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Abstract

To have scale invariant M estimators of regression parameters in regression models

there is a need for having a robust scale invariant estimator of a scale parameter. The

two such estimators are the median of the absolute residuals s1 and the median of the

absolute differences of pairwise residuals, s2. The asymptotic distributions of these

estimators in regression models when errors have finite variances are known in the case

errors are either i.i.d. or form a long memory stationary process. Since M estimators

are robust against heavy tail error distributions, it is natural to know if these scale

estimators are consistent under heavy tail error distribution assumptions. This paper

derives their limiting distributions when errors form a linear long memory stationary

process with α-stable (1 < α < 2) innovations and moving average coefficients decaying

as jd−1, 0 < d < 1 − 1/α. We prove that s2 has an α∗-stable limit distribution with

α∗ = α(1− d) < α while the convergence rate of s1 is generally worse than that of s2.

The proof is based on the 2nd order asymptotic expansion of the empirical process of

the stated infinite variance stationary sequence derived in this paper.

1 Introduction and Summary

Let p ∧ q ≥ 1, be fixed integers, n ≥ p be an integer, and Ω be an open subset of the

p-dimensional Euclidean space Rp, R = R1. Let {zni, i = 1, 2, · · · , n}, be arrays of known

constants and g be a known real valued function on Ω× Rq. In non-linear regression model

of interest here, one observes an array of random variables {Xni, i = 1, 2, · · · , n} such that

for some β0 ∈ Ω,

(1.1) Xni = g(β0, zni) + εi, 1 ≤ i ≤ n,

where the errors εi are given by the moving average

εi =
∑
j≤i

bi−jζj, bj ∼ c0j
−(1−d), (j → ∞), d < 1/2, c0 > 0.(1.2)
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When ζj, j ∈ Z := {0,±1, · · · } are i.i.d. having zero mean and finite variance, εi, i ∈ Z is

well-defined strictly stationary process for all d < 1/2 and has long memory in the sense

that the sum of lagged auto-covariances diverge for all 0 < d < 1/2.

For convenience, from now on, we shall write gni(β) for g(β, zni) and gni for gni(β0). Write

med{xi; 1 ≤ i ≤ m} for the median of a given set of real numbers {xi, 1 ≤ i ≤ m}. Let β̂ be

an estimator of β0, rn,i ≡ Xni − gni( β̂ ) and define the scale estimators

s1 := med {|rn,i|; 1 ≤ i ≤ n} , s2 := med {|rn,i − rn,j| ; 1 ≤ i < j ≤ n} .(1.3)

Observe that s1 estimates the median σ1 of the distribution of |ε1| while s2 the median

σ2 of the distribution of |ε1 − ε′1|, where ε′1 is an independent copy of ε1. The fact that each

of these estimators estimates a different scale parameter is not a point of concern if our goal

is only to use them in arriving at scale invariant robust estimators of β0.

A class of M estimators of β0 is a priori robust against heavy tail error distributions,

cf., Huber (1981). In order to make these estimators scale invariant, it is desirable to use

s1 or s2 in their derivation. Koul (2002) derived the asymptotic distributions of these two

estimators when errors are i.i.d. or form a stationary long memory moving average process

with i.i.d. zero mean finite variance innovations. In the latter case it was observed that

n1/2−d(s1 − σ1) = op(1), when the marginal error distribution function (d.f.) is symmetric

around zero. The same fact remains true for s2 without the symmetry assumption. The

claim made in that paper that the rate of consistency of s1 for the median σ1 is faster than

that of s2 for σ2 is erroneous, since the factor
∫
[f(σ2+x)− f(−σ2+x)]f(x)dx that appears

on page 9 of that paper in the analysis of Kn(σ2) vanishes, for any square integrable f .

In this paper we prove that under general (nonsymmetric) long memory moving average

errors in (1.2) with α-stable innovations, 1 < α < 2 and 0 < d < 1 − 1/α, the convergence

rate of s2 is better than that of s1, in the sense that n1−1/α−d(s1 − σ1) = Op(1) while

n1−1/α∗(s2 − σ2) has an α∗-stable limit distribution, see Theorem 2.2, where

(1.4) α∗ := α(1− d)

and 1− 1/α− d < 1− 1/α∗. In the case of symmetric errors, s1 also has an α∗-stable limit

distribution and the convergence rate of s1 and s2 is the same. See Theorem 2.1 (ii). In view

of these facts, one may prefer to use s2 over s1 in the computation of a scale invariant M

estimator of β0.

Proceeding a bit more precisely, we assume that the i.i.d. innovations ζj, j ∈ Z of (1.2)

belong to the domain of attraction of an α-stable law, 1 < α < 2, and that the d.f. G of ζ0

has zero mean and satisfies the tail regularity condition

lim
x→−∞

|x|αG(x) = c−, lim
x→∞

xα(1−G(x)) = c+,(1.5)
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for some 1 < α < 2 and some constants 0 ≤ c± < ∞, c+ + c− > 0. From Ibragimov and

Linnik (1971, Thm. 2.6.1) it follows that the above assumptions in particular imply that

(1.6) n−1/α

n∑
j=1

ζj →D Z,

where Z is α-stable r.v. with characteristic function

EeiuZ = e−|u|αω(α,u), u ∈ R,
(
i :=

√
−1

)
,(1.7)

ω(α, u) := −Γ(2− α)(c+ + c−)

α− 1
cos(πα/2)

(
1− i

c+ − c−
c+ + c−

sgn(u) tan(πα/2)
)
.

In addition, the weights bj, j ≥ 0 satisfy the asymptotics (1.2) for

(1.8) 0 < d < 1− 1/α.

It follows, say from Hult and Samorodnitsky (2008, Remark 3.3), that under these assump-

tions, ∑∞
j=0 |bj| = ∞,

∑∞
j=0 |bj|α <∞,(1.9)

the linear process εi of (1.2) is well defined in the sense of the convergence in probability,

and its marginal d.f. F satisfies

(1.10) lim
x→−∞

|x|αF (x) = B−, lim
x→∞

xα(1− F (x)) = B+,

where

B− :=
∞∑
j=0

((bj)
α
+c− + (bj)

α
−c+), B+ :=

∞∑
j=0

((bj)
α
+c+ + (bj)

α
−c−), (bj)± := max(0,±bj).

Note that (1.10) implies E|ε0|α = ∞ and E|ε0|r <∞, for every r < α, in particular Eε20 = ∞
and Eε0 = 0. Because of these facts and (1.9), this process will be called long memorymoving

average process with infinite variance. In the sequel, we refer to the assumptions in (1.2),

(1.5), and (1.8), as the standard assumptions about the errors in consideration. We also

note that under (1.5), the upper bound d < 1− 1/α in (1.8) is necessary for the convergence

of the series in (1.2) almost surely and in probability, see e.g. Samorodnitsky and Taqqu

(1994, Ex. 1.26). Since the interval of d in (1.8) diminishes with α decreasing, thicker tails

imply that a smaller degree of memory can be considered.

The class of moving averages satisfying these assumptions includes ARFIMA (p, d, q)

with α-stable innovations, where d satisfies (1.8). See Kokoszka and Taqqu (1995) for a

detailed discussion of the properties of stable ARFIMA series.
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Section 2 describes the asymptotic distributions of standardized s1, s2 along with the

needed assumptions (Theorems 2.1 and 2.2) with the proofs appearing in Section 4. Section

3 discusses first and second order asymptotic expansions of the residual empirical process.

Section 5 (Appendix A) contains the proofs of the asymptotic expansions of Section 3 while

Section 6 (Appendix B) contains the proofs of the two auxiliary results needed in Section 5.

2 Asymptotic distributions

This section describes the asymptotic distributions of suitably standardized s1 and s2 under

the above set up. Let

a := 1− d− 1/α.(2.1)

Assume there exists a p-vector of functions ġ on Rp×Rq such that the following holds, where

ġni(s) ≡ ġ(s, zni). For every s ∈ Rq and for every 0 < k <∞,

(2.2) sup
1≤i≤n,∥u∥≤k

na
∣∣∣gni(s+ n−au)− gni(s)− n−au′ġni(s)

∣∣∣ = o(1).

In addition assume that

max1≤i≤n∥ġni(β0)∥ = Op(1).(2.3)

About the d.f. G we assume that its third derivative G(3) exists and satisfies

|G(3)(x)| ≤ C(1 + |x|)−α, x ∈ R(2.4)

|G(3)(x)−G(3)(y)| ≤ C |x− y|(1 + |x|)−α, x, y ∈ R, |x− y| < 1.(2.5)

These conditions are satisfied if G is α-stable d.f., which follows from asymptotic expansion

of stable density, see e.g. Christoph and Wolf (1992, Th. 1.5) or Ibragimov and Linnik (1971,

(2.4.25) and the remark at the end of ch.2 §4). In this case, (2.4)–(2.5) hold with α+2 instead

of α. Conditions (2.4)-(2.5) imply the existence and smoothness of the marginal probability

density f(x) = dF (x)/dx, see Lemma 5.2 (5.8) below. They are not vital for our results and

can be relaxed by assuming a weak decay condition at infinity of the characteristic function

of G as in (GKS, (10.2.1)); however they simplify some technical derivations below.

Before stating our results we need to recall the following fact. Let ε̄n := n−1
∑n

i=1 εi.

Astrauskas (1984), Avram and Taqqu (1986, 1992), Kasahara and Maejima (1988) describe

the limiting distribution of ε̄n under the standard conditions as follows. Let

c̃ = c0

(∫ 1

−∞

( ∫ 1

0
(t− s)

−(1−d)
+ dt

)α

ds
)1/α

.(2.6)
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Then, with Z as in (1.7),

n1−d−1/αε̄n = n−d−1/α
∑n

i=1 εi →D c̃ Z.(2.7)

Let γ±(x) := f(x)±f(−x), x ≥ 0. We are now ready to state the following two theorems.

Theorem 2.1 Suppose the regression model (1.1), (1.2) holds with g satisfying (2.2) and

(2.3), and the innovation d.f. G satisfying (2.4) and (2.5). In addition, suppose β̂ is an

estimator of β0 such that

(2.8)
∥∥∥n1−d−1/α(β̂ − β0)

∥∥∥ = Op(1).

(i) If, in addition f(σ1) ̸= f(−σ1), then for every x ∈ R,

P (n1−d−1/α(s1 − σ1) ≤ xσ1)(2.9)

= P
(
n1−d−1/α

(
ε̄n +

( 1
n

n∑
i=1

ġni

)′
(β̂ − β0)

)
γ−(σ1) ≥ −xσ1γ+(σ1)

)
+ o(1).

(ii) If, in addition f(σ1) = f(−σ1), then, for every x ∈ R,

P
(
n1−1/α∗(s1 − σ1) ≤ xσ1

)
→ P

(
Z∗

1 ≤ xσ1γ+(σ1)
)
,

where Z∗
1 := Z∗(σ1)−Z∗(−σ1) and Z∗(x), x ∈ R is α∗-stable process defined in (3.12) below.

Theorem 2.2 Suppose the regression model (1.1), (1.2) and estimator β̂ satisfy the same

assumptions as in Theorem 2.1. Then

P
(
n1−1/α∗(s2 − σ2) ≤ xσ2

)
→ P

(
Z∗

2 ≤ x
)
, ∀x ∈ R,

where Z∗
2 is an α∗-stable r.v. defined in (4.28) below.

Remark 2.1 Koul and Surgailis (2001) verify (2.8) for a class ofM -estimators when g(β, z) =

β′z with errors in (1.1) satisfying the above standard conditions. Using arguments similar

to those appearing in Koul (1996, 1996a), (2.8) can be shown to hold for a class of M -

estimators of β0 in the general regression model (1.1) with the errors satisfying the above

standard conditions under some additional smoothness conditions on g.

3 Asymptotic expansions of the residual EP

The proofs of Theorems 2.1 and 2.2 use asymptotic expansions of certain residual empirical

processes, which we shall describe in this section. Accordingly, introduce the process

(3.1) V(ξ)
n (x) = n−1

n∑
i=1

(
I(εi ≤ x+ ξni)− F (x+ ξni) + f(x+ ξni)εi

)
, x ∈ R,
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where (ξ) ≡ (ξni; 1 ≤ i ≤ n) are non-random real-valued arrays. Write V(0)
n for V(ξ)

n when

all ξni ≡ 0. Let β0 be as in (1.1), and define

Fn(x, β) := n−1

n∑
i=1

I(Xni ≤ x+ gni(β)) = n−1

n∑
i=1

I(εi ≤ x+ dni(β)), x ∈ R,(3.2)

dni(β) := gni(β)− gni(β0), 1 ≤ i ≤ n, β ∈ Rp.

Note that under (1.1), Fn(x, β0) is equivalent to the first term in V(0)
n (x).

Consider the assumptions

max
1≤i≤n

|ξni| = O(1).(3.3)

max
1≤i≤n

|ξni| = o(1).(3.4)

n−d−1/α

n∑
i=1

|ξni| = O(1).(3.5)

Let ⇒D(R̄) denote the weak convergence of stochastic process in the space D(R̄) with the

sup-topology, where R̄ := [−∞,∞].

Theorem 3.1 Suppose standard assumptions and conditions (2.4) and (2.5) hold. Then the

following holds.

(a) If, in addition (3.3) holds, then there exists κ > 0 such that, for any ϵ > 0,

P
[
sup
x∈R

n1−d−1/α|V(ξ)
n (x)| > ϵ

]
≤ Cn−κ.(3.6)

In particular, under (1.1), for any ϵ > 0,

P
[
sup
x∈R

n1−d−1/α
∣∣∣Fn(x, β0)− F (x) + f(x)ε̄n

∣∣∣ > ϵ
]
≤ Cn−κ.(3.7)

Moreover, with Z as in (1.7) and c̃ is as in (2.6),

n1−d−1/α(Fn(x, β0)− F (x)) =⇒D(R̄) −c̃f(x)Z.(3.8)

(b) If, in addition (3.4) and (3.5) hold, then

sup
x∈R

n−d−1/α
∣∣∣ n∑
i=1

{
I(εi ≤ x+ ξni)− I(εi ≤ x)− ξnif(x)

}∣∣∣ = op(1).(3.9)

In the case of finite variance, the fact (3.6) for V(0)
n , known as the uniform reduction

principle (URP), was derived in Dehling and Taqqu (1989), Ho and Hsing (1996) and Giraitis,

Koul and Surgailis (1996). For more on this see Giraitis, Koul and Surgailis (2012) (GKS),

and the references therein. While the first term of the expansion (3.7) is a degenerated process
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−f(x)ε̄n having Gaussian asymptotic distribution, higher order terms of order [1/(1−2d)] >

k ≥ 2 have a complicated limits expressed in terms of multiple Itô-Wiener integrals. Similar

asymptotic expansions for V(ξ)
n were derived in Koul and Surgailis (2002).

In the case of infinite variance, the URP (3.6) was established in Koul and Surgailis

(2001) (KS) with the innovations in (1.2) having symmetric α-stable distributions. In the

present paper, this result is extended to asymmetric innovations.

The above approximations extend to various statistical functionals, see GKS and KS.

However, in the case when the first order approximation vanishes as in the case of s2, a

second order approximation of the residual EP by a degenerated α∗-stable process with α∗

as in (1.4), can be used to obtain the limiting distribution of a suitably standardized s2,

as is seen later in this paper. In order to describe this approximation we need some more

notation. Let Z∗
+, Z

∗
− denote independent copies of totally skewed α∗-stable r.v. Z∗ with

characteristic function

(3.10) EeiuZ
∗
= e−c∗|u|α∗ (1−isgn(u) tan(α∗π/2), u ∈ R, c∗ := Γ(2− α∗) cos(πα∗/2)/(1− α∗).

The above choice of parameters implies P (Z∗ > x) ∼ x−α∗ , P (Z∗ < −x) = o(x−α∗), as

x→ ∞; see Ibragimov and Linnik (1971, Ch.2). Also denote

ψ∗
±(x) :=

(
c

1
1−d

0 /(1− d)
) ∫ ∞

0

(
F (x∓ s)− F (x)± f(x)s

)
s−1− 1

1−dds,(3.11)

Z∗(x) := c
1/α∗
+ ψ∗

+(x)Z
∗
+ + c

1/α∗
− ψ∗

−(x)Z
∗
−, x ∈ R.(3.12)

Theorem 3.2 (a) Suppose standard assumptions, conditions (2.4), (2.5) and

(3.13) max
1≤i≤n

|ξni| = O(n−ϵ), ∃ ϵ > 0,

hold. Then

n1−1/α∗V(ξ)
n (x) =⇒D(R̄) Z∗(x).(3.14)

In particular, under (1.1),

n1−1/α∗
(
Fn(x, β0)− F (x) + f(x)ε̄n

)
=⇒D(R̄) Z∗(x).(3.15)

(b) If, in addition,

(3.16) max
1≤i≤n

|ξni| = O(nd+1/α−1)

holds, then

sup
x∈R

n−1/α∗
∣∣∣ n∑
i=1

{
I(εi ≤ x+ ξni)− I(εi ≤ x)− ξnif(x)

}∣∣∣ = op(1).(3.17)
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The proofs of Theorems 3.1 and 3.2 are given in Section 5. We remark that from the

regularity properties of F (see Lemma 5.2, (5.8)) it follows that the functions ψ∗
± in (3.11)

are well-defined and continuously differentiable on R; moreover, |ψ∗
±(x)| < C(1 + |x|)−γ

for some γ > 1 and hence lim|x|→∞ ψ∗
±(x) = 0. We also note that ψ∗

±(x) agree, up to a

multiplicative factor, with the Marchaud (left and right) fractional derivative of F (x) of

order 1/(1− d) ∈ (1, 2).

Remark 3.1 The α∗-stable limit in (3.15) is related to the limit results for nonlinear func-

tions of moving averages in Surgailis (2002, 2004), and also to the limit of power variations of

some Lévy driven processes with continuous time discussed in Basse-O’Connor, Lachièze-Rey

and Podolskij (2016).

4 Proofs of Theorems 2.1 and 2.2

This section contains the proofs of Theorem 2.1 and 2.2. Before proceeding further we need

to introduce some additional notation. With α∗ as in (1.4), let

a∗ = 1− 1

α∗
.(4.1)

Note that

a∗ = 1− 1

α(1− d)
=
α(1− d)− 1

α(1− d)
, a = 1− d− 1

α
=
α(1− d)− 1

α
= a∗(1− d).

Also, 0 < d < 1 − (1/α) and α < 2 imply 0 < (2 − α)/α < 1 − 2d < 1. Therefore

a∗ − 2a = a∗ − 2a∗(1 − d) = −a∗(1 − 2d) < 0. We also have a < a∗. For easy reference we

summarize these facts as the following inequalities.

(4.2) a < a∗ < 2a, ∀ 0 < d < 1− 1/α.

Proof of Theorem 2.1. Let

p1(y) := F (y)− F (−y), y ≥ 0.

Define σ1 as the unique solution of p(σ1) = 1/2. Because σ1 is median of the distribution of

|ε1|, the derivation of the asymptotic distribution of s1 is facilitated by analysing the process

S(y) :=
n∑

i=1

I (|ri| ≤ y) , y ≥ 0,(4.3)

where from now on, we write ri for rn,i for all 1 ≤ i ≤ n. The investigation of the asymptotic

behavior of this process in turn is facilitated by that of Fn(x, β) of (3.2). Let

µn(x, β) := n−1

n∑
i=1

F (x+ dni(β)), x ∈ R, β ∈ Rp.
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Rewrite ri ≡ εi − dni(β̂ ), and note that because of the continuity of F ,

n−1S(y) = Fn(y, β̂ )− Fn(−y, β̂ ), ∀ n ≥ 1, y ≥ 0,

with probability (w.p.) 1.

We use the following decomposition: Let

Dn(x, β) :=
n∑

i=1

{
I(εi ≤ x+ dni(β))− I(εi ≤ x)− f(x)dni(β)

}
, x ∈ R, β ∈ Rp.

Then, w.p.1, for all y ≥ 0, we have

S(y)− np1(y) = n[V(0)
n (y)− V(0)

n (−y)]− (f(y)− f(−y))nε̄n(4.4)

+Dn(y, β̂)−Dn(−y, β̂) + (f(y)− f(−y))
n∑

i=1

dni(β̂).

In both cases (i) and (ii) of Theorem 2.1, the behavior of all terms on the r.h.s. of (4.4)

except for Dn(y, β̂) can be rather easily obtained from Theorem 3.1, Theorem 3.2 and the

conditions in (2.2), (2.3) on the regression model.

We shall prove that Dn(±y, β̂) is asymptotically negligible, uniformly in y ≥ 0, in prob-

ability. Fix a 0 < k <∞ and let t ∈ Rp be such that ∥t∥ ≤ k. Let

(4.5) ξni := gni(β0 + n−at)− gni(β0).

Recall (2.1) and write ξni = (gni(β0+n
−at)−gni(β0)−n−at′ġni)+n

−at′ġni, where ġni ≡ ġni(β0).

By (2.2) and (2.3), for any ϵ > 0, ∃N s.t. for all n > N ,

sup
1≤i≤n,∥t∥≤k

|ξni| ≤ ϵn−a + k n−a max
1≤i≤n

∥ġni∥ = O(n−a).(4.6)

This then verifies the condition (3.16) for the ξni of (4.5), for each t. From (3.17) we obtain

n−1/α∗|Dn(x, β0 + n−at)| = op(1), for all x ∈ R, ∥t∥ ≤ k.

This in turn together with the monotonicity of Fn, F and the compactness of the set {t ∈
Rp; ∥t∥ ≤ k} and an argument as in Koul (2002a, ch. 8) now yields that for every 0 < k <∞,

n−1/α∗ sup
∥t∥≤k,x∈R

|Dn(x, β0 + n−at)| = op(1)(4.7)

implying by assumption (2.8) on β̂ that

sup
x∈R

|Dn(x, β̂)| = op(n
1/α∗).(4.8)

9



By (4.2), a < a∗, which is equivalent to 1/α∗ < d+ 1/α = −(a− 1). Thus (4.8) implies

sup
x∈R

na−1|Dn(x, β̂)| = n1/α∗+a−1 sup
x∈R

n−1/α∗ |Dn(x, β̂)| = op(1).(4.9)

Proof of (2.9) and (2.10). From the definition (4.3), we obtain that for any y > 0,

{s1 ≤ y} = {S(y) ≥ (n+ 1)2−1}, n odd,(4.10)

{S(y) ≥ n2−1} ⊆ {s1 ≤ y} ⊆ {S(y) ≥ n2−1 − 1}, n even.

Thus, to study the asymptotic distribution of s1, it suffices to study those of S(y), y ≥ 0.

Case (i): f(σ1) ̸= f(−σ1). Let Pn(x) denote the l.h.s. of (2.9). Let tn := (n−ax + 1)σ1.

Assume n is large enough so that tn > 0. Then

Pn(x) = P
(
S(tn) ≥ (n+ 1)/2

)
, n odd

P (S(tn) ≥ n/2) ≤ Pn(x) ≤ P (S(tn) ≥ n2−1 − 1), n even.

It thus suffices to analyze P (S(tn) ≥ n2−1 + b), b ∈ R. Let

S1(y) := na
[
n−1S(y)− p1(y)

]
, y ≥ 0, sn := na[2−1 + n−1b− p1(tn)].

Then P (S(tn) ≥ n2−1 + b) = P
(
S1(tn) ≥ sn

)
. Recall p1(σ1) = 1/2 and hence

sn = −na[p1(tn)− p1(σ1)] + n−d−1/αb

= −na[p1((n
−ax+ 1)σ1)− p1(σ1)] + n−d−1/αb

= −xσ1[f(σ1) + f(−σ1)] + o(1).

Next, by (2.2), (3.7), (4.4), (4.9), and uniform continuity of f ,

S1(tn) = [f(tn)− f(−tn)]
(
naε̄n + na−1

n∑
i=1

dni(β̂)
)

+na[V(0)
n (tn)− V(0)

n (−tn)] + na−1[Dn(tn, β̂)−Dn(−tn, β̂)]

= [f(σ1)− f(−σ1)]
(
naε̄n + na(β̂ − β0)

′(n−1

n∑
i=1

ġni
))

+ op(1),

proving (2.9).

Case (ii): f(σ1) = f(−σ1). Let t∗n := (n−a∗x+1)σ1, where a∗ is as in (4.1). Similarly to case

(i), it suffices to analyze P (S(t∗n) ≥ n2−1 + b), b ∈ R. Let

S∗
1(y) := na∗

[
n−1S(y)− p1(y)

]
, y ≥ 0, s∗n := na∗ [2−1 + n−1b− p1(t

∗
n)].

10



Then P (S(t∗n) ≥ n2−1 + b) = P
(
S∗
1(t

∗
n) ≥ s∗n

)
, where s∗n = −xσ1[f(σ1) + f(−σ1)] + o(1). On

the other hand, using f(t∗n)− f(−t∗n) = O(n−a∗) and (2.3), (3.15), (4.4), (4.8), we obtain

S1(t
∗
n) = [f(t∗n)− f(−t∗n)]

(
na∗ ε̄n + na∗−1

n∑
i=1

dni(β̂)
)

+na∗ [V(0)
n (t∗n)− V(0)

n (−t∗n)] + na∗−1[Dn(t
∗
n, β̂)−Dn(−t∗n, β̂)]

= Z∗(σ1)−Z∗(−σ1) + op(1),

proving (2.10) and completing the proof of Theorem 2.1. 2

Proof of Theorem 2.2. Let

(4.11) p2(y) :=

∫
[F (y + x)− F (−y + x)]dF (x), y ≥ 0.

Define σ2 as the unique solution of

(4.12) p2(σ2) = 1/2.

As noted in the introduction, σ2 is median of the distribution of |ε1 − ε′1|, where ε′1 is an

independent copy of ε1. Recall ri ≡ rn,i = εi − dni(β̂ ). The derivation of the asymptotic

distribution of s2 is facilitated by analysing the process

T (y) :=
∑

1≤i<j≤n

I (|ri − rj| ≤ y) , y ≥ 0.(4.13)

Because of the continuity of F ,

2n−1T (y) = n

∫
[Fn(y + x, β̂)− Fn(−y + x, β̂)]Fn(dx, β̂)− 1, ∀ n ≥ 1, y ≥ 0,

with probability 1. Let

Qn(x) := P (na∗(s2 − σ2) ≤ xσ2), x∗n := (xn−a∗ + 1)σ2 > 0.

From the definition of s2 in (1.3), we obtain

Qn(x) = P
(
T (x∗n) ≥ (N + 1)/2

)
, N odd

P (T (x∗n) ≥ N/2) ≤ Qn(x) ≤ P (T (x∗n) ≥ N2−1 − 1), N even.

It thus suffices to analyze P (T (x∗n) ≤ N/2 + b), N := n(n− 1)/2, b ∈ R. Let

T1(y) := na∗ [
2T (y)

n2
+

1

n
]− na∗p2(y), k∗n :=

(N + 2b)na∗

n2
+
na∗

n
− na∗p2(x

∗
n).

Then

P (T (x∗n) ≥ N/2 + b) = P (T1(x
∗
n) ≥ k∗n).

11



Asymptotics of k∗n. Note Nn
a∗/n2 ∼ na∗/2 = na∗p2(σ2). Therefore

k∗n = −na∗ [p2(x
∗
n)− p2(σ2)] + o(1).

But

na∗ [p2(x
∗
n)− p2(σ2)] = na∗

[
p2

(
(n−a∗x+ 1)σ2

)
− p2(σ2)

]
= na∗

∫ [{
F
(
(n−a∗x+ 1)σ2 + z

)
− F

(
σ2 + z

)}
−
{
F
(
− (n−a∗x+ 1)σ2) + z

)
− F

(
− σ2 + z

)}]
dF (z).

Because F has uniformly continuous and bounded density f ,

na∗

∫
{F (±(n−a∗x+ 1)σ2) + z)− F (±σ2 + z)}dF (z) = ±xσ2

∫
f(±σ2 + z)dF (z) + o(1),

and, hence,

k∗n = −xσ2
∫

[f(σ2 + z) + f(−σ2 + z))dF (z) + o(1).(4.14)

Asymptotics of T1(x
∗
n). Let

W ∗
n(x, β) := na∗ [Fn(x, β)− µn(x, β)], x ∈ R, β ∈ Rp.

From the definition of T1,

T1(y) = na∗

∫
[Fn(y + z, β̂ )− Fn(−y + z, β̂ )]Fn(dz, β̂ )− na∗p2(y)

=

∫
[W ∗

n(y + z, β̂ )−W ∗
n(−y + z, β̂ )]Fn(dz, β̂ )

+

∫
[µn(y + z, β̂ )− µn(−y + z, β̂ )]W ∗

n(dz, β̂ )

+ na∗

∫
[µn(y + z, β̂ )− µn(−y + z, β̂ )]µn(dz, β̂ )− na∗p2(y)

= E1(y) + E2(y) + E3(y), say.

Integration by parts and a change of variable formula shows that E2(y) ≡ E1(y). We shall

now approximate E1 and E3. But, first note that (2.2), (2.3) and (2.8) imply that

max
1≤i≤n

|dni(β̂ )| = Op(n
−a).(4.15)

Also note

(4.16)

∫
[f(y + z)− f(−y + z)]f(z)dz = 0, ∀ y ≥ 0.
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Let ∆n,ij ≡ dni(β̂ )− dnj(β̂ ). Observe that by (2.2), (2.3),

n−1−d−1/α

n∑
i=1

n∑
j=1

|∆n,ij| = Op(1),
n∑

i=1

n∑
j=1

∆n,ij = 0, w.p. 1.(4.17)

The smoothness of F and (4.11) together with (4.16) imply that

E3(y) := na∗

∫
[µn(y + z, β̂ )− µn(−y + z, β̂ )]µn(dz, β̂ )− na∗p2(y)

= na∗−2

n∑
i=1

n∑
j=1

∫ {
F (y + z +∆n,ij)− F (−y + z +∆n,ij)

−F (y + z) + F (−y + z)
}
dF (z)

= na∗−2

n∑
i=1

n∑
j=1

∫
f(z)dz

∫ ∆n,ij

0

(f(y + z + u)− f(y + z))du.

Using the inequalities f(x) + |f ′(x)| ≤ C(1 + |x|)−γ, x ∈ R for any 1 < γ < α, see (5.8), and∫
|w|<v

(1 + |w + z|)−γdw ≤ C(1 + |z|)−γ(v ∨ vγ), ∀ z ∈ R, v > 0,(4.18)

for 1 < γ ≤ 2, from eqn. (10.2.33) in GKS which are often used in this paper, we obtain

∣∣∣ ∫ ∆n,ij

0

(f(y + z + u)− f(y + z))du
∣∣∣ ≤ C

∣∣∆n,ij

∣∣γ ∧ ∣∣∆n,ij

∣∣2
(1 + |y + z|)γ

≤ C∆2
n,ij(1 + |y + z|)−γ.

This in turn implies

sup
y>0

|E3(y)| ≤ Cna∗−2

n∑
i=1

n∑
j=1

∆2
n,ij sup

y>0

∫
(1 + |z|)−γ(1 + |y + z|)−γdz

≤ Cna∗−2

n∑
i=1

n∑
j=1

∆2
n,ij = Op(n

a∗−2a) = op(1),

according to (4.15) and (4.2).

Next, let Vn(z, β) := Fn(z, β)− F (z) and

K∗
n(y, β) :=

∫
[W ∗

n(y + z, β)−W ∗
n(−y + z, β)]dF (z),

U1(y, β) :=

∫
[W ∗

n(y + z, β)−W ∗
n(−y + z, β)]dVn(z, β).

Then

E1(y) = K∗
n(y, β̂) + U1(y, β̂).

13



From (3.15) and (4.16) we have for K∗
n(y) ≡ K∗

n(y, β0) that

K∗
n(x

∗
n) →D

∫
[Z∗(σ2 + z)−Z∗(−σ2 + z)]dF (z).(4.19)

We shall prove that

sup
y>0

|K∗
n(y, β̂)−K∗

n(y)| = op(1),(4.20)

sup
y>0

|U1(y, β̂)| = op(1).(4.21)

To prove (4.20) note that

K∗
n(y, β0 + n−at)−K∗

n(y; β0)(4.22)

= n−1/α∗

∫ [ n∑
i=1

{
I(εi ≤ y + z + ξni)− I(εi ≤ y + z)− ξnif(y + z)

}
−

n∑
i=1

{
I(εi ≤ −y + z + ξni)− I(εi ≤ −y + z)− ξnif(−y + z)

}]
dF (z),

where ξni are as (4.5). In view of (4.6) these ξni satisfy (3.16). Hence (4.16) implies that

for any t ∈ Rp, the left hand side of (4.22) tends to zero in probability, uniformly in y ∈ R.
Whence, (4.20) follows using condition (2.8) and the compactness argument, similar to (4.7).

Next, consider (4.21). We shall first prove

sup
y>0

|U1(y, β0)| = op(1).(4.23)

We have

|U1(y, β0)| = n1−1/α∗

∫
(Fn(y + z)− F (y + z) + f(y + z)ε̄n)dVn(z, β0)

−n1−1/α∗

∫
(Fn(−y + z)− F (−y + z) + f(−y + z)ε̄n)dVn(z, β0)

+n1−1/α∗ ε̄n

∫
[f(−y + z)− f(y + z)]dVn(z, β0)

= I1(y)− I2(y) + I3(y), say,

where supy>0 |Ii(y)| = op(1), i = 1, 2 according to (3.15), and supy>0 |I3(y)| = Op(n
a∗−2a) =

op(1) follows from (2.7), (3.6), and (4.2). Thus, supy>0 |U1(y, β0)| = op(1).

Next, we shall prove that for every 0 < b <∞,

sup
y>0,∥t∥≤b

|U1(y, β0 + n−at)− U1(y; β0)| = op(1).(4.24)
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To this end, first fix a ∥t∥ ≤ b and let Ṽn(y, t) = Vn(y, β0+n
−at). Similarly as in (4.22) write

|U1(y, β0 + n−at)− U1(y; β0)|

≤ n−1/α∗
∣∣∣ ∫ n∑

i=1

{
I(εi ≤ y + z + ξni)− I(εi ≤ y + z)− ξnif(y + z)

}
dṼn(z, t)

∣∣∣
+ n−1/α∗

∣∣∣ ∫ n∑
i=1

{
I(εi ≤ −y + z + ξni)− I(εi ≤ −y + z)− ξnif(−y + z)

}
dṼn(z, t)

∣∣∣
+ n−1/α∗

∣∣∣ n∑
i=1

ξni

∣∣∣ ∣∣∣ ∫ (f(y + z)− f(−y + z))dṼn(z, t)
∣∣∣

= J1(y, t) + J2(y, t) + J3(y, t), say,

where supy>0 |Ji(y, t)| = op(1), i = 1, 2 follow by (3.17) and the fact that the variation

of z 7→ Ṽn(z, t) on R does not exceed 2, Ṽn(z, t) being the difference of two d.f.s. Relation

supy>0 |J3(y, t)| = Op(n
a∗−2a) = op(1) follows from (2.7), (3.6) and (4.2) as above. Uniformity

with respect to t ∈ Rp, ∥t∥ ≤ b is obtained by using an argument as in Koul (2002, Ch. 8)

and the monotonicity of the indicator function.

From (4.20), (4.21), (4.23), (4.24) we conclude that for i = 1,

(4.25) Ei(x
∗
n) = K∗

n(x
∗
n, β0) + op(1).

Then from (4.19) we finally obtain

(4.26) T1(x
∗
n) →D 2

∫
[Z∗(σ2 + z)−Z∗(−σ2 + z)]dF (z).

Next, let h(z) := f(σ2 + z) + f(−σ2 + z), z ∈ R, and

Z∗
2 := − 1

2σ2
∫
h(z)dF (z)

∫
[Z∗(σ2 + z)−Z∗(−σ2 + z)]dF (z).(4.27)

The facts together with (4.14) and (4.26) in turn imply that

P (na∗(s2 − σ2) ≤ xσ2) = P (T1(x
∗
n) ≥ k∗n)

→ P
(
2

∫
[Z∗(σ2 + z)−Z∗(−σ2 + z)]dF (z) ≥ −xσ2

∫
(f(σ2 + z) + f(−σ2 + z))dF (z)

)
= P (Z∗

2 ≤ x).

Let Z∗
± be as in (3.10), ψ∗

±(x) be as in (3.11), and define

ϖ± := − c
1/α∗
±

2σ2
∫
h(z)dF (z)

∫
[ψ∗

±(σ2 + z)− ψ∗
±(−σ2 + z)]dF (z).

Then, in view of the definition of Z∗(x) in (3.12), the r.v. Z∗
2 in (4.27) can be represented as

(4.28) Z∗
2 = ϖ+Z

∗
+ +ϖ−Z

∗
−.

Clearly, Z∗
2 in (4.28) has α∗-stable distribution. This completes the proof of Theorem 2.2. 2
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5 Appendix A: Proofs of Theorems 3.1 and 3.2

We use several lemmas whose proofs are given in Section 6 (Appendix B).

Lemma 5.1 Let ηi, i ≥ 1 be independent r.v.’s satisfying Eηi = 0 for all i and such that for

some 1 < α < 2,

(5.1) K := sup
i≥1

sup
x>0

xαP (|ηi| > x) <∞.

Then
∑∞

i=1 aiηi converges in Lp, p < α for any real sequence ai, i ≥ 1,
∑∞

i=1 |ai|α < ∞ and,

for 2(α− 1) ≤ p < α,

(5.2) E|
∞∑
i=1

aiηi|p < C
( ∞∑

i=1

|ai|α +
( ∞∑

i=1

|ai|α
)p/p′)

, p′ := 2α− p > α,

where the constant C = C(p, α,K) <∞ depends only on p, α,K.

We need some more notation. For any integer j ≥ 0, define the truncated moving averages

εi,j :=
∑

0≤k≤j

bkζi−k, ε̃i,j :=
∑
k>j

bkζi−k, ε∗i,j :=
∑

k≥0,k ̸=j

bkζi−k.(5.3)

Thus,

εi,j + ε̃i,j = εi, ε∗i,j = εi − bjζi−j.

Let Fj(x) := P (εi,j ≤ x), F̃j(x) := P (ε̃i,j ≤ x), F ∗
j (x) := P (ε∗i,j ≤ x) be the corresponding

marginal d.f.s. Also introduce

(5.4) F̸=ℓ,j(x) := P
( ∑

0≤k≤j:k ̸=ℓ

bkζk ≤ x
)
= P (εi,j − bi−ℓζℓ ≤ x), 0 ≤ ℓ < j.

W.l.g., assume that Fj and F̸=ℓ,j are not degenerate for any j ≥ 0, 0 ≤ ℓ < j. Then

P (εi ≤ x+ ξni|ζi−j) = F ∗
j (x+ ξni − bjζi−j) and

η∗ns(x; ζs) :=
∑n

i=1∨s

(
F ∗
i−s(x+ ξni − bi−sζs)− F (x+ ξni) + f(x+ ξni)bi−sζs

)
.

The proofs of Lemmas 5.3–5.5 use certain regularity properties of the d.f.s F (x), Fj(x), F
∗
j (x),

F̸=ℓ,j(x) given in the following lemma, whose proof is given in Section 6 (Appendix B) below.

Related results can be found in (KS, Lemma 4.2), Surgailis (2002, Lemma 4.1), (GKS,

Lemma 10.2.4).

For 1 < γ ≤ 2 introduce gγ(x) := (1 + |x|)−γ, x ∈ R and a finite measure µγ on R by

µγ(x, y) :=
∫ y

x
gγ(u)du, x < y.(5.5)
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Note the elementary inequalities: for any x, y ∈ R

gγ(x+ y) ≤ Cgγ(x)(1 ∨ |y|)γ,
∣∣ ∫ y

0
gγ(x+ w)dw

∣∣ ≤ Cgγ(x)(|y| ∨ |y|γ),(5.6)

see (GKS, Lemma 10.2.3). We shall also use the inequality∫ y

x
gγ(u+ v)du ≤ C(µγ(x, y))

1/γ|v|, |v| ≥ 1,(5.7)

where C does not depend on x, y, v; see Surgailis (2002, p.264).

Given a function g(x), x ∈ R and points x < y, z ∈ R we use the notation g(x, y) :=

g(y)− g(x), g((x, y) + z) := g(y + z)− g(x+ z).

Lemma 5.2 Suppose standard assumptions and conditions (2.4), (2.5) hold. Then for any

p = 1, 2, 3 the d.f. F, Fj, F
∗
j , F ̸=ℓ,j, j ≥ 0, 0 ≤ ℓ < j are p times continuously differentiable.

Moreover, for any 1 < γ < α, p = 1, 2, 3 there exists a constant C > 0 such that for any

x, y ∈ R, |x− y| ≤ 1, j ≥ 0, 0 ≤ ℓ < j

|F (p)(x)|+ |F (p)
j (x)|+ |(F ∗

j )
(p)(x)|+ |F (p)

̸=ℓ,j(x)| ≤ Cgγ(x),(5.8)

|F (p)(x, y)|+ |F (p)
j (x, y)|+ |(F ∗

j )
(p)(x, y)|+ |F (p)

̸=ℓ,j(x, y)| ≤ C|x− y|gγ(x),(5.9)

2∑
p=1

|(F ∗
j )

(p)(x)− F (p)(x)| ≤ C|bj|αgγ(x).(5.10)

Moreover, for any x < y, j ≥ 0, j2 > j1 ≥ 0, z, z1, z2, ξ ∈ R, |ξ| ≤ 1

|F ((x, y)− bjz)− F (x, y) + f(x, y)bjz|(5.11)

≤ Cmin
{
µγ(x, y)|bj|γ, (µγ(x, y))

1/γ|bj|
}
,

|F ∗
j ((x, y)− bjz)− F (x, y) + f(x, y)bjz| ≤ Cµγ(x, y)|bj|γ(1 + |z|)γ,(5.12) ∣∣∣ ∫ ξ

0

(
f((x, y) + v − bjz)− Ef((x, y) + v − bjζ) + f ′((x, y) + v)bjz

)
dv

∣∣∣(5.13)

≤ C|ξ|µγ(x, y)|bj|γ(1 + |z|)γ,∣∣∣ ∫
|w|≤|bj1z1|

∫
|w2|≤|bj2z2|

F ′′
̸=j1,j2

((x, y) + w1 + w2 + z)dw2dw2

∣∣∣(5.14)

≤ Cµγ(x, y)|bj1| |bj2|(1 + |z1|)γ(1 + |z2|)γ(1 + |z|)γ.

Proof of Theorem 3.1. (a) The proof of (3.6) given in (KS, Thm. 2.1) for the case c+ = c−

of (1.5) applies verbatim in the general case of c± in (1.5). (We note that KS does not assume

the distribution of ζ0 symmetric around 0.)

(b) The sum on the l.h.s. of (3.9) can be written as
∑4

i=1 Lni(x), where Ln1(x) := nV(ξ)
n (x),

Ln2(x) := −nV(0)
n (x) and

Ln3(x) :=
∑n

i=1(F (x+ ξni)− F (x)− f(x)ξni), Ln4(x) :=
∑n

i=1(f(x)− f(x+ ξni))εi.
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Then supx∈R n
−d−1/α|Lni(x)| = op(1), i = 1, 2 follow from (3.6). Using |F ′′(x)| ≤ C, see

(KS, Lemma 4.1) and (3.4), (3.5) we obtain supx∈R n
−d−1/α|Ln3(x) ≤ Cn−d−1/α

∑n
i=1 ξ

2
ni =

o(n−d−1/α
∑n

i=1 |ξni|) = o(1). To evaluate Ln4(x), let ans(x) := n−d−1/α
∑n

i=1(f(x) − f(x +

ξni))bi−s and δn,ξ := max1≤i≤n |ξni|. Then n−d−1/αLn4(x) =
∑n

s=−∞ ans(x)ζs. Moreover,

using |f(x)− f(x+ ξni)| ≤ Cδn,ξ = o(1), see (3.4), and the bound in Lemma 5.1, (5.2), with

p < α sufficiently close to α, we obtain

E|n−d−1/αLn4(x)|p ≤ C
(∑n

s=−∞ |ans(x)|α +
(∑∞

s=−∞ |ans(x)|α
)p/p′)

.(5.15)

But, for any fixed x ∈ R,∑n
s=−∞ |ans(x)|α ≤ Cδαn,ξ n

−dα−1
∑n

s=−∞

(∑n
i=1(i− s)d−1

+

)α

= O(δαn,ξ) = o(1).(5.16)

Similarly, for any x < y using |f ′(x)| ≤ C/(1 + |x|)r, x ∈ R with 1 < r < α, see (KS, (4.4)),

we obtain E|n−d−1/αLn4(x, y)|p ≤ C
(∑n

s=−∞ |ans(x, y)|α +
(∑∞

s=−∞ |ans(x, y)|α
)p/p′)

, and∑n
s=−∞ |ans(x, y)|α ≤ C

(
max1≤i≤n |f(x+ ξni, y + ξni|

)α ≤ C(µr(x, y))
α.(5.17)

Because µr(x, y) :=
∫ y

x
(1 + |z|)−rdz is a finite continuous measure on R, it follows that

E|n−d−1/αLn4(x, y)|p ≤ C(µr(x, y))
pα/p′ , x < y, where pα/p′ > 1 provided p < α is cho-

sen sufficiently close to α. Therefore using the well-known tightness criterion (see e.g.

GKS, Lemma 4.4.1) we conclude that the sequence of random processes {n−d−1/αLn4(x), x ∈
R}, n ≥ 1 is tight in D(R̄), implying supx∈R n

−d−1/α|Ln4(x)| = op(1). This ends the proof of

part (b) and Theorem 3.1. 2

Proof of Theorem 3.2. Proof of (a). We follow the proof in Surgailis (2002, Thm. 2.1)

and (2004, Thm. 2.1). The crucial decomposition leading to (3.14) is

Rn(x) := V(ξ)
n (x)−Z∗

n(x), where(5.18)

Z∗
n(x) := n−1

n∑
i=1

∑
s<i

E
[
I(εi ≤ x+ ξni)− F (x+ ξni) + f(x+ ξni)εi

∣∣∣ζs].
We will show that Z∗

n(x) is the main term and Rn(x) is the remainder term. Note that

Z∗
n(x) = n−1

∑
s<n η

∗
ns(x; ζs), where

η∗ns(x; ζs) :=
n∑

i=1∨s

E
[
I(εi ≤ x+ ξni)− F (x+ ξni) + f(x+ ξni)εi

∣∣ζs].
We shall approximate the above quantity by η(x; ζs), where

η(x; z) :=
∑∞

i=s

(
F (x− bi−sz)− EF (x− bi−sζs) + f(x)bi−sz

)
(5.19)

=
∑∞

j=0

(
F (x− bjz)− EF (x− bjζ0) + f(x)bjz

)
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and let

Zn(x) := n−1
∑n

s=1 η(x; ζs), x ∈ R.(5.20)

Because Zn(x) is a sum of i.i.d. r.v.’s, its α∗-stable limit will follow from the classical central

limit theorem for independent r.v.’s with heavy-tailed distribution. The proof of (3.14) or

of part (a) follows from the following three lemmas.

Lemma 5.3 n1−1/α∗Zn(x) =⇒D(R̄) Z∗(x).

Lemma 5.4 n1−1/α∗ supx∈R |Z∗
n(x)−Zn(x)| →p 0.

Lemma 5.5 n1−1/α∗ supx∈R |Rn(x)| →p 0.

Proof of (b). As in the proof of Theorem 3.1(b), decompose the sum on the l.h.s. of (3.17)

as
∑4

i=1 Lni(x). By (3.14), supx n
−1/α∗ |Ln1(x) + Ln2(x)| →p 0. Next, by Taylor’s expansion

and condition (3.13),

supx |Ln3(x)| = O(
∑n

i=1 ξ
2
ni) = o(n1/α∗),

since 1/α∗ + 1 > 2d + 2/α, see above. The term Ln4(x) can be estimated as in (5.15),

(5.16), yielding E|n−1/α∗Ln4(x)|p ≤ C
(
ndα+1−α/α∗δαn,ξ +

(
ndα+1−α/α∗δαn,ξ

)p/p′)
with δn,ξ ≤

Cmax1≤i≤n |ξni| = O(nd+1/α−1), see (3.13), hence E|n−1/α∗Ln4(x)|p = o(1) for any x ∈ R.
The proof of supx n

−1/α∗|Ln4(x)| = op(1) is similar as in Theorem 3.1(b) by showing the

bound E|n−1/α∗Ln4(x, y)|p ≤ C(µ(x, y))pα/p
′
, x < y which follows as in (5.17) but uses a

more accurate bound:∑n
s=−∞ |ans(x, y)|α ≤ C

(
max1≤i≤n |f(x+ ξni, y + ξni − f(x, y)|

)α
≤ C(µ(x, y))α max1≤i≤n |ξni|α

together with condition (3.13). This proves part (b) and ends the proof of Theorem 3.2. 2

6 Appendix B: proofs of auxiliary lemmas

Here we present the proofs of Lemmas 5.1-5.5 used in the proofs of Theorems 3.1 and 3.2.

Proof of Lemma 5.1. W.l.g. let ai ̸= 0, i ≥ 1. Split ηi = η+i + η−i , η
+
i := ηiI(|ηi| ≤

1/|ai|) − EηiI(|ηi| ≤ 1/|ai|), η−i := ηiI(|ηi| > 1/|ai|) − EηiI(|ηi| > 1/|ai|). Then (η±i , i ≥
1) are sequences of independent zero mean r.v.’s and E|

∑∞
i=1 aiηi|p ≤ CE|

∑∞
i=1 aiη

+
i |p +

CE|
∑∞

i=1 aiη
−
i |p. By the well-known moment inequality, see e.g. (GKS, Lemma 2.5.2)

E|
∑∞

i=1
aiηi|p ≤ CE|

∑∞

i=1
aiη

−
i |p + C

(
E|

∑∞

i=1
aiη

+
i |p

′)p/p′
≤ C

∑∞

i=1
|ai|pE|η−i |p + C

(
E|

∑∞

i=1
|ai|p

′
E|η+i |p

′)p/p′
.
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Then (5.2) follows from

(6.1) E|η−i |p ≤ C|ai|α−p, E|η+i |p
′ ≤ C|ai|α−p′ , ∀ i ≥ 1.

Note E|η−i |p ≤ 2E|ηi|pI(|ηi| > 1/|ai|), E|η+i |p
′ ≤ 2E|ηi|p

′
I(|ηi| ≤ 1/|ai|). Hence (5.1) implies

E|η−i |p ≤ −2

∫ ∞

1/|ai|
xpdP (|ηi| > x) = 2|ai|−pP (|ηi| > 1/|ai|) + 2p

∫ ∞

1/|ai|
xp−1P (|ηi| > x)dx

≤ 2K|ai|α−p + 2pK

∫ ∞

1/|ai|
xp−1−αdx ≤ C|ai|α−p, ∀ i ≥ 1.

Similarly,

E|η+i |p
′ ≤ −2

∫ 1/|ai|

0

xp
′
dP (|ηi| > x)

= −2|ai|−p′P (|ηi| > 1/|ai|) + 2p′
∫ 1/|ai|

0

xp
′−1P (|ηi| > x)dx

≤ 2K|ai|α−p′ + 2p′K

∫ 1/|ai|

0

xp
′−1−αdx ≤ C|ai|α−p′ , ∀ i ≥ 1.

proving (6.1) and the lemma, too. 2

Proof of Lemma 5.2. The first part of the proposition including (5.8), (5.9) follows by the

argument in (KS, Lemma 4.2) with minor changes. The proof of (5.10) also proceeds as in

the proof (KS, (4.6)), as follows. Since F (x) =
∫
F ∗
j (x − bjy)dG(y) and Eζ =

∫
ydG(y) =

0 so F (p)(x) − (F ∗
j )

(p)(x) =
∫
((F ∗

j )
(p)(x − ybj) − (F ∗

j )
(p)(x) + ybj(F

∗
j )

(p+1)(x))dG(y) and

|F (p)(x)− (F ∗
j )

(p)(x)| ≤
∑4

i=1 |Ji(x)| where

J1(x) :=
∫
|ybj |≤1

dG(y)
∫ −ybj
0

((F ∗
j )

(p+1)(x+ u)− (F ∗
j )

(p+1)(x))du,

J2(x) :=
∫
|ybj |>1

(F ∗
j )

(p)(x− ybj)dG(y), J3(x) :=
∫
|ybj |>1

(F ∗
j )

(p)(x)dG(y),

J4(x) := (f ∗
j )

′(x)bj
∫
|ybj |>1

ydG(y).

To evaluate J1(x) for p = 1, 2 use (5.9) yielding |
∫ −ybj
0

(F ∗
j )

(p+1)(x, x+u)du| ≤ Cgγ(x)
∫ |ybj |
0

udu

≤ Cgγ(x)(ybj)
2 and then

|J1(x)| ≤ Cb2jgγ(x)
∫
|ybj |≤1

y2dG(y) ≤ C|bj|αgγ(x)

follows from P (|ζ| > x) ≤ Cx−α. Next, using (5.8) and (5.6) we obtain

|Ji(x)| ≤ C
∫
|ybj |>1

(gγ(x) + gγ(x− bjy))dy

≤ Cgγ(x)
∫
|ybj |>1

(1 + |bjy|γ)dG(y) ≤ C|bj|αgγ(x), i = 2, 3,

|J4(x)| ≤ Cgγ(x)|bj|
∫
|ybj |>1

|y|dG(y) ≤ C|bj|αgγ(x),
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thereby proving (5.10).

Consider (5.11). Write the l.h.s. of (5.11) as∣∣ ∫ −bjz

0
dw

∫ y

x
(f ′(v + w)− f ′(v))dv

∣∣ ≤ ∫
|w|≤|bjz| dw

∫ y

x
|f ′(v + w)− f ′(v)|dv =: Ij(x, y; z).

Let |bjz| ≤ 1 then by (5.8)
∫ y

x
|f ′(v + w) − f ′(v)|dv ≤ Cµγ(x, y)|w| and hence Ij(x, y; z) ≤

Cµγ(x, y)
∫
|w|≤|bjz| |w|dw ≤ Cb2jz

2µγ(x, y) ≤ C|bjz|γµγ(x, y). Next, let |bjz| > 1 then the

l.h.s. of (5.11) does not exceed |F ((x, y) − bjz) − F (x, y)| + E|F ((x, y) − bjζ) − F (x, y)| +
f(x, y)|bjz|, where f(x, y)|bjz| ≤ Cµγ(x, y)|bjz| ≤ C(µγ(x, y))

1/γ|bjz| follows from (5.9),

γ > 1 and the boundedness of µγ. Next, using (5.8) and (5.7) for |bjz| > 1 we obtain

|F ((x, y) − bjz) − F (x, y)| ≤
∫ y

x
(f(u − bjz) + f(u))du ≤ C((µγ(x, y))

1/γ|bjz| + µγ(x, y)) ≤
C(µγ(x, y))

1/γ|bjz|. This proves (5.11).
Consider (5.12). Since F (x) = EF ∗

j (x − bjζ) the l.h.s. of (5.12) can be written as

|L1(x, y; z)+L2(x, y; z)|, where |L2(x, y; z)| := |(f ∗
j (x, y)−f(x, y))bjz| ≤ Cµγ(x, y)|bj|α+1|z| ≤

Cµγ(x, y)|bj|γ(1 + |z|)γ according to (5.10), and

|L1(x, y; z)| :=
∣∣E ∫ −bjz

−bjζ
dw

∫ y

x
((f ∗

j )
′(v + w)− (f ∗

j )
′(v))dv

∣∣ ≤ L̄1(x, y; z) + EL̄1(x, y; ζ),

where L̄1(x, y; z) :=
∫ |bjz|
0

dw
∫ y

x
|(f ∗

j )
′(v + w) − (f ∗

j )
′(v)|dv. Let |bjz| ≤ 1 then L̄1(x, y; z) ≤

Cµγ(x, y)
∫
|w|≤|bjz| |w|dw ≤ Cb2jz

2µγ(x, y) ≤ C|bjz|γµγ(x, y) as in the proof of (5.11) above.

Next, let |bjz| > 1 then L̄1(x, y; z) ≤ C
∫ y

x
dv

∫ |bjz|
0

(gγ(v+w)+gγ(w))dw ≤ C|bjz|γ
∫ y

x
gγ(v)dv =

Cµγ(x, y)|bjz|γ follows from (5.8) and (5.6). Hence L̄1(x, y; z) ≤ Cµγ(x, y)|bjz|γ, EL̄1(x, y; ζ)

≤ Cµγ(x, y)|bj|γE|ζ|γ ≤ Cµγ(x, y)|bj|γ since γ < α, proving (5.12).

Next, the l.h.s. of (5.13) can be written as |Tj(x, y; z, ξ)−ETj(x, y; ζ, ξ)|, where Tj(x, y; z, ξ)
:=

∫
dG(u)

∫ ξ

0
dv

∫ −bjz

−bju
dw

∫ y

x
(f ′′(t+ v + w)− f ′′(v + w))dt, and hence

|Tj(x, y; z, ξ)| ≤ T̄j(x, y; z, ξ) + ET̄j(x, y; ζ, ξ),

where

T̄j(x, y; z, ξ) :=
∫
|v|≤|ξ| dv

∫
|w|≤|bjz| dw

∫ y

x
|f ′′(t+ v + w)− f ′′(t+ v)|dt.

Let |bjz| ≤ 1 then by (5.9) and (5.6),
∫ y

x
|f ′′(t + v, t + v + w)|dt ≤ C|w|µγ(x − v, y − v) ≤

C|w|µγ(x, y) for |v| ≤ |ξ| ≤ 1 implying T̄j(x, y; z, ξ) ≤ C|ξ|(bjz)2µγ(x, y) ≤ C|ξ||bjz|γµγ(x, y).

Next, let |bjz| > 1 then by (5.8) and (5.6) we obtain that T̄j(x, y; z, ξ) ≤ C
∫ ξ

0
dv

∫
|w|≤|bjz| dw{ ∫ y

x
gγ(t+ v + w)dt+

∫ y

x
gγ(t+ v)dt

}
≤ C|ξ||bjz|γµγ(x, y), proving (5.13).

Finally, consider (5.14). In view of (5.8), the l.h.s. of (5.14) can be bounded by

C
∫ y

x
dξ

∫
|w|≤|bj1z1|

dw1

∫
|w2|≤|bj2z2|

gγ(ξ + w1 + w2 + z)dw2 =: Uj1,j2(x, y; z1, z2, z). Then us-

ing repeatedly inequality (5.6) we get

Uj1,j2(x, y; z1, z2, z) ≤ C(|bj2z2| ∨ |bj2z2|γ)
∫ y

x

dξ

∫
|w|≤|bj1z1|

gγ(ξ + w1 + z)dw1
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≤ C(|bj1z1| ∨ |bj1z1|γ)(|bj2z2| ∨ |bj2z2|γ)
∫ y

x

gγ(ξ + z)dξ

≤ C(|bj1z1| ∨ |bj1z1|γ)(|bj2z2| ∨ |bj2z2|γ)(1 ∨ |z|γ)µγ(x, y),

proving (5.14) and the lemma, too. 2

Proof of Lemma 5.3. From (5.11) we get |F (x − bjz) − EF (x − bjζ0) + f(x)bjz| ≤
C|bj|r(1 + |z|)r with any 1 < r < α sufficiently close to α so that the series in (5.19)

absolutely converges for any z ∈ R:

|η(x; z)| ≤ C(1 + |z|)r
∑∞

j=0 |bj|r ≤ C(1 + |z|)r.

We shall next prove the existence of the limits

lim
z→±∞

|z|−
1

1−dη(x; z) = ψ∗
±(x),(6.2)

with ψ∗
±(x) given in (3.11). Note the integrals in (3.11) converge for 0 < d < 1/2 since F is

twice differentiable. To prove (6.2), let

η̃(x; z) :=
∑∞

j=0

(
F (x− bjz)− F (x) + f(x)bjz

)
,(6.3)

where |F (x− bjz)− F (x) + f(x)bjz| ≤
∫
|u|<|bjz| |f(x + u)− f(x)|du ≤ Cgr(x)|bjz|r, for any

1 < r < α follows from (5.9), (5.6), and hence the series in (6.3) converges for any x, z ∈ R
and E|η̃(x; ζ)| < C. Since η(x; z) = η̃(x; z) − Eη̃(x; ζ) it suffices to prove (6.2) for η(x; z)

replaced by η̃(x; z). We have for z > 0 that z−
1

1−d η̃(x; z) = ψ∗
+(x) + ϕ(x; z), where

ϕ(x; z) =
∫∞
0

{
F (x− zb[uz1/(1−d)])− F (x− c0

u1−d ) + f(x)
(
zb[uz1/(1−d)] − c0

u1−d

)}
du→ 0

as z → ∞, by the dominated convergence theorem. The limit as z → −∞ in (6.2) follows

analogously. Relations (6.2) and (1.5) imply tail relations P (η(x, ζ0) > y) ∼ γ+(x)y
−α∗ ,

P (η(x, ζ0) < −y) ∼ γ−(x)|y|−α∗ , as y → ∞ with γ±(x) ≥ 0 written in terms of c±, ψ
∗
±(x).

See Surgailis (2004, Lemma 3.2), (2002, Lemma 3.1) for details. Hence, by the classical CLT

for i.i.d. r.v.’s and the Cramér-Wold device, finite-dimensional distributions of n1−1/α∗Zn(x)

converge weakly to those of Z∗.

We shall now prove the tightness of the process n1−1/α∗Zn. By the well-known tightness

criterion in (Billingsley, 1968, Thm. 15.6), it suffices to show that there exist r > 1 and a

finite continuous measure µ such that for all ϵ > 0, x < y

(6.4) P (|Zn(x, y)| > ϵn1/α∗−1) ≤ ϵ−α∗(µ(x, y))r,

where Zn(x, y) = Zn(y)−Zn(x). Let η(x, y; z) = η(y; z)−η(x; z), x < y. By the definition of

Zn in (5.20), P (|Zn(x, y)| > ϵn1/α∗−1) ≤ nP (|η(x, y; ζ)| > ϵn1/α∗). Hence (6.4) follows from

P (|η(x, y; ζ| > ϵn1/α∗) ≤ (nϵα∗)−1(µ(x, y))r, or

(6.5) P (|η(x, y; ζ)| > w) ≤ w−α∗(µ(x, y))r, ∀w > 0.

22



In turn, (6.5) follows from P (|ζ| > x) ≤ C/xα, ∀x > 0 and the fact that there exist

1 < γ < α,C <∞ such that for all x < y, |z| > 1, with µγ as in (5.5),

(6.6) |η(x, y; z)| ≤ C|z|1/(1−d)(µγ(x, y))
1/γ(1−d).

Indeed, (6.6) entails P (|η(x, y; ζ)| > w) ≤ P (C|ζ|1/(1−d)(µγ(x, y))
1/γ(1−d) > w) = P (|ζ| >

Cw1−d/(µγ(x, y))
1/γ) ≤ Cw−α∗(µγ(x, y))

α/γ implying (6.5) with r = α/γ > 1. See Surgailis

(2002, proof of Lemma 3.2).

Let us show (6.6). Since |η(x, y; z)| = |η̃(x, y; z)−Eη̃(x, y; ζ)| ≤ |η̃(x, y; z)|+E|η̃(x, y; ζ)|
and E|ζ|1/(1−d) < ∞ for 1/(1 − d) < α, it suffices to prove (6.6) for η̃(x, y; z) instead of

η(x, y; z) as this implies E|η̃(x, y; z)| ≤ C(µγ(x, y))
1/γ(1−d)E|ζ|1/(1−d) ≤ C(µγ(x, y))

1/γ(1−d)

|z|1/(1−d), |z| ≥ 1. Using (5.11) with χ := |z|(µγ(x, y))
1/γ we obtain

|η̃(x, y; z)| ≤ C
∞∑
j=0

min
{
|bjz|(µγ(x, y))

1/γ, |bjz|γµγ(x, y)
}

≤ Cχγ
∑

j>χ1/(1−d)

j−(1−d)γ + Cχ
∑

0≤j≤χ1/(1−d)

j
−(1−d)
+

≤ C(µγ(x, y))
1/γ(1−d)|z|1/(1−d),

proving (6.6), (6.4) and the required tightness of the process n1−1/α∗Zn(x). Lemma 5.3 is

proved. 2

Proof of Lemma 5.4. We shall prove that there exist 1 < r < α, κ > 0 and a finite

measure µ on R such that

(6.7) E|Z∗
n(x, y)−Zn(x, y)|r ≤ µ(x, y)nr(1/α∗−1)−κ, ∀x < y.

Lemma 5.4 follows from (6.7) using the chaining argument as in KS and Surgailis (2002).

To prove (6.7), similarly to Surgailis (2004, proof of (3.6)) decompose

n(Z∗
n(x)−Zn(x)) =

∑4
i=1 Vni(x),(6.8)

where Vn1(x) :=
∑

s≤0 ϕn1,s(x; ζs), Vni(x) :=
∑n

s=1 ϕni,s(x; ζs), i = 2, 3, 4 with

ϕn1,s(x; z) :=
n∑

i=1

{
F ∗
i−s(x+ ξni − bi−sz)− F (x+ ξni) + f(x+ ξni)bi−sz

}
,

ϕn2,s(x; z) := −
∞∑

i=n+1

{
F (x− bi−sz)− EF (x− bi−sζ0) + f(x)bi−sz

}
,

ϕn3,s(x; z) :=
∑n

i=s

{
F ∗
i−s(x+ ξni − bi−sz)− F (x+ ξni − bi−sz)

−F (x+ ξni) + EF (x+ ξni − bi−sζ0)
}
,

ϕn4,s(x; z) :=
∑n

i=s

{
F (x+ ξni − bi−sz)− F (x− bi−sz)− EF (x+ ξni − bi−sζ0)

+EF (x− bi−sζ0) + (f(x+ ξni)− f(x))bi−s(z − Eζ0)
}
.
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Note the for each 1 ≤ i ≤ 4, ϕni,s(x; ζs), s ∈ Z, are zero mean independent r.v.’s. It suffices

to prove that for some ri > 1, γi > 1, κi > 0,

E|Vni(x, y)|ri ≤ C(µγi(x, y))
rinri/α∗−κi , x < y, 1 ≤ i ≤ 4.(6.9)

Indeed, (6.9) imply (6.7) with r = min{ri, 1 ≤ i ≤ 4} > 1, κ = min{κir/ri, 1 ≤ i ≤ 4} and

µ = Cµγ, γ = min{γi, 1 ≤ i ≤ 4} which follows from E|Vni(x, y)|r ≤ (E|Vni(x, y)|ri)r/ri ≤
C(µγi(x, y))

r(nri/α∗−κi)r/ri ≤ Cµγ(x, y)n
r/α∗−κ. Because of the last fact we will not indicate

the subscript in ri, γi, κi in the subsequent proof of (6.9).

Consider (6.9) for i = 1. Then E|Vn1(x, y)|r ≤ C
∑

s≤0E|ϕn1(x, y; ζs)|r, 1 ≤ r ≤ 2.

Moreover, w.l.g. we can restrict the proof to ξni ≡ 0. Hence, using Minkowski’s inequality,

E|Vn1(x, y)|r ≤ C

∞∑
s=1

E
∣∣∣ n+s∑
j=s

{
F ∗
j ((x, y)− bjζ0)− F (x, y) + f(x, y)bjζ0

}∣∣∣r
≤ C

∞∑
s=1

( n+s∑
j=s

E1/r
∣∣F ∗

j ((x, y)− bjζ0)− F (x, y) + f(x, y)bjζ0|r
)r

.

Whence and from (5.12) with γ = α′ and 1 < r < α∗ < α′ < α < αr and α′ sufficiently close

to α so that (1− d)α′/r > 1 follows from r < α∗, we obtain

E|Vn1(x, y)|r ≤ C(µγ(x, y))
r

∞∑
s=1

( n+s∑
j=s

|bj|α
′/r
)r

≤ C(µγ(x, y))
r
{ n∑

s=1

( ∞∑
j=s

j−(1−d)α′/r
)r

+
∑
s>n

(
ns−(1−d)α′/r

)r}
≤ C(µγ(x, y))

rn1+r−α′(1−d),

implying (6.9) for i = 1 since 1 + r − α′(1 − d) < r/α∗ follows by noting that for α′ = α

the last inequality becomes r(1− 1/α∗) < α∗ − 1, or r < α∗, and hence it holds also for all

α′ < α sufficiently close to α.

Next, consider (6.9) for i = 2. Use (5.11) with γ = α′ and r, α′ as above to obtain

E|Vn2(x, y)|r

≤ C(µγ(x, y))
r

n∑
s=1

( ∞∑
j=s

E1/r
∣∣F ((x, y)− bjζ0)− EF ((x, y)− bjζ0) + f(x, y)bjζ0|r

)r

≤ C(µγ(x, y))
r

n∑
s=1

( ∞∑
j=s

j−(1−d)α′/r
)r ≤ C(µγ(x, y))

rn1+r−α′(1−d),

proving (6.9) for i = 2.

To prove (6.9) for i = 3, note that (5.13) implies
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|F ∗
j ((x, y)− bjz + ξni)− F ((x, y)− bjz + ξni)| ≤ C|bj|α

∫ y

x

(1 + |u− bjz + ξni|)−γdu

≤ C|bj|αµγ(x, y)(1 + |bjz|)γ

and hence E|F ∗
j ((x, y)− bjz+ ξni)−F ((x, y)− bjz+ ξni)|r ≤ C|bj|αr(µγ(x, y))

r(1+E|ζ|γr) ≤
C(µγ(x, y))

r|bj|αr for r, γ > 1 satisfying rγ < α. Moreover, we may choose α∗ < r < α.

Then, since
∑∞

j=0 |bj|α <∞, we obtain

E|Vn3(x, y)|r ≤ C(µγ(x, y))
r
∑n

s=1

(∑∞
j=1 |bj|α

)r ≤ C(µγ(x, y))
rn,

proving (6.9) for i = 3, because r/α∗ > 1.

Consider (6.9) for i = 4. Note ϕn4,s(x, y; z) can be rewritten as

n∑
i=s

{∫
dG(u)

∫ ξni

0

dv
(
f((x, y)+v−bi−sz)−f((x, y)+v−bi−su)+f

′((x, y)+v)bi−s(z−u)
)}
.

Hence by (5.13) with γ = 1/(1− d) ∈ (1, α) and 1 < r < α∗ we obtain

E|ϕn4,s(x, y; ζ)|r ≤ C
(∑n

i=s |ξni|µγ(x, y)|bi−s|γE1/r(1 + |ζ|)γr
)r

≤ C(µγ(x, y))
r max1≤i≤n |ξni|r

(∑n
i=s |bi−s|1/(1−d)

)r

,

by noting that E|ζ|γr <∞ since γr = r/(1− d) < α is equivalent to r < α∗. Note also that

for the above choice |bj|γ = O(j−1). Then

E|Vn4(x, y)|r ≤ C(µγ(x, y))
r max1≤i≤n |ξni|r

∑n
s=1

(∑n
j=1 j

−1
)r

≤ C(µγ(x, y))
r max1≤i≤n |ξni|rn(log n)r.

Thus, (6.9) for i = 4 holds due to condition (3.13) since one can choose r < α∗ and κ > 0 so

that r/α∗ − κ is arbitrary close to 1. This ends the proof of (6.9) and that of Lemma 5.4. 2

Proof of Lemma 5.5. Rewrite

Rn(x) = V(ξ)
n (x)−Z∗

n(x) = n−1

n∑
i=1

hni(x), where(6.10)

hni(x) := I(εi ≤ x+ ξni)− F (x+ ξni) + f(x+ ξni)εi

−
∑
s≤i

E
[
I(εi ≤ x+ ξni)− F (x+ ξni) + f(x+ ξni)εi

∣∣ζs]
Similarly as in the proof of the previous lemma, it suffices to prove that there exist 1 < r <

α, κ > 0 and a finite measure µ on R such that for all n ≥ 1 and x < y

(6.11) E
∣∣∣ n∑
i=1

hni(x, y)
∣∣∣r ≤ µ(x, y)n(r/α∗)−κ.
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Recall the notation εi,j, ε̃i,j, ε
∗
i,j, in (5.3) and Fj(x) := P (εi,j ≤ x), F̃j(x) := P (ε̃i,j ≤

x), F ∗
j (x) := P (ε∗i,j ≤ x). Then

hni(x) =
∑
s≤i

Uni,s(x), where(6.12)

Uni,s(x) := Fi−s−1(x+ ξni − bi−sζs − ε̃i,i−s)− Fi−s(x+ ξni − ε̃i,t−s)

− F̂i−s(x+ ξni − bi−sζs) + F (x+ ξni)

with the convention F−1(x) := I(x ≥ 0). Then
∑n

i=1 hni(x, y) =
∑

s≤nMns(x, y), where

(6.13) Mns(x, y) :=
n∑

i=1∨s

Uni,s(x, y), s ≤ n

is a martingale difference sequence with E[Mns(x, y)|ζu, u ≤ s] = 0. Hence by the well-known

martingale moment inequality, see e.g. (GKS, Lemma 2.5.2),

E
∣∣ n∑
i=1

hni(x, y)
∣∣r ≤ C

∑
s≤n

E|Mns(x, y)|r ≤ C
∑
s≤n

( n∑
i=1∨s

E1/r|Uni,s(x, y)|r
)r

.(6.14)

To proceed further, we need a ‘good’ bound of E|Uni,s(x, y)|r. Towards this end, noting

that E[Uni,s(x, y)|ζs] = 0, we expand Uni,s(x, y) similarly as in (6.12) but according to the

conditional probability P [·|ζs], see Surgailis (2004, (4.8)):

Uni,s(x, y) =
∑
u<s

(E[Uns(x, y)|ζs, ζv, v ≤ u]− E[Uns(x, y)|ζs, ζv, v ≤ u− 1])

=
∑
u<s

Wn,i,s,u(x, y),

where

Wn,i,s,u(x)

:= F̸=i−s,i−u−1(x+ ξni − bi−sζs − bi−uζu − ε̃i,i−u)− F̸=i−s,i−u(x+ ξni − bi−sζs − ε̃i,t−u)

− Fi−s−1(x+ ξni − bi−uζu − ε̃i,i−u) + Fi−s(x+ ξni − ε̃i,i−u).

Similarly to Surgailis (2004, (4.12)) Wn,i,s,u(x, y) can be rewritten as

Wn,i,s,u(x, y) = E0
[
H(bi−sζ + bi−uη + ε̃)−H(bi−sζ

0 + bi−sη + ε̃)

− H(bi−sζ + bi−sη
0 + ε̃) +H(bi−sζ

0 + bi−sη
0 + ε̃)

]
= E0

[ ∫ bi−sζ

bi−sζ0

∫ bi−uη

bi−uη0
H(2)(z1 + z2 + ε̃)dz1dz2

]
,

where, for fixed n, u < s < i, x < y,

H(z) := F̸=i−s,i−u−1((x, y) + ξni − z), ζ := ζs, η := ζu, ε̃ := ε̃i,i−u,
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(ζ0, η0) is an independent copy of (ζ, η) and E0 denotes the expectation w.r.t. (ζ0, η0) only;

H(2)(z) = d2H(z)/dz2. From (5.14) for any 1 < γ < α we get

|Wn,i,s,u(x, y)| ≤ Cµγ(x, y)|bi−s| |bi−u|(|ζ|γ + 1)(|η|γ + 1),(6.15)

with probability 1 and nonrandom C <∞, and hence for any 1 < r < α, 1 < γ < α, rγ < α

E[|Wn,i,s,u(x, y)|r|ζs] ≤ C(µγ(x, y))
r|bi−s|r|bi−u|r(|ζs|+ 1)rγ.

Then using the above mentioned martingale moment inequality w.r.t. P [·|ζs] we obtain

E[|Uni,s(x, y)|r|ζs] ≤ C
∑
u<s

E[|Wn,i,s,u(x, y)|r|ζs]

≤ C(µγ(x, y))
r|bi−s|r(|ζs|+ 1)rγ

∑
u<s

(i− u)−r(1−d)

≤ C(µγ(x, y))
r(i− s)1−2r(1−d)(|ζs|+ 1)rγ.

Hence

(6.16) E1/r|Uni,s(x, y)|r ≤ Cµγ(x, y)(i− s)1/r−2(1−d).

Substituting (6.16) into (6.14) we obtain

E
∣∣ n∑
i=1

hni(x, y)
∣∣r ≤ Cµγ(x, y)

{ ∑
s≤−n

( n∑
i=1

(i− s)1/r−2(1−d)
)r

+ n
( n∑

i=1

i1/r−2(1−d)
)r}

≤ Cµγ(x, y)n
2+r−2r(1−d),(6.17)

for r < α sufficiently close to α. (Note that for any r < α we can find γ > 1 such that

rγ < 1.) Also note for such r

(6.18) 2 + r − 2r(1− d) < r/α∗ = r/α(1− d)

Indeed, (6.18) holds for r = α since 2 + α − 2α(1 − d) < 1/(1 − d) is equivalent to (1 −
2d)(α(1−d)−1) > 0, and therefore (6.18) holds for r < α sufficiently close to α by continuity.

Relations (6.17) and (6.18) prove (6.11) and thereby complete the proof of Lemma 5.5. 2
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Basse-O’Connor, A., Lachièze-Rey, R. and Podolskij, M. (2016). Power variation for a class
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