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Abstract

This paper derives the consistency and asymptotic distribution of the bias cor-

rected least squares estimators (LSEs) of the regression parameters in linear regression

models when covariates have measurement error and errors and covariates form mu-

tually independent long memory moving average processes. In the structural mea-

surement error linear regression model, the nature of the asymptotic distribution

of suitably standardized bias corrected LSEs depends on the range of the values of

Dmax = max{dX +dε, dX +du, du+dε, 2du}, where dX , du, and dε are the long memory

parameters of the covariate, measurement error and regression error processes, respec-

tively. This limiting distribution is Gaussian when Dmax < 1/2 and non-Gaussian in

the case Dmax > 1/2. In the former case some consistent estimators of the asymp-

totic variances of these estimators and a log(n)-consistent estimator of an underlying

long memory parameter are also provided. They are useful in the construction of the

large sample confidence intervals for regression parameters. The paper also discusses

the asymptotic distribution of these estimators in some functional measurement error

linear regression models, where the unobservable covariate is non-random. In these

models, the limiting distribution of the bias corrected LSEs is always a Gaussian dis-

tribution determined by the range of the values of dε − du.

1 Introduction

The classical regression analysis often assumes that both the response variable and the

predicting variables are fully observable and that the errors are independent. But, as is evi-

denced in the monographs of Fuller (1987), Cheng and Van Ness (1999), Carroll, Ruppert,

Stefanski and Craineceanu (2006), and the references therein, there are numerous exam-

ples of practical importance where the predicting variables are not observable. Instead one

observes surrogates that provide estimates of the true predictors. Such models are known

as the regression models with measurement error. On the other hand there are examples

from the various scientific disciplines where observed data do not obey the assumption of
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independence. Instead one observes data that are generated by some long memory (LM)

processes. In economics the first authors to point out the usefulness of these processes were

Granger and Joyeux (1980) and Hosking (1981). The monographs of Giraitis, Koul and Sur-

gailis (2012) and Beran, Feng, Ghosh and Kulik (2013), and the references therein, contain

numerous other examples of LM processes and relevant theoretical results.

The focus of this paper is to study the consistency and asymptotic distribution theory

of the bias corrected LSEs of the parameters in linear regression models when predicting

variables have measurement error (ME) and when the covariate, the regression error and

measurement error processes have LM. We discuss both structural and functional models.

In the former, the predicting variables are random while in the latter they are non-random.

An example of a simple structural ME linear regression model with LM in regression

and measurement error processes is provided by the so called Phillips Curve, Phillips (1958),

which uses the unemployment rate to predict the inflation rate. The unemployment rate is

known to have long memory and measurement error. See Blanchard and Summers (9187) and

Shiskin and Stein (1975). Another example is provided in finance when studying uncovered

interest parity, where forward premium, used as a predicting variable, is known to have

measurement error and long memory, and where the regression errors are also known to

have long memory. See Cornell (1989), Bekaert and Hodrick (1993) and Baillie (1996). The

results of the current paper would be applicable to these models.

For the sake of transparency, we first discuss the simple structural measurement error

(ME) linear regression model in the next section, where the long memory moving average

(LMMA) models along with the needed assumptions are also described. It also contains the

proof of the consistency of the bias corrected LSEs in this model. The derivation of the

asymptotic distribution of suitably standardized versions of these estimators is facilitated

by the derivation of the limiting distributions of some general quadratic forms of LMMA

processes given in Section 3. These results in turn are used in Sections 4 and 5 to derive the

limiting distributions of the bias corrected LSEs in the simple and multiple structural ME

linear regression models, respectively. Section 6 contains similar results for the functional ME

simple linear regression model where the true unobservable predicting variable is nonrandom.

These limiting distributions are non Gaussian when Dmax > 1/2 and Gaussian when

Dmax < 1/2. The results in the latter case are used to construct asymptotic confidence

intervals for the underlying regression parameters in Remark 4.2, where we also provide

HAC estimators of asymptotic variances of the bias corrected LSEs and a log(n)-consistent

estimator of an underlying long memory parameter that are needed for the construction of

these intervals. Section 7 contains the proofs of the main results of Sections 3 and 4. The

proof of the consistency of a residuals based HAC estimator under the current set up appears

in the supplement [Koul and Surgailis (2018)] to this paper.
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2 Simple structural ME linear regression model

In this section we shall focus on the simple structural ME linear regression model and

establish the consistency of the bias corrected LSEs. In this model the unobserved predicting

r.v. Xi, the observable random surrogate Zi and the response Yi are related to each other by

the following relations. For some real numbers α, β,

Yi = α + βXi + εi, Zi = Xi + ui, Eεi = 0, Eui = 0, i ∈ Z := {0,±1, · · · }.(2.1)

Moreover, we assume that the process {(εi, Xi, ui); i ∈ Z} is strictly stationary and

ergodic and each of these processes form a LMMA as in the following assumptions.

Assumption (E) Errors {εi} form a moving average process

εi =
∞∑
k=0

bkζi−k, i ∈ Z,(2.2)

where {ζs; s ∈ Z} are i.i.d., with zero mean and unit variance, with coefficients

bj ∼ κε j
−(1−dε), as j → ∞, for some 0 < κε <∞ and 0 < dε < 1/2.(2.3)

Assumption (X) Covariates {Xi} form a LMMA process

(2.4) Xi = µX +
∞∑
k=0

akξi−k, i ∈ Z, with MA coefficients aj ∼ κXj
−(1−dX), j → ∞,

for some µX ∈ R, κX > 0, 0 < dX < 1/2, and standardized i.i.d. innovations {ξs}.

Assumption (U) Measurement errors {ui} form a LMMA process

(2.5) ui =
∞∑
k=0

ckηi−k, i ∈ Z, with MA coefficients cj ∼ κuj
−(1−du), j → ∞

for some κu > 0, 0 < du < 1/2, and standardized i.i.d. innovations {ηs}. Moreover, σ2
u0

:=

Var(u0) is known.

Assumption (I) The innovation sequences {ζs; s ∈ Z}, {ξs; s ∈ Z} and {ηs; s ∈ Z} are

mutually independent.

From now on let ε,X, u, ζ, ξ, η denote copies of ε0, X0, u0, ζ0, ξ0, η0, respectively. For any

r.v. U with finite variance, let σ2
U := Var(U). We also let B(a, b) :=

∫ 1

0
xa−1(1−x)b−1dx, a >

0, b > 0.

The above assumptions imply that for each i ∈ Z, the r.v.’s εi, Xi, ui are mutually

independent and

0 < σ2
ε = Eε2 =

∞∑
k=0

b2k <∞, 0 < σ2
X = EX2 =

∞∑
k=0

a2k <∞.

0 < σ2
u = Eu2 =

∞∑
k=0

c2k <∞.
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From (7.2.10) of Giraitis, Koul and Surgailis (2012) (GKS), we obtain that

Cov(ε0, εk) ∼ κ2εB(dε, 1− 2dε)k
−(1−2dε), Cov(X0, Xk) ∼ κ2XB(dX , 1− 2dX)k

−(1−2dX),(2.6)

Cov(u0, uk) ∼ κ2uB(du, 1− 2du)k
−(1−2du), k → ∞.

The sums of the absolute values of each of these covariances diverge, which implies that each

of the processes {εi}, {Xi} and {ui} has long memory.

To proceed further, for any two sets of variables Ui, Vi, 1 ≤ i ≤ n, let

Ū := n−1

n∑
i=1

Ui, SUV := n−1

n∑
i=1

(Ui − Ū)(Vi − V̄ ).

In the sequel, all limits are taken as n→ ∞, unless mentioned otherwise.

The naive LSEs of α, β, where one simply replaces Xi’s in the classical LSE by Zi’s, are

β̃ := SZY /SZZ , α̃ := Ȳ − β̃Z̄. As argued say in Fuller (1987), under the classical i.i.d. and

finite variance set up, β̃−β → −β σ2
u/(σ

2
X+σ2

u), a.s. Hence these estimators are inconsistent.

The bias correct estimators suitable here are

β̂ := SZY /(SZZ − σ2
u), α̂ := Ȳ − β̂Z̄.(2.7)

We shall first establish the consistency of these estimators under the assumed stationarity,

ergodicity and long memory set up. Rewrite Yi = α + βZi + εi − βui, Zi = Xi + ui. Let

Tn := n−1

n∑
i=1

(Zi − Z̄)(εi − βui).

Use the relation Zi = Xi + ui, to obtain the decomposition

Tn = n−1

n∑
i=1

(Xi − X̄)(εi − βui) + n−1

n∑
i=1

(ui − ū)εi − βn−1

n∑
i=1

(ui − ū)2(2.8)

= SXε − βSXu + Suε − βSuu.

By the mutual independence of εi, Xi, ui and the assumption that Eεi ≡ 0, Eui ≡ 0,

E(Tn) = −βE(Suu) = −β
[
σ2
u − Var(ū)

]
.

By (2.6), Var(ū) = O(n2du−1) → 0 and by the Ergodic Theorem and the assumed stationarity,

Tn → −βσ2
u, SZZ − σ2

u → σ2
X > 0, a.s.

These facts now clearly imply that

β̂ − β =
SZY

SZZ − σ2
u

− β =
Tn + βσ2

u

SZZ − σ2
u

→ 0, a.s.,(2.9)
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thereby proving the strong consistency of β̂ for β. This fact and the Ergodic Theorem in

turn imply that α̂ → α, a.s.

The derivation of the asymptotic distributions of suitably standardized versions of these

estimators and their analogs in multiple linear regression model is facilitated by the more

general asymptotic distributional results about certain quadratic forms established in the

next section.

3 Limit theorem for quadratic forms

Let γt,i =
∑∞

k=0 bk,iξt−k,i, t ∈ Z, i = 1, · · · ,m be m mutually independent LMMA processes

with MA coefficients bk,i ∼ κik
di−1, di ∈ (0, 1/2), κi > 0 with i.i.d. mutually independent

innovations {ξs,i} ∼ IID(0, 1), i = 1, · · · ,m. Let Πm ⊂ {(i, j); 1 ≤ i ≤ j ≤ m} be a non-

empty subset of the set of all ordered pairs (i, j), 1 ≤ i ≤ j ≤ m and γi := {γt,i; t ∈ Z}.
Define the sample cross-covariance between γi and γj to be

Sγi,γj = n−1

n∑
t=1

(γt,i − γ̄i)(γt,j − γ̄j), (i, j) ∈ Πm.

We also need to define the normalizing sequence as follows.

δmax := max{di + dj; (i, j) ∈ Πm},(3.1)

A(n) :=


n1−δmax , δmax > 1/2,

n1/2, δmax < 1/2,

(n/ log n)1/2, δmax = 1/2.

We are interested in deriving the asymptotic joint distribution of normalized quadratic forms

Sn :=
{
A(n)

(
Sγi,γj − ESγi,γj

)
; (i, j) ∈ Πm

}
.(3.2)

As shown below, the limit distribution of Sn is Gaussian or non-Gaussian depending on

whether δmax ≤ 1/2 or δmax > 1/2. Before describing this distribution, we need to recall some

preliminaries. From GKS, pp.410-411, we recall the definition of the stochastic integrals

(3.3) Ii(f) =

∫
R
f(s)Wi(ds), Iij(g) =

∫
R2

g(s1, s2)Wi(ds1)Wj(ds2)

w.r.t. independent Brownian motions Wi, i = 1, · · · ,m (for i = j the second integral in (3.3)

coincides with the usual double Wiener-Itô integral w.r.t. Wi). The integrals Ii(f), Iij(g),

(i, j) ∈ Πm are jointly defined for any non-random integrands f ∈ L2(R), g ∈ L2(R2).

Moreover, EI(f) = EIij(g) = 0 and

EIi(f)Ii′(f
′) =

0, i ̸= i′,

⟨f, f ′⟩, i = i′,
f, f ′ ∈ L2(R),(3.4)

EIi(f)Ii′j′(g) = 0, ∀i, i′, j′, f ∈ L2(R), g ∈ L2(R2),
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EIij(g)Ii′j′(g
′) =


0, (i, j) ̸= (i′, j′),

⟨g, g′⟩, (i, j) = (i′, j′), i ̸= j,

2⟨g, symg′⟩, i = i′ = j = j′,

g, g′ ∈ L2(R2),

where ⟨f, f ′⟩ =
∫
R f(s)f

′(s)ds (∥f∥ :=
√

⟨f, f⟩), ⟨g, g′⟩ =
∫
R2 g(s1, s2)g

′(s1, s2)ds1ds2 (∥g∥
:=
√
⟨g, g⟩) denote scalar products (norms) in L2(R) and L2(R2), respectively, and sym

denotes the symmetrization, see GKS, sections 11.5 and 14.3.

Let Π+
m := {(i, j) ∈ Πm; di + dj > 1/2}. Introduce

fdi(s) := κi

∫ 1

0

(t− s)di−1
+ dt, 1 ≤ i ≤ m,(3.5)

g̃di,dj(s1, s2) := κiκj

∫ 1

0

(t− s1)
di−1
+ (t− s2)

dj−1
+ dt,

gdi,dj(s1, s2) := g̃di,dj(s1, s2)− fdi(s1)fdj(s2), (i, j) ∈ Π+
m.

Then fdi ∈ L2(R), g̃di,dj ∈ L2(R2), gdi,dj ∈ L2(R2), see GKS, Prop.11.5.6. Observe that

⟨g̃di,dj , fdi ⊗ fdj⟩/κ2iκ2j(3.6)

=

∫
R2

ds1ds2

∫ 1

0

(t− s1)
di−1
+ (t− s2)

dj−1
+ dt

∫ 1

0

(t1 − s1)
di−1
+ dt1

∫ 1

0

(t2 − s2)
dj−1
+ dt2

=

∫
(0,1]3

dtdt1dt2

∫
R
(t− s1)

di−1
+ (t1 − s1)

di−1
+ ds1

∫
R
(t− s2)

dj−1
+ (t2 − s2)

dj−1
+ ds2

=
B(di, 1− 2di)B(dj, 1− 2dj)

2didj

( 1

1 + 2(di + dj)
+B(2di + 1, 2dj + 1)

)
.

In a similar way,

∥fdi∥2 = κ2i

∫
(0,1]2

dt1dt2

∫
R
(t1 − s)di−1

+ (t2 − s)di−1
+ ds(3.7)

= κ2iB(di, 1− 2di)

∫
(0,1]2

|t1 − t2|2di−1dt1dt2 =
κ2iB(di, 1− 2di)

di(1 + 2di)
,

and

∥g̃di,dj∥2(3.8)

= κ2iκ
2
j

∫
(0,1]2

dt1dt2

∫
R
(t1 − s1)

di−1
+ (t2 − s1)

di−1
+ ds1

∫
R
(t1 − s2)

dj−1
+ (t2 − s2)

dj−1
+ ds2

=
κ2iκ

2
jB(di, 1− 2di)B(dj, 1− 2dj)

(di + dj)(2(di + dj)−1)
.

From (3.6), (3.7), and (3.8) we obtain
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∥gdi,dj∥2(3.9)

= ∥g̃di,dj∥2 − 2⟨g̃di,dj , fdi ⊗ fdj⟩+ ∥fdi∥2∥fdj∥2

= κ2iκ
2
jB(di, 1− 2di)B(dj, 1− 2dj)

{ 1

(di + dj)(2(di + dj)− 1)

+
1

didj(1 + 2di)(1 + 2dj)
− 1

didj(1 + 2(di + dj))
− B(2di + 1, 2dj + 1)

didj

}
.

Consequently, the r.v.’s Iij(gdi,dj), di + dj > 1/2 in (3.13) below are jointly well-defined

and their second order characteristics can be obtained from (3.4) and (3.9).

We are now ready to state the main result of this section. Its proof appears in Section 7.

Theorem 3.1 Let γi = {γt,i; t ∈ Z}, i = 1, · · · ,m, be m stationary LMMA processes as

above and Sn be as in (3.2). In addition, assume the following two conditions hold.

E|ξ0,i|2+ϵ <∞, (∃ ϵ > 0) for all 1 ≤ i ≤ m,(3.10)

Eξ40,i <∞, for any 1 ≤ i ≤ m such that (i, i) ∈ Πm.(3.11)

Then

Sn →D Rm =
{
Rij; (i, j) ∈ Πm

}
,(3.12)

where, for any (i, j) ∈ Πm,

Rij :=


Iij(gdi,dj)1(di + dj = δmax), δmax > 1/2,

σijZij1(di + dj = 1/2), δmax = 1/2,

σijZij, δmax < 1/2,

(3.13)

with gdi,dj ∈ L2(R2), fi ∈ L2(R) as in (3.5), σij ≥ 0 as in (7.5) below, and Zij as independent

N(0, 1) r.v.’s, EZijZi′j′ = 0, for (i, j) ̸= (i′, j′), (i, j), (i′, j′) ∈ Πm.

Remark 3.1 The literature on limit theorems for quadratic forms in dependent r.v.’s is

large. See e.g., Bhansali et al. (2007), GKS, Ch.6, and the references therein. Theorem 3.1

deals with rather special ‘diagonal’ quadratic forms in LMMA processes. It extends various

central and noncentral limit results in GKS (Thms 4.8.1, 4.8.2, Prop.11.5.5) to joint conver-

gence of array (3.2) involving LMMA processes with different memory parameters. We also

note the proof of Theorem 3.1 largely relies on variance or L2 considerations and does not

require using higher moments or other advanced mathematical tools.
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Let Π0m ⊂ {1, · · · ,m} be a non-empty set, dmax := max{dk; k ∈ Π0m} and S0n :=

{n(1/2)−dmax γ̄k; k ∈ Π0m} be a collection of normalized sample means. Then from Remark

4.3.1 in GKS, we obtain

S0n →D R0m = {R0k, k ∈ Π0m} := {Ik(fdk)1(dk = dmax); k ∈ Π0m}(3.14)

=D {σkZk1(dk = dmax); k ∈ Π0m},

where Zk, k ∈ Π0m are independent N(0, 1) r.v.’s and σ2
k = ∥fdk∥2 as in (3.9). The following

corollary extends Theorem 3.1 to joint convergence of normalized sample means S0n and

sample cross-covariances Sn.

Corollary 3.1 Under the assumptions of Theorem 3.1,

(3.15) (S0n,Sn) →D (R0m,Rm).

The joint distribution of (R0m,Rm) is Gaussian if δmax ≤ 1/2. Moreover, for any k ∈
Π0m, (i, j) ∈ Πm,

(3.16)

E(R0kRij) =

(κk
/
dk(1 + dk))E(ξ0,kξ0,iξ0,j)

∑∞
s=0 bs,ibs,j1(dk = dmax), δmax < 1/2,

0, δmax ≥ 1/2.

Remark 3.2 Note that under the assumption of independence of γi, i = 1, · · · ,m the co-

variance in (3.16) when δmax < 1/2 vanishes unless k = i = j and Eξ30,k ̸= 0 and the Zk, Zij

in (3.13), (3.14) are independent N(0, 1) r.v.’s.

Remark 3.3 Theorem 3.1 and Remark 3.1 can be extended to mutually dependent LMMA

processes γt,i =
∑∞

k=0 bk,iξt−k,i, i = 1, · · · ,m with MA coefficients bk,i ∼ κik
di−1, di ∈

(0, 1/2), κi > 0 with innovations forming a Rm-valued i.i.d. sequence {(ξs,1, · · · , ξs,m); s ∈ Z}
with zero mean, whose components are mutually dependent, viz., Eξ0,iξ0,j =: σξ,ij, i, j =

1, · · · , p where Σξ = Eξ0ξ
′
0 is a general positive definite matrix. In such a case if (3.11) is

strengthened to Eξ20,iξ
2
0,j <∞, (i, j) ∈ Πm the convergences in (3.12) and (3.15) hold under

the same normalizations except that the limit r.v.’s there are generally correlated and have

a representation w.r.t. mutually correlated Brownian motions Wi,Wj, EWi(t)Wj(t) = t σξ,ij.

The double stochastic integral

(3.17) Iij(g) =

∫
R2

g(s1, s2)Wi(ds1)Wj(ds2)

w.r.t. such Brownian motions is well-defined for any g ∈ L2(R2) and has zero mean and a

finite variance EI2ij(g) = σξ,iiσξ,jj∥g∥2+σ2
ξ,ij⟨g, g∗⟩ where g∗(s1, s2) := g(s2, s1). In particular,

the variance of the double Wiener-Itô integral Iij(gdi,dj) =
∫
R2 gdi,dj(s1, s2)Wi(ds1)Wj(ds2) in

(3.9) equals
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EI2ij(gdi,dj) = σξ,iiσξ,jj∥gdi,dj∥2 + σ2
ξ,ij⟨gdi,dj , gdj ,di⟩,(3.18)

where (with Bij := B(di, 1− di − dj), Bji := B(dj, 1− di − dj))

⟨gdi,dj , gdj ,di⟩
κ2iκ

2
j

=
BijBji

(d1 + dj)(2(di + dj)− 1)
+
( Bij +Bji

(di + dj)(di + dj + 1)

)2
− 2

(di + dj)2
( 2BijBji

2(di + dj) + 1
+ (B2

ij +B2
ji)B(di + dj + 1, di + dj + 1)

)
.

Note that for i = j the last expression agrees with ∥gdi,dj∥2/κ2iκ2j in (3.9).

Remark 3.4 The 4th moment condition (3.11) is required only for those LMMA processes

γi which enter sample variances Sγi,γi in the collection Sn (3.2). For instance for Π3 in (4.2)

the 4th moment condition applies to the innovations of the measurement errors {ut} alone

whereas {Xt} and {εt} may have infinite 4th moment. Condition (3.11) is crucial for the

validity of (3.12). Indeed if Eξ40,i = ∞ for some i = 1, · · · ,m then ES2
γi,γi

= ∞ and the

limit distribution of Sγi,γi may be α-stable with α < 2, see Surgailis (2004), and Horvath

and Kokoszka (2008).

4 Asymptotic distribution of α̂, β̂

In this section we shall use the results of the previous section to derive the limiting distri-

bution of suitably standardized α̂, β̂. To begin with note that from (2.8) we obtain

Tn + βσ2
u = SXε − βSXu + Suε − β(Suu − σ2

u)(4.1)

= SXε − βSXu + Suε − β(Suu − ESuu) + βEū2.

According to (2.9), (4.1), the asymptotic distribution of β̂ − β coincides with that of the

quadratic form T̃n := (Tn+βσ
2
u)/σ

2
X . Under Assumptions (E), (X), and (U), T̃n is a particular

case of the quadratic forms studied in Theorem 3.1. More specifically, T̃n corresponds to the

case m = 3, γt,1 ≡ εt, γt,2 ≡ Xt, γt,3 ≡ ut and the set

(4.2) Π3 = {(X, ε), (X, u), (u, ε), (u, u)}.

Accordingly, the limit distribution of T̃n and β̂−β is essentially determined by the maximum

(4.3) δmax = max{dX + dε, dX + du, du + dε, 2du},

with the convergence rate β̂ − β = Op

(
n−(1−min{1/2,1−δmax})(1 + 1(δmax = 1/2) log n)

)
. From

(2.7) we obtain

α̂− α = ε̄− βū− (β̂ − β)Z̄.(4.4)
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Note that in (4.4), the linear term ε̄− βū = Op(n
max{dε,du}−1/2), where

(1/2)−max{dε, du} < min{1/2, 1− δmax}.

Since Z̄ = X̄ + ū = Op(1) (µX := EX ̸= 0), = op(1) (µX = 0), the above facts imply that

the term (β̂ − β)Z̄ in (4.4) is asymptotically negligible independent of the value of µX , and

the limit distribution of α̂− α is determined by that of ε̄− βū.

Under suitable assumptions on the innovations, see (4.6) below, Theorem 3.1 and Remark

3.1 completely describes the limit distribution of (ε̄− βū, T̃n), or that of (α̂−α, β̂− β). The

description of this limiting distribution is relatively simpler and more transparent if we

assume that the LM parameters dX , dε and du are all different, i.e.,

(4.5) du ̸= dε ̸= dX .

This assumption guarantees that the maximum in (4.3) is achieved by a single pair in Π3 of

(4.2), i.e., either by (X, ε), or by (X, u), or by (u, ε), or by (u, u).

In order to apply Theorem 3.1, in addition to Assumptions (E), (X), (U), we need the

following conditions on the innovations:

(4.6) E|ζ|2+ϵ + E|ξ|2+ϵ <∞ (∃ ϵ > 0), E|η|4 <∞.

Let

Dmax = max{dX + dε, dX + du, du + dε, 2du},
dmax := max{dε, dX , du}, dmin := min{dε, dX , du}.

We are now ready to state the following corollary.

Corollary 4.1 Suppose assumptions (E), (X), (U) and (I) hold. In addition, assume (4.5)

and (4.6) hold. Then the following hold.

(i) Case Dmax = 2du > 1/2 (this implies dmax = du). Then(
n1/2−du(α̂− α), n1−2du(β̂ − β)

)
→D

(
− βIu(fu),

β

σ2
X

(κ2uB(du, 1− du)

du(1 + 2du)
− Iuu(gdu,du)

))
,

where Iuu (Iu) are the double (single) Wiener-Itô integrals in (3.3) w.r.t. the same standard

Brownian motion Wi = Wj ≡ Wu and the integrand gdu,du = gdi,dj (fdu = fdi) in (3.5), where

di = dj = du, κi = κj = κu.

(ii) Case Dmax = dX + du > 1/2 (this implies dmax = dX > du > dε). Then

(4.7)
(
n1/2−du(α̂− α), n1−dX−du(β̂ − β)

)
→D

(
− βIu(fu),−

β

σ2
X

IXu(gdX ,du)
)
,
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where IXu (Iu) is the double (single) Wiener-Itô integral in (3.3) w.r.t. independent standard

Brownian motions Wi ≡ WX , Wj ≡ Wu and the integrand gdX ,du = gdi,dj (fdu = fdj) in (3.5),

where di = dX , κi = κX , dj = du, κj = κu.

(iii) Case Dmax = du + dε > 1/2 (this implies dmax = dε > du > dX). Then

(4.8)
(
n1/2−dε(α̂− α), n1−du−dε(β̂ − β)

)
→D

(
Iε(fdε),

1

σ2
X

Iuε(gdu,dε)
)
,

where Iuε (Iε) is the double (single) Wiener-Itô integral in (3.3) w.r.t. independent standard

Brownian motions Wi ≡ Wu, Wj ≡ Wε and the integrand gdu,dε = gdi,dj (fdε = fdj) in (3.5)

where di = du, κi = κu, dj = dε, κj = κε.

(iv) Case Dmax = dX + dε > 1/2 (this implies dmin = du < dε). Then

(4.9)
(
n1/2−dε(α̂− α), n1−dX−dε(β̂ − β)

)
→D

(
Iε(fdε),

1

σ2
X

IXε(gdX ,dε)
)
,

where IXε (Iε) is the double (single) Wiener-Itô integral in (3.3) w.r.t. independent standard

Brownian motions Wi ≡ WX , Wj ≡ Wε and the integrand gdX ,dε = gdi,dj (fdε = fdj) in (3.5),

where di = dX , κi = κX , dj = dε, κj = κε.

(v) Case Dmax < 1/2. In addition, assume that the innovations of the ME process ut satisfy

Eη3 = 0, when du > dε. Then(
n1/2−(du∨dε)(α̂− α), n1/2(β̂ − β)

)
→D

(
σαZα, σβZβ

)
,(4.10)

where Zα, Zβ are independent N(0, 1) r.v.’s,

σ2
α :=

β2∥fdu∥2, du > dε,

∥fdε∥2, dε > du,
, σ2

β := σ2
R/σ

4
X ,

where σ2
R :=

∑
t∈ZCov(R0, Rt) and Rt := (εt−βut)(Xt−EXt+ut) = (εt−βut)(Zt−EZt), t ∈

Z is a stationary process with ERt = −βσ2
u and

∑
t∈Z |Cov(R0, Rt)| <∞.

Remark 4.1 It is of some interest to compare the above asymptotic distributional results

with those available in the case of i.i.d. set up. For that reason we shall first recall the

results available in the i.i.d. case. Accordingly, suppose {ε, εi}, {X,Xi}, {u, ui} are mutually

independent sequences of i.i.d.r.v.’s with positive and finite variances σ2
ε , σ

2
X , σ

2
u, respectively.

Suppose further that Eε = Eu = 0 and µ4 = Eu4 <∞. Let µX = EX, µ3 = Eu3. Let

φ :=
1

σ4
X

[
σ2
X(σ

2
ε + β2σ2

u) + σ2
uσ

2
ε + β2(µ4 − σ4

u)
]
.

Γ :=

(
(σ2

ε + β2σ2
u) + 2 1

σ2
X
β2µ3µX + φµ2

X − 1
σ2
X
β2µ3 − φµX

− 1
σ2
X
β2µ3 − φµX φ

)
.
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Using the classical CLT, we obtain

n1/2(α̂− α, β̂ − β) →D N(0,Γ).(4.11)

For the sake of completeness a sketch of the proof of (4.11) is included in Section 7.

In the case of no measurement errors, σ2
u = 0, µ4 = µ3 = 0, φ = σ2

ε/σ
2
X and

Γ =

(
σ2
ε + µ2

X(σ
2
ε/σ

2
X) −µX(σ

2
ε/σ

2
X)

−µX(σ
2
ε/σ

2
X) (σ2

ε/σ
2
X)

)
=
σ2
ε

σ2
X

(
σ2
X + µ2

X −µX

−µX 1

)
.

Now suppose Eη3 = 0. Then µ3 = 0 and in the i.i.d. set up the above LSEs are asymptot-

ically correlated and normally distributed, regardless of whether there is measurement error

in the covariate or not. But, surprisingly, under the above assumed long memory set up

with Dmax < 1/2, by (4.10), these estimators are asymptotically independent and normally

distributed even when there is no measurement error. If Eη3 ̸= 0 and du ≥ dε, then the

limiting r.v.’s in (4.10) are correlated. The correlation can be obtained from (3.16).

For Dmax > 1/2, Corollary 3.1 and (3.16) yield that these r.v.’s are still asymptotically

uncorrelated but have non-Gaussian distribution.

Remark 4.2 Confidence intervals for α and β in the simple structural ME linear regression

model with moderate long memory. The limit distribution of α̂, β̂ in Corollary 4.1 is very

different depending on whether Dmax < 1/2 or Dmax > 1/2. In the latter case (which may

be termed very strong long memory in the current set up) this limit distribution appears

intractable. On the other hand, in the case Dmax < 1/2 (termed moderate long memory here)

the result of Corollary 4.1(v) can be used to determine the asymptotic confidence intervals

(CIs) for α, β. Obviously, these CIs require the estimation of the parameters of the limiting

Gaussian distribution, which is discussed below.

Asymptotic CI for β. Recall from Corollary 4.1(v) that under δmax < 1/2 and under some

additional conditions on the innovations, n1/2(β̂ − β) →D N(0, σ2
β) where σ

2
β = σ2

R/σ
4
X and

σ2
X = σ2

Z − σ2
u. Because σ2

u is assumed to be known, σ̂2
X := n−1

∑n
i=1(Zi − Z̄)2 − σ2

u is a

consistent estimator of σ2
X and σ̂4

X is consistent for σ4
X .

Next, consider σ2
R :=

∑
t∈R Cov(R0, Rt), where Rt := et(Zt − EZt) = (εt − βut)(Xt −

EXt + ut). The parameter σ2
R is called the long-run variance of the stationary process

{Rt}. Let R̂t := êt(Zt − Z̄), êt := Yt − α̂ − β̂Zt, 1 ≤ t ≤ n,
¯̂
R = n−1

∑n
t=1 R̂t. Then,

following Abadir et al (2009), GKS, sec.9.4, an estimate of σ2
R is given by the HAC estimator

based on R̂t, 1 ≤ t ≤ n, viz,

σ̂2
R̂,q

:= n−1
∑
|k|≤q

(1− |k|
q
)

∑
1≤t,s≤n:t−s=k

(R̂t − ¯̂
R)(R̂s − ¯̂

R).(4.12)

In (4.12), q = q(n) = 0, 1, · · · , n is the bandwidth parameter. The consistency of σ̂2
R̂,q

is

derived in the following proposition, where limits are taken as n, q, n/q → ∞.

12



Proposition 4.1 Suppose assumptions (E), (X), (U), and (I) hold, E(ξ4+ζ4) <∞, Eη3 =

0, Eη8 <∞ and Dmax = max{dX + dε, dX + du, du + dε, 2du} < 1/2. Then σ̂2
R̂,q

→p σ
2
R.

The proof of this proposition is given in the Appendix section of this paper. It uses

cumulants and is rather lengthy due to the fact that process Rt is a quadratic form in

i.i.d.r.v.s.

An estimator of σ2
β is given by σ̂2

β := σ̂2
R̂,q
/σ̂4

X . Under the conditions of Proposition 4.1,

σ̂2
β →p σ

2
β and the asymptotic confidence level of the CI{

β; β̂ −
zγ/2
n1/2σ̂β

≤ β ≤ β̂ +
zγ/2
n1/2σ̂β

}
for β is 1− ϵ, where zϵ is the (1− ϵ)100th percentile of the N(0, 1) distribution, 0 < ϵ < 1.

Asymptotic CI for α. By Corollary 4.1(v), n1/2−(du∨dε)(α̂ − α) →D N(0, σ2
α). By (2.6)

de := du ∨ dε is the LM parameter of stationary process {et = εt − βut}. More precisely, by

(3.9), as t→ ∞ the covariance Cov(e0, et) = Cov(ε0, εt) + β2Cov(u0, ut) satisfies

Cov(e0, et) ∼

κ2εB(dε, 1− 2dε)t
−(1−2dε), dε > du,

β2κ2uB(du, 1− 2du)t
−(1−2du), dε < du,

(4.13)

= σ2
α

dε(1 + 2dε)t
−(1−2dε), dε > du,

du(1 + 2du)t
−(1−2du), dε < du,

.

Moreover, Var(
∑n

t=1 et) ∼ σ2
αn

1+2(du∨dε), n→ ∞, so that σ2
α is the long-run variance of {et}:

see GKS, (3.3.5). The consistent and log(n)-consistent estimators of σ2
α and de are the HAC

and LW estimators, σ̂α and d̂ê, respectively, based on the residuals

(4.14) êt = Yt − α̂− β̂Zt = et + (α− α̂) + (β − β̂)Zt, 1 ≤ t ≤ n,

see GKS, sec. 8.6, 9.4. Then, the CI{
α; α̂−

zγ/2

n1/2−d̂êσ̂α
≤ α ≤ α̂ +

zγ/2

n1/2−d̂êσ̂α

}
for α is of the asymptotic level 1− γ.

We shall now describe the above estimators of de and σ
2
α. The LW estimator of de is

d̂ê := argmind∈[−1/2.1/2]Un(d), Un(d) := log
( 1

m

m∑
j=1

j2dIê(λj)
)
− 2d

m

m∑
j=1

log j,(4.15)

λj =
2πj

n
, Iê(λ) :=

1

2πn

∣∣∣ n∑
t=1

eıtλêt

∣∣∣2, λ ∈ [−π, π].
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see GKS, (8.5.2). Here, m = 1, 2, · · · ,m = m(n) → ∞,m = o(n) is the bandwidth parame-

ter. The HAC estimator of σ2
α is

σ̂2
ê,q := q−2d̂ên−1

∑
|k|≤q

(1− |k|
q
)

∑
1≤t,s≤n:t−s=k

(êt − ¯̂e)(ês − ¯̂e), ¯̂e := n−1

n∑
t=1

êt.(4.16)

We shall use the results of Section 8.5, 8.6 of GKS to prove the consistency of d̂ê for

de. Accordingly, we need to show that (4.14) satisfies the conditions of the ‘signal+noise’

model in GKS, sec.8.6. Let dε > du for concreteness (the case dε < du can be discussed

analogously). Then êt = εt + Zt, where {εt} is a LMMA ‘signal’ process, and the ‘noise’

process Zt is given by

Zt = −βut + (α− α̂) + (β − β̂)Zt.

According to GKS Thm. 8.5.2 (i), the LMMA process {εt} satisfies Assumptions A and B

of GKS provided its spectral density has the representation

(4.17) fε(λ) = |λ|−2dεgε(λ), |λ| ≤ a

where gε is a positive Lipschitz function on [0, a] for some a > 0. Conditions (4.17) is

satisfied by ARFIMA and some other classes of LMMA processes. We also need to assume

the existence of the 4th moment of innovations of {εt}. Under these conditions the LW

estimator d̂ε of dε satisfies

(4.18) d̂ε − dε = Op(m
−1/2) +Op(m/n),

see GKS, Thm. 8.5.2 (iii). Let dZ := du ∨ dX be the LM parameter of {Zt = ut +Xt} and

sn := Op((m/n)
dε−du) +Op(β̂ − β)×

Op((m/n)
dε−dZ ), dε > dZ ,

Op((1/n)
dε−dZ ), dε ≤ dZ .

(4.19)

Then by GKS Thm. 8.6.2 we obtain

(4.20) d̂ê − de = (d̂ε − dε)(1 + op(1)) +Op(sn).

Note ndZ−dε(β̂ − β) = op(n
dX−1/2). These facts and (4.18), (4.19) guarantee the log(n)-

consistency of d̂ê in (4.15): d̂ê−de = op(log(n)) for any bandwidth choicem = [na], 0 < a < 1.

The consistency of σ̂2
α of (4.16) is established following the proofs of GKS, Theorem 9.4.1

and Proposition 4.1. See also Lavancier et al. (2010).
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5 Structural ME multiple linear regression model

Here we shall now discuss the asymptotic distributions of the bias adjusted LSEs in the

structural multiple linear regression model. Accordingly, now β,Xt, Zt, ut are p-dimensional

random vectors and the model of interest is

(5.1) Yt = α +X ′
tβ + εt, Zt = Xt + ut, t ∈ Z,

where X and u are vector-valued LMMA processes satisfying the following assumptions and

x′ denotes the transpose of a vector x ∈ Rp.

Assumption (X)p Covariates Xt = (Xt,1, · · · , Xt,p)
′ form a LMMA process

(5.2) Xt,i = µX,i +
∞∑
k=0

ak,iξt−k,i, t ∈ Z, with ak,i ∼ κX,ik
−(1−dX,i), k → ∞,

where µX,i ∈ R, κX,i > 0, 0 < dX,i < 1/2, and i.i.d. innovations {ξs = (ξs,1, · · · , ξs,p)′; s ∈ Z}
with Eξ0,i = 0, Eξ0,iξ0,j = σξ,ij, i, j = 1, · · · , p.
Assumption (U)p Measurement errors ut = (ut,1, · · · , ut,p)′ form a LMMA process

(5.3) ut,i =
∞∑
k=0

ck,iηt−k,i, t ∈ Z, with ck,i ∼ κu,ik
−(1−du,i), k → ∞,

where κu,i > 0, 0 < du,i < 1/2, the innovations {ηs = (ηs,1, · · · , ηs,p)′; s ∈ Z} are i.i.d. with

Eη0,i = 0, Eη0,iη0,j = ση,ij, i, j = 1, · · · , p, and Σu := E(u0u
′
0) is known and positive definite.

Assumption (I)p The innovation sequences {ζs; s ∈ Z}, {ξs; s ∈ Z}, and {ηs; s ∈ Z} in

Assumptions (E), (X)p and (U)p are mutually independent.

We also assume that

(5.4) E|ζ0,i|2+ϵ + E|ξ0,i|2+ϵ <∞ (∃ ϵ > 0), Eη40,i <∞, ∀ 1 ≤ i ≤ p.

The bias corrected LSEs of α, β here are defined as

SZZ := n−1

n∑
i=1

(Zi − Z̄)(Zi − Z̄)′, SZY := n−1

n∑
i=1

(Zi − Z̄)(Yi − Ȳ ),

β̂ :=
(
SZZ − Σu

)−1
SZY , α̂ := Ȳ − Z̄ ′β̂.

Whence as in the case of simple linear regression model we obtain

β̂ − β = (SZZ − Σu)
−1
(
SXε + Suε − SXuβ − (Suu − Σu)β

)
,(5.5)

α̂− α = ε̄− ū′β − Z̄ ′(β̂ − β).
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Since SZZ − Σu →p ΣX := EX0X
′
0, we see from (5.5) that the limit distribution of β̂ − β

coincides with that of T̃n := Σ−1
X (Tn + E(ūū′)β), where

Tn := SXε + Suε − SXuβ − (Suu − ESuu)β

is a zero-mean quadratic form in LMMA satisfying Assumptions (E), (X)p and (U)p. As it

follows from Theorem 3.1 and Remark 3.3, under these assumptions the limit distribution

of Tn and T̃n is essentially determined by the maximum

(5.6) Dmax := max{dX,i + dε, du,i + dε, dX,i + du,j, du,i + du,j; 1 ≤ i, j ≤ p}.

Accordingly, the limit distribution of β̂−β is non-gaussian or Gaussian depending on whether

Dmax > 1/2 or Dmax < 1/2. In general, α̂ and β̂i, 1 ≤ i ≤ p may have different convergence

rates and a complicated joint limit distribution. We first discuss the case Dmax < 1/2 where

the limit result admits a relatively simple formulation as seen in the following corollary.

Corollary 5.1 Suppose (E), (X)p, (U)p and (I)p hold and Dmax < 1/2. In addition, assume

that du,i, 1 ≤ i ≤ p are all different, du,max := max{du,i, 1 ≤ i ≤ p}, the 3rd moment of the

innovations of ut,i with du,i = du,max is zero when du,max > dε, and (5.4) hold. Then(
n1/2−(dε∨du,max)(α̂− α), n1/2(β̂ − β)

)
→D

(
σαZα, Σ

−1
X Zβ

)
.(5.7)

Here Zα ∼ N(0, 1), Zβ is a normal vector independent of Zα, with EZβ = 0 and covariance

matrix EZβZ
′
β :=

∑
t∈Z Cov(R0, Rt), where Rt := (εt−β′ut)(Xt−EXt+ut) = (εt−β′ut)(Zt−

EZt), t ∈ Z is a stationary Rp-valued process with ERt = −Σuβ and
∑

t∈Z ∥Cov(R0, Rt)∥ <
∞. Moreover,

σ2
α :=

β2
i ∥fdu,i∥2, du,max = du,i > dε, i = 1, · · · , p,

∥fdε∥2, dε > du,max.

Next, we discuss the limit distribution of the LSE (α̂, β̂) in (5.5) when δmax > 1/2. The

description of this limit distribution is complicated for the case p ≥ 2 and when long memory

parameters of components of {Xt} and {ut} are all different. For this reason we shall describe

these distributions only in the case when these long memory parameters are equal, viz.,

dX,i ≡ dX , du,i ≡ du, i = 1, · · · , p, and in the case when p = 2 but dX,,1 ̸= dX,2, du,1 ̸= du,2.

We note that in the latter case, the convergence rates of β̂1, β̂2 are generally different.

Consider first the former case, p ≥ 1 arbitrary. Let Ση = Eη0η
′
0,Σξ = Eξ0ξ

′
0 denote

the respective covariance matrices of innovations in Assumption (U)p and (X)p. Introduce

a scalar-valued standard Brownian motion Wε = Wε(t), t ∈ R, and vector-valued Brown-

ian motions WX(t) = (WX,1(t), · · · ,WX,p(t))
′, Wu(t) = (Wu,1(t), · · · ,Wu,p(t))

′, t ∈ R with

respective covariance matrices EWX(t)WX(t)
′ = |t|Σξ, EWu(t)Wu(t)

′ = |t|Ση, Wε,WX ,Wu
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mutually independent. Recall from (3.3), (3.17) the definition of the stochastic integrals

with respect to these Brownian motions: Iu(f) =
( ∫

R fi(s)Wu,i(ds)
)
1≤i≤p

, f = (f1, · · · , fp)′,
Iuu(g) =

( ∫
R2 gij(s1, s2)Wu,i(ds1)Wu,j(ds2)

)
1≤i,j≤p

, g = (gij)1≤i,j≤p defined for vector- and

matrix-valued valued integrands from L2(R) and L2(R2), respectively, the stochastic inte-

grals IX(f), IXε(g), Iuε(g) defined in a similar fashion. Note Iuu, IXu are matrix-valued and

IX , Iu, IXε, IXε are vector-valued r.v.’s.

Corollary 5.2 Let Assumptions (E), (X)p, (U)p and (I)p be satisfied. In addition, assume

that du,i = du, dX,i = dX , 1 ≤ i ≤ p and (5.4) hold.

(i) Case Dmax = 2du > 1/2. Then

(5.8)
(
n1/2−du(α̂− α), n1−2du(β̂ − β)

)
→D

(
− β′Iu(fu), Σ

−1
X

(
⟨fu, f ′

u⟩ − Iuu(gdu,du)
)
β
)
,

where fu = (fd1 , · · · , fdp)′ and gdu,du = (gdi,dj)1≤i,j≤p are defined as in (3.5) where di = dj :=

du, κi := κu,i, κj := κu,j.

(ii) Case Dmax = dX + du > 1/2. Then

(5.9)
(
n1/2−du(α̂− α), n1−dX−du(β̂ − β)

)
→D

(
− β′Iu(fu),−Σ−1

X IXu(gdX ,du)β
)
,

where fu is the same as in (5.8) and gdX ,du = (gdi,dj)1≤i,j≤p as in (3.5) where di := dX , dj :=

du, κi := κX,i, κj := κu,j.

(iii) Case Dmax = du + dε > 1/2. Then

(5.10)
(
n1/2−dε(α̂− α), n1−du−dε(β̂ − β)

)
→D

(
Iε(fdε), Σ

−1
X Iuε(gdu,dε)

)
,

where gdu,dε = (gdi,dj)1≤i≤p and fdε = fdj as in (3.5) where di := du,i = du, κi := κu,i, dj :=

dε, κj := κε.

(iv) Case Dmax = dX + dε > 1/2. Then

(5.11)
(
n1/2−dε(α̂− α), n1−dX−dε(β̂ − β)

)
→D

(
Iε(fdε),Σ

−1
X IXε(gdX ,dε)

)
,

where fdε is the same as in (5.10) and gdX ,dε = (gdi,dj)1≤i≤p as in (3.5) where di := dX,i =

dX , κi := κX,i, dj := dε, κj := κε.

Next, consider the case p = 2, β̂ = (β̂1, β̂2)
′, dX,1 ̸= dX,2, du,1 ̸= du,2 and Dmax >

1/2, where Dmax is defined in (5.6). Let Σ−1
X = (ρX,ij)1≤i,j≤2. As noted above, the limit

distribution of β̂ − β coincides with that of T̃n := Σ−1
X (Tn + E(ūū′)β) = (T̃n1, T̃n2)

′ where

T̃n1 = ρX,11

(
SX1,ε + Su1,ε − SX1u1β1 − SX1u2β2 − (Su1u1 − ESu1u1)β1(5.12)

− (Su1u2 − ESu1u2)β2 + (ū1)
2β1 + ū1ū2β2

)
+ρX,12

(
SX2,ε + Su2,ε − SX2u1β1 − SX2u2β2 − (Su2u1 − ESu2u1)β1

− (Su2u2 − ESu2u2)β2 + ū1ū2β1 + (ū2)
2β2
)
.
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We omit a similar expression for T̃n2, where the only difference is that ρX,11, ρX,12 in (5.12)

are replaced by ρX,21, ρX,22, respectively. We have the two cases: (a) ρX,12 = ρX,21 ̸= 0

(or ΣX is not a diagonal matrix), and (b) ρX,12 = ρX,21 = 0 (ΣX is diagonal). From these

formulas it is easy to see that in case (a) that the convergence rate of T̃ni, i = 1, 2 hence

also of β̂i, i = 1, 2 is the same and is equal to n1−Dmax . In case (b), β̂i, i = 1, 2 may have

different convergence rates and their limit distribution is more complex. As an illustration,

the following corollary details this limit distribution when Dmax = 2du,1. In the cases Dmax

is achieved at other pairs of LM indices in (5.6), this limit distribution can be derived in a

similar fashion.

Corollary 5.3 Let p = 2 and Assumptions (E), (X)2, (U)2, (I)2 and (5.4) be satisfied. In

addition, assume that du,1 > max{du,2, dX,1, dX,2, dε} and Dmax = 2du,1 > 1/2.

(a) Let σX,12 = Cov(X0,1, X0,2) ̸= 0. Then(
n1/2−du,1(α̂− α), n1−2du,1(β̂i − βi), i = 1, 2

)
→D β1

(
− Iu1(fdu,1), ρX,1i

(
∥fdu,1∥ − Iu1u1(gdu1 ,du1 )

)
, i = 1, 2

)
.

(b) Let σX,12 = Cov(X0,1, X0,2) = 0 and dX,2 ̸= du,2. Then(
n1/2−du,1(α̂− α), n1−2du,1(β̂1 − β1), n

1−du,1−dX,2∨du,2(β̂2 − β2)
)

→D β1

(
− Iu1(fdu,1), ρX,11

(
∥fdu,1∥ − Iu1u1(gdu1 ,du1 )

)
, ρX,22W

)
,

where

W :=

−Iu1,X2(gdu,1,dX,2
), dX,2 > du,2,

⟨fdu,1 , fdu,2⟩ − Iu1u2(gdu1 ,du2 ), dX,2 < du,2.

6 Functional ME model: nonrandom design

In this section we describe the analogs of the previous results in the functional linear regres-

sion model with LMMA regression and measurement errors, and nonrandom design satisfying

the following assumption. For clarity of exposition, the subsequent discussion is confined to

the case p = 1, or the simple linear regression model in (2.1).

Assumption (X)det There exists a (nonrandom) piece-wise continuous function V : [0, 1] →
R such that Xt = V (t/n), t = 1, · · · , n.

The above form of regressors also assumes that V is not a constant so that σ2
V :=∫ 1

0
(V (t) − V̄ )2dt > 0, where V̄ :=

∫ 1

0
V (t)dt. As shown below, the limit behavior of LSE

(α̂, β̂) in the nonrandom design case is Gaussian and generally simpler than in the random

design case. The dominating role in the limit distribution now is being played by terms

SXε, SXu, ε̄, ū in (4.1) and (4.4).
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Note first that Assumption (X)det implies X̄ → V̄ and SXX → σ2
V as n→ ∞. Moreover,

SXu = Op(n
du−1/2) = op(1), SXε = Op(n

dε−1/2) = op(1), see (6.2) below, while Suu → σ2
u.

Therefore the normalization entity SZZ − σ2
u in (2.9) tends to σ2

V , viz.,

(6.1) SZZ − σ2
u →p σ

2
V .

Let Vc(t) := V (t)− V̄ , t ∈ [0, 1]. Assumptions (X)det, (E), and (U) imply

n1/2−dεSXε →D Iε(fVc,ε), n1/2−duSXu →D Iu(fVc,u),(6.2)

where Iε, Iu are the same (Gaussian) stochastic integrals as in Corollary 4.1 with respective

integrands

fVc,ε(s) := κε

∫ 1

0

Vc(t)(t− s)dε−1
+ dt, fVc,u(s) := κu

∫ 1

0

Vc(t)(t− s)du−1
+ dt.(6.3)

Note Iε(fVc,ε), Iu(fVc,u) in (6.2) are independent and have a Gaussian distribution with zero

mean and respective variances

EI2ε (fVc,ε) = ∥fVc,ε∥2 = κ2εB(dε, 1− 2dε)⟨Vc, Vc⟩dε ,(6.4)

EI2u(fVc,u) = ∥fVc,u∥2 = κ2uB(du, 1− 2du)⟨Vc, Vc⟩du ,

where for any two bounded functions f, g, ⟨f, g⟩d =
∫
[0,1]2

f(t)g(s)|t− s|2d−1dtds is a strictly

positive definite quadratic form, for all 0 < d < 1/2. The convergences in (6.2) can be

proved by using the criterion in GKS, Cor.4.7.1, for linear forms in i.i.d.r.v.’s. Moreover,

Z̄ →p V̄ and Suu − σ2
u = Op(n

−(1−2du−1)∨(1/2)(1 + 1(du = 1/2) log1/2 n) = op(n
du−1/2) and

Suε = op(n
dε−1/2) follow from Theorem 3.1. These facts together with (4.1), (4.4), (6.1),

(6.2) result in the following corollary.

Corollary 6.1 Let Assumptions (E), (X)det, (U) and (I) be satisfied. In addition, assume

that (5.4) hold.

(i) Suppose dε > du. Then

(6.5) n1/2−dε(α̂− α, β̂ − β) →D (W1,ε,W2,ε),

where (W1,ε,W2,ε) have a bivariate Gaussian distribution with zero mean and (co)variances

EW 2
1,ε = ∥fdε∥2 + V̄ 2σ−4

V ∥fVc,ε∥2 − 2V̄ σ−2
V ⟨fdε , fVc,ε⟩,(6.6)

EW 2
2,ε = σ−4

V ∥fVc,ε∥2, EW1,εW2,ε = σ−2
V

(
⟨fdε , fVc,ε⟩ − V̄ ∥fVc,ε∥2

)
,

(ii) Suppose dε < du. Then

n1/2−du(α̂− α, β̂ − β) →D −(W1,u,W2,u)β,

where (W1,u,W2,u) have a similar bivariate Gaussian distribution as in (6.5)-(6.6) with the

only difference that fdε , fVc,ε in (6.6) are replaced by fdu , fVc,u, respectively.

19



7 Proofs of Theorem 3.1 and Corollary 3.1

Proof of Theorem 3.1. Let S̃γi,γj := n−1
∑n

t=1 γt,iγt,j so that Sγi,γj = S̃γi,γj − γ̄iγ̄j. Note

for any t, t′ ∈ Z.

Cov(γt,iγt,j, γt′,i′γt′,j′) =


Cov(γt,i, γt′,i)Cov(γt,j, γt′,j), (i, j) = (i′, j′), i ̸= j,

Cov(γ2t,i, γ
2
t′,i), i = j = i′ = j′,

0, (i, j) ̸= (i′, j′)

(7.1)

From (7.1) we obtain

Cov(Sγi,γj , Sγi′ ,γj′
) = Cov(S̃γi,γj , S̃γi′ ,γj′

) = 0, (i, j) ̸= (i′, j′).(7.2)

From GKS, Prop.3.2.1(ii), it follows that

Cov(γt,i, γ0,i) =
∑
s≤0

bt−s,ib−s,i ∼ χit
2di−1, t→ ∞,(7.3)

where χi := κ2i
∫∞
0
(1 + s)di−1sdi−1ds = κ2iB(di, 1− 2di). We shall prove that

Var(Sγi,γj) ∼ Var(S̃γi,γj) ∼ σ2
ij/n, di + dj < 1/2,(7.4)

Var(Sγi,γj) ∼ Var(S̃γi,γj) ∼ σ2
ij(log n)/n, di + dj = 1/2,

Var(S̃γi,γj) ∼ σ̃2
ijn

2(di+dj−1), Var(Sγi,γj) ∼ σ2
ijn

2(di+dj−1), di + dj > 1/2,

where σ̃2
ij := (1 + δij)∥g̃di,dj∥2,

σ2
ij :=


∑

t∈ZCov(γt,iγt,j, γ0,iγ0,j), di + dj < 1/2,

2(1 + δij)χiχj, di + dj = 1/2,

(1 + δij)∥gdi,dj∥2, di + dj > 1/2;

(7.5)

and ∥gdi,dj∥2 is defined in (3.9), δij := 1(i = j).

Consider (7.4) for di + dj > 1/2. Here, the asymptotics of Var(S̃γi,γj) is immediate from

(7.1), (7.3) and GKS, Prop.3.3.1(i). To check the asymptotics of Var(Sγi,γj), consider first

the case of i ̸= j. Write Var(Sγi,γj) = Var(S̃γi,γj)− 2Cov(S̃γi,γj , γ̄iγ̄j) + Var(γ̄iγ̄j), where the

variance Var(S̃γi,γj) satisfies (7.4) and Var(γ̄iγ̄j) = Var(γ̄i)Var(γ̄j) ∼ ∥fdi∥2∥fdj∥2n2(di+dj−1),

see (3.9). The asymptotics of the covariance

Cov(S̃γi,γj , γ̄iγ̄j) = n−3

n∑
t,t1,t2=1

Eγt,iγt1,iEγt,jγt2,j(7.6)

∼ χiχjn
−3

n∑
t,t1,t2=1

|t− t1|2di−1|t− t2|2dj−1

∼ n2(di+dj−1)⟨g̃di,dj , fdi ⊗ fdj⟩
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follows by integral approximation and a calculation as in (3.6). This proves (7.4) for di+dj >

1/2 and i ̸= j.

Next, we shall prove (7.4) for i = j, di > 1/4.We have Cov(γ2t,i, γ
2
t′,i) = 2(Cov(γt,i, γt′,i))

2+

ht−t′,i, where ht−t′,i := ν4,i
∑

u≤t∧t′ b
2
t−u,ib

2
t′−u,i and ν4,i = E(ξ20,i − 1)2 − 2 = Eξ40,i − 3

is the 4th cumulant of ξ0,i, see GKS, (6.2.25). The sumability
∑

k∈Z hk,i < ∞ implies

n−2
∑n

t,t′=1 ht−t′,i = O(n−1) = o(n2(2di−1)). Then Var(S̃γi,γj) ∼ 2n−2
∑n

t,t′=1(Cov(γt,i, γt′,i))
2

∼ 2∥g̃di,di∥2n2(2di−1) = σ̃2
di,di

n2(2di−1) follows as in the case i ̸= j above. By writing Var(Sγi,γi)

= Var(S̃γi,γi)− 2Cov(S̃γi,γi , (γ̄i)
2) + Var((γ̄i)

2), (7.4) follows from

(7.7) Cov(S̃γi,γi , (γ̄i)
2) ∼ 2n2(2di−1)⟨g̃di,di , fdi ⊗ fdi⟩ and Var((γ̄i)

2) ∼ 2n2(2di−1)∥fdi∥4,

c.f. the case i ̸= j above. To prove the second relation in (7.7) use Var((γ̄i)
2) = Cum4(γ̄i) +

2(Var(γ̄i))
2 where Cum4(γ̄i) = ν4,in

−4
∑

s≤n

(∑n
t=1∨s bt−s,i

)4 ≤ Cn−4
{∑

|s|≤n(
∑2n

t=1 t
di−1
)4

+∑
s≥n(

∑n
t=1(t + s)di−1)4

}
≤ Cn4di−3 = o(n2(2di−1)) and (Var(γ̄i))

2 ∼ ∥fdi∥4n2(2di−1); see

above. Next, Cov(S̃γi,γi , (γ̄i)
2) = n−3

∑n
t,t1,t2=1E(γ

2
t,i−Eγ2t,i)γt1,iγt2,i = n−3

∑n
t,t1,t2=1

∑
s1,s2≤t∑

u1≤t1,u2≤t bt−s1,ibt−s2,ibt1−u1,ibt2−u2,iψ(s1, s2, u1, u2), where ψ(s1, s2, u1, u2) := E(ξs1,iξs2,i −
Eξs1,iξs2,i)ξu1,iξu2,i = 0 except for (s1, s2) = (u1, u2) and (s1, s2) = (u2, u1). Particu-

larly, for s := s1 = s2 = u1 = u2 we have ψ(s, s, s, s) = ν4,i + 2 while s1 ̸= s2 yield

ψ(s1, s2, s1, s2) = ψ(s1, s2, s2, s1) = 1. Hence we obtain Cov(S̃γi,γi , (γ̄i)
2) = J1 + 2J2 where

|J1| = ν4,in
−3
∣∣∑n

t,t1,t2=1

∑
s≤t1∧t2∧t2 b

2
t−s,ibt1−s,ibt2−s,i

∣∣ ≤ Cn−3
∑n

t1,t2=1

∑
s≤t1∧t2 |bt1−s,ibt2−s,i

∣∣
= O(n2(di−1)) = o(n2(2di−1)) and J2 coincides with the r.h.s. of (7.6) with i = j, thus proving

the first relation (7.7) and completing the proof of (7.4) for di + dj > 1/2.

Consider (7.4) for di + dj = 1/2. Let i ̸= j. Then by (7.3)

Var(S̃γi,γj) ∼ χiχjn
−2

n∑
t,s=1

|t− s|−1 ∼ σ2
ijn

−1 log n,

with σ2
ij = 2χiχj. The case i = j follows similarly. Finally, (7.4) for the case di + dj < 1/2

follows from (7.3), (7.1) and the fact that the r.h.s. of (7.1) is summable.

Next, we prove the convergence in (3.12). Because of the differences in the normalization

and the limit distribution, the cases δmax > 1/2, δmax = 1/2, and δmax < 1/2, where Dmax is

as in (3.1), will be discussed separately. Let Πmax := {(i, j) ∈ Πm; di + dj = δmax}.
Proof of (3.12): Case δmax > 1/2. Since (7.4) imply A(n)(Sγi,γj − ESγi,γj) →D 0 for

(i, j) ̸∈ Πmax, relation (3.12) follows from

(7.8) {n1−δmax(Sγi,γj − ESγi,γj); (i, j) ∈ Πmax} →D {Iij(gdi,dj); (i, j) ∈ Πmax},

where Iij are the double Wiener-Itô integrals in (3.3). Assume first that that Πmax con-

sists of a single element (i, j), i ̸= j. Then, because δmax = di + dj and ESγi,γj = 0 for
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i ̸= j, n1−δmax(Sγi,γj − ESγi,γj) = n1−di−djSγi,γj can be written as a quadratic form in i.i.d.

innovations {ξs,i, ξs,j, s ∈ Z}, viz.,

Q(gn) :=
∑

s1,s2∈Z

gn(s1, s2)ξs1,iξs2,j, with coefficients

gn(s1, s2) := n−d1−dj

n∑
t=1

bt−s1,ibt−s2,j − n−1−di−dj

n∑
t1,t2=1

bt1−s1,ibt2−s2,j.

Let

g̃n(x1, x2) := ngn([nx1], [nx2]) =
n

ndi+dj

n∑
t=1

bt−[nx1],ibt−[nx2],j −
1

ndi+dj

n∑
t1,t2=1

bt1−[nx1],ibt2−[nx2],j.

We use GKS, Prop.11.5.5. Accordingly, the result n1−di−djSγi,γj →D Iij(gdi,dj) follows from

the following convergence in L2(R2):

(7.9) ∥g̃n − gdi,dj∥ → 0.

Since bk,i ∼ κik
di−1, k → ∞ the point-wise convergence

g̃n(x1, x2) → gdi,dj(x1, x2) = κiκj

{∫ 1

0

(t− s1)
di−1
+ (t− s2)

dj−1
+ dt

−
∫ 1

0

(t1 − x1)
di−1
+ dt1

∫ 1

0

(t2 − x2)
dj−1
+ dt2

}
,

see (3.5), for any fixed (x1, x2) ∈ R2, xi ̸= 0, 1, i = 1, 2 follows by integral approximation.

Then, (7.9) follows by the DCT similarly as GKS, Prop.11.5.6. The general case in (7.8)

follows similarly and we omit the details.

Proof of (3.12): Case δmax = 1/2. Let Π̃1/2 := {(i, j) ∈ Πm : di + dj = 1/2}. Then by

(7.4) relation (3.12) reduces to

(7.10)
{
(n/ log n)1/2(Sγi,γj − ESγi,γj); (i, j) ∈ Π̃1/2

}
→D

{
σijZij; (i, j) ∈ Π̃1/2

}
,

where Zij, (i, j) ∈ Π̃1/2 are independent N(0, 1) r.v.’s and σ2
ij = 2(1 + δij)χiχj, see (7.5).

Also, since ζ̄i = Op(n
di−1/2), i = 1, · · · ,m so γ̄iγ̄j = Op(n

di+dj−1) = Op(n
−1/2), (i, j) ∈ Π1/2

and hence (n/ log n)1/2γ̄iγ̄j = Op((log n)
−1/2) = op(1), (i, j) ∈ Π1/2. Thus, (7.10) follows from

(7.11)
{
(n/ log n)1/2(S̃γi,γj − ES̃γi,γj); (i, j) ∈ Π1/2

}
→D

{
σijZij; (i, j) ∈ Π1/2

}
,

where S̃γi,γj = n−1
∑n

t=1 γt,iγt,j as above. We shall prove (7.11) for a single pair (i, j) ∈ Π̃1/2.

Let i ̸= j. Then ES̃γi,γj = 0. Moreover, S̃γi,γj = S̃ ′
γi,γj

+ S̃ ′′
γi,γj

where

S̃ ′
γi,γj

:= n−1

n∑
t=1

∑
si≤t,i=1,2,s1 ̸=s2

bt−s1,ibt−s2,jξs1,iξs2,j, S̃ ′′
γi,γj

:= n−1

n∑
t=1

∑
s≤t

bt−s,ibt−s,jξs,iξs,j
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are off-diagonal and diagonal terms, respectively. Moreover,
∑∞

t=1 |bt,ibt,j| ≤ C
∑∞

t=1 t
−3/2 <

∞ implies S̃ ′′
γi,γj

= Op(n
−1/2) = op(1). Hence it suffices to prove

(n/ log n)1/2S̃ ′
γi,γj

→D N(0, σ2
ij).(7.12)

To prove (7.12), as in in Bhansali et al. (2007), we use martingale CLT in Hall and Heyde

(1980). Towards this aim rewrite the l.h.s. of (7.12) as the martingale transform

(n log n)−1/2
∑
s<n

vn(s), where vn(s) := un,i(s)ξs,j + un,j(s)ξs,i,(7.13)

un,i(s) :=
∑
s′<s

cn(s
′, s)ξs′,i, un,j(s) :=

∑
s′<s

cn(s, s
′)ξs′,j, cn(s

′, s) :=
n∑

t=1

bt−s′,i bt−s,j.

Let Ft := σ{ξs,i, ξs,j, s ≤ t} be the σ-field generated by innovations. Then E[vn(s)|Fs−1] =

0, E[v2n(s)|Fs−1] = u2n,i(s) + u2n,j(s). By the classical martingale CLT, (7.12) follows from

Bij(n) := Var(
∑
s<n

vn(s)) = n2Var(S̃ ′
γi,γj

) ∼ σ2
ijn log n,(7.14)

B−1
ij (n)

∑
s<n

E[v2n(s)|Fs−1] →D 1,(7.15)

B−1
ij (n)

∑
s<n

E[v2n(s)I(|vn(s)| > δB
1/2
ij (n))] →D 0, ∀δ > 0.(7.16)

The proof of (7.14) follows easily from (7.4). Consider (7.15). Using Bij(n) =
∑

s<nEv
2
n(s),

the relation (7.15) follows from (7.14) and∑
s<n

(E[v2n(s)|Fs−1]− Ev2n(s)) = op(n log n), or∑
s<n

(u2n,k(s)− Eu2n,k(s)) = op(n log n), k = i, j.(7.17)

Consider (7.17) for k = i; the proof for k = j is analogous. By writing the l.h.s. of (7.17)

as a centered quadratic form Qn =
∑

s′,s′′<n ξs′,iξs′′,i
∑

s′∨s′′<s<n cn(s
′, s)cn(s

′′, s) in i.i.d. r.v.’s

ξs′,i’s, (7.17) and (7.15) follow from Var(Qn) ≤ 8Eξ40,iRn, and

Rn :=
∑

s′′≤s′<n

( ∑
s′<s<n

cn(s
′, s)cn(s

′′, s)
)2

= O(n2) = o(n2 log2 n),(7.18)

see also GKS, (4.5.4). Using the definition of cn(s
′, s) in (7.13) it follows that

Rn ≤ C

∫
−∞<s′′<s′<n

ds′ds′′
( ∫

s′<s<n

c̃n(s
′, s)c̃n(s

′′, s)ds
)2

=: CR̃n,

where c̃n(s
′, s) :=

∫ n

0
(t − s′)di−1

+ (t − s)
dj−1
+ dt. By change of variables, R̃n = n2R̃1 and hence

(7.18) follows from

(7.19) R̃1 <∞.
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To check (7.19) use the following bound: for any −∞ < s′ < s < 1

c̃1(s
′, s) ≤ 1(s′ ∈ (−1, 1))

∫
R
(t− s′)di−1

+ (t− s)
dj−1
+ dt+ 1(s′ < −1)|s′|di−1

∫ 1

0

(t− s)
dj−1
+ dt

≤ C1(s′ ∈ (−1, 1))|s− s′|di+dj−1 + C1(s′ < −1)|s′|di−1(1 + |s|)dj−1

= C1(s′ ∈ (−1, 1))|s− s′|−1/2 + C1(s′ < −1)|s′|di−1(1 + |s|)dj−1(7.20)

since di + dj = 1/2. Then

R̃1 ≤ C

∫
(−∞,1)2

ds′ds′′
{∫ 1

s′∨s′′

(1(|s′| < 1)

|s− s′|1/2
+

1(s′ < −1)

|s′|1−di(1 + |s|)1−dj

)
×
(1(|s′′| < 1)

|s− s′′|1/2
+

1(s′′ < −1)

|s′′|1−di(1 + |s|)1−dj

)
ds
}2

≤ C
4∑

k=1

Jk,

where

J1 :=

∫
(−1,1)2

ds′ds′′
{∫ 1

−1

ds

|s− s′|1/2|s− s′′|1/2
}2
,

J2 :=

∫
(−∞,−1)×(−1,1)

|s′|−2(1−di)ds′ds′′
{∫ 1

−1

ds

(1 + |s|)1−dj |s− s′′|1/2
}2

,

J3 :=

∫
(−1,1)×(−∞,−1)

|s′′|−2(1−di)ds′ds′′
{∫ 1

−1

ds

(1 + |s|)1−dj |s− s′|1/2
}2

,

J4 :=

∫
(−∞,−1)2

|s′s′′|−2(1−di)ds′ds′′
{∫ 1

s′∨s′′

ds

(1 + |s|)2(1−dj)

}2

.

The fact that Jk < ∞, k = 1, 2, 3, 4 is elementary by 0 < di, dj < 1/2. This proves (7.19)

and (7.18), (7.15).

To prove (7.16) we use condition (3.10). By the Markov inequality, E[v2n(s)I(|vn(s)| >
δB

1/2
ij (n))] ≤ E|vn(s)|2+ϵ(δB

1/2
ij (n))−ϵ and (7.16) follows from∑

s<n

E|vn(s)|2+ϵ = o(B
(2+ϵ)/2
i,j (n)) = O((n log n)(2+ϵ)/2).(7.21)

We have E|vn(s)|2+ϵ ≤ C(E|un,i(s)|2+ϵ + E|un,j(s)|2+ϵ) ≤ C(Li(s) + Lj(s)), where Li(s) :=

E
∣∣∑

s′<s cn(s
′, s)ξs,i

∣∣2+ϵ
, Lj(s) := E

∣∣∑
s′<s cn(s, s

′)ξs,j
∣∣2+ϵ

. By Rosenthal’s inequality, see

GKS, Lemma 2.5.2,

Li(s) ≤ C
(∑

s′<s c
2
n(s

′, s)
)(2+ϵ)/2

.(7.22)

We use the following bound similar to (7.20).

(7.23) |cn(s′, s)| ≤ C


n|s′|di−1

n1−dj+|s|1−dj
, s′ < −n,

|s′ − s|−1/2
+ , |s′| ≤ n.
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From (7.22), (7.23) we obtain∑
s<n

Li(s) ≤ C
{ ∑

s≤−n

+
∑
|s|<n

}(∑
s′<s

c2n(s
′, s)
)(2+ϵ)/2

=: C{J1 + J2},

where

J1 ≤ C

∫ −n

−∞
ds
(∫ −n

−∞
(n|s′|di−1|s|dj−1)2ds′

)(2+ϵ)/2

= Cn

∫ −1

−∞
|s|2(dj−1)(2+ϵ)/2ds

(∫ −1

−∞
|s′|2(di−1)ds′

)(2+ϵ)/2

= Cn

since the last integral converges. On the other hand, since di + dj = 1/2,

J2 ≤ C
∑
|s|≤n

( ∑
s′≤−n

n2dj |s′|2(di−1)
)(2+ϵ)/2

+ C
∑
|s|≤n

( ∑
|s′|≤n

|s− s+|−1
+

)(2+ϵ)/2

≤ Cn+ Cn(log n)(2+ϵ)/2,

implying
∑

s<n Li(s) = O(n(log n)(2+ϵ)/2). Since
∑

s<n Lj(s) = O(n(log n)(2+ϵ)/2) follows

exactly similarly, we obtain
∑

s<nE|vn(s)|2+ϵ = O(n(log n)(2+ϵ)/2) = o((n log n)(2+ϵ)/2) for

ϵ > 0, proving (7.21), (7.16) and completing the proof of (7.12).

Proof of (3.12): Case δmax < 1/2. Then by (7.4) relation (3.12) is equivalent to

(7.24)
{
n1/2(Sγi,γj − ESγi,γj); (i, j) ∈ Πm

}
→D

{
σijZij; (i, j) ∈ Πm

}
,

where Zij, (i, j) ∈ Πm are independent N(0, 1) r.v.’s and σ2
ij are defined in (7.5). Moreover

since X̄iX̄j = Op(n
di+dj−1) = op(n

−1/2) for di + dj < 1/2, so Sγi,γj in (7.24) can be replaced

by S̃ij = n−1
∑n

t=1 γt,iγt,j and (7.24) follows from

(7.25)
{
n1/2(S̃γi,γj − ES̃γi,γj); (i, j) ∈ Πm

}
→D

{
σijZij; (i, j) ∈ Πm

}
.

We shall prove (7.25) for a single pair (i, j) ∈ Πm. Let i ̸= j. Then ES̃γi,γj = 0. Hence it

suffices to prove

n1/2S̃γi,γj →D N(0, σ2
ij)(7.26)

We use the argument as in GKS, Thm.4.8.1. For ℓ ≥ 1 introduce ‘truncated’ processes:

γ
(ℓ)
t,i :=

∑
s≤t

bt−s,i1(t− s ≤ ℓ)ξs,i, i = 1, · · · ,m,

and the corresponding S̃
γ
(ℓ)
i ,γ

(ℓ)
j

:= n−1
∑n

t=1 γ
(ℓ)
t,i γ

(ℓ)
t,j . Thus, for each 1 ≤ ℓ < ∞ fixed,

Y
(ℓ)
ij (t) := γ

(ℓ)
t,i γ

(ℓ)
t,j , t ∈ Z is a ℓ-dependent stationary process with autocovariance ρ

(ℓ)
ij (t) :=
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Cov(Y
(ℓ)
ij (t), Y

(ℓ)
ij (0)) such that

ρ
(ℓ)
ij (t) =

( ∞∑
s=0

bs,ibt+s,i1(t+ s ≤ ℓ)
)( ∞∑

s=0

bs,jbt+s,j1(t+ s ≤ ℓ)
)

≤ C
( ∞∑

s=0

|bs,ibt+s,i|
)( ∞∑

s=0

|bs,jbt+s,j|
)
≤ Ct2(di+dj−1), t ≥ 1,

and ρ
(ℓ)
ij (t) → ρij(t) := Cov(Yij(t), Yij(0), as ℓ→ ∞, where Yij(t) := γt,iγt,j. These facts and

the CLT for ℓ-dependent stationary processes, see e.g. GKS, Prop.4.3.2, imply that

n1/2S̃
γ
(ℓ)
i ,γ

(ℓ)
j

→D N(0, (σ
(ℓ)
ij )

2), n→ ∞,

(σ
(ℓ)
ij )

2 :=
∑
t∈Z

ρ
(ℓ)
ij (t) → σ2

ij, ℓ→ ∞.

Hence, (7.26) follows provided we show that uniformly in n ≥ 1

(7.27) nVar(S̃γi,γj − S̃
γ
(ℓ)
i ,γ

(ℓ)
j
) =

∑
|t|<n

(
1− |t|

n

)
Cov

(
Yij(t)− Y

(ℓ)
ij (t), Yij(0)− Y

(ℓ)
ij (0)

)
→ ∞,

as ℓ → ∞. The proof of (7.27) mimics that of (GKS, (4.8.7)). We omit the details. This

proves (7.26) and the extension to (7.25) seems straightforward. Theorem 3.1 is proved. 2

Proof of Corollary 3.1. Assume for concreteness that the sets Π0m = {k},Πm = {(i, j)}
each consist of a single element, dmax = dk, δmax = di+dj. Let δmax > 1/2. Following the proof

of Theorem 3.1 in this case, write n1/2−dk γ̄k =
∑

s∈Z fn(s)ξs,k as a linear form in innovations

with coefficients fn(s) = n−1/2−dk
∑n

t=1 bt−s,k, s ∈ Z. Let f̃n(x) := n1/2fn([sx]), x ∈ R and

∥ · ∥1 denote the norm in L2(R). According to (GKS, Propositions 11.5.5, 14.3.3), the joint

convergence in (3.15), or (n1/2−dk γ̄k, n
1−di−dj(Sγi,γj−ESγi,γj)) →D (Ik(fdk), Iij(gdi,dj)) follows

from (7.9) and ∥f̃n − fdk∥1 → 0, where the last relation can be verified similarly to (7.9).

This proves (3.15) for δmax > 1/2. For δmax = di + dj ≤ 1/2 the joint convergence in (3.15)

can be proved similarly as in the proof of Theorem 3.1 and we omit the details.

Consider (3.16). For δmax > 1/2 (3.16) follows the orthogonality of single and double

Wiener-Itô integrals, see (3.4). Suppose δmax ≤ 1/2. As in the proof of Theorem 3.1, let

S̃γi,γj = n−1
∑n

t=1 γt,iγt,j. It suffices to prove that

(7.28) lim
n→∞

n1−dkE
(
γ̄k(S̃γi,γj − ES̃γi,γj)

)
=

κk
dk(1 + dk)

E(ξ0,kξ0,iξ0,j)
∞∑
s=0

bs,ibs,j.

To show (7.28), split S̃γi,γj −ES̃γi,γj = S ′
n+S

′′
n, where nS

′
n :=

∑
s≤n

∑n
t=1∨s bt−s,ibt−s,j(ξs,iξs,j

−Eξs,iξs,j), S ′′
n := n−1

∑
s1,s2≤n,s1 ̸=s2

∑n
t=1∨s1∨s2 bt−s1,ibt−s2,jξs1,iξs2,j. Since Eγ̄kS

′′
n = 0, it suf-

fices to prove (7.28) with S̃γi,γj − ES̃γi,γj replaced by S ′
n. We have

n1−dkE(γ̄kS
′
n) = E(ξ0,kξ0,iξ0,j)n

−1−dk
∑
s≤n

n∑
t=1∨s

bt−s,kLs,ij(n),(7.29)
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where Ls,ij(n) :=
∑n

t=1∨s bt−s,ibt−s,j → Lij :=
∑∞

t=0 bt,ibt,j < ∞ for any 1 ≤ s ≤ n and

|Ls,ij(n)| ≤ C
∑∞

t=|s| t
di+dj−2 ≤ C(1 + |s|)di+dj−1, s ≤ 0. Thus, by (10.2.53) of GKS,

n−1−dk

n∑
s=1

n∑
t=s

bt−s,kLs,ij(n) ∼ Lijκkn
−1−dk

n∑
s=1

n∑
t=s

(t− s)dk−1
+ → (κk/dk(1 + dk))Lij,

∣∣∣∑
s≤0

n∑
t=s

bt−s,kLs,ij(n)
∣∣∣ ≤ C

n∑
t=1

∞∑
s=0

(t+ s)dk−1(1 + s)di+dj−1

≤ C

n∑
t=1

tdk+di+dj−1 ≤ Cndk+di+dj = o(n1+dk).

This completes the proof of (7.28). The last relation also implies the statement (3.16) of the

corollary when δmax < 1/2 and also when δmax = 1/2 due to the presence of the logarithmic

factor in the normalization A(n) (3.1). 2

Proof of (4.11). For any two sets of variables {Ui}, {Vi}, let S̃UV := n−1
∑n

i=1(UiVi −
EUiVi), U

c
i := Ui − EUi. Then (4.1) can be rewritten as Tn + βσ2

u = T ′
n − T ′′

n , where

T ′
n := S̃Xcε − βS̃Xcu + S̃uε − βS̃uu, T ′′

n := Xcε̄− βXcū+ ūε̄− β(ū)2.

Note all summands in T ′′
n are uncorrelated, implying

Var(T ′′
n ) = Var(Xc)Var(ε̄) + β2Var(Xc)Var(ū) + Var(ū)Var(ε̄) + β2Var((ū)2) = O(n−2).

Hence and from (2.9) and (4.1),

n1/2(β̂ − β) = n1/2T ′
n/σ

2
X + op(1).(7.30)

Similarly from (4.4) and (7.30) we obtain

n1/2(α̂− α) = n1/2(ε̄− βū)− n1/2(β̂ − β)(µX + op(1))(7.31)

= n1/2(ε̄− βū)− (µX/σ
2
X)n

1/2T ′
n + op(1).

Note n1/2T ′
n and n1/2(ε̄−βū)+ (µX/σ

2
X)T

′
n are sums of i.i.d. r.v.’s with zero mean and finite

variance. Moreover, since all terms in T ′
n are mutually uncorrelated,

Var(T ′
n) = Var(S̃Xcε) + β2Var(S̃Xcu) + Var(S̃uε) + β2Var(S̃uu)

= n−1
(
σ2
Xσ

2
ε + β2σ2

Xσ
2
u + σ2

uσ
2
ε + β2(µ4 − σ4

u)
)
.

Hence, Var(n1/2T ′
n/σ

2
X) = φ, see (4.11). We also find that the covariance matrix of (n1/2(ε̄−

βū) + (µX/σ
2
X)T

′
n, n

1/2T ′
n/σ

2
X) (the main terms in (7.30), (7.31)) coincides with Γ in (4.11).

Then (4.11) follows from (7.30), (7.31) and the classical CLT for sums of i.i.d. r.v.’s. 2
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8 Appendix

This appendix contains the proof of Proposition 4.1. In the process of proving the consistency

of σ̂2
R̂,q

we also establish some results of independent interest.

Accordingly, let {(Vt,Wt), t ∈ Z} be a covariance stationary process with summable

cross-covariances
∑

t∈Z |Cov(V0,Wt)| <∞. The limit

lim
n→∞

n−1Cov
( n∑

t=1

Vt,
n∑

s=1

Ws

)
= σV,W :=

∑
t∈Z

Cov
(
V0,Wt

)
=
∑
t∈Z

Cov
(
W0, Vt

)
is called the long-run cross covariance of V,W (the long-run variance of V when Vt ≡ Wt).

Let q ≡ q(n) = 1, 2, · · · , n be a sequence integers and let σ2
V = σV,V , σ

2
W = σW,W . Similar to

the HAC estimator of σ2
V , see Abadir et al (2009), GKS (2012), the HAC estimator of σV,W

is defined to be

σ̂V,W,q := n−1
∑
|k|≤q

(1− |k|
q
)

∑
1≤t,s≤n,t−s=k

(Vt − V̄ )(Ws − W̄ ).(8.1)

See Lavancier et al. (2009), (2.1). Write σ̂2
V,q = σ̂V,V,q, σ̂

2
W,q = σW,W,q. The representation in

(8.1) implies σ̂2
V,q ≥ 0, σ̂2

W,q ≥ 0, for all q, and by the Cauchy-Schwarz inequality,

(8.2) σ̂2
V+W,q ≤ 2(σ̂2

V,q + σ̂2
W,q), |σ̂V,W,q| ≤

√
σ̂2
V,qσ̂

2
W,q.

See also Abadir et al. (2009), (A.2) and Koul and Surgailis (2016), p.176. In the sequel all

limits are taken as n→ ∞, q → ∞, n/q → ∞, unless mentioned otherwise.

Note that Rt := et(Zt − EZt) = (εt − βut)(Xt − EXt + ut) is a stationary process.

Because of the assumed mutual independence of the processes {εt}, {Xt}, {ut}, we obtain

ER0 = −βσ2
u, Var(R0) = (σ2

ε + β2σ2
u)σ

2
X + σ2

εσ
2
u + β2σ2

u2 and

γR(t) := Cov(R0, Rt) = γε(t)γX(t) + β2γu(t)γX(t) + γε(t)γu(t) + β2γu2(t)

≈ C
[
t−2(1−(dε+dX)) + t−2(1−(du+dX)) + t−2(1−(dε+du)) + t−2(1−2du)

]
= O(t−2(1−Dmax)),

where Dmax = max{dε + dX , du + dX , dε + du, 2du}. Hence Dmax < 1/2 implies that γR(t) is

summable, i.e., {Rt} is a short memory stationary process. Its long-run variance is σ2
R :=∑

t∈Z γR(t). We are now ready to give the

Proof of Proposition 4.1. The claim that σ̂2
R̂,q

→p σ
2
R follows from the following two

claims.

(a) |σ̂2
R,q − σ2

R| →p 0. (b) E|σ̂2
R̂,q

− σ̂2
R,q| → 0.(8.3)
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Proof of (8.3)(a). The proof here is similar to that of Theorem 9.4.1, p279-280 of GKS.

Let

(8.4) σ̃2
R,q := n−1

∑
|k|≤q

(1− |k|
q
)

∑
1≤t,s≤n,t−s=k

R̃tR̃s, R̃t := Rt − ERt.

Since Eσ̂2
R,q → σ2

R, (8.3)(a) follows from

(8.5) (a) Var(σ̃2
R,q) → 0, (b) E|σ̂2

R,q − σ̃2
R,q| → 0.

Proof of (8.5)(b). Let

γ̂k := n−1

n−|k|∑
i=1

(Ri − R̄)(Ri+|k| − R̄), γ̃k := n−1

n−|k|∑
i=1

R̃iR̃i+|k|, |k| < n.

Then

σ̂2
R,q =

∑
|k|≤q

(1− |k|
q
)γ̂k, σ̃2

R,q =
∑
|k|≤q

(1− |k|
q
)γ̃k, |σ̂2

R,q − σ̃2
R,q| ≤

∑
|k|≤q

∣∣γ̂k − γ̃k
∣∣.

Moreover,

γ̂k − γ̃k =
n− |k|
n

( ¯̃R)2 −
¯̃R

n

( n−|k|∑
i=1

R̃i +

n−|k|∑
i=1

R̃i+|k|

)
.

Because
∑

t∈Z |γR(t)| <∞, E
(∑n

i=1 R̃i

)2 ≤ Cn. This together with the stationarity and the

Cauchy-Shwarz inequality yield

E
∣∣γ̂k − γ̃k

∣∣ ≤ Cn−1 + 2n−1E1/2( ¯̃R)2E1/2
( n−|k|∑

i=1

R̃i

)2
≤ C

[
n−1 + n−1(1− |k|

n
)1/2
]
≤ Cn−1,

E|σ̂2
R,q − σ̃2

R,q| ≤ C(q/n) → 0,

thereby completing the proof of (8.5)(b).

Proof of (8.5)(a). Let X̃t = Xt −EXt. Since Rt = εtX̃t − βutX̃t + εtut − βu2t , we rewrite

σ̃2
R,q = σ̃2

εX̃,q
+ β2σ̃2

uX̃,q
+ σ̃2

εu,q + β2σ̃2
u2,q − 2βσ̃εX̃,uX̃,q(8.6)

+2σ̃εX̃,εu,q − 2βσ̃εX̃,u2,q + 2β2σ̃uX̃,u2,q − 2βσ̃εu,u2,q,

where

σ̃2
εX̃,q

:= n−1
∑
|k|≤q

(1− |k|
q
)

∑
1≤t,s≤n,t−s=k

εtX̃t εsX̃s,

σ̃εX̃,uX̃,q := n−1
∑
|k|≤q

(1− |k|
q
)

∑
1≤t,s≤n,t−s=k

εtX̃t usX̃s,
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and the other quantities in (8.6) are defined analogously. Clearly, (8.5)(a) will follow if we

show that the variance of each term on the r.h.s. of (8.6) tends to zero. Since the terms on

the r.h.s. of (8.6) are particular cases of (8.7) below, these convergence results will follow

from Lemma 8.1(i).

Lemma 8.1 Let Xt,i =
∑∞

k=0 bk,iξt−k,i, t ∈ Z, i = 1, 2, 3, 4 be four LMMA processes with

bk,i ∼ κik
di−1, di ∈ (0, 1/2), κi > 0, ξt,i standardized i.i.d., Eξ8t,i < ∞ (independence of

ξt,i, i = 1, 2, 3, 4 is not assumed). Let δmax := max{d1+d2, d3+d4}, Xt,12 := Xt,1Xt,2, Xt,34 :=

Xt,3Xt,4 and

σ̃X12,X34,q = n−1
∑
|k|≤q

(1− |k|
q
)

∑
1≤t,s≤n,t−s=k

(Xt,12 − EXt,12)(Xs,34 − EXs,34).(8.7)

(i) If δmax < 1/2, then
∑

t∈Z |Cov(X0,12Xt,34)| <∞ and

(a) Eσ̃X12,X34,q → σX12,X34 =
∑
t∈Z

Cov(X0,12, Xt,34), (b) Var(σ̃X12,X34,q) → 0.(8.8)

Particularly, σ̃X12,X34,q is a consistent estimator of σX12,X34.

(ii) If δmax ≥ 1/2, then

σ̃X12,X34,q = Op

(
q2δmax−1(1 + (log q)I(δmax = 1/2))

)
.(8.9)

The proof of this lemma will be given later. Here we show how it is used to conclude

(8.5)(a). Recall (8.6). In Lemma 8.1, take Xt,1 ≡ εt ≡ Xt,3, Xt,2 ≡ X̃t ≡ Xt,4. Then

σ̃X12,X34,q = σ̃2
εX̃,q

, d1 = dε = d3, d2 = dX = d4, and δmax = max{d1 + d2, d3 + d4} = dε + dX .

The assumption Dmax = max{dX +dε, dX +du, du+dε, 2du} < 1/2 of Proposition 4.1 implies

that δmax < 1/2. Hence by Lemma 8.1(i)(b), Var(σ̃2
εX̃,q

) → 0.

Next, take Xt,1 ≡ εt, Xt,2 ≡ X̃t ≡ Xt,4, Xt,3 ≡ ut. Then σ̃X12,X34,q = σ̃εX̃,uX̃,q, d1 = dε

d2 = dX , d3 = d4 = du, δmax = max{d1 + d2, d3 + d4} = max{dε + dX , 2du}, and again

Dmax < 1/2 implies δmax < 1/2 and we obtain Var(σ̃εX̃,uX̃,q) → 0, by Lemma 8.1(i)(b).

Similarly, the variances of the other terms on the right hand side of (8.6) are shown to tend

to zero, thereby completing the proof of (8.5)(a). This also completes the proof of (8.3)(a).

Proof of (8.3)(b). Let ē = n−1
∑n

t=1 et, Z̄
2 := n−1

∑n
t=1 Z

2
t . Use Yt = α + βZt + et to

write

êt − et = Yt − α̂− β̂Zt − et = (α− α̂) + (β − β̂)Zt,

R̂t = et(Zt − Z̄) + (α− α̂)(Zt − Z̄) + (β − β̂)Zt(Zt − Z̄),

= Rt + et(EZ − Z̄) + (α− α̂)(Zt − Z̄) + (β − β̂)Zt(Zt − Z̄),

= Rt + gn,t,
¯̂
R = R̄ + ē(EZ − Z̄) + (β − β̂)(Z̄2 − (Z̄)2),
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where

gn,t = et(EZ − Z̄) + (α− α̂)(Zt − Z̄) + (β − β̂)Zt(Zt − Z̄).

Then σ̂2
R̂,q

− σ̂2
R,q = 2σ̂R,gn,q + σ̂2

gn,q where

σ̂R,gn,q := n−1
∑n−1

ℓ=1−q

(∑
1≤t≤n:1+ℓ≤t≤q+ℓ(Rt − R̄)

)(∑
1≤s≤n:1+ℓ≤s≤q+ℓ(gn,s − ḡn)

)
satisfies |σ̂R,gn,q| ≤

√
σ̂2
R,q

√
σ̂2
gn,q, see (8.2), also Koul et al (2016), p.176. Hence (8.3)(b)

follows from σ̂2
R,q = Op(1) (which is implied by (8.3)(a)) and

σ̂2
gn,q →p 0.(8.10)

By the first inequality in (8.2), the proof of (8.10) reduces to the corresponding statements

for processes et(EZ0 − Z̄), (α− α̂)(Zt − Z̄), (β − β̂)Z2
t , and −(β − β̂)Z̄ Zt whose sum is gn,t.

More precisely, (8.10) follows from

(i) (EZ0 − Z̄)2σ̂2
e,q →p 0, (ii) (α̂− α)2σ̂2

Z,q →p 0,(8.11)

(iii) (β̂ − β)2σ̂2
Z2,q →p 0, (iv) (β − β̂)2(Z̄)2σ̂2

Z,q →p 0.

Consider (8.11)(i). We have E(EZ0 − Z̄)2 ≤ 2Var(X̄) + 2Var(ū) ≤ C(n2dX−1 + n2du−1)

and σ̂2
e,q ≤ 2σ̂2

ε,q + 2β2σ̂2
u,q where q−2dεσ̂2

ε,q = Op(1), q
−2duσ̂2

u,q = Op(1), see GKS Thm. 9.4.1

or Lavancier et al (2010) (under (2 + ϵ)-condition on the innovations as in Corollary 4.1).

Therefore (8.11)(i) holds provided n, q satisfy

q2dε = o(n1−2du), q2dε = o(n1−2dX ), q2du = o(n1−2du), q2du = o(n1−2dX ),

or (q/n)2dε = o(n1−2(du+dε)) = o(n1−2δmax), (q/n)2dε = o(n1−2(du+dX)) = o(n1−2δmax), (q/n)2du

= o(n1−4du) = o(n1−2δmax), (q/n)2du = o(n1−2(du+dX)) = o(n1−2δmax), which clearly hold by

q/n→ 0, δmax < 1/2, proving (8.11)(i).

Consider (8.11)(ii). Since α̂− α = Op(n
1−2(du∨dε)) by Cor. 4.1(v), (8.11)(ii) follows from

q2dX = o(n1−2(du∨dε)), q2du = o(n1−2(du∨dε))

which again reduce to q/n → 0, δmax < 1/2. The proof of (8.11)(iv) is analogous since β̂

converges faster than α̂, see Corollary 4.1(v).

It remains to prove (8.11)(iii) which follows from

(8.12) σ̂2
Z2,q = op(n)

since (β̂ − β)2 = O(n−1) by Corollary 4.1(v). We have σ̂2
Z2,q ≤ 2(σ̂2

X2,q + σ̂2
u2,q). Arguing as

for the proof of (8.3)(a)-(b) one can show that σ̂2
u2,q → σ2

u2 . Hence (8.12) follows from

(8.13) σ̂2
X2,q = op(n).
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For this, we use Lemma 8.1 with Xt,1 = ... = Xt,4 = Xt and d1 = ... = d4 = dX , δmax = 2dX .

If dX < 1/4 then (i) of the above lemma applies, yielding σ̂2
X2,q = Op(1) = op(n). If

dX > 1/4 then by part (ii), σ̂2
X2,q = Op(q

4dX−1) = op(q) = op(n) and for dX = 1/4 we get

σ̂2
X2,q = Op(log(q)) = op(n), proving (8.13). This proves (8.11)(iii) and completes the proof

of (8.3)(a), hence that of the Proposition 4.1. 2

The proof of Lemma 8.1 is facilitated by the following lemma, which provides inequalities

that are often used in the sequel.

Lemma 8.2 (i) For a > 0, 0 < b < 1, a+ b > 1

(8.14)
∑
s∈Z

|s|−a
+ |t− s|−b

+ ≤ C

|t|1−a−b
+ , 0 < a < 1,

|t|−b
+ , a > 1,

t ∈ Z.

(ii) For a > 1, 0 < b < 1, q ≥ 1, t ∈ Z∑
|s|≥q

|s|−a|t− s|−b
+ ≤ Cqa−1(q ∨ |t|+)−b,(8.15)

∑
|s|≤q

|t− s|−b
+ ≤ Cq(q ∨ |t|+)−b.(8.16)

(iii) For a > 0, b > 0, c > 0, q ≥ 1∑
|t|,|s|≤q

|t|−a
+ |s|−b

+ |t− s|−c
+ ≤ C

(
q(1−a)++(1−b−c)+ + q(1−b)++(1−a−c)+

)(
1 + loga,b,c(q)

)
,(8.17)

where loga,b,c(q) := log(q)
(
1(a = 1) + 1(b + c = 1) + 1(b = 1) + 1(a + c = 1)

)
, (x)+ :=

x ∨ 0, x ∈ R.

Proof. (i) follows from (10.2.53) of GKS.

(ii) To check (8.15), let t ≥ 1 w.l.g. First, let q ≥ t then
∑

|s|≥q |s|−a|t−s|−b
+ ≤ 2

∑
s≥q s

−a(s−
t)−b =

∑∞
s=0(s + q)−a(s + q − t)−b

+ ≤
∑∞

s=0(s + q)−as−b
+ ≤

∫∞
0
(x + q)−ax−bdx = Cqa+b−1.

Next, let 1 ≤ q ≤ t then
∑

s≥q s
−a(s − t)−b =

∑
q≥s<t/2 s

−a(s − t)−b +
∑

t/2≤s≤3t/2 s
−a(s −

t)−b +
∑

s>3t/2 s
−a(s − t)−b ≤ (t/2)−b

∑
s≥q s

−a + (t/2)−a
∑

|s|≤t/2 |s|−b + C
∑

s≥3t/2 s
−a−b ≤

C(t−bq1−a + t1−a−b) ≤ Ct−bq1−a, proving (8.15).

To show (8.16), let |t| ≤ 2q then
∑

|s|≤q |t − s|−b
+ ≤

∑
|s|≤3q |s|

−b
+ ≤ Cq1−b. Next, let |t| > 2q

then
∑

|s|≤q |t− s|−b
+ ≤ C

∑
|t|≤s≤|t|+q |s|−b ≤ Cq|t|−b, proving (8.16).

(iii) Let loga,b,c(q) = 0 for simplicity. Split Jq(= the l.h.s. of (8.17)) as Jq =
∑3

i=1 Jq,i

according to whether |s| < |t|/2, |s| > 2|t| and |t|/2 ≤ |s| ≤ 2|t|, respectively. Note

|s| < |t|/2 implies |s − t| > |t|/2 while |s| > 2|t| implies |s − t| > |s|/2. Hence Jq,1 ≤
C
∑

|t|,|s|≤q |t|
−a−c
+ |s|−b

+ ≤ Cq(1−a−c)++(1−b)+ and similarly, Jq,3 ≤ C
∑

|t|,|s|≤q |t|
−a
+ |s|−b−c

+ ≤
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Cq(1−a)++(1−b−c)+ which agree with (8.17).

Consider Jq,3 = J+
q,3 + J−

q,3 where the ± subscripts refer to sign(t) = sign(s) and sign(t) ̸=
sign(s). Clearly, J−

q,3 ≤ J+
q,3 ≤ 2

∑
0≤t,s≤q,t/2≤s≤2t t

−a
+ s−b

+ |t − s|−c
+ . Note t/2 ≤ s ≤ 2t im-

plies |t − s| ≤ |t| and hence Jq,3 ≤ C
∑

0≤t,s≤q s
−b
+ |t − s|−a−c

+ ≤ Cq(1−a−c)++(1−b)+ . For

loga,b,c(q) ≥ log(q) ̸= 0 (8.17) follows similarly. This proves (8.17) and the lemma, too. 2

Proof of Lemma 8.1. Proof of (i). We haveXt,12−EXt,12 =
∑

s1,s2≤t bt−s1,1bt−s2,2ξs1,1ξs2,2 =

Y 0
t,12 + Yt,12 + Yt,21, where

Y 0
t,12 :=

∑
s≤t

bt−s,1bt−s,2(ξs,1ξs,2 − Eξs,1ξs,2),(8.18)

Yt,12 :=
∑

s2<s1≤t

bt−s1,1bt−s2,2ξs1,1ξs2,2, Yt,21 :=
∑

s1<s2≤t

bt−s1,1bt−s2,2ξs1,1ξs2,2

are stationary processes with zero means, finite variances and respective covariance functions

Cov(Y 0
t,12, Y

0
u,12) = Var(ξ0,1ξ0,2)

∑
s≤t∧u bt−s,1bt−s,2bu−s,1bu−s,2,

Cov(Yt,12, Yu,12) =
∑

s2<s1≤t∧u

bt−s1,1bt−s2,2bu−s1,1bu−s2,2,

Cov(Yt,21, Yu,21) =
∑

s1<s2≤t∧u

bt−s1,1bt−s2,2bu−s1,1bu−s2,2.

Similarly, Xt,34−EXt,34 =
∑

s3,s4≤t bt−s3,3bt−s4,4ξs3,3ξs4,4 = Y 0
t,34+Yt,34+Yt,43, where Y

0
t,34, Yt,34,

Yt,43 are defined analogously as (8.18). Since

∞∑
k=0

|bk,1bk,2| ≤ C
∞∑
k=0

kd1+d2−2
+ <∞,

∞∑
k=0

|bk,3bk,4| ≤ C
∞∑
k=0

kd3+d4−2
+ <∞,

we conclude that Y 0
t,12, Y

0
t,34 are linear processes with summable covariances and cross covari-

ances, i.e.,
∑

t∈Z(|Cov(Y 0
t,12, Y

0
0,12)|+ |Cov(Y 0

t,34, Y
0
0,34)| +|Cov(Y 0

t,12, Y
0
0,34)|) <∞.

Next, let

(8.19) ∆ := d1 + d2 + d3 + d4.

Because δmax = max{d1 + d2, d3 + d4} < 1/2, 0 < ∆ ≤ 2δmax < 1 and, by (8.14),

|Cov(Yt,12, Y0,34)|+ |Cov(Yt,12, Y0,43)|+ |Cov(Yt,21, Y0,34)|+ |Cov(Yt,21, Y0,43)| ≤ C|t|∆−2
+ .

Also note that for all t, u ∈ Z, Cov(Y 0
t,12, Yu,34) = Cov(Y 0

t,12, Yu,43) = Cov(Yt,12, Y
0
u,34) =

Cov(Yt,21, Y
0
u,34) = 0. These facts imply that

∑
τ∈Z

|Cov
(
Xt,12, X0,12

)
| <∞, lim

n→∞
n−1Cov

( n∑
t=1

Xt,12,

n∑
s=1

Xs,34

)
= σX12,X34 ,
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with σX12,X34 defined at (8.8). As in GKS (9.4.8), these facts in turn yield (8.8)(a).

It remains to prove (8.8)(b). Similarly to (8.6) we rewrite

σ̃X12,X34,q = σ̃Y12,Y34,q + σ̃Y12,Y43,q + σ̃Y12,Y 0
34,q

+ σ̃Y21,Y34,q + σ̃Y21,Y43,q(8.20)

+σ̃Y21,Y 0
34,q

+ σ̃Y 0
12,Y34,q + σ̃Y 0

12,Y43,q + σ̃Y 0
12,Y

0
34,q
.

Clearly (8.8)(b) follows once we prove that the variance of each term on the r.h.s. of (8.20)

vanishes in the limit. The subsequent discussion is limited to the proof of

(a) Var(σ̃Y12,Y34,q) → 0 and (b) Var(σ̃Y12,Y 0
34,q

) → 0,(8.21)

since the remaining variances can be evaluated in a similar fashion.

Consider the claim (8.21)(a). Write Yt,12 =: Yt, Yt,34 =: Y ′
t for brevity. Then

Var(σ̃Y12,Y34,q) = n−2
∑

|k1|,|k2|≤q

(1− |k1|
q

)(1− |k2|
q

)
∑

1≤t1,t2≤n

Cov
(
Yt1Yt1+k1 , Y

′
t2
Y ′
t2+k2

)
≤ n−2

∑
|k1|,|k2|≤q

∑
1≤t1,t2≤n

∣∣Cov(Yt1Yt1+k1 , Y
′
t2
Y ′
t2+k2

)∣∣(8.22)

≤ n−1
∑

|k1|,|k2|≤q

∑
|t|≤n

∣∣Cov(Y0Yk1 , Y ′
t Y

′
t+k2

)∣∣ → 0,

provided for some ν > 0

Mn,q :=
∑

|k1|,|k2|≤q

∑
|t|≤n

∣∣Cov(Y0Yk1 , Y ′
t Y

′
t+k2

)∣∣ ≤ Cn(q/n)ν .(8.23)

As in GKS, p.281, use the bound |Cov(Y0, Y ′
t )| ≤ C|t|∆−2

+ , see above, and the identity

Cov(Y0Yk1 , Y
′
t Y

′
t+k2

)

= Cum(Y0, Yk1 , Y
′
t , Y

′
t+k2

) + Cov(Y0, Y
′
t )Cov(Yk1 , Y

′
t+k2

) + Cov(Y0, Y
′
t+k2

)Cov(Yk1 , Y
′
t ),

to obtain Mn,q ≤
∑3

i=1Mn,q,i, where

Mn,q,1 :=
∑

|k1|,|k2|≤q

∑
|t|≤n

∣∣Cum(Y0, Yk1 , Y ′
t , Y

′
t+k2

)∣∣,
Mn,q,2 ≤ C

∑
|k1|,|k2|≤q,|t|≤n

|t|∆−2
+ |t+ k2 − k1|∆−2

+ ≤ Cq(
∞∑
t=1

t∆−2)(
∞∑
k=1

k∆−2) ≤ Cq,

Mn,q,3 ≤ C
∑

|k1|,|k2|≤q,|t|≤n

|t+ k2|∆−2
+ |t− k1|∆−2

+ ≤ Cq.

Whence (8.23) with ν = 1 follows if we prove that

Mn,q,1 ≤ Cq.(8.24)
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We note that (8.24) is weaker than Assumption M in GKS thm. 9.4.1, viz,

max
t3

n∑
t1,t2=−n

|Cum(Y0, Yt1 , Yt2 , Yt3)| ≤ C,

for the consistency of the HAC estimator which apparently is not satisfied by Xt,12 and some

other processes discussed here. Let

B0,k1,t,t+k2(u1, s1, · · · , u4, s4) := b−s1,1b−u1,2bk1−s2,1bk1−u2,2bt−s3,3bt−u3,4bt+k2−s4,3bt+k2−u4,4.

By the multilinearity property of cumulants

Cum(Y0, Yk1 , Y
′
t , Y

′
t+k2

) =
∑

si<ui,i=1,2,3,4

B0,k1,t,t+k2(u1, s1, · · · , u4, s4)(8.25)

×Cum(ξs1,1ξu1,2, ξs2,1ξu2,2, ξs3,3ξu3,4, ξs4,3ξu4,4).

To proceed further we need to introduce the tables

(8.26) T1 :=


s1 u1

s2 u2

s3 u3

s4 u4

 , T2 :=


s1 u1

s2 s2

s3 u3

s4 s4

 .

Using GKS (14.1.15), we rewrite

(8.27) Cum(ξs1,1ξu1,2, ξs2,1ξu2,2, ξs3,3ξu3,4, ξs4,3ξu4,4) =
∑

{V }⊂Γc
T1

IV ,

where IV =
∏r

k=1 Cum(ξsi,1, ξsi,3, ξuj ,2, ξuj ,4; si ∈ Vk, uj ∈ Vk) and the sum is taken over

all connected diagrams {V } = (V1, · · · , Vr) (partitions) of the table T1. Since random vec-

tors (ξs,1, ξs,2, ξs,3, ξs,4), s ∈ Z are independent and si < ui, i = 1, 2, 3, 4 this implies that

Cum(ξsi,1, ξsi,3, ξuj ,2, ξuj ,4; si ∈ V, uj ∈ V ) = 0 for any V which contains both elements

from a single row of T1; in other words, diagrams {V } = (V1, · · · , Vr) with IV ̸= 0 con-

sist of ‘vertical’ partitions connecting different rows of T1. There are four types of such

partitions designated as D1) {V } = (2, 2, 2, 2), D2) {V } = (4, 2, 2), D3) {V } = (3, 3, 2)

and D4) {V } = (4, 4). More precisely, D1) corresponds to {V } = (V1, V2, V3, V4), |V1| =

|V2| = |V3| = |V4| = 2, D1) to {V } = (V1, V2, V3), |V1| = 4, |V2| = |V3| = 2, D3) to

{V } = (V1, V2, V3), |V1| = |V2| = 3, |V2| = 2, and D4) to {V } = (V1, V2), |V1| = |V2| = 4.

By (8.25)–(8.27), the l.h.s. of (8.25) can be written as
∑

{V }⊂Γc
T1

MV (0, k1, t, t+k2), where

(8.28) MV (0, k1, t, t+ k2) :=
∑

si<ui,i=1,2,3,4

B0,k1,t,t+k2(u1, s1, · · · , u4, s4).
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Below we estimate MV (0, k1, t, t+ k2) in each case D1)-D4), which will prove (8.24).

Case D1) It suffices to consider the three diagrams: u1 = s2 =: u, u2 = s3 =: v, u3 =

s4 =: w, u4 = s1 =: s D1a), u1 = u4 =: u, s1 = s3 =: s, u2 = u3 =: v, s2 = s4 =: w D1b),

and u1 = u4 =: u, s1 = s3 =: s, s2 = u3 =: v, s4 = u2 =: w D1c) in table T1 in (8.26).

(Here and below, we identify a diagram with a set of equalities between the variables in T1.

E.g., D1c) corresponds to partition {V } = (V1, V2, V3, V4), V1 = {u1, u4}, V2 = {s1, s3}, V3 =

{s2, u3}, V4 = {s4, u2}.)
For D1a), by (8.14),

|MV (0, k1, t, t+ k2)| ≤ C
∑

s,u,v,w

|b−s,1b−u,2bk1−u,1bk1−v,2bt−v,3bt−w,4bt+k2−w,3bt+k2−s,4|

≤ C|t+ k2|−(1−d1−d4)
+ |k1|−(1−d1−d2)

+ |k1 − t|−(1−d3−d2)
+ |k2|−(1−d3−d4)

+ .

Hence, using (8.14) with a = 1− d1 − d4, b = 1− d2 − d3, a+ b = 2−∆ > 1, see (8.19),∑
|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)|(8.29)

≤ C
∑

t∈Z,|k1|,|k2|≤q

1

|t+ k2|1−d1−d4
+ |k1|1−d1−d2

+ |k1 + t|1−d2−d3
+ |k2|1−d3−d4

+

≤ C
∑

|k1|,|k2|≤q

1

|k1|1−d1−d2
+ |k2|1−d3−d4

+

≤ Cq∆ ≤ Cq.

For D1b), use (8.14) w.r.t. s, u, v, w ∈ Z to obtain

|MV (0, k1, t, t+ k2)|(8.30)

≤ C
∑

s,u,v,w

|b−s,1bt−s,3b−u,2bt+k2−u,4bk1−v,2bt−v,4bk1−w,1bt+k2−w,3|

≤ C|t|−(1−d1−d3)
+ |t+ k2|−(1−d2−d4)

+ |t− k1|−(1−d2−d4)
+ |t+ k2 − k1|−(1−d1−d3)

+ .

Next, use (8.14) w.r.t. t ∈ Z and k1 ∈ Z to obtain∑
|t|≤n,|k1|,|k2|≤q |MV (0, k1, t, t+ k2)| ≤ C

∑
|k2|≤q |k2|

2(∆−2)
+ ≤ Cq(2∆−1)+ ≤ Cq.(8.31)

For D1c), exactly similarly as above,

|MV (0, k1, t, t+ k2)|
≤ C

∑
s,u,v,w

|b−s,1bt−s,3b−u,2bt+k2−u,4bk1−v,1bt−v,4bk1−w,2ct+k2−w,3|

≤ C|t|−(1−d1−d3)
+ |t+ k2|−(1−d2−d4)

+ |t− k1|−(1−d1−d4)
+ |t+ k2 − k1|−(1−d2−d3)

+

resulting in the same bound as (8.30) above.
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Case D2). It suffices to consider two diagrams s1 = s2 = s3 = s4 =: s, u1 = u2 =: u, u3 =

u4 =: v D2a), and s1 = s2 = s3 = s4 =: s, u1 = u3 =: u, u2 = u4 =: v D2b). For D2a),

|MV (0, k1, t, t+ k2)| ≤ C
∑
s,u,v

|b−s,1bk1−s,1bt−s,3bt+k2−s,3b−u,2bk1−u,2bt−v,4bt+k2−v,4|

≤ C

|k1|1−2d2
+ |k2|1−2d4

+

∑
s

|b−s,1bk1−s,1bt−s,3bt+k2−s,3|.

Because δmax < 1/2, the above bound and (8.14) imply∑
|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)|(8.32)

≤ C
∑

|k1|,|k2|≤q

1

|k1|1−2d2
+ |k2|1−2d4

+

∑
t,s∈Z

|b−s,1bk1−s,1bt−s,3bt+k2−s,3|

≤ C
∑

k1,k2∈Z

1

|k1|2(1−d1−d2)
+ |k2|2(1−d3−d4)

+

≤ C.

Similarly, for D2b),

|MV (0, k1, t, t+ k2)| ≤ C
∑
s,u,v

|b−s,1bk1−s,1bt−s,3bt+k2−s,3b−u,2bt−u,4bk1−v,2bt+k2−v,4|

≤ C|t|−(1−d2−d4))
+ |t+ k2 − k1|−(1−d2−d4)

+

∑
s

|b−s,1bk1−s,1bt−s,3bt+k2−s,3|,

and hence, by (8.14) and the fact 2−∆ > 1,∑
|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)|(8.33)

≤ C
∑

t,s,k1,k2

|t|d2+d4−1
+ |t+ k2 − k1|d2+d4−1

+ |s|d1−1
+ |k1 − s|d1−1

+ |t− s|d3−1
+ |t+ k2 − s|d3−1

+

≤ C
∑
t,s,k1

1

|t|1−d2−d4
+ |s|1−d1

+ |k1 − s|2−∆
+ |t− s|1−d3

+

≤ C
∑
t,s

1

|t|1−d2−d4
+ |s|1−d1

+ |t− s|1−d3
+

≤ C
∑
t

1

|t|2−∆
+

≤ C.

Case D3) Consider the two diagrams s1 = s2 = s3 =: s, u1 = s4 =: u, u2 = u3 = u4 =: v

D3a) and s1 = s2 = s3 =: s, u1 = u2 = u4 =: u, u3 = s4 =: v D3b).

For D3a),

|MV (0, k1, t, t+ k2)| ≤ C
∑
s,u,v

|b−s,1bk1−s,1bt−s,3b−u,2bt+k2−u,3bk1−v,2bt−v,4bt+k2−v,4|

≤ C|t+ k2|−(1−d2−d3)
+

∑
s

|b−s,1bk1−s,1bt−s,3|
∑
v

|bk1−v,2bt−v,4bt+k2−v,4|.
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Therefore,
∑

|t|≤n,|k1|,|k2|≤q |MV (0, k1, t, t+ k2)| ≤ CJ where

J :=
∑

|t|≤n,|k1|,|k2|≤q,s,v |t+ k2|d2+d3−1
+ |s|d1−1

+ |k1 − s|d1−1
+ |t− s|d3−1

+(8.34)

×|k1 − v|d2−1
+ |t− v|d4−1

+ |t+ k2 − v|d4−1
+ =: J1 + J2,

and J1 :=
∑

|t|≤n,|k1|,|k2|≤q,v,|s|≥2|k1| · · · , J2 :=
∑

|t|≤n,|k1|,|k2|≤q,v,|s|<2|k1| · · · , split according to

|s| ≥ 2|k1| and |s| < 2|k1|. In J1, we have that |s|d1−1
+ |k1 − s|d1−1

+ ≤ C|s|2(d1−1)
+ where

2(1− d1) > 1. Therefore applying inequality (8.15) with a = 2(1− d1), b = 1− d3 results in

J1 ≤ C
∑

|t|≤n,|k1|,|k2|≤q,v |t+ k2|d2+d3−1
+ |k1|2d1−1

+ (|t|+ ∨ |k1|+)d3−1

×|k1 − v|d2−1
+ |t− v|d4−1

+ |t+ k2 − v|d4−1
+ .

We further split the last sum as J1 = J11 + J12 according to whether |t|+ > 6q or |t|+ ≤ 6q.

By change k2 + t→ k̃2 it follows that |k̃2| ≤ 8q in J12. Therefore J12 can be bounded as

J12 ≤ C
∑

|t|≤q,|k1|,|k2|≤8q,v

|k2|d2+d3−1
+ |k1|2d1+d3−2

+ |k1 − v|d2−1
+ |t− v|d4−1

+ |k2 − v|d4−1
+ .(8.35)

Finally, split the last sum as J12 ≤ C(J+
12 + J−

12) according to whether |v| ≤ 3q or |v| > 3q.

Use the elementary fact that
∑

|t|≤q |t− v|d4−1
+ ≤ Cqd4 uniformly in |v| ≤ 3q, see also (8.16),

and (8.14) w.r.t. v ∈ Z to obtain

J+
12 ≤ Cqd4

∑
|k1|,|k2|≤2q,|v|≤3q

|k2|d2+d3−1
+ |k1|2d1+d3−2

+ |k1 − v|d2−1
+ |k2 − v|d4−1

+(8.36)

≤ Cqd4
∑

|k1|,|k2|≤2q

|k2|d2+d3−1
+ |k1|2d1+d3−2

+ |k1 − k2|d2+d4−1
+ ≤ Cqλ

+
12 ,

where λ+12 := max{d2+d3+d4+(∆+d1−2)+, d4+(2d1+d3−1)++(2d2+d3+d4−1)+} and

where we used (8.17) with a = 1− d2 − d3, b = 2− 2d1 − d3, c = 1− d2 − d4. By definition,

λ+12 ≤ max{2∆− 2, d2 + d3 + d4, 2d1 + d3 + d4 − 1, 2d2 + d3 + 2d4 − 1}.(8.37)

Observe that δmax < 1/2 implies that each term on the r.h.s. is less than 1 and hence λ+12 < 1,

implying J+
12 ≤ Cq.

Consider J−
12. In this case |k1 − v|, |t− v|, |k2 − v| > |v| in (8.35) and we obtain

J−
12 ≤ C

∑
|t|,|k1|,|k2|≤3q

|k2|d2+d3−1
+ |k1|2d1+d3−2

+

∑
|v|>3q

|v|d2+2d4−3 ≤ Cqλ
−
12(8.38)

where

λ−12 := 2d2 + d3 + 2d4 − 1 + (2d1 + d3 − 1)+ ≤ max{2∆− 2, 2d2 + d3 + d4 − 1}.(8.39)
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Observe again that δmax < 1/2 implies λ−12 < 1 and hence J−
12 ≤ Cq and J12 ≤ Cq.

Next, consider

J11 ≤ C
∑

8q<|t|≤n,|k1|,|k2|≤q,v |t|
d2+2d3−2
+ |k1|2d1−1

+ |k1 − v|d2−1
+ |t− v|d4−1

+ |t+ k2 − v|d4−1
+ ,

where we used the fact that |t + k2| ≥ |t|+/2 for |t| > 8q, |k2| ≤ q. Split J11 ≤ J+
11 + J−

11

according to whether |v| ≤ 2q or |v| > 2q. Note |t − v|+ ≥ |t|+/2, |t + k2 − v|+ ≥ |t|+/2 in

J+
12. Therefore,

J+
11 ≤ C

∑
8q<|t|≤n,|k1|,|k2|,|v|≤2q

|t|d2+2d3+2d4−4
+ |k1|2d1−1

+ |k1 − v|d2−1
+(8.40)

≤ Cq1+2d1+d2
∑
|t|>8q

|t|d2+2d3+2d4−4 ≤ Cqλ
+
11 , λ+11 := 2∆− 2.

On the other hand, for J−
12 using

∑
|k2|≤q |t+k2−v|

d4−1
+ ≤ Cq|t−v|d4−1

+ , see (8.16), |k1−v|+ >
|v|+/2, the facts 2(1− d4) > 1, 2d2 + 2d3 < 2 and inequality (8.14) we obtain

J−
11 ≤ Cq1+2d1

∑
8q<|t|≤n,v

|t|d2+2d3−2
+ |v|d2−1

+ |t− v|2(d4−1)
+(8.41)

≤ Cq1+2d1
∑
|t|>8q

|t|2d2+2d3−3 ≤ Cqλ
−
11 , λ−11 := 2(d1 + d2 + d3)− 1.

It remains to evaluate J2. Note |s| ≤ 2|k1| implies |s| ≤ 2q. By taking the sum over k1

and using (8.14) we obtain

J2 ≤ C
∑

|t|≤n,|k2|≤q,|s|≤2q,v

|t+ k2|d2+d3−1
+ |s|d1−1

+ |t− s|d3−1
+ |s− v|d1+d2−1

+ |t− v|d4−1
+ |t+ k2 − v|d4−1

+ .

Split the last sum J2 ≤ C(J21 + J22) according to |t| > 3q and |t| ≤ 3q. Note the former

assumption implies |t+ k2| ≤ |t|/2, |t− s| ≥ |t|/3. Hence

J21 ≤ C
∑

3q<|t|≤n,|k2|≤q,|s|≤2q,v

|t|d2+2d3−2
+ |s|d1−1

+ |s− v|d1+d2−1
+ |t− v|d4−1

+ |t+ k2 − v|d4−1
+

≤ Cq
∑

3q<|t|≤n,|s|≤2q,v

|t|d2+2d3−2
+ |s|d1−1

+ |s− v|d1+d2−1
+ |t− v|2d4−2

+

≤ Cq
∑

3q<|t|≤n,|s|≤2q

|t|d2+2d3−2
+ |s|d1−1

+ |t− s|d1+d2−1
+

≤ Cq
∑

3q<|t|≤n,|s|≤2q

|t|d1+2d2+2d3−3
+ |s|d1−1

+(8.42)

≤ Cqλ21 , λ21 := 2d1 + 2d2 + 2d3 − 1 since 3− d1 − 2d2 − 2d3 > 1.(8.43)
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Finally, consider J22. By change t+ k2 → k̃2, |k̃2| ≤ 3q rewrite

J22 ≤ C
∑

|t|≤3q,|k2|≤3q,|s|≤2q,v

|k2|d2+d3−1
+ |s|d1−1

+ |t− k2 − s|d3−1|s− v|d1+d2−1
+(8.44)

×|t− k2 − v|d4−1
+ |k2 − v|d4−1

+

≤ C
∑

|k2|≤3q,|s|≤2q,v

|k2|d2+d3−1
+ |s|d1−1

+ |s− v|∆−2
+ |k2 − v|d4−1

+ ,

where the last inequality follows by application of (8.14) w.r.t. t ∈ Z. Since ∆ < 1 use

(8.14) w.r.t. v ∈ Z to obtain

J22 ≤ C
∑

|k2|≤3q,|s|≤2q

|k2|d2+d3−1
+ |s|d1−1

+ |k2 − s|d4−1
+ .

Now apply (8.17) with a = 1− d1, b = 1− d4, c = 1− d2 − d3 to obtain

(8.45) J22 ≤ Cqλ22 , λ22 := max{d1 + (d2 + d3 − 1)+, d4 + (d1 + d2 + d3 − 1)+}.

Combining the bounds in (8.36)–(8.45) we get J ≤ Cqλ where

λ := max{λ+12, λ−12, λ+11, λ−11, λ−12, λ21, λ22} < 1

and the last inequality follows δmax < 1/2 by the explicit form of λ±ij’s, see (8.37), (8.39),

(8.40), (8.41), (8.43), (8.45). This proves (8.24) for D3a).

For D3b),

|MV (0, k1, t, t+ k2)| ≤ C
∑
s,u,v

|b−s,1bk1−s,1bt−s,3b−u,2bk1−u,2bt+k2−u,4bt−v,4bt+k2−v,3|

≤ C|k2|−(1−d3−d4)
+

∑
s

|b−s,1bk1−s,1bt−s,3|
∑
u

|b−u,2bk1−u,2bt+k2−u,4|.

Therefore, 2(1− d1) > 1, 2(1− d2) > 1, 2(1− d3 − d4) > 1 and (8.14) yield∑
|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)| ≤ q
∑
t,k2

|MV (0, 0, t, t+ k2)|(8.46)

≤ Cq
∑

t,k2,s,u

|k2|d3+d4−1
+ |s|2(d1−1)

+ |t− s|d3−1
+ |u|2(d2−1)

+ |t+ k2 − u|d4−1
+

≤ Cq
∑
k2,t

|k2|d3+d4−1
+ |t|d3−1

+ |t+ k2|d4−1
+ ≤ Cq

∑
k2

|k2|−2(1−d3−d4)
+ ≤ Cq.

Case D4) It suffices to consider the diagram s1 = s2 = s3 = s4 =: s, u1 = u2 = u3 = u4 =:

u. Then |MV (0, k1, t, t + k2)| ≤ C
∑

s,u |b−s,1bk1−s,1bt−s,3bt+k2−s,3b−u,2bk1−u,2bt−u,4bt+k2−u,4|.
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Because
∑∞

u=0 b
2
u,i <∞, i = 1, 2, 3, 4, by the C-S inequality and (8.14)∑

|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)|(8.47)

≤
∑

|t|≤n,k1,k2,s,u

|b−s,1|bt−s,3bt+k2−s,3b−u,2bk1−u,2bt−u,4bt+k2−u,4|

≤
4∏

i=1

∥bi∥
∑

|t|≤n,s,u

|s|d1−1
+ |t− s|d3−1

+ |u|d2−1
+ |t− u|d4−1

+ ≤ C
∑
|t|≤n

|t|∆−2
+ ≤ C, for ∆ < 1.

This proves (8.21)(a).

Next, we shall prove (8.21)(b), which follows similarly from (8.23) or

M0
n,q,1 :=

∑
|k1|,|k2|≤q

∑
|t|≤n

∣∣Cum(Y0, Y ′
k1
, Yt, Y

′
t+k2

)∣∣ ≤ Cn(q/n)ν(8.48)

with Yt := Yt,12 =: Yt, Y
′
t := Y 0

t,34, for some ν > 0. As in (8.25)–(8.27) we can write

Cum(Y0, Y
′
k1
, Yt, Y

′
t+k2

) =
∑

si<ui,i=1,3,s2,s4
B0

0,k1,t,t+k2
(s1, u1, s3, u3, s2, s4)(8.49)

×Cum(ξs1,1ξu1,2, ξs2,1ξs2,2, ξs3,3ξu3,4, ξs4,3ξs4,4),

B0
0,k1,t,t+k2

(s1, u1, s2, s3, u3, s4) := B0,k1,t,t+k2(s1, u1, s2, s2, s3, u3, s4, s4)

where Cum(ξs1,1ξu1,2, ξs2,1ξs2,2, ξs3,3ξu3,4, ξs4,3ξs4,4) is written as a sum in (8.27) over all con-

nected diagrams {V } = (V1, · · · , Vr) ⊂ Γc
T2

over the table T2 given at (8.26). Then similarly

as above Cum(Y0, Yk1 , Y
′
t , Y

′
t+k2

) =
∑

{V }⊂Γc
T2

MV (0, k1, t, t+k2), where MV (0, k1, t, t+k2) :=∑
si<ui,i=1,2,s3,s4

B0
0,k1,t,t+k2

(s1, u1, s2, s3, u3, s4).

Consider the three diagrams: D5: s1 = s2 =: s, u1 = u3 =: u, s3 = s4 =: v; D6:

s1 = s4 =: s, u1 = u3 =: u, s2 = s3 =: v; and D7: s1 = s3 =: s, u1 = u3 = s2 = s4 =: u.

Case D5). Here,

|MV (0, k1, t, t+ k2)| ≤ C
∑
s,u,v

|b−s,1b−u,2bk1−s,1bk1−s,2bt−v,3bt−u,4bt+k2−v,3bt+k2−v,4|

≤ C|t|−(1−d2−d4)
+

∑
s,v

|b−s,1bk1−s,1bk1−s,2bt−v,3bt+k2−v,3bt+k2−v,4|,

and hence, by using (8.14) and 2− d1 − d2 > 1, 2− d3 − d4 > 1,∑
|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)|

≤ C
∑

|t|≤n,|k1|,|k2|≤q,s,v

1

|t|1−d2−d4
+ |s|1−d1

+ |k1 − s|2−d1−d2
+ |t− v|1−d3

+ |t+ k2 − v|2−d3−d4
+

≤ C
∑

|t|≤n,|k1|,|k2|≤q

1

|t|1−d2−d4
+ |k1|1−d1

+ |k2|1−d3
+

≤ Cnd2+d4qd1+d3 = C(q/n)d1+d3n∆ ≤ C(q/n)d1+d3n. ∆ as in (8.19).
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Case D6) Here, we have

|MV (0, k1, t, t+ k2)| ≤ C
∑
s,u,v

|b−s,1b−u,2bk1−v,1bk1−v,2bt−v,3bt−u,4bt+k2−s,3bt+k2−s,4|

≤ C|t|−(1−d2−d4)
+

∑
s,v

|b−s,1bk1−v,1bk1−v,2bt−v,3bt+k2−s,3bt+k2−s,4|,

and hence, similarly as above,∑
|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)|

≤ C
∑

|t|≤n,|k1|,|k2|≤q,s,v

1

|t|1−d2−d4
+ |s|1−d1

+ |k1 − v|2−d1−d2
+ |t− v|1−d3

+ |t+ k2 − s|2−d3−d4
+

≤ C
∑

|t|≤n,|k1|,|k2|≤q

1

|t|1−d2−d4
+ |t+ k2|1−d1

+ |t− k1|1−d3
+

.

Split the last sum over |t| ≤ n into two sums I1 + I2, where I1 :=
∑

|t|≤2q, I2 :=
∑

2q<|t|≤n.

Then I1 ≤ C
∑

|t|≤2q |t|
−(1−d2−d4)
+

∑
|k1|,|k2|≤2q |k2|

−(1−d1)
+ |k1|−(1−d3)

+ ≤ Cnd2+d4qd1+d3

≤ Cn∆(q/n)d1+d3 ≤ Cn(q/n)d1+d3 and I2 ≤ Cq2
∑∞

t=2q t
−(3−∆) ≤ C(q/n)2n∆ ≤ Cn(q/n)2.

Case D7) We have

|MV (0, k1, t, t+ k2)| ≤ C
∑
s,u

|b−s,1b−u,2bk1−u,1bk1−u,2bt−s,3bt−u,4bt+k2−u,3bt+k2−u,4|

≤ C|t|−(1−d1−d3)
+

∑
u

|b−u,2bk1−u,1bk1−u,2bt−u,4bt+k2−u,3bt+k2−u,4|

and hence ∑
|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)|

≤ C
∑

k1,k2,u,t

1

|t|1−d1−d3
+ |u|1−d2

+ |k1 − u|2−d1−d2
+ |t− u|1−d4

+ |t+ k2 − u|2−d3−d4
+

≤ C
∑
k1,u,t

1

|t|1−d1−d3
+ |u|1−d2

+ |k1 − u|2−d1−d2
+ |t− u|1−d4

+

≤ C
∑
k1,u

1

|u|2−∆
+ |k1 − u|2−d1−d2

+

≤ C <∞.

This completes the proof of (8.48) and, hence, also that of (8.21) and Lemma 8.1(i).

Proof of Lemma 8.1(ii). Recall the decomposition in (8.20). Clearly, it suffices to show (8.9)

for each term on the r.h.s. of (8.20). Note ∆ ≤ 2δmax where ∆ is defined in (8.19). In order

to simplify subsequent evaluations we restrict the discussion to the case

(8.50) 1/2 < δmax < 1, 1 < ∆ < 2.
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Following (8.21) we confine the subsequent proof to showing

σ̃Y12,Y34,q = Op(q
2δmax−1) and σ̃Y12,Y 0

34,q
= Op(q

2δmax−1).(8.51)

Clearly, the first relation in (8.51) follows from the following two relations:

(a) |Eσ̃Y12,Y34,q| = O(q2δmax−1), (b) Var(σ̃Y12,Y34,q) = O(q2(2δmax−1)).(8.52)

Consider (8.52)(a). We have |Cov(Yt,12, Ys,34)| =
∣∣∑

u2<u1≤t∧s bt−u1,1bt−us,2bs−u1,3bs−u2,4

∣∣ ≤
C|t− s|∆−1 and hence

|Eσ̃Y12,Y34,q| ≤
∑
|k|≤q

|Cov(Yk,12, Y0,34)| ≤ C
∑
|k|≤q

|k|∆−2 = O(q∆−1), implying (8.52)(a).

Consider (8.52)(b). By evaluating the variance as in (8.22) we see that (8.52)(b) follows

from

Mn,q :=
∑

|k1|,|k2|≤q

∑
|t|≤n

∣∣Cov(Y0Yk1 , Y ′
t Y

′
t+k2

)∣∣ ≤ Cn q2(2δmax−1).(8.53)

Next Mn,q ≤
∑3

i=1Mn,q,i as the proof of (8.23), where Mn,q,2 ≤ Cq
∑

|k|≤q,|t|≤n |k|
∆−2
+ |t +

k|∆−2
+ ≤ Cq∆n∆−1 ≤ Cnq2∆−2 (q ≤ n) and

Mn,q,3 ≤ Cq
∑

|k|≤q,|t|≤n

|t|∆−2
+ |t+ k|∆−2

+(8.54)

≤ Cq2(I(∆ < 3/2) + log(n/q)I(∆ = 3/2) + n2∆−3I(∆ > 3/2)) ≤ Cnq2∆−2

do not exceed the r.h.s. of (8.53). Hence (8.52)(b) follows from

Mn,q,1 =
∑

|k1|,|k2|≤q,|t|≤n

∣∣Cum(Y0, Yk1 , Y ′
t , Y

′
t+k2

)∣∣ ≤ Cn q2(2δmax−1).(8.55)

To prove (8.55), we rewrite the l.h.s. as the sumMn,q,1 =
∑

{V }⊂Γc
T2

∑
|k1|,|k2|≤q,|t|≤n MV (0, k1,

t, t + k2) over all connected diagrams over table T1 of (8.26) as in the proof of (8.24) and

evaluate the last sum for each diagram in the latter proof. We designate the following

evaluations as Cases D1′) - D4′) to distinguish from the previous Cases D1) - D4). Obviously,

the differences between these evaluations are due to δmax < 1/2 in the latter case and

δmax ≥ 1/2 in the former case.

Case D1′) For D1′a, exactly as in (8.29) we get
∑

|k1|,|k2|≤q,|t|≤nMV (0, k1, t, t + k2) ≤ Cq∆,

proving the bound in (8.55) for this case.

For D1′b), and by (8.30) we get
∑

|k1|,|k2|≤q,|t|≤nMV (0, k1, t, t+k2) ≤ Cq
∑

|k|≤q,|t|≤n |t|
∆−2
+ |t+

k|∆−2
+ ≤ Cnq2∆−2 as in (8.54) proving the bound in (8.55) for this case.
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For D1′c), the same bound applies, see D1).

Case D2′) For D2′a), by following (8.32) we obtain∑
|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)| ≤ Cq2∆−2,

thereby proving the bound in (8.55) for this case.

For D2′b) following (8.33) we obtain∑
|t|≤n,|k1|,|k2|≤q

|MV (0, k1, t, t+ k2)| ≤ C
∑

|t|≤n,|k1|≤q,s

|t|d2+d4−1
+ |s|d1−1

+ |k1 − s|∆−2
+ |t− s|d3−1

+

≤ Cq
∑

|t|≤n,s

|t|d2+d4−1
+ |s|d1+∆−3

+ |t− s|d3−1
+ =: J,

since
∑

|k1|≤q |k1 − s|∆−2
+ ≤ Cq|s|∆−2

+ , s ∈ Z follows from (8.16). Using (8.14) we obtain

J ≤ Cq


∑

|t|≤n |t|
d2+d3+d4−2
+ , d1 +∆ < 2,∑

|t|≤n |t|
2∆−4
+ , d1 +∆ > 2.

Whence one can easily check that J satisfies the bound in (8.55). E.g. for d1+∆ > 2,∆ > 3/2

we get J ≤ Cqn2∆−3 ≤ Cnq2∆−2 where the last inequality is equivalent to q3−2∆ ≤ Cn4−2∆

which trivially holds due to 3 − 2∆ < 0, 4 − 2∆ > 0. For d1 + ∆ > 2,∆ < 3/2 we get

J ≤ Cq ≤ Cnq2∆−2 due to q ≤ n, 3− 2∆ < 1; see (8.50).

Case D3′) For D3′a) following (8.34) recall the decompositions J = J1+J2 ≤
∑2

i,j=1 Jij, J11 ≤
C(J+

11+ J−
11), J12 ≤ C(J+

12+ J−
12) in the evaluation of D3a) above. The respective evaluations

(8.36), (8.38), (8.40), (8.41), (8.43), (8.45) must be updated in view of δmax > 1/2.

For J±
12 bounds (8.36), (8.38) remain valid and (8.55) reduces to

(8.56) λ±12 ≤ 2∆− 1.

Note λ+12 ≤ max{2∆ − 2,∆}, λ−12 ≤ max{2∆ − 2, 2∆ − 1}, implying (8.56) by ∆ > 1.

For J±
11 bounds (8.40), (8.41) remain valid with λ±11 ≤ max{2∆ − 2,∆ − 1} and (8.55)

holds. For J21 (8.43) need not be true but (8.42) leads to J21 ≤ Cqd1n(d1+2d2+2d3−2)+(1 +

log(n)1(d1 + 2d2 + 2d3 = 2)). First, let d1 + 2d2 + 2d3 > 2. Then J21 ≤ Cnq2∆−2 and (8.55)

follow from d1 + 2 − 2∆ < 3 − d1 − 2d2 − 2d3 which is equivalent to 1 > −2d4. Next, let

d1+2d2+2d3 ≤ 2. Then the same conclusion follows from d1+2−2∆ < 1 which is immediate

by ∆ > 1. For J22 following (8.44) and using ∆ > 1, (8.14), (8.17) we get J22 ≤ Cqλ22 with

λ22 = max{d1 + (d2 + d3 + d4 − 2)+, d2 + d3 + (d1 + ∆ − 2)+} < 2∆ − 1 as in (8.56). This

proves the required bound J ≤ Cnq2δ−2 and hence (8.55) for Case D3′a).
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For D3′b) in (8.46) we get
∑

|t|≤n,|k1|,|k2|≤q |MV (0, k1, t, t+k2)| ≤ Cq
∑

|k2|≤q |k2|
−2(1−d3−d4)
+ ≤

Cq2(d3+d4) ≤ Cq2δmax ≤ Cnq2(2δmax−1) since 2δmax > 1, q ≤ n.

Case D4′). Following (8.47) we see that this sum is bounded by Cn∆−1 (∆ > 1) and (8.55)

holds by 2− 2∆ < 2−∆.

The above calculations prove (8.55), (8.52)(b) and the first relation in (8.51). Using (8.2)

we see that the second relation in (8.51) can be reduced to

σ̃Y12,q σ̃Y 0
34,q

= Op(q
2δmax−1).(8.57)

As noted in the beginning of the proof of Lemma 8.1, {Y 0
t,34} is a linear process with summable

covariance function and finite variance. By applying the criterion in (8.23) (with Yt = Y ′
t =

Y 0
34) it easily follows that σ̃Y 0

34,q
= Op(1) provided q = o(n) (GKS Thm. 9.4.1 provides such

a result under slightly more stringent condition on q). We also have from the first relation

in (8.51) that σ̃Y12,q = Op(q
(2δmax−1)/2). These facts prove (8.57) and complete the proof of

(8.51) and Lemma 8.1. 2
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