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Abstract

This paper is concerned with the problem of fitting a generalized linear model to

the conditional mean function of multiplicative error time series models. These models

are particularly suited to model nonnegative time series such as the duration between

trades at a stock exchange and volume transactions. The proposed test, based on

a marked residual empirical process whose marks are suitably defined residuals and

which jumps at the estimated indices, is shown to be asymptotically distribution free.

1 Introduction

In the last two decades the family of multiplicative error models has attracted considerable

attention for modeling nonnegative time series. Engle and Russell (1998) and Engle (2002)

used these models for analyzing financial durations and trading volume of orders, respectively.

For many other applications see Pacarur (2008), Hautsch (2012), and the references therein.

To proceed further, let Yi, i ∈ Z := {0,±1,±2, · · · }, be a discrete time nonnegative

stationary process with EY 2
0 <∞, and let Hi−1 denote the information available up to time

i− 1 for forecasting Yi. A multiplicative error model (MEM) takes the form

(1.1) Yi = E[Yi | Hi−1]εi, i ∈ Z,

where εi, i ∈ Z are independent and identically distributed (i.i.d.) non-negative error random

variables (r.v.’s) with E(ε0) = 1, E(ε20) <∞. Moreover, εi is assumed to be independent of

the past information Hi−1, for all i ∈ Z.
Pacarur (2008) and Hautsch (2012) discuss many parametric specifications for the con-

ditional mean function E(Yi | Hi−1). The problem of fitting a given parametric MEM model

is of practical importance since knowing the right parametric model can lead to optimal

inference. Koul, Perera and Sillvaphule (2013) (KIS) proposed a lack of fit test for fitting

a parametric model to this conditional mean function when the underlying time series is

1Keywords & phrases: Martingale transform, AR conditional duration models.
2This author’s research was supported in part by the NSF grant DMS–1612867
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Markovian, i.e., when E[Yi | Hi−1] = τ(Yi−1), i ∈ Z, a.s., for some positive measurable func-

tion τ defined on R+ := [0,∞). To describe the KIS test a bit more precisely, let q ≥ 1 be

a given positive integer, Ω ⊂ Rq, and {ψ(y, ω), y ≥ 0, ω ∈ Ω} be a given family of positive

functions. Consider the problem of testing

H0 : τ(y) = ψ(y, ω), for all y ≥ 0, and some ω ∈ Ω, versus

H1 : H0 is not true.

Let

Un(y, ω) = n−1/2

n∑
i=1

( Yi
ψ(Yi−1, ω)

− 1
)
I(Yi−1 ≤ y), y ≥ 0, ω ∈ Ω,

The test of H0 proposed in KIS is based on the process Un(·, ω̂), where ω̂ is a n1/2-

consistent estimator of ω under H0. Asymptotic null distribution of this process depends on

the null model parameter ω0 under H0 and its estimator in a complicated fashion. In KIS, an

analog of the martingale transform of Stute, Thies and Zhu (1998) (STZ) of this process was

shown to converge weakly, under H0, to a time transform of Brownian motion. In particular

the test based on the supremum of the absolute value of this transform is asymptotically

distribution free, consistent against a large class of nonparametric alternatives, and has non-

trivial asymptotic power against a large class of n−1/2-local alternatives. In a finite sample

simulation study this test was shown to have very desirable empirical level property and

much larger empirical power, compared to several other model specification tests including

the Ljung-Box Q test and Lagrange multiplier type test of Meitz and Teräsvirta (2006).

Admittedly restricting the dependence of the conditional mean function to one lag vari-

able has limited applications. Consider the situation where

E[Yi | Hi−1] = γ(Yi−1, · · · , Yi−p), i ∈ Z,(1.2)

for a known positive integer p and a positive function γ defined on [0,∞)p. In practice there

are several time series where the conditional mean function γ depends on the previous p lags

via a linear combination. Then the question of interest is which one of these models fit the

given time series.

More precisely, let Θ1 ⊂ Rp, Θ := [0,∞)× Θ1, and φ be a known positive link function

defined on R. Let x′ denote the transpose of an Euclidean vector x. The problem of interest

is to test the hypotheses

H0 : γ(y) = θ0 + φ(θ′y), for all y ∈ [0,∞)p, and for some (θ0, θ
′)′ ∈ Θ, versus

H1 : H0 is not true.

2



A version of the Un-process suitable for this testing problem is

Vn(y, δ) = n−1/2

n∑
i=1

( Yi
ϑ0 + φ(ϑ′Yi−1)

− 1
)
I{ϑ′Yi−1 ≤ y}, y ≥ 0,

where ϑ := (ϑ1, · · · , ϑp)′, δ := (ϑ0, ϑ
′)′ ∈ Θ. Let δ0 denote the parameter vector for which

H0 holds, i.e., δ0 := (θ0, θ
′)′. The proposed tests of H0 will be based on the process Vn(·, δ̂),

where δ̂ is a n1/2-consistent estimator of δ0, under H0. The linear combinations θ̂′Yi−1 are

known as estimated indices and Vn(·, δ̂) is a marked residual empirical process with the marks

η̂i := Yi/[θ̂0 + φ(θ̂′Yi−1)]− 1 jumping at the indices θ̂′Yi−1.

The asymptotic null distribution of this process under H0 is discussed in the sub-section

2.1. An analog of the martingale transform of STZ test is given in the sub-section 2.2.

Several proofs are relegated to section 3. In the sequel, ∥ · ∥ denotes the Euclidean norm,

all limits are taken as n → ∞, and up(1) denotes a sequence of stochastic processes that

converges to zero uniformly over its time domain, in probability.

2 Main Results

In this section we derive the asymptotic expansion of the process Vn(·, δ̂) under H0 and

describe a martingale type transformation that converges weakly to the standard Brownian

motion on [0,∞).

2.1 Asymptotic linearity of V under H0

Here we derive an asymptotic linearity result for the process Vn(x, δ̂). To begin with we shall

state the needed assumptions.

(F) The error variable ε0 is positive, Eε0 = 1, Eε20 <∞.

(G) The distribution function (d.f.) G of θ′Y0 is continuous, where θ is as in H0.

(φ) Eφ2(θ′Y0) < ∞, and φ is continuously differentiable with the derivative φ̇ satisfying

E∥Y0φ̇(θ
′Y0)∥2 <∞, and for every 0 < c <∞,

sup
1≤i≤n,

√
n∥ϑ−θ∥≤c

√
n|φ(ϑ′Yi−1)− φ(θ′Yi−1)− (ϑ− θ)′Yi−1φ̇(θ

′Yi−1)| = op(1).

(C) There exist estimators θ̂0 > 0 and θ̂ ∈ Rp such that under H0,

n1/2
(∣∣θ̂0 − θ0

∣∣+ ∥∥θ̂ − θ
∥∥) = Op(1).

Let δ̂ := (θ̂0, θ̂
′)′. The derivation of the asymptotic linearity of the process Vn(·, δ̂) is

facilitated by the following lemma of a general interest. Consider the following assumptions.
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(E) The nonnegative process Yj, j ∈ Z is stationary and ergodic. The r.v.’s ηi, i ∈ Z are

i.i.d., and ηi is independent of Yj, j ≤ i− 1, for all i ∈ Z.

(g) g(x, z) is a measurable function of (x, z) ∈ [0,∞)p × R such that Eg2(Y0, η1) <∞.

Let Fi := σ-field{Yj, j ≤ i}, j ∈ Z, and define, for s ∈ Rp and y ≥ 0,

Vn(y, s) :=
1√
n

n∑
i=1

[
g(Yi−1, ηi)− E{g(Yi−1, ηi)|Fi−1}

]
I((θ + n−1/2s)′Yi−1 ≤ y).

Lemma 2.1 Assume that the processes ηj, Yj, j ∈ Z satisfies assumption (E) with the d.f.

G of θ′Y0 satisfying condition (G), and that (g) holds. Then for every c ∈ [0,∞),

sup
y≥0,∥s∥≤c

|Vn(y, s)− Vn(y, 0)| = oP (1).

The proof of this lemma is given in the last section. We shall now use this to derive the

limiting distribution of the process Vn(y, δ̂). To begin with consider the process

Tn(y, ϑ) := n−1/2

n∑
i=1

[ Yi
θ0 + φ(θ′Yi−1)

− 1
]
I
(
ϑ′Yi−1 ≤ y

)
, y ≥ 0, ϑ ∈ Rp.

Note that Tn(y, θ) = Vn(y, δ0). We have the following corollary.

Corollary 2.1 Assume that the model (1.1), (1.2), and H0 hold, and that the given time

series Yj, j ∈ Z is stationary and ergodic. In addition, suppose that the assumptions (F),

(G) and (C) hold. Then

sup
y≥0

∣∣Tn(y, θ̂)− Vn(y, δ0)
∣∣ = op(1).(2.1)

Proof. In view of the assumption (C), it suffices to prove that for every 0 < c <∞,

sup
y≥0,∥s∥≤c

∣∣Tn(y, θ + n−1/2s)− Tn(y, θ)
∣∣ = op(1).

But this follows from Lemma 2.1 upon taking

ηi ≡ [Yi/
(
θ0 + φ(θ′Yi−1)

)
]− 1 ≡ εi − 1,(2.2)

and g(x, z) ≡ z in there, because, in this case ηi is independent of Fi−1 for every i ∈ Z, and
E{g(Yi−1, ηi)|Fi−1} ≡ E(ηi) ≡ 0, and Vn(y, s) ≡ Tn(y, θ + n−1/2s).

Next, we state a weak convergence result for

Vn(y, δ0) = n−1/2

n∑
i=1

ηiI
(
θ′Yi−1 ≤ y

)
,
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where ηi’s are as in (2.2). By the classical CLT, Vn(∞, δ0) = n−1/2
∑n

i=1 ηi = Op(1).

Recall G is the d.f. of θ′Y0. Let η be a copy of η1 and σ2 = Var(η). Under H0,

Cov
(
Vn(y, δ0),Vn(z, δ0)

)
= σ2G(y ∧ z) = Cov

(
B(σG(y)), B(σG(z)

)
, y, z ≥ 0,(2.3)

where B is the standard Brownian motion on [0,∞). The following lemma proves the weak

convergence of the Vn(·, δ0) to the time transformed Brownian motion B(σG). Its proof

appears in the last section.

Lemma 2.2 Suppose (1.1), (1.2), H0, (G) hold. Then

Vn(·, δ0) →D σB ◦G in D[0,∞] and uniform metric.(2.4)

Next, consider Vn(·, δ̂). To simplify the exposition, we let

h(δ, y) := ϑ0 + φ(ϑ′y), δ = (ϑ0, ϑ
′)′ ∈ Θ, y ∈ Rp.

Note that ḣ(δ, y) := ∂h(δ, y)/∂δ = (1, y′φ̇(ϑ′y)′. To state the main result about Vn(·, δ̂) we
need to define

ν(y, δ) := E
{ ḣ(δ,Y0)

h(δ,Y0)
I(ϑ′Y0 ≤ y)

}
, δ = (ϑ0, ϑ

′)′ ∈ Θ, y ≥ 0.(2.5)

Condition (φ) implies that E∥ḣ(δ0,Y0)∥2 <∞. This and the fact that infy h(δ0, y) ≥ θ0 > 0

imply that

sup
y≥0

∥ν(y, δ0)∥ ≤ E
{
∥ḣ(δ0,Y0)∥/h(δ0,Y0)

}
<∞.

We have the following theorem.

Theorem 2.1 Suppose (1.1), (1.2), H0, (F), (G), (φ) and (C) hold. Then

Vn(y, δ̂) = Vn(y, δ0)− n1/2(δ̂ − δ0)
′ν(y, δ0) + up(1).

Proof. Recall that ηi ≡ [Yi/h(δ0,Yi−1)]− 1. Consider the following decomposition.

Vn(y, δ̂)(2.6)

= n−1/2

n∑
i=1

[ Yi

h(δ̂,Yi−1)
− 1
]
I
(
θ̂′Yi−1 ≤ y

)
= Tn(y, θ̂) + n−1/2

n∑
i=1

ηih(δ0,Yi−1)
[ 1

h(δ̂,Yi−1)
− 1

h(δ0,Yi−1)

]
I
(
θ̂′Yi−1 ≤ y

)
+n−1/2

n∑
i=1

h(δ0,Yi−1)
[ 1

h(δ̂,Yi−1)
− 1

h(δ0,Yi−1)

]
I
(
θ̂′Yi−1 ≤ y

)
= Tn(y, θ̂) + Ŝn(y) + R̂n(y), say.

= Vn(y, δ0) + up(1) + Ŝn(y) + R̂n(y), by (2.1).
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We shall now analyze the remaining two terms R̂n and Ŝn. Let ∆ := n1/2(δ̂ − δ0), and

ξni := h(δ̂,Yi−1)− h(δ0,Yi−1)− (δ̂ − δ0)
′ḣ(δ0,Yi−1), 1 ≤ i ≤ n.

By conditions (φ), (C) and Ergodic Theorem, θ−1
0 <∞, and

n1/2 max
1≤i≤n

|ξni| = op(1), n−1/2 max
1≤i≤n

∥Yi−1φ̇(θ
′Yi−1)∥ = op(1),(2.7)

n−1/2 max
1≤i≤n

∥ḣ(δ0,Yi−1)∥ ≤ n−1/2
{
1 + max

1≤i≤n
∥Yi−1φ̇(θ

′Yi−1)∥
}
= op(1),

max
1≤i≤n

∣∣ 1

h(δ̂,Yi−1)
− 1

h(δ0,Yi−1)

∣∣ ≤ θ−2
0 max

1≤i≤n
|h(δ̂,Yi−1)− h(δ0,Yi−1)|

≤ θ−2
0

[
max
1≤i≤n

|ξni|+ ∥∆∥n−1/2 max
1≤i≤n

∥ḣ(δ0,Yi−1)∥
]

= op(1),

n−1

n∑
i=1

∥Yi−1φ̇(θ
′Yi−1)∥ = E∥Y0φ̇(θ

′Y0)∥+ op(1).

Now consider the R̂n term. Rewrite

−R̂n(y) := n−1/2

n∑
i=1

1

h(δ̂,Yi−1)
ξniI

(
θ̂′Yi−1 ≤ y

)
(2.8)

+∆′n−1

n∑
i=1

[ 1

h(δ̂,Yi−1)
− 1

h(δ0,Yi−1)

]
ḣ(δ0,Yi−1)I

(
θ̂′Yi−1 ≤ y

)
+∆′n−1

n∑
i=1

ḣ(δ0,Yi−1)

h(δ0,Yi−1)
I
(
θ̂′Yi−1 ≤ y

)
= R̂n1(y) + ∆′R̂n2(y) + ∆′R̂n3(y), say.

Then by (C) and because θ0 > 0, for sufficiently large n, P (2θ̂0 > θ0) → 1. This fact and

φ ≥ 0 imply that on the event A := {θ̂0 > θ0/2}, min1≤i≤nh(δ̂,Yi−1) > 2−1θ0. Hence, in

view of (2.7), we obtain that on the event A,

sup
y≥0

|R̂n1(y)| ≤ 2θ−1
0 n1/2 max

1≤i≤n
|ξni| = op(1).(2.9)

Similarly, by (2.7),

sup
y≥0

|R̂n2(y)| ≤ max
1≤i≤n

∣∣ 1

h(δ̂,Yi−1)
− 1

h(δ0,Yi−1)

∣∣n−1

n∑
i=1

{1 + ∥Yi−1φ̇(θ
′Yi−1)∥}(2.10)

= op(1).

Upon combining (2.8), (2.9), (2.10) with (3.4) of Section 3 below, we obtain

R̂n(y) = −n1/2(δ̂ − δ0)
′ν(y, δ0) + up(1).(2.11)
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Next, consider the term Ŝn. Rewrite

−Ŝn(y) := n−1/2

n∑
i=1

ηi

h(δ̂,Yi−1)
ξniI

(
θ̂′Yi−1 ≤ y

)
+∆′ 1

n

n∑
i=1

[ 1

h(δ̂,Yi−1)
− 1

h(δ0,Yi−1)

]
ηi ḣ(δ0,Yi−1)I

(
θ̂′Yi−1 ≤ y

)
+∆′ 1

n

n∑
i=1

ηi
ḣ(δ0,Yi−1)

h(δ0,Yi−1)
I
(
θ̂′Yi−1 ≤ y

)
= Ŝn1(y) + ∆′Ŝn2(y) + ∆′Ŝn3(y), say.

Because E|η0| <∞, n−1
∑n

i=1 |ηi| = Op(1), and by (2.7), on A,

sup
y≥0

∣∣Ŝn1(y)∣∣ ≤ 2θ−1
0 n1/2 max

1≤i≤n
|ξni|n−1

n∑
i=1

|ηi| = op(1).

An argument similar to the one used to prove (2.10) yields supy≥0 |Ŝn2(y)| = op(1). Upon

combining these facts with (3.5) below we obtain supy≥0 |Ŝn(y)| = op(1). This fact together

with (2.11), (2.6) and (2.1) completes the proof of the theorem.

2.2 Asymptotically distribution free tests

A consequence of Theorem 2.1 is that the asymptotic null distribution of the process Vn(·, δ̂)
depends on the null model and estimator, and hence in general is unknown. We shall now

describe a transformation of this process which will yield a process with known asymptotic

null distribution. This transformation is an analog of the one in Stute, Thies and Zhu (1998),

Koul and Stute (1999) and Stute and Zhu (2002).

Let Gϑ denote the d.f. of ϑ′Y0. Note that Gθ = G. Recall that h(δ0, y) := θ0 + φ(θ′y),

ḣ(δ0, y) =
(
1, y′φ̇(θ′y)

)′
and ν(y, δ) given at (2.5). Let ξϑ(x) = E

(
Y0|ϑ′Y0 = x

)
, x ≥ 0 and

L(x, δ) := E
( ḣ(δ,Y0)

h(δ0,Y0)

∣∣ϑ′Y0 = x
)
=

1

ϑ0 + φ(x)

(
1

ξϑ(x)φ̇(x)

)

Then E{Y0φ(ϑ
′Y0)|ϑ′Y0 = x)} = ξϑ(x)φ(x), and

ν(y, δ) = E
( ḣ(δ,Yi−1)

h(δ,Yi−1)

)
I(θ′Yi−1 ≤ y) =

∫
x≤y

L(x, δ)dGϑ(x).

Define

A(x, δ) :=

∫ ∞

x

ν(y, δ)ν(y, δ)′dGϑ(y).
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Assume

A(x, δ0) is positive definite for all 0 ≤ x <∞.(2.12)

Write A−1
δ (x) for (A(x, δ))−1. Define, for y ≥ 0, δ ∈ Θ,

Jn(y, δ) :=

∫ y

0

ν(z, δ)′A−1
δ (z)

∫ ∞

z

ν(s, δ)dVn(s, δ)dGϑ(z),

Wn(y, δ) := Vn(y, δ)− Jn(y, δ).

We note here that by arguing as in Khmaladze and Koul (2009), one can verify that the

transformation Wn(·, δ0) is well defined even when (2.12) does not hold.

Next, suppose H0 holds. Then clearly, EWn(y, δ0) ≡ 0, and more importantly,

Cov
(
Wn(y1, δ0),Wn(y2, δ0)

)
= σ2G(y1 ∧ y2), y1, y2 ≥ 0.(2.13)

The proof of this claim appears in the last section. In fact, arguing as in say Koul and Stute

(1999) and using Lemma 2.4, one can show that Wn(·, δ0) converges weakly to σ2B ◦ G, in
D[0,∞) and uniform metric. However, this result is of little use from the practical point of

view, since this process depends on the unknown parameters θ0, θ and G. We need the analog

of the above process when all parameters are estimated. The needed estimated entities are

defined below.

Analogous to the regression set up of Stute and Zhu (2002), an estimate of ξθ here can be

taken to be a kernel estimator. Because here observations are nonnegative, it is desirable to

take kernels that are supported on [0,∞). One such example is that of the inverse gamma

kernel of Mnatsakanov and Sarkisian (2012) defined as

Kα(y, u) :=
1

uΓ(α + 1)
(
αy

u
)α+1 exp{−(

αy

u
)}, α > 0, y > 0, u > 0.

The corresponding estimator of ξθ then is

ξ̃n(y) :=

∑n
i=1Kα(y, θ̂

′Yi−1)Yi∑n
i=1Kα(y, θ̂′Yi−1)

, y > 0.

Now we are ready to define estimates of the other entities needed in the transformation. Let

Gn(y) := n−1

n∑
i=1

I(θ̂′Yi−1 ≤ y), Ln(y) :=
1

θ̂0 + φ(y)

(
1

ξ̃n(y)φ̇(y)

)
,(2.14)

νn(y) :=

∫
x≤y

Ln(x)dGn(x), An(y) :=

∫ ∞

y

νn(z)ν
′
n(z)dGn(z),

J̃n(y) :=

∫ y

0

νn(z)
′A−1

n (z)

∫ ∞

z

νn(s)dVn(s, θ̂)dGn(z),

W̃n(y) := Vn(y, θ̂)− J̃n(y), y > 0.
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Again, using the arguments similar to those used in Koul and Stute (1999) or Khmaladze

and Koul (2004, 2009) and the tightness of the process Vn(·, θ) proved in Lemma 2.4 here,

we can prove that W̃n(y, δ̂n) →D σ2B ◦ G, in D[0,∞) and uniform metric. Consequently,

tests based on continuous functionals of the process W̃n(y, δ̂n), y ≥ 0 will be asymptotically

distribution free. In particular, the test that rejects H0 whenever

σ̂−1
n sup

0≤y<∞
|W̃n(y, θ̂)| > bα

is of the asymptotic size α, where bα be such that P (sup0≤t≤1 |B(t)| > bα) = α and

σ̂2
n := n−1

n∑
i=1

( Yi

θ̂0 + φ(θ̂′Yi−1)
− 1
)2
.

A computational formula for the above process is as follows. Let Xi−1 = θ̂′Yi−1, η̂i ={
Yi/[θ̂0 + φ(Xi−1)]

}
− 1. Then

J̃n(y) = n−3/2

n∑
j=1

η̂jνn(Xj−1)
′

n∑
i=1

A−1
n (Xi−1)νn(Xi−1)I(Xj−1 ≤ Xi−1 ∧ y),

W̃n(y) = n−1/2

n∑
j=1

η̂j

{
I(Xj−1 ≤ y)

−n−1

n∑
i=1

νn(Xj−1)
′A−1

n (Xi−1)νn(Xi−1)I(Xj−1 ≤ Xi−1 ∧ y)
}
.

As an example consider the problem of fitting an autoregressive conditional duration

(ACD(p, 0)) model given by

Yi = ψ(Yi−1, δ0)εi, ψ(Yi−1, δ0) = θ0 + φ(θ′Yi−1),

φ(θ′Yi−1) := θ1Yi−1 + θ2Yi−2 + · · ·+ θpYi−p,

where {εi} is a sequence of iid non-negative r.v.’s with unit mean and finite variance. The

resulting sequence {Yi} defined by the above ACD(p, 0) is a pth order Markov sequence,

which is weakly stationary if θ1 + θ2 + · · · + θp < 1. The unconditional mean is given by

E(Yi) = θ0/[1− θ1 − θ2 − . . .− θp], which requires θ0 to be positive.

In general the rv εi could follow any continuous distribution on the non-negative sup-

port with required moment conditions. If, for example, we assume that εi follows a unit

exponential distribution, then the conditional pdf of Yi, given Yi−1 is

f(yi|Yi−1) =
1

ψ(Yi−1, δ0)
e−yi/ψ(Yi−1,δ0).
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One can use likelihood based on this density to estimate δ.

In this example φ(x) ≡ x and the condition (φ) is a priori satisfied with φ̇ ≡ 1. Thus the

above testing procedure is applicable for fitting ACD(p, 0) model to the given time series.

Similarly it is also applicable to fit an ARCH(p) model given by

Xi = σi ζi, σ2
i = θ0 + θ1X

2
i−1 + θ2X

2
i−2 + · · ·+ θpX

2
i−p,

where {ζi} is a sequence of iid symmetric rvs with mean zero and finite variance. If we

define Yi = X2
i and ζ2i = εi and σ

2
i = ψi then the ARCH(p) model becomes an ACD(p,0)

model. Hence the conditions for stationarity and other distributional properties will follow

similarly. In particular if we assume standard normal distribution for ζi then Yi becomes an

ACD model with Chi-square-1 innovations.

3 Proofs

This section contains the proof of Lemma 2.1, which is facilitated by the following preliminary

result. Let γ be a measurable function from [0,∞)p×R to R, ηi := [εi/φ(θ
′Yi−1)]−1, i ∈ Z,

and define, for y ∈ R+, s ∈ Rp, b ∈ R,

Hn(y, s, b) := n−1

n∑
i=1

γ(Yi−1, ηi)I
(
(θ + n−1/2s)′Yi−1 ≤ y + bn−1/2∥Yi−1∥

)
,

Hn(y) := n−1

n∑
i=1

γ(Yi−1, ηi)I
(
θ′Yi−1 ≤ y

)
, H(y) := Eγ(Y0, η1)I

(
θ′Y0 ≤ y

)
.

We are now ready to state the first preliminary result.

Lemma 3.1 Let {Yi, i ∈ Z} be a stationary and ergodic time series satisfying E∥Y0∥2 <∞,

(1.1), (1.2), and having continuous stationary distribution. Let γ be a non-negative function

on [0,∞)p × R satisfying Eγ(Y0, η1) <∞. Then, for every 0 < c <∞, b ∈ R,

sup
y≥0,∥s∥≤c

∣∣Hn(y, s, b)−H(y)
∣∣ = op(1).(3.1)

Proof. By using a Glivenko-Cantelli type argument where [0,∞] is totally bounded by the

nondecreasing bounded function H(y), and by the Ergodic Theorem,

sup
y≥0

|Hn(y)−H(y)| = o(1), a.s.(3.2)

Stationarity and the assumption E∥Y0∥2 <∞ imply

max
1≤i≤n

n−1/2∥Yi−1∥ = op(1).(3.3)

10



Thus for every ϵ > 0 there is an Nϵ such that P (An) > 1 − ϵ, for all n > Nϵ, where

An := {max1≤i≤n n
−1/2∥Yi−1∥ ≤ ϵ}. But, on An, for all ∥s∥ ≤ c, b ∈ R,

Hn(y − (c+ b)ϵ) ≤ Hn(y, s, b) ≤ Hn(y + (c+ b)ϵ), ∀ y ≥ 0.

The claim (3.1) follows from these inequalities, (3.2), and the continuity of the stationary

distribution, thereby completing the proof of the lemma.

Next, consider, for y ≥ 0,

R̂n3(y) := n−1

n∑
i=1

ḣ(δ0,Yi−1)

h(δ0,Yi−1)
I
(
θ̂′Yi−1 ≤ y

)
, Ŝn3(y) :=

1

n

n∑
i=1

ηi
ḣ(δ0,Yi−1

h(δ0,Yi−1

I{θ̂′Yi−1 ≤ y}.

We have

Corollary 3.1 Under the assumptions of Theorem 2.1,

sup
y≥0

∥∥R̂n3(y)− ν(y, δ0)
∥∥ = op(1).(3.4)

sup
y≥0

∥∥Ŝn3(y)∥∥ = op(1).(3.5)

Proof. Proof of (3.4). Let

r0(δ0,Yi−1) :=
1

h(δ0,Yi−1)
, rj(δ0,Yi−1) := Yi−j

φ̇(θ′Yi−1)

h(δ0,Yi−1)
, j = 1, · · · , p,

Tj(y, s) := n−1

n∑
i=1

rj(δ0,Yi−1)I{(θ + n−1/2s)′Yi−1 ≤ y}, j = 0, 1, · · · , p,

T (y, s) := (T0(y, s), T1(y, s), · · · , Tp(y, s))′, y ≥ 0, s ∈ Θ1.

Then with s = n1/2(θ̂− θ), R̂n3(y) = T (y, s). Thus, in view of the assumption (C), to prove

(3.4), it suffices to show that for every 0 < c <∞,

sup
y≥0,∥s∥≤c

∥∥T (y, s)− ν(y, δ0)
∥∥ = op(1).(3.6)

But note that the jth coordinates of T (y, s) and ν(y, δ0) are like the H(y, s, 0) and H(y) of

Lemma 3.1 with γ = rj, j = 0, · · · , p, respectively. Thus (3.6) follows from Lemma 3.1 upon

writing rj = r+j − r−j and applying that lemma with γ = r±j for each j = 0, · · · , p.

Proof of (3.5). Follows similarly from Lemma 3.1 upon applying it with the gamma

functions γ0(x, z) := z/h(δ0, x), γj(x, z) := (φ̇(θ′x)/h(δ0, x)) z xj, j = 1, · · · , p. In this case

the corresponding H functions are as follows.

H0(y) = Eγ0(Y0, η1)I{θ′Y0 ≤ y} = E
( 1

h(δ0,Y0)
I{θ′Y0 ≤ y}

)
E(η1) = 0,

Hj(y) = E
φ̇(θ′Y0)

h(δ0,Y0)
η1Y0I{θ′Y0 ≤ y} ≡ 0,

11



because of the independence of η1 and Y0 and because Eη1 = 0. This completes the proof

of the corollary.

Proof of Lemma 2.1. We will follow the structure of the proof of uniform Glivenko-

Cantelli theorems in van der Vaart and Wellner (1997) (VW). Accordingly, let ξi, i ∈ Z be

an independent copy of the errors ηi, i ∈ Z and ζ, ζi, i ∈ Z, be i.i.d. r.v.’s, independent of

Yi, ηi, i ∈ Z, with P (ζ = 1) = P (ζi = −1) = 1/2. For any r.v. Z, let PZ (EZ) denote the

conditional probability distribution (expectation) of Z, given all other r.v.’s. Then

Eη sup
y≥0,∥s∥≤c

|Vn(y, s)− Vn(y, 0)|

= Eη sup
y≥0,∥s∥≤c

∣∣∣∣ 1√
n

n∑
i=1

{
[g(Yi−1, ηi)− Eξ{g(Yi−1, ξi)|Fi−1}]

×[I((θ + n−1/2s)′Yi−1 ≤ y)− I(θ′Yi−1 ≤ y)]

}∣∣∣∣
≤ EηEξ

{
sup

y≥0,∥s∥≤c

∣∣∣∣ 1√
n

n∑
i=1

[g(Yi−1, ηi)− g(Yi−1, ξi)]

×[I((θ +
s√
n
)′Yi−1 ≤ y)− I(θ′Yi−1 ≤ y)]

∣∣∣∣∣∣∣F0

}
= EζEηEξ

{
sup

y≥0,∥s∥≤c

∣∣∣∣ 1√
n

n∑
i=1

ζi[g(Yi−1, ηi)− g(Yi−1, ξi)]

×[I((θ +
s√
n
)′Yi−1 ≤ y)− I(θ′Yi−1 ≤ y)]

∣∣∣∣∣∣∣F0

}
≤ 2EζEη

{
sup

y≥0,∥s∥≤c

∣∣∣∣ 1√
n

n∑
i=1

ζig(Yi−1, ηi)

×[I((θ +
s√
n
)′Yi−1 ≤ y)− I(θ′Yi−1 ≤ y)]

∣∣∣∣}.
Now note that the process

W (y, s) :=
1√
n

n∑
i=1

ζig(Yi−1, ηi)[I((θ +
s√
n
)′Yi−1 ≤ y)− I(θ′Yi−1 ≤ y)]

is a Rademacher process Xf indexed by the functions

f =
1√
n
g(Yi−1, ηi)[I((θ +

s√
n
)′Yi−1 ≤ y)− I(θ′Yi−1 ≤ y)], i = 1, . . . , n.

We shall follow the proof of 2.4.3 in VW.

Accordingly, let Pn be the empirical measure based on (Yi−1, ηi), i = 1, ..., n. For any

ϵ > 0, let G be an ϵ-net in L1(Pn) over

12



F =
{
f : f(z, η) = g(z, η)[I((θ +

s√
n
)′z ≤ y)− I(θ′z ≤ y)] :

z ∈ [0,∞)p, s ∈ Rp, y ≥ 0, ∥s∥ ≤ c
}
.

Then

sup
y≥0,∥s∥≤c

|W (y, s)| = sup
f∈F

∣∣∣∣ 1√
n

n∑
i=1

ζif(Yi−1, ηi)

∣∣∣∣.
Moreover,

Eδ sup
f∈F

∣∣∣∣ 1√
n

n∑
i=1

ζif(Yi−1, ηi)

∣∣∣∣ ≤ Eδ sup
f∈G

∣∣∣∣ 1√
n

n∑
i=1

ζif(Yi−1, ηi)

∣∣∣∣+ ϵ.

Using a maximal inequality with the appropriate Orlicz norm for ex
2−1 taken over ζ1, · · · , ζn

with the rest of variables fixed and using Hoeffding’s inequality for the Rademacher process

as on pages 123–124 in VW, we bound the above expectation further by

C(1 + logN(ϵ,F , L1(Pn)))
1/2 sup

f∈G

(
1

n

n∑
i=1

f 2(Yi−1, ηi)

)1/2

+ ϵ,

where {y ≥ 0, ∥s∥ ≤ c} is a VC class, so the cardinality of G is N(ϵ,F , L1(Pn)) ≤ CV ϵ
−(V−1)

with a finite VC dimension V > 1. The last supremum above can be further bounded from

the above by

sup
f∈G

(
1

n

n∑
i=1

f 2(Yi−1, ηi)

)
= sup

y≥0,∥s∥≤c

(
1

n

n∑
i=1

g2(Yi−1, ηi)
[
I((θ +

s√
n
)′Yi−1 ≤ y)− I(θ′Yi−1 ≤ y)

]2)
= sup

y≥0,∥s∥≤c

(
1

n

n∑
i=1

g2(Yi−1, ηi)|I((θ +
s√
n
)′Yi−1 ≤ y)− I(θ′Yi−1 ≤ y)|

)
≤ sup

y≥0,∥s∥≤c

(
1

n

n∑
i=1

g2(Yi−1, ηi)I(θ
′Yi−1 is between y, y − s√

n

′
Yi−1)

)
≤ sup

y≥0

(
1

n

n∑
i=1

g2(Yi−1, ηi)I(θ
′Yi−1 ∈ [y − c∥Yi−1∥√

n
, y +

c∥Yi−1∥√
n

])

)
= op(1).

The last claim follows from Lemma 3.1 because the process in the last but one bound equals

Hn(y, 0, c)−Hn(y, 0,−c) of Lemma 3.1 with γ = g2.

Proof of Lemma 2.2. Apply the CLT for martingales (Hall and Heyde: 1980, Corollary

3.1) to show that the fidis tend to the right limit.
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The proof of tightness is given in the following two lemmas, where σ2 = Eη2. Since δ0 is

fixed, we shall write Vn(y) for Vn(y, δ0) in this proof. Let Zi := θ′Yi−1, and η
′
i, i ∈ Z be an

independent copy of ηi. Let

V ′
n(z) = n−1/2

n∑
i=1

η′iI(Zi−1 ≤ z), z ≥ 0.

Recall the definition of Gn from (2.14). Upon taking γ ≡ 1, b = 0, s = 0 in (3.1), we see

that Hn(y, 0, 0) ≡ Gn(y), H(y) ≡ G(y). Hence from (3.1), we obtain

lim
n

sup
z

|Gn(z)−G(z)| = 0, a.s.(3.7)

Let R+ := [0,∞], ρ(y, z) = |G(y)−G(z)|, y, z ∈ R+, and, for f : R+ → R,

∥f∥δ = sup
y,z∈R+:ρ(y,z)<δ

|f(y)− f(z)|.

We are now ready to state an inequality useful in proving the tightness of Vn.

Lemma 3.2 (Symmetrization Lemma): For ϵ, γ, δ > 0 fixed with ϵ < γ and δ < ϵ2/3σ2,

P (∥Vn∥δ > γ) ≤ (1− 3δσ2/ϵ2)−1P (∥Vn − V ′
n∥δ > γ − ϵ) + P (sup

k≥n
sup
z∈R+

|Gk(z)−G(z)| > δ).

Proof: Let Pη′ and Eη′ denote the conditional probability measure and expectation, respec-

tively, given ηi, Zi, i ∈ Z. Let ρn(y, z) := |Gn(y)−Gn(z)|, and

Bn(γ; y, z) :=
[
|Vn(y)− Vn(z)| > γ

]
, Bn(γ, δ) :=

[
∥Vn∥δ > γ

]
.

Note

Bn(γ, δ) = ∪y,z∈R+:ρ(y,z)<δBn(γ; y, z).

For fixed y, z ∈ R+ with ρ(y, z) < δ,

Bn(γ; y, z) ∩
[
∥Vn − V ′

n∥δ > γ − ϵ
]
⊃ Bn(γ; y, z) ∩

[
|V ′
n(y)− V ′

n(z)| < ϵ
]
.

Since Eη′(V ′
n(y)−V ′

n(z)) = 0 and Eη′(V ′
n(y)−V ′

n(z))
2) = σ2ρn(y, z), Chebyshev’s inequality

gives Pη′
(
|V ′
n(y)− V ′

n(z)| < ϵ
)
≥ 1− σ2ρn(y, z)/ϵ

2. Then

I
(
Bn(γ; y, z)

)
Pη′
(
∥Vn − V ′

n∥δ > γ − ϵ
)

≥ I(Bn(γ; y, z))Pη′
(
|V ′
n(y)− V ′

n(z)| < ϵ
)

≥ I(Bn

(
γ; y, z)

)(
1− σ2ρn(y, z)/ϵ

2
)
.

Let

An(δ) = ∪k≥n
[
sup
z∈R+

|Gk(z)−G(z)| > δ
]
.
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Using the triangle inequality, on Acn(δ), ρk(y, z) ≤ 2δ+ρ(y, z) for all k ≥ n, y, z ∈ R+. Then

for y, z ∈ R+ with ρ(y, z) < δ,

I
(
Bn(γ; y, z) ∩ Acn(δ)

)
Pη′
(
∥Vn − V ′

n∥δ > γ − ϵ
)

≥ I
(
Bn(γ; y, z) ∩ Acn(δ)

)(
1− σ2ρn(y, z)/ϵ

2
)

≥ I
(
Bn(γ; y, z) ∩ Acn(δ)

)(
1− 3σ2δ/ϵ2

)
.

This, in turn, gives

I
(
Bn(γ, δ) ∩ Acn(δ)

)(
1− 3σ2δ/ϵ2

)
≤ I

(
Bn(γ, δ) ∩ Acn(δ)

)
Pη′
(
∥Vn − V ′

n∥δ > γ − ϵ|F
)

≤ Pη′
(
∥Vn − V ′

n∥δ > γ − ϵ
)

and

I
(
Bn(γ, δ)

)
≤ I

(
Bn(γ, δ) ∩ Acn(δ)

)
+ I(An(δ))

≤
(
1− 3σ2δ/ϵ2

)−1
Pη′
(
∥Vn − V ′

n∥δ > γ − ϵ
)
+ I(An(δ)

)
.

Now take the expectation to obtain

P
(
∥Vn∥δ > γ

)
≤ (1− 3δσ2/ϵ2)−1P

(
∥Vn − V ′

n∥δ > γ − ϵ
)
+ P (An(δ)).

From the above inequality it thus suffices to prove the tightness of the given process when

ηi are symmetric around zero, which is done in the next lemma.

Lemma 3.3 Suppose η is symmetrically distributed around 0 and Eη2 < ∞. Then for any

fixed δ0 the process Vn(·, δ0) is sub-Gaussian with the semi-metric d(y, z) = (σ2ρ(y, z))1/2, y, z ∈
[0,∞], that is, for any y, z, x > 0,

lim sup
n

P
(
|Vn(z, δ0)− Vn(y, δ0)| > x

)
≤ 2 exp

(
− x2

2d2(y, z)

)
.(3.8)

Proof. Without the loss of generality assume y < z. As before, let Zi−1 := θ′Yi−1. Recall

Zi−1, i ≥ 1 is a stationary process and G denotes the d.f. of Z0.

Let ζ, ζi, i = 1, · · · , Pζ and Eζ be as in the proof of Lemma 2.1. Then by the assumed

symmetry of {ηi}, ηi = ζi|ηi|, i ≥ 1, in distribution. Then, by the Hoeffding (1964) inequality,

∀x > 0,∀n ≥ 1,

Pζ

{
|Vn(z, δ0)− Vn(y, δ0)| > x

}
= Pζ

{∣∣∣ n∑
i=1

ζi
|ηi|√
n
(I(y < Zi−1 ≤ z)

∣∣∣ > x
}

≤ 2 exp
(
− x2/2d2∗(y, z)

)
,

where

d2∗(y, z) =
1

n

n∑
i=1

η2i I(y < Zi−1 ≤ z).
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Note that because of the independence of ηi and Y i−1, Ed
2
∗(y, z) = σ2ρ(y, z), and by (3.7),

d2∗(y, z) → d2(y, z), a.s., from which the lemma follows.

Proof of Lemma 2.2 contd. Use Corollary 2.2.8 of VW and its proof together with (3.8)

to obtain that for every r > 0 and all sufficiently large n,

E sup
d(y,z)≤r

|Vn(z, δ0)− Vn(y, δ0)| ≤ K
√
2σ2

∫ r

0

√
lnD(τ, d)dτ,

where D(τ, d) = 2σ2/τ 2 is the maximal packing number of (R+, d), which is the maximal

number of τ -separated points; K is an absolute constant. Straightforward algebra shows

that
√
2σ2

∫ r
0

√
lnD(τ, d)dτ = σ2

∫∞
ln(2σ2/r2)

√
ve−vdv. Then, by the Markov inequality, for

any γ > 0,

P{ sup
d(y,z)≤r

|Vn(z, δ0)− Vn(y, δ0)| > γ} ≤ Kσ2γ−1

∫ ∞

ln(2σ2/r2)

√
ve−vdv.

Since the integral is bounded by Γ(3/2) then for any γ > 0 and γ1 > 0 with γγ1 ≥ Kσ2Γ(3/2)

and for every r > 0 and all sufficiently large n,

P{ sup
d(y,z)≤r

|Vn(z, δ0)− Vn(y, δ0)| > γ} ≤ γ1,

thereby completing the proof of the tightness of the process Vn(·, δ0) when ηi are symmetric

around zero. This fact together with Lemma 3.2 in turn proves the tightness of this process

for general ηi’s. This in turn completes the proof of Lemma 2.2.

Proof of (2.13). Recall δ0 = (θ0, θ
′)′ and G is the d.f. of θ′Y0. Fix 0 ≤ y1 < y2 <∞. Note

that EJn(y, δ0) ≡ 0 and by (2.3),

Cov
(
Wn(y1, δ0),Wn(y2, δ0)

)
= σ2G(y1 ∧ y2)− EVn(y1, δ0)Jn(y2, δ0)

−EVn(y2, δ0)Jn(y2, δ0) + EJn(y1, δ0)Jn(y2, δ0).

Observe that

Jn(y, δ0) = n−1/2

n∑
i=1

ηi

∫ y

0

ν(z, δ0)
′A−1

δ0
(z)ν(θ′Yi−1, δ0)I(θ

′Yi−1 ≥ z)dG(z).

Fix 0 ≤ y1 ≤ y2 <∞. Then, by the Fubini Theorem,

EJn(y1, δ0)Jn(y2, δ0)

= σ2E
{∫ y1

0

ν(s, δ0)
′A−1

δ0
(s)ν(θ′Y0, δ0)I(θ

′Y0 ≥ s)dG(s)

×
∫ y2

0

ν(θ′Y0, δ0)
′I(θ′Y0 ≥ z)A−1

δ0
(z)ν(z, δ0)dG(z)

}
= σ2

∫ y1

0

ν(s, δ0)
′A−1

δ0
(s)

∫ y2

0

A(z ∨ s, δ0)A−1
δ0
(z)ν(z, δ0)dG(z)dG(s)
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= 2σ2

∫ y1

0

∫ y1

s

ν(z, δ0)
′A−1

δ0
(s)ν(s, δ0)dG(z)dG(s)

+σ2

∫ y1

0

ν(s, δ0)
′A−1

δ0
(s)

∫ y2

y1

ν(z, δ0)dG(z) dG(s).

Similarly,

EVn(y1, δ0)Jn(y2, δ0)

= σ2

∫ y2

0

EI(θ′Y0 ≤ y1)ν(θ
′Y0, δ0)

′I(θ′Y0 ≥ s)A−1
δ0
(s)ν(s, δ0)dG(s)

= σ2

∫ y1

0

∫ y1

s

ν(z, δ0)
′A−1

δ0
(s)ν(s, δ0)dG(z)dG(s),

EVn(y2, δ0)Jn(y1, δ0)

= σ2

∫ y1

0

Eν(θ′Y0, δ0)
′I(θ′Y0 ≥ s, θ′Y0 ≤ y2)A

−1
δ0
(s)ν(s, δ0)dG(s)

= σ2

∫ y1

0

∫ y1

s

ν(z, δ0)
′A−1

δ0
(s)ν(s, δ0)dG(z)dG(s)

+σ2

∫ y1

0

∫ y2

y1

ν(z, δ0)
′A−1

δ0
(s)ν(s, δ0)dG(z)dG(s).

From the above derivations one readily sees that

EVn(y1, θ)Jn(y2, θ) + EVn(y2, θ)Jn(y1, θ) = EJn(y1, θ)Jn(y2, θ),

thereby completing the proof of (2.13).
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