,u) in (6.2) are independent and have a Gaussian distribution with zero

mean and respective variances

EI2ε (fVc,ε) = ∥fVc,ε∥2 = κ2
εB(dε, dε)⟨fVc,ε, fVc,ε⟩dε ,(6.4)

EI2u(fVc,u) = ∥fVc,u∥2 = κ2
uB(du, du)⟨fVc,u, fVc,u⟩du ,

where

⟨f, g⟩d :=
∫
[0,1]2

f(t)g(s)|t− s|2d−1dtds(6.5)

is a strictly positive definite quadratic form. The convergences in (6.2) can be proved by

using the criterion in GKS, Cor.4.7.1, for linear forms in i.i.d.r.v.’s. Moreover, Z̄ →p V̄ and

Suu−σ2
u = Op(n

−(1−2du−1)∨(1/2)(1+1(du = 1/2) log1/2 n) = op(n
du−1/2) and Suε = op(n

dε−1/2)

follow from Theorem 3.1. These facts together with (4.1), (4.4), (6.1), (6.2) result in the

following corollary.
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Corollary 6.1 Let Assumptions (E), (X)det, (U) and (I) be satisfied. In addition, assume

that (5.4) hold.

(i) Suppose dε > du. Then

(6.6) n1/2−dε(α̂− α, β̂ − β) →D (W1,ε,W2,ε),

where (W1,ε,W2,ε) have a bivariate Gaussian distribution with zero mean and (co)variances

EW 2
1,ε = ∥fdε∥2 + V̄ 2σ−4

V ∥fVc,ε∥2 − 2V̄ σ−2
V ⟨fdε , fVc,ε⟩,(6.7)

EW 2
2,ε = σ−4

V ∥fVc,ε∥2, EW1,εW2,ε = σ−2
V

(
⟨fdε , fVc,ε⟩ − V̄ ∥fVc,ε∥2

)
,

(ii) Suppose dε < du. Then

(6.8) n1/2−du(α̂− α, β̂ − β) →D −(W1,u,W2,u)β,

where (W1,u,W2,u) have a similar bivariate Gaussian distribution as in (6.6)-(6.7) with the

only difference that fdε , fVc,ε in (6.7) are replaced by fdu , fVc,u, respectively.

7 Proofs of Theorem 3.1 and Corollary 3.1

Proof of Theorem 3.1. Let S̃γi,γj :=
1
n

∑n
t=1 γt,iγt,j so that Sγi,γj = S̃γi,γj − γ̄iγ̄j. Note for

any t, t′ ∈ Z

Cov(γt,iγt,j, γt′,i′γt′,j′)(7.1)

=


Cov(γt,i, γt′,i)Cov(γt,j, γt′,j), (i, j) = (i′, j′), i ̸= j,

Cov(γ2
t,i, γ

2
t′,i), i = j = i′ = j′,

0, (i, j) ̸= (i′, j′)

From (7.1) we obtain

Cov(Sγi,γj , Sγi′ ,γj′
) = Cov(S̃γi,γj , S̃γi′ ,γj′

) = 0, (i, j) ̸= (i′, j′).(7.2)

From GKS, Prop.3.2.1(ii), it follows that

Cov(γt,i, γ0,i) =
∑
s≤0

bt−s,ib−s,i ∼ χit
2di−1, t → ∞,(7.3)

where χi := κ2
i

∫∞
0
(1 + s)di−1sdi−1ds = κ2

iB(di, 1− 2di). We shall prove that

Var(Sγi,γj) ∼ Var(S̃γi,γj) ∼ σ2
ij/n, di + dj < 1/2,(7.4)

Var(Sγi,γj) ∼ Var(S̃γi,γj) ∼ σ2
ij(log n)/n, di + dj = 1/2,

Var(S̃γi,γj) ∼ σ̃2
ijn

2(di+dj−1), Var(Sγi,γj) ∼ σ2
ijn

2(di+dj−1), di + dj > 1/2,
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where σ̃2
ij := (1 + δij)∥g̃di,dj∥2,

σ2
ij :=


∑

t∈ZCov(γt,iγt,j, γ0,iγ0,j), di + dj < 1/2,

2(1 + δij)χiχj, di + dj = 1/2,

σ̃2
ij di + dj > 1/2;

(7.5)

and ∥gdi,dj∥2 is defined in (3.6), δij := 1(i = j).

Consider (7.4) for di + dj > 1/2. Here, the asymptotics of Var(S̃γi,γj) is immediate from

(7.1), (7.3) and GKS, Prop.3.3.1(i). To check the asymptotics of Var(Sγi,γj), consider first

the case of i ̸= j. Write Var(Sγi,γj) = Var(S̃γi,γj)− 2Cov(S̃γi,γj , γ̄iγ̄j) + Var(γ̄iγ̄j), where the

variance Var(S̃γi,γj) satisfies (7.4) and Var(γ̄iγ̄j) = Var(γ̄i)Var(γ̄j) ∼ ∥fdi∥2∥fdj∥2n2(di+dj−1),

see (3.6). The asymptotics of the covariance

Cov(S̃γi,γj , γ̄iγ̄j) = n−3

n∑
t,t1,t2=1

Eγt,iγt1,iEγt,jγt2,j

∼ χiχjn
−3

n∑
t,t1,t2=1

|t− t1|2di−1|t− t2|2dj−1

∼ n2(di+dj−1)⟨g̃di,dj , fdi ⊗ fdj⟩

follows by integral approximation and a calculation as in (3.6). This proves (7.4) for di +

dj > 1/2 and i ̸= j. The case i = j follows similarly using the fact that Cov(γ2
t,i, γ

2
0,i) =

2(Cov(γt,i, γ0,i))
2 + χ4,i

∑
s≤t b

2
t−s,ib

2
−s,i, where χ4,i = E(ξ20,i − 1)2 − 2 = Eξ40,i − 3 is the 4th

cumulant of ξ0,i, see GKS, (6.2.25).

Consider (7.4) for di + dj = 1/2. Let i ̸= j. Then by (7.3)

Var(S̃γi,γj) ∼ χiχjn
−2

n∑
t,s=1

|t− s|−1 ∼ σ2
ijn

−1 log n,

with σ2
ij = 2χiχj. The case i = j follows similarly. Finally, (7.4) for the case di + dj < 1/2

follows from (7.3), (7.1) and the fact that the r.h.s. of (7.1) is summable.

Next, we prove the convergence in (3.9). Because of the differences in the normalization

and the limit distribution, the cases δmax > 1/2, δmax = 1/2, and δmax < 1/2, where δmax is

as in (3.1), will be discussed separately. Let Πmax := {(i, j) ∈ Πm; di + dj = δmax}.
Proof of (3.9): Case δmax > 1/2. Since (7.4) imply A(n)(Sγi,γj − ESγi,γj) →D 0 for

(i, j) ̸∈ Πmax, relation (3.9) follows from

(7.6) {n1−δmax(Sγi,γj − ESγi,γj); (i, j) ∈ Πmax} →D {Iij(gdi,dj); (i, j) ∈ Πmax},

where Iij are the double Wiener-Itô integrals in (3.3). Assume first that that Πmax con-

sists of a single element (i, j), i ̸= j. Then, because δmax = di + dj and ESγi,γj = 0 for
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i ̸= j, n1−δmax(Sγi,γj − ESγi,γj) = n1−di−djSγi,γj can be written as a quadratic form in i.i.d.

innovations {ξs,i, ξs,j, s ∈ Z}, viz.,

Q(gn) :=
∑

s1,s2∈Z

gn(s1, s2)ξs1,iξs2,j, with coefficients

gn(s1, s2) := n−d1−dj

n∑
t=1

bt−s1,ibt−s2,j − n−1−di−dj

n∑
t1,t2=1

bt1−s1,ibt2−s2,j.

We use GKS, Prop.11.5.5, according to which n1−di−djSγi,γj →D Iij(gdi,dj) follows from the

convergence in L2(R2):

(7.7) ∥g̃n − gdi,dj∥ → 0

where

g̃n(x1, x2) := ngn([nx1], [nx2])

=
n

ndi+dj

n∑
t=1

bt−[nx1],ibt−[nx2],j −
1

ndi+dj

n∑
t1,t2=1

bt1−[nx1],ibt2−[nx2],j.

Since bk,i ∼ κik
di−1, k → ∞ the point-wise convergence

g̃n(x1, x2) → gdi,dj(x1, x2) = κiκj

{∫ 1

0

(t− s1)
di−1
+ (t− s2)

dj−1
+ dt

−
∫ 1

0

(t1 − x1)
di−1
+ dt1

∫ 1

0

(t2 − x2)
dj−1
+ dt2

}
,

see (3.5), for any fixed (x1, x2) ∈ R2, xi ̸= 0, 1, i = 1, 2 follows by integral approximation.

Then, (7.7) follows by the DCT similarly as GKS, Prop.11.5.6. The general case in (7.6)

follows similarly and we omit the details.

Proof of (3.9): case δmax = 1/2. Let Π̃1/2 := {(i, j) ∈ Πm : di + dj = 1/2}. Then by (7.4)

relation (3.9) reduces to

(7.8)
{
(n/ log n)1/2(Sγi,γj − ESγi,γj); (i, j) ∈ Π̃1/2

}
→D

{
σijZij; (i, j) ∈ Π̃1/2

}
,

where Zij, (i, j) ∈ Π̃1/2 are independent N(0, 1) r.v.’s and σ2
ij = 2(1 + δij)χiχj, see (7.5).

Moreover, since ζ̄i = Op(n
di−1/2), i = 1, · · · ,m so γ̄iγ̄j = Op(n

di+dj−1) = Op(n
−1/2), (i, j) ∈

Π1/2 and hence (n/ log n)1/2γ̄iγ̄j = Op((log n)
−1/2) = op(1), (i, j) ∈ Π1/2. Thus, (7.8) follows

from

(7.9)
{
(n/ log n)1/2(S̃γi,γj − ES̃γi,γj); (i, j) ∈ Π1/2

}
→D

{
σijZij; (i, j) ∈ Π1/2

}
,
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where S̃γi,γj = n−1
∑n

t=1 γt,iγt,j as above. We shall prove (7.9) for a single pair (i, j) ∈ Π̃1/2.

Let i ̸= j. Then ES̃γi,γj = 0. Moreover, S̃γi,γj = S̃ ′
γi,γj

+ S̃ ′′
γi,γj

where

S̃ ′
γi,γj

:= n−1

n∑
t=1

∑
si≤t,i=1,2,s1 ̸=s2

bt−s1,ibt−s2,jξs1,iξs2,j,

S̃ ′′
γi,γj

:= n−1

n∑
t=1

∑
s≤t

bt−s,ibt−s,jξs,iξs,j

are off-diagonal and diagonal terms, respectively. Moreover,
∑∞

t=1 |bt,ibt,j| ≤ C
∑∞

t=1 t
−3/2 <

∞ implies S̃ ′′
γi,γj

= Op(n
−1/2) = op(1). Hence it suffices to prove

(n/ log n)1/2S̃ ′
γi,γj

→D N(0, σ2
ij).(7.10)

To prove (7.10), as in in Bhansali et al. (2007), we use martingale CLT in Hall and Heyde

(1980). Towards this aim rewrite the l.h.s. of (7.10) as the martingale transform

(n log n)−1/2
∑
s<n

vn(s), where vn(s) := un,i(s)ξs,j + un,j(s)ξs,i,(7.11)

un,i(s) :=
∑
s′<s

cn(s
′, s)ξs′,i, un,j(s) :=

∑
s′<s

cn(s, s
′)ξs′,j, cn(s

′, s) :=
n∑

t=1

bt−s′,i bt−s,j.

Let Ft := σ{ξs,i, ξs,j, s ≤ t} be the σ-field generated by innovations. Then E[vn(s)|Fs−1] =

0, E[v2n(s)|Fs−1] = u2
n,i(s) + u2

n,j(s). By the classical martingale CLT, (7.10) follows from

Bij(n) := Var(
∑
s<n

vn(s)) = n2Var(S̃ ′
γi,γj

) ∼ σ2
ijn log n,(7.12)

B−1
ij (n)

∑
s<n

E[v2n(s)|Fs−1] →D 1,(7.13)

B−1
ij (n)

∑
s<n

E[v2n(s)I(|vn(s)| > δB
1/2
ij (n))] →D 0, ∀δ > 0.(7.14)

The proof of (7.12) follows easily from (7.4). Consider (7.13). Using Bij(n) =
∑

s<nEv2n(s),

the relation (7.13) follows from (7.12) and∑
s<n(E[v2n(s)|Fs−1]− Ev2n(s)) = op(n log n),

or ∑
s<n(u

2
n,k(s)− Eu2

n,k(s)) = op(n log n), k = i, j.(7.15)

Consider (7.15) for k = i; the proof for k = j is analogous. By writing the l.h.s. of (7.15)

as a centered quadratic form Qn =
∑

s′,s′′<n ξs′,iξs′′,i
∑

s′∨s′′<s<n cn(s
′, s)cn(s

′′, s) in i.i.d. r.v.’s

ξs′,i’s, (7.15) and (7.13) follow from Var(Qn) ≤ 8Eξ40,iRn, and

Rn :=
∑

s′′≤s′<n

( ∑
s′<s<n

cn(s
′, s)cn(s

′′, s)
)2

= O(n2) = o(n2 log2 n),(7.16)
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see also GKS, (4.5.4). Using the definition of cn(s
′, s) in (7.11) it follows that

Rn ≤ C

∫
−∞<s′′<s′<n

ds′ds′′
( ∫

s′<s<n

c̃n(s
′, s)c̃n(s

′′, s)ds
)2

=: CR̃n,

where c̃n(s
′, s) :=

∫ n

0
(t − s′)di−1

+ (t − s)
dj−1
+ dt. By change of variables, R̃n = n2R̃1 and hence

(7.16) follows from

(7.17) R̃1 < ∞.

To check (7.17) use the following bound: for any −∞ < s′ < s < 1

c̃1(s
′, s) ≤ 1(s′ ∈ (−1, 1))

∫
R
(t− s′)di−1

+ (t− s)
dj−1
+ dt+ 1(s′ < −1)|s′|di−1

∫ 1

0

(t− s)
dj−1
+ dt

≤ C1(s′ ∈ (−1, 1))|s− s′|di+dj−1 + C1(s′ < −1)|s′|di−1(1 + |s|)dj−1

= C1(s′ ∈ (−1, 1))|s− s′|−1/2 + C1(s′ < −1)|s′|di−1(1 + |s|)dj−1(7.18)

since di + dj = 1/2. Then

R̃1 ≤ C

∫
(−∞,1)2

ds′ds′′
{∫ 1

s′∨s′′

(1(|s′| < 1)

|s− s′|1/2
+

1(s′ < −1)

|s′|1−di(1 + |s|)1−dj

)
×
(1(|s′′| < 1)

|s− s′′|1/2
+

1(s′′ < −1)

|s′′|1−di(1 + |s|)1−dj

)
ds
}2

≤ C
4∑

k=1

Jk,

where

J1 :=

∫
(−1,1)2

ds′ds′′
{∫ 1

−1

ds

|s− s′|1/2|s− s′′|1/2
}2
,

J2 :=

∫
(−∞,−1)×(−1,1)

|s′|−2(1−di)ds′ds′′
{∫ 1

−1

ds

(1 + |s|)1−dj |s− s′′|1/2
}2

,

J3 :=

∫
(−1,1)×(−∞,−1)

|s′′|−2(1−di)ds′ds′′
{∫ 1

−1

ds

(1 + |s|)1−dj |s− s′|1/2
}2

,

J4 :=

∫
(−∞,−1)2

|s′s′′|−2(1−di)ds′ds′′
{∫ 1

s′∨s′′

ds

(1 + |s|)2(1−dj)

}2

.

The fact that Jk < ∞, k = 1, 2, 3, 4 is elementary by 0 < di, dj < 1/2. This proves (7.17)

and (7.16), (7.13).

To prove (7.14) we use condition (3.7). By the Markov inequality, E[v2n(s)I(|vn(s)| >
δB

1/2
ij (n))] ≤ E|vn(s)|2+ϵ(δB

1/2
ij (n))−ϵ and (7.14) follows from∑

s<n

E|vn(s)|2+ϵ = o(B
(2+ϵ)/2
i,j (n)) = O((n log n)(2+ϵ)/2).(7.19)
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We have E|vn(s)|2+ϵ ≤ C(E|un,i(s)|2+ϵ + E|un,j(s)|2+ϵ) ≤ C(Li(s) + Lj(s)), where Li(s) :=

E
∣∣∑

s′<s cn(s
′, s)ξs,i

∣∣2+ϵ
, Lj(s) := E

∣∣∑
s′<s cn(s, s

′)ξs,j
∣∣2+ϵ

. By Rosenthal’s inequality, see

GKS, Lemma 2.5.2,

Li(s) ≤ C
(∑

s′<s c
2
n(s

′, s)
)(2+ϵ)/2

.(7.20)

We use the following bound similar to (7.18).

(7.21) |cn(s′, s)| ≤ C


n|s′|di−1

n1−dj+|s|1−dj
, s′ < −n,

|s′ − s|−1/2
+ , |s′| ≤ n.

From (7.20), (7.21) we obtain∑
s<n

Li(s) ≤ C
{ ∑

s≤−n

+
∑
|s|<n

}(∑
s′<s

c2n(s
′, s)
)(2+ϵ)/2

=: C{J1 + J2},

where

J1 ≤ C

∫ −n

−∞
ds
(∫ −n

−∞
(n|s′|di−1|s|dj−1)2ds′

)(2+ϵ)/2

= Cn

∫ −1

−∞
|s|2(dj−1)(2+ϵ)/2ds

(∫ −1

−∞
|s′|2(di−1)ds′

)(2+ϵ)/2

= Cn

since the last integral converges. On the other hand, since di + dj = 1/2,

J2 ≤ C
∑
|s|≤n

( ∑
s′≤−n

n2dj |s′|2(di−1)
)(2+ϵ)/2

+ C
∑
|s|≤n

( ∑
|s′|≤n

|s− s+|−1
+

)(2+ϵ)/2

≤ Cn+ Cn(log n)(2+ϵ)/2,

implying
∑

s<n Li(s) = O(n(log n)(2+ϵ)/2). Since
∑

s<n Lj(s) = O(n(log n)(2+ϵ)/2) follows

exactly similarly, we obtain
∑

s<nE|vn(s)|2+ϵ = O(n(log n)(2+ϵ)/2) = o((n log n)(2+ϵ)/2) for

ϵ > 0, proving (7.19), (7.14) and completing the proof of (7.10).

Proof of (3.9): Case δmax < 1/2. Then by (7.4) relation (3.9) is equivalent to

(7.22)
{
n1/2(Sγi,γj − ESγi,γj); (i, j) ∈ Πm

}
→D

{
σijZij; (i, j) ∈ Πm

}
,

where Zij, (i, j) ∈ Πm are independent N(0, 1) r.v.’s and σ2
ij are defined in (7.5). Moreover

since X̄iX̄j = Op(n
di+dj−1) = op(n

−1/2) for di + dj < 1/2, so Sγi,γj in (7.22) can be replaced

by S̃ij = n−1
∑n

t=1 γt,iγt,j and (7.22) follows from

(7.23)
{
n1/2(S̃γi,γj − ES̃γi,γj); (i, j) ∈ Πm

}
→D

{
σijZij; (i, j) ∈ Πm

}
.
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We shall prove (7.23) for a single pair (i, j) ∈ Πm. Let i ̸= j. Then ES̃γi,γj = 0. Hence it

suffices to prove

n1/2S̃γi,γj →D N(0, σ2
ij)(7.24)

We use the argument as in GKS, Thm.4.8.1. For ℓ ≥ 1 introduce ‘truncated’ processes:

γ
(ℓ)
t,i :=

∑
s≤t

bt−s,i1(t− s ≤ ℓ)ξs,i, i = 1, · · · ,m,

and the corresponding S̃
γ
(ℓ)
i ,γ

(ℓ)
j

:= n−1
∑n

t=1 γ
(ℓ)
t,i γ

(ℓ)
t,j . Thus, for each 1 ≤ ℓ < ∞ fixed,

Y
(ℓ)
ij (t) := γ

(ℓ)
t,i γ

(ℓ)
t,j , t ∈ Z is a ℓ-dependent stationary process with autocovariance ρ

(ℓ)
ij (t) :=

Cov(Y
(ℓ)
ij (t), Y

(ℓ)
ij (0)) such that

ρ
(ℓ)
ij (t) =

( ∞∑
s=0

bs,ibt+s,i1(t+ s ≤ ℓ)
)( ∞∑

s=0

bs,jbt+s,j1(t+ s ≤ ℓ)
)

≤ C
( ∞∑

s=0

|bs,ibt+s,i|
)( ∞∑

s=0

|bs,jbt+s,j|
)
≤ Ct2(di+dj−1), t ≥ 1,

and ρ
(ℓ)
ij (t) → ρij(t) := Cov(Yij(t), Yij(0), as ℓ → ∞, where Yij(t) := γt,iγt,j. These facts and

the CLT for ℓ-dependent stationary processes, see e.g. GKS, Prop.4.3.2, imply that

n1/2S̃
γ
(ℓ)
i ,γ

(ℓ)
j

→D N(0, (σ
(ℓ)
ij )

2), n → ∞,

(σ
(ℓ)
ij )

2 :=
∑
t∈Z

ρ
(ℓ)
ij (t) → σ2

ij, ℓ → ∞.

Hence, (7.24) follows provided we show that uniformly in n ≥ 1

(7.25) nVar(S̃γi,γj − S̃
γ
(ℓ)
i ,γ

(ℓ)
j
) =

∑
|t|<n

(
1− |t|

n

)
Cov

(
Yij(t)− Y

(ℓ)
ij (t), Yij(0)− Y

(ℓ)
ij (0)

)
→,

as ℓ → ∞. The proof of (7.25) mimics that of (GKS, (4.8.7)). We omit the details. This

proves (7.24) and the extension to (7.23) seems straightforward. Theorem 3.1 is proved. 2

Proof of Corollary 3.1. Assume for concreteness that the sets Π0m = {k},Πm = {(i, j)}
each consist of a single element, dmax = dk, δmax = di+dj. Let δmax > 1/2. Following the proof

of Theorem 3.1 in this case, write n1/2−dk γ̄k =
∑

s∈Z fn(s)ξs,k as a linear form in innovations

with coefficients fn(s) = n−1/2−dk
∑n

t=1 bt−s,k, s ∈ Z. Let f̃n(x) := n1/2fn([sx]), x ∈ R and

∥ · ∥1 denote the norm in L2(R). According to (GKS, Propositions 11.5.5, 14.3.3), the joint

convergence in (3.12), or (n1/2−dk γ̄k, n
1−di−dj(Sγi,γj−ESγi,γj)) →D (Ik(fdk), Iij(gdi,dj)) follows

from (7.7) and ∥f̃n − fdk∥1 → 0, where the last relation can be verified similarly to (7.7).
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This proves (3.12) for δmax > 1/2. For δmax = di + dj ≤ 1/2 the joint convergence in (3.12)

can be proved similarly as in the proof of Theorem 3.1 and we omit the details.

Consider (3.13). For δmax > 1/2 (3.13) follows the orthogonality of single and double

Wiener-Itô integrals, see (3.4). Suppose δmax ≤ 1/2. As in the proof of Theorem 3.1, let

S̃γi,γj = n−1
∑n

t=1 γt,iγt,j. It suffices to prove that

(7.26) lim
n→∞

n1−dkE
(
γ̄k(S̃γi,γj − ES̃γi,γj)

)
=

κk

dk(1 + dk)
E(ξ0,kξ0,iξ0,j)

∞∑
s=0

bs,ibs,j.

To show (7.26), split S̃γi,γj −ES̃γi,γj = S ′
n+S ′′

n, where nS
′
n :=

∑
s≤n

∑n
t=1∨s bt−s,ibt−s,j(ξs,iξs,j

−Eξs,iξs,j), S
′′
n := n−1

∑
s1,s2≤n,s1 ̸=s2

∑n
t=1∨s1∨s2 bt−s1,ibt−s2,jξs1,iξs2,j. Since Eγ̄kS

′′
n = 0, it suf-

fices to prove (7.26) with S̃γi,γj − ES̃γi,γj replaced by S ′
n. We have

n1−dkE(γ̄kS
′
n) = E(ξ0,kξ0,iξ0,j)n

−1−dk
∑
s≤n

n∑
t=1∨s

bt−s,kLs,ij(n),(7.27)

where Ls,ij(n) :=
∑n

t=1∨s bt−s,ibt−s,j → Lij :=
∑∞

t=0 bt,ibt,j < ∞ for any 1 ≤ s ≤ n and

|Ls,ij(n)| ≤ C
∑∞

t=|s| t
di+dj−2 ≤ C(1 + |s|)di+dj−1, s ≤ 0. Thus, by (10.2.53) of GKS,

n−1−dk

n∑
s=1

n∑
t=s

bt−s,kLs,ij(n) ∼ Lijκkn
−1−dk

n∑
s=1

n∑
t=s

(t− s)dk−1
+ → (κk/dk(1 + dk))Lij,

∣∣∣∑
s≤0

n∑
t=s

bt−s,kLs,ij(n)
∣∣∣ ≤ C

n∑
t=1

∞∑
s=0

(t+ s)dk−1(1 + s)di+dj−1

≤ C
n∑

t=1

tdk+di+dj−1 ≤ Cndk+di+dj = o(n1+dk).

This completes the proof of (7.26). The last relation also implies the statement (3.13) of the

corollary when δmax < 1/2 and also when δmax = 1/2 due to the presence of the logarithmic

factor in the normalization A(n) (3.1). 2

Proof of (4.11). Let S̃UV := n−1
∑n

i=1(UiVi − EUiVi), U
c
i := Ui − EUi. Then (4.1) can be

rewritten as Tn + βσ2
u = T ′

n − T ′′
n , where

T ′
n := S̃Xcε − βS̃Xcu + S̃uε − βS̃uu, T ′′

n := Xcε̄− βXcū+ ūε̄− β(ū)2.

Note all summands in T ′′
n are uncorrelated, implying

Var(T ′′
n ) = Var(Xc)Var(ε̄) + β2Var(Xc)Var(ū) + Var(ū)Var(ε̄) + β2Var((ū)2) = O(n−2).

Hence and from (2.10) and (4.1),

n1/2(β̂ − β) = n1/2T ′
n/σ

2
X + op(1).(7.28)
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Similarly from (4.4) and (7.28) we obtain

n1/2(α̂− α) = n1/2(ε̄− βū)− n1/2(β̂ − β)(µX + op(1))(7.29)

= n1/2(ε̄− βū) + (µX/σ
2
X)n

1/2T ′
n + op(1).

Note n1/2T ′
n and n1/2(ε̄− βū) + (µX/σ

2
X)T

′
n are sums of i.i.d.r.v.s with zero mean and finite

variance. Moreover, since all terms in T ′
n are mutually uncorrelated,

Var(T ′
n) = Var(S̃Xcε) + β2Var(S̃Xcu) + Var(S̃uε) + β2Var(S̃uu)

= n−1
(
σ2
Xσ

2
ε + β2σ2

Xσ
2
u + σ2

uσ
2
ε + β2(µ4 − σ4

u)
)
.

Hence, Var(n1/2T ′
n/σ

2
X) = φ, see (4.11). We also find that the covariance matrix of (n1/2(ε̄−

βū) + (µX/σ
2
X)T

′
n, n

1/2T ′
n/σ

2
X) (the main terms in (7.28), (7.29)) coincides with Γ in (4.11).

Then (4.11) follows from (7.28), (7.29) and the classical CLT for sums of i.i.d.r.v.’s. 2
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