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The classical regression analysis often assumes that both the response variable and the
predicting variables are fully observable and that the errors are independent. But, as is evi-
denced in the monographs of Fuller (1987), Cheng and Van Ness (1999), Carroll, Ruppert,
Stefanski and Craineceanu (2006), and the references therein, there are numerous exam-
ples of practical importance where the predicting variables are not observable. Instead one
observes surrogates that provide estimates of the true predictors. Such models are known
as the regression models with measurement error. On the other hand there are examples

from the various scientific disciplines where observed data do not obey the assumption of
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This paper derives the consistency and asymptotic distribution of the bias cor-
rected least squares estimators (LSEs) of the regression parameters in linear regression
models when covariates have measurement error and errors and covariates form mu-
tually independent long memory moving average processes. In the structural mea-
surement error linear regression model, the nature of the asymptotic distribution
of suitably standardized bias corrected LSEs depends on the range of the values of
Dynax = max{dx +d.,dx +dy,d,+dc,2d,}, where dx,d,, and d. are the long memory
parameters of the covariate, measurement error and regression error processes, respec-
tively. This limiting distribution is Gaussian when Dy,.x < 1/2 and non-Gaussian in
the case Dpyax > 1/2. In the former case some consistent estimators of the asymp-
totic variances of these estimators and a log(n)-consistent estimator of an underlying
long memory parameter are also provided. They are useful in the construction of the
large sample confidence intervals for regression parameters. The paper also discusses
the asymptotic distribution of these estimators in some functional measurement error
linear regression models, where the unobservable covariate is non-random. In these
models, the limiting distribution of the bias corrected LSEs is always a Gaussian dis-

tribution determined by the range of the values of d. — d,.
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independence. Instead one observes data that are generated by some long memory (LM)
processes. In economics the first authors to point out the usefulness of these processes were
Granger and Joyeux (1980) and Hosking (1981). The monographs of Giraitis, Koul and Sur-
gailis (2012) and Beran, Feng, Ghosh and Kulik (2013), and the references therein, contain
numerous other examples of LM processes and relevant theoretical results.

The focus of this paper is to study the consistency and asymptotic distribution theory
of the bias corrected LSEs of the parameters in linear regression models when predicting
variables have measurement error (ME) and when the covariate, the regression error and
measurement error processes have LM. We discuss both structural and functional models.
In the former, the predicting variables are random while in the latter they are non-random.

An example of a simple structural ME linear regression model with LM in regression
and measurement error processes is provided by the so called Phillips Curve, Phillips (1958),
which uses the unemployment rate to predict the inflation rate. The unemployment rate is
known to have long memory and measurement error. See Blanchard and Summers (9187) and
Shiskin and Stein (1975). Another example is provided in finance when studying uncovered
interest parity, where forward premium, used as a predicting variable, is known to have
measurement, error and long memory, and where the regression errors are also known to
have long memory. See Cornell (1989), Bekaert and Hodrick (1993) and Baillie (1996). The
results of the current paper would be applicable to these models.

For the sake of transparency, we first discuss the simple structural measurement error
(ME) linear regression model in the next section, where the long memory moving average
(LMMA) models along with the needed assumptions are also described. It also contains the
proof of the consistency of the bias corrected LSEs in this model. The derivation of the
asymptotic distribution of suitably standardized versions of these estimators is facilitated
by the derivation of the limiting distributions of some general quadratic forms of LMMA
processes given in Section 3. These results in turn are used in Sections 4 and 5 to derive the
limiting distributions of the bias corrected LSEs in the simple and multiple structural ME
linear regression models, respectively. Section 6 contains similar results for the functional ME
simple linear regression model where the true unobservable predicting variable is nonrandom.

These limiting distributions are non Gaussian when D,,., > 1/2 and Gaussian when
Diax < 1/2. The results in the latter case are used to construct asymptotic confidence
intervals for the underlying regression parameters in Remark 4.2, where we also provide
HAC estimators of asymptotic variances of the bias corrected LSEs and a log(n)-consistent
estimator of an underlying long memory parameter that are needed for the construction of
these intervals. Section 7 contains the proofs of the main results of Sections 3 and 4. The
proof of the consistency of a residuals based HAC estimator under the current set up appears

in the supplement [Koul and Surgailis (2018)] to this paper.



2 Simple structural ME linear regression model

In this section we shall focus on the simple structural ME linear regression model and
establish the consistency of the bias corrected LSEs. In this model the unobserved predicting
r.v. X;, the observable random surrogate Z; and the response Y; are related to each other by

the following relations. For some real numbers «a, 3,
(21) Y;:Od—FﬁXl—l—é“l, Zl:XZ—f—Ul, EEZZO, EUZZO, 1€l = {O,:i:l,}
Moreover, we assume that the process {(e;, X;,u;);7 € Z} is strictly stationary and

ergodic and each of these processes form a LMMA as in the following assumptions.

Assumption (E) Errors {¢;} form a moving average process
(2.2) g = Zbk@_k, 1 € 1L,
k=0

where {(s; s € Z} are i.i.d., with zero mean and unit variance, with coefficients
(2.3) bj ~ ke j 174 as j — oo, for some 0 < k. < 0o and 0 < d. < 1/2.

Assumption (X) Covariates {X;} form a LMMA process

(24) X; = px + Zak&,k, i € Z, with MA coefficients a; ~ rxj 17 j — oo,
k=0

for some px € R, kx > 0,0 < dx < 1/2, and standardized i.i.d. innovations {&}.

Assumption (U) Measurement errors {u;} form a LMMA process
(2.5) U = chni,k, i €Z, with MA coefficients ¢; ~ j T 5 0
k=0

for some x, > 0,0 < d, < 1/2, and standardized i.i.d. innovations {n,}. Moreover, o2 :=
Var(ug) is known.

Assumption (I) The innovation sequences {(s;s € Z}, {&;s € Z} and {n,;s € Z} are
mutually independent.

From now on let ¢, X, u, (, &, n denote copies of g, Xo, uo, Co, &0, Mo, respectively. For any
r.v. U with finite variance, let o := Var(U). We also let B(a,b) := fol 1 (1—2)"tdx, a >
0,b > 0.

The above assumptions imply that for each ¢ € Z, the r.v.’s ¢;, X;, u; are mutually

independent and

oo o
0<0€2:E€2:sz<oo, 0<0§(:EX2:ZCL£<OO.
k=0 k=0

o0
O<aZzEu2:ZCz<oo.
k=0



From (7.2.10) of Giraitis, Koul and Surgailis (2012) (GKS), we obtain that

. OVi€p,€k) ~ K 671_ € S 57 ov 0, Ak) ~ KR X, 4L = X U X7
2.6) C ’B(d 2d.)k~1724)  Cov(Xo, X 2 B(dx,1 — 2dx )k~ (172dx)
Cov(ug, up) ~ K2B(dy, 1 — 2d,)k~0724) | — 0.

The sums of the absolute values of each of these covariances diverge, which implies that each
of the processes {¢;},{X;} and {u;} has long memory.

To proceed further, for any two sets of variables U;, V;, 1 < i < n, let

U:=nt Z U, Spy:i=n" Z(Uz —U)(V; = V).
i=1 i=1

In the sequel, all limits are taken as n — oo, unless mentioned otherwise.
The naive LSEs of «, 3, where one simply replaces X;’s in the classical LSE by Z;’s, are
B:=Syv/Szz, &:=Y — 3Z. As argued say in Fuller (1987), under the classical i.i.d. and

finite variance set up, 83— 8 — —B02/(c% +02), a.s. Hence these estimators are inconsistent.

The bias correct estimators suitable here are

=Y — (2.

Q)

(2.7) B = Syy/(Szz — 02),

We shall first establish the consistency of these estimators under the assumed stationarity,
ergodicity and long memory set up. Rewrite Y; = a + 57; + ¢; — Pu;, Z; = X; + u;. Let

n

T,:=n"Y (Zi— Z)(zi — Buy).

i=1
Use the relation Z; = X; + u;, to obtain the decomposition

n n n

(28) T, = n ') (Xi—X)(e— Bu) +n" Y (wi—w)e; — ATt (u; — 1)

— Sxe— BSvutSu—BSw h
By the mutual independence of ¢;, X;, u; and the assumption that Fe; =0, Fu; = 0,
E(T,) = —BE(Sw)=—pop— Var(u)).
By (2.6), Var(ii) = O(n?**~1) — 0 and by the Ergodic Theorem and the assumed stationarity,
T, — —ﬁai, Szz — 03 — o—i >0, a.s.

These facts now clearly imply that

-~ SZY Tn—i—ﬁUQ
6 6 SZZ_O-Z B Szz—O'?L ’ 8-S+

(2.9)



thereby proving the strong consistency of B for 5. This fact and the Ergodic Theorem in

turn imply that @ — «, a.s.

The derivation of the asymptotic distributions of suitably standardized versions of these
estimators and their analogs in multiple linear regression model is facilitated by the more
general asymptotic distributional results about certain quadratic forms established in the

next section.
3 Limit theorem for quadratic forms

Let v = Y poo bki&t—ki,t € Z,i = 1,--- ,m be m mutually independent LMMA processes
with MA coefficients by; ~ k;k%1 d; € (0,1/2),x; > 0 with i.i.d. mutually independent
innovations {&;,;} ~ IID(0,1),s = 1,--- ,m. Let II,, C {(4,);1 < i < j < m} be a non-
empty subset of the set of all ordered pairs (i,7),1 < ¢ < j < m and v; := {w:;; t € Z}.

Define the sample cross-covariance between «; and 7, to be

Sy = n! Z(%i =) (ves — ), (1,9) € Il

t=1
We also need to define the normalizing sequence as follows.

(31) 5max = max{di + dj7 (Z’]) € Hm}’
p L Omax Omax > 1/2,
A(TL) = nl/z, 5n1ax < 1/27

(n/logn)Y2,  Spax = 1/2.
We are interested in deriving the asymptotic joint distribution of normalized quadratic forms
(3.2) Sn = {A(n) (S5, — ESyiyy); (i,7) € I}
As shown below, the limit distribution of §,, is Gaussian or non-Gaussian depending on

whether 0pax < 1/2 or dpax > 1/2. Before describing this distribution, we need to recall some

preliminaries. From GKS, pp.410-411, we recall the definition of the stochastic integrals
(3.3) Ii(f) = / f(s)Wilds), Lij(g) = / 9(s1, 82)Wi(ds1)W;(dsz)
R R2

w.r.t. independent Brownian motions W;,i = 1,---  m (for i = j the second integral in (3.3)
coincides with the usual double Wiener-1t6 integral w.r.t. W;). The integrals I;(f), ;;(g),
(i,7) € II,, are jointly defined for any non-random integrands f € L?*(R),g € L*(R?).
Moreover, EI(f) = El;;(g) = 0 and

! O’ U 7A i/’ ! 2
(£, i=1,
EL(f)Izy(9) = 0, vi,i',j' € LA(R),g € LA(R?),



0,
ElLij(9) vy (d) = (9.9,
2(g,symg’), i=1i=j=7j,

where (f, ') = [p f(s)f'(s)ds (IfIl = /{f,f)): (9:9") = Jge 9(s1,52)g (51, 52)ds1ds2 (||
{(g,g)) denote scalar products (norms) in L?*(R) and L?(R?), respectively, and sym
denotes the symmetrization, see GKS, sections 11.5 and 14.3.
Let IL} = {(4, ) € II,;d; + d; > 1/2}. Introduce

(3.5) fa,(s) = / (t —s)btat, 1<i<m,
! d;—1
gdi,dj(51752) = ’11“]/ 51 d ! t— 2)_~_j dt,
0
gdi,dj(sla 82) = gdi,dj(sla 52) - fdi<51)fdj(32)> (iaj) S H:Z'

Then fq, € L*(R), Ja,.a, € L*(R?), 94,4, € L*(R?), see GKS, Prop.11.5.6. Observe that

(36) <§di,dj7 fdi ® fdj>/l‘f?li§
1 1 1
= / dsldsz/ <t—81)?¢1(t—82)‘f."_1dt/ (tl—sl)fldtl/ (ty — 52) % Ldty
R2 0 0 0

B / dbdé1dty /(t —s)§ T (= 5§ sy /(75 — 59)7 (ts — 52) 7 dsy
(0,1]% R R

B(d;, 1 — 2d;)B(d;,1 — 2d;) ( 1
2d;d; 1+ 2(d; + d;)

+ B(2d; + 1,2d; + 1)).

In a similar way,

B Ml = [t [ 6= = o
(0,1]2 R
2B(d;, 1 — 2d;
- KfB(dul - 2dz)/ |t1 i dtg — Ky ( (2l 1)7
.12 d;(1+ 2d;)
and
(3.8) 119a..a,1I”

o _ di— d:—
= K; KUZ/ dtldtg /(tl — 81)? l(tg — Sl)il 1d81 /(tl - 82)_;: l(tg - 52)4_] 1d82
(0,1)2 R R

(di + d;)(2(di + dj)—1)

From (3.6), (3.7), and (3.8) we obtain




(39) |’gdi7de2

= HgdiydeQ - 2<§di7dj7 fdi ® fdj> + ”de 2||fde2
1
= k2Kk2B(d;, 1 —2d;)B(d;,1 — 2d;
K,z/fj ( ) ) ( 79 ]){(dl“‘dj)(Q(dl"‘d]) _1)
., 1 - 1 - B(Qdi+1,2dj+1)}

Consequently, the r.v.’s I;;(ga, 4,), di +d; > 1/2 in (3.13) below are jointly well-defined
and their second order characteristics can be obtained from (3.4) and (3.9).

We are now ready to state the main result of this section. Its proof appears in Section 7.

Theorem 3.1 Let v; = {y;t € Z}, i = 1,--- ,m, be m stationary LMMA processes as

above and S, be as in (3.2). In addition, assume the following two conditions hold.

(3.10) El&il ™ < oo, (Fe>0) foralll<i<m,

(3.11) E&,; < oo, for any 1 <i <m such that (i,i) € I1,,.
Then

(312) Sn —D Rm = {Rij; (%j) S Hm}a

where, for any (i,7) € 11,

Iij(gdi,dj)]-(di + dj - 5max)a 5max > 1/27
(313) RU = Uz]Zz]]-(dz + d] = 1/2)7 6max = 1/2,
UijZija 5max < 1/2,

with ga, 4, € L*(R?), fi € L*(R) as in (3.5), 0;; > 0 as in (7.5) below, and Z;; as independent
N(0,1) rv.’s, EZ;jZyj =0, for (i,7) # (¢, §'), (¢,7), (¢, j") € IL,.

Remark 3.1 The literature on limit theorems for quadratic forms in dependent r.v.’s is
large. See e.g., Bhansali et al. (2007), GKS, Ch.6, and the references therein. Theorem 3.1
deals with rather special ‘diagonal’ quadratic forms in LMMA processes. It extends various
central and noncentral limit results in GKS (Thms 4.8.1, 4.8.2, Prop.11.5.5) to joint conver-
gence of array (3.2) involving LMMA processes with different memory parameters. We also
note the proof of Theorem 3.1 largely relies on variance or L? considerations and does not

require using higher moments or other advanced mathematical tools.



Let Tlp, C {1,---,m} be a non-empty set, dpax := max{dy;k € Ilo,} and Sy, =
{n(/2)=dmaxz, - k€ Ty, } be a collection of normalized sample means. Then from Remark
4.3.1 in GKS, we obtain

(314) SOTL —D 7z'Om = {ROka ke 1_[Om} = {[k’<fdk)]-(dk = dmax); ke HOm}
=D {Uka1<dk = dmax); ke HOm}v
where Zy,, k € I, are independent N(0,1) r.v.’s and o7 = || f4,||* as in (3.9). The following

corollary extends Theorem 3.1 to joint convergence of normalized sample means Sy, and

sample cross-covariances S,,.

Corollary 3.1 Under the assumptions of Theorem 3.1,
(3.15) (Sons Sn) =D (Rom: Rum).

The joint distribution of (Rom,Rm) is Gaussian if dmax < 1/2. Moreover, for any k €
1_-[O'rna (27]) € Hm7

(3.16)
(rr/di (1 + di)) E(80,580,i0,5) Doz bs,ibs,j1(dr = dimax),  Omax < 1/2,
E(RQle]) — / J 0 J
, Omax > 1/2.
Remark 3.2 Note that under the assumption of independence of v;,7 = 1,--- ,m the co-

variance in (3.16) when 0. < 1/2 vanishes unless k = i = j and Efg”k # 0 and the Zy, Z;;
in (3.13), (3.14) are independent N (0, 1) r.v.’s.

Remark 3.3 Theorem 3.1 and Remark 3.1 can be extended to mutually dependent LMMA
processes Vi; = Y peobkibt—kit = 1,---,m with MA coefficients by; ~ kik% 1 d; €
(0,1/2), k; > 0 with innovations forming a R™-valued i.i.d. sequence {(&s1, - ,&sm);s € Z}
with zero mean, whose components are mutually dependent, viz., E&y;&o; =: 0¢4j,%,] =
1,---,p where ¥ = E&¢ is a general positive definite matrix. In such a case if (3.11) is
strengthened to E&; &5 ; < 0o, (i,7) € II,, the convergences in (3.12) and (3.15) hold under
the same normalizations except that the limit r.v.’s there are generally correlated and have
a representation w.r.t. mutually correlated Brownian motions W;, W;, EW;(t)W;(t) = t o¢ ;.

The double stochastic integral
(3.17) Iij(g9) = /29(51,32)m(d51)wj(d52)
R

w.r.t. such Brownian motions is well-defined for any g € L?*(R?) and has zero mean and a
finite variance ET3(g) = 0¢i0¢ j5ll9/I>+07 (g, 9*) where g*(s1, 52) := g(s2,51). In particular,
the variance of the double Wiener-Ito integral I;;(gq,,4;) = fRQ 9d;.d; (51, 52)Wi(ds)Wj(dsz) in
(3.9) equals



(3.18) EI7(ga,a,) = 0¢,ii0e jjll9ava, |I> + 02.(9aca; 9ay.a.)
where (Wlth Bij = B(dl, 1-— dz - dj), Bji = B(dj, 1-— dl - dj))
<gdi,dj7gdj,di> o B;;Bji
Ii?ﬁ? (dl + d])(2(dz + dj) — 1)
(di + d))2\2(d; + dj) + 1

Bij + sz‘ )2
(d; +d;)(d; +d; +1)

+

+ (312] + szi)B<di +dj+1,d;+dj +1)).
Note that for i = j the last expression agrees with ||gdi7dj ||2//1Z2,{§ in (3.9).

Remark 3.4 The 4th moment condition (3.11) is required only for those LMMA processes
7; which enter sample variances 5., ., in the collection S,, (3.2). For instance for I3 in (4.2)
the 4th moment condition applies to the innovations of the measurement errors {u,} alone
whereas {X;} and {e;} may have infinite 4th moment. Condition (3.11) is crucial for the
validity of (3.12). Indeed if Ej; = oo for some ¢ = 1,--- ,m then ES? = oo and the
limit distribution of S,, ,, may be a-stable with o < 2, see Surgailis (2004), and Horvath
and Kokoszka (2008).

AN

4 Asymptotic distribution of «,

In this section we shall use the results of the previous section to derive the limiting distri-

bution of suitably standardized @, 3. To begin with note that from (2.8) we obtain
(4.1) To+ Bo2 = Sx:— BSxu+ Sue — B(Suu — 02)
- SXE_B‘S(Xu—f_Sue_/B(Suu_-E*S(uu)—'—ﬂEﬂ2

According to (2.9), (4.1), the asymptotic distribution of E — B coincides with that of the
quadratic form T, := (T,+802)/c2%. Under Assumptions (E), (X), and (U), T}, is a particular
case of the quadratic forms studied in Theorem 3.1. More specifically, T, n corresponds to the

case m = 3, Y1 = €, V2 = Xt, V.3 = U and the set

(4.2) I3 = {(X,¢), (X,u), (u,e), (u,u)}.

Accordingly, the limit distribution of T, and B — [ is essentially determined by the maximum
(4.3) Omax = max{dx + d.,dx + d,, d, + d., 2d,},

with the convergence rate 3 — 3 = O, (n~(mminl/21=0ma) (1 4 1 (fax = 1/2) logn)). From
(2.7) we obtain

(4.4) a—-a = -Bu—(8-pP)Z.



Note that in (4.4), the linear term & — B = O, (n™®{d=du}=1/2) " where
(1/2) — max{d.,d,} < min{1/2,1 — dpax }-

Since Z = X + 1 = O,(1) (ux := EX #0), = 0,(1) (ux = 0), the above facts imply that
the term (B— B)Z in (4.4) is asymptotically negligible independent of the value of iy, and
the limit distribution of & — « is determined by that of & — Su.

Under suitable assumptions on the innovations, see (4.6) below, Theorem 3.1 and Remark
3.1 completely describes the limit distribution of (£ — fu, Tn), or that of (& — a, 3— B). The
description of this limiting distribution is relatively simpler and more transparent if we

assume that the LM parameters dx,d. and d, are all different, i.e.,

(4.5) dy # d. # dx.

This assumption guarantees that the maximum in (4.3) is achieved by a single pair in II3 of
(4.2), i.e., either by (X,¢), or by (X, u), or by (u,€), or by (u,u).
In order to apply Theorem 3.1, in addition to Assumptions (E), (X), (U), we need the

following conditions on the innovations:
(4.6) E|I(PT+ Bl <00 Fe>0),  Eln* < oo
Let

Dmax - max{dX + dsa dX + d’lM du + d€7 2du}7
dpax = max{d.,dx,d,}, dpin = min{d., dx,d,}.

We are now ready to state the following corollary.

Corollary 4.1 Suppose assumptions (E), (X), (U) and (I) hold. In addition, assume (4.5)
and (4.6) hold. Then the following hold.

(i) Case Dpax = 2d, > 1/2 (this implies dyax = d,,). Then

~ 1-2d, (3 i, B(dy, 1 — dy
(n'?~ (@ = a),n' (8 = B)) —p (— Blu(fu), %< duil +12du) - I““(gd“’d”)))’

where I, (I,) are the double (single) Wiener-1to integrals in (3.3) w.r.t. the same standard
Brownian motion W = W; = W, and the integrand ga, 4, = 9a,.4; (fa, = fa;) in (3.5), where

di :dj :du,:‘ii = R; = Ry-
(ii) Case Dyax = dx + dy, > 1/2 (this implies dpax = dx > d,, > d.). Then

(47) (n1/2idu(a - Oé), nlidX7du(B\_ ﬁ)) —D ( - BLL(fu); _O_EQIXu(ng,du))y

X

10



where Ix, (I,) is the double (single) Wiener-Ité integral in (3.3) w.r.t. independent standard
Brownian motions W; = Wx, W; = W, and the integrand g4y 4, = 9a,.a; (fa, = fa,) in (3.5),
where d; = dx, K; = kx, dj = dy, Kj = Ky.

(71i) Case Dyax = dy + de > 1/2 (this implies dpax = de > d,, > dx ). Then

~ de—d 1D 1
(4.8) (2 @ = @)= (B = 8)) o (L(fa)s - Lue(90,) ).
X
where 1. (I.) is the double (single) Wiener-1té integral in (3.3) w.r.t. independent standard
Brownian motions Wy = Wy, W; = W, and the integrand ga, a. = ga,a, (fa. = fa;) in (3.5)
where d; = d,, ki = Ky, d;j =d., K; = Ke.

(iv) Case Dyax = dx + d. > 1/2 (this implies dyin = dy, < d:). Then

~ de—d 1D 1

(4.9) (n'?7%(@ — ), n'~x "= (3 - B)) —=p <]a(fdg),a—21Xe(ng,ds)>,
X

where Ix. (I.) is the double (single) Wiener-1té integral in (3.3) w.r.t. independent standard
Brownian motions W; = Wx, W; = W, and the integrand gay 4. = 9a,.4; (fa. = fa;) i (3.5),
where d; = dx, k; = kx, d;j = d., Kj = k..
(v) Case Dyax < 1/2. In addition, assume that the innovations of the ME process u; satisfy
En?® =0, when d, > d.. Then

(410) (n1/2_(du\/d8)(a - OZ), nl/Q(B\_ /B)) —D (UaZay O-/BZ5>7

where Z,, Zg are independent N(0,1) r.v.’s,

2l fa . du > de,
. [P sl
||fd5H ) da > du>
where 0, ==Y _,.; Cov(Ry, Ry) and Ry := (gy—Puy)(Xy— EXy+w) = (e,—Pw)(Z,—EZy), t €
Z is a stationary process with ER, = —fo2 and Y, , |Cov(Ry, Ry)| < co.

Remark 4.1 It is of some interest to compare the above asymptotic distributional results
with those available in the case of i.i.d. set up. For that reason we shall first recall the
results available in the i.i.d. case. Accordingly, suppose {¢,&;},{X, Xi}, {u, w;} are mutually
independent sequences of i.i.d.r.v.’s with positive and finite variances 02, 0%, 02, respectively.

Suppose further that Fe = Eu = 0 and py = Fu* < co. Let puy = EX, u3 = Eu®. Let

1
b= 7 [03((05 + B0l) + ono? + B (pa — Uﬁ)]-
X
_— (02 + B203) + 257 Bhspx + opk — 7 Bus — ¢ pix
‘ — = Bus —  px @ '

11



Using the classical CLT, we obtain
(4.11) n'2(@—a, 8 — B) —=p N(O,T).

For the sake of completeness a sketch of the proof of (4.11) is included in Section 7.

2 _ . _ 2752
In the case of no measurement errors, o;, =0, g = p3 =0, ¢ = 02 /0% and

_— ( o + ik (02/0%) —px(0?/o%) ) _ o ( ok + ik —x ) |
—px(02/0%) (02/0%) 0%\ —hx 1

Now suppose En? = 0. Then ps = 0 and in the i.i.d. set up the above LSEs are asymptot-
ically correlated and normally distributed, regardless of whether there is measurement error
in the covariate or not. But, surprisingly, under the above assumed long memory set up
with Dy < 1/2, by (4.10), these estimators are asymptotically independent and normally
distributed even when there is no measurement error. If En® # 0 and d, > d., then the
limiting r.v.’s in (4.10) are correlated. The correlation can be obtained from (3.16).

For Dy > 1/2, Corollary 3.1 and (3.16) yield that these r.v.’s are still asymptotically
uncorrelated but have non-Gaussian distribution.
Remark 4.2 Confidence intervals for a and 3 in the simple structural ME linear regression
model with moderate long memory. The limit distribution of a, B in Corollary 4.1 is very
different depending on whether Dy, < 1/2 or Dy > 1/2. In the latter case (which may
be termed wvery strong long memory in the current set up) this limit distribution appears
intractable. On the other hand, in the case Dy, < 1/2 (termed moderate long memory here)
the result of Corollary 4.1(v) can be used to determine the asymptotic confidence intervals
(Cls) for «, 5. Obviously, these Cls require the estimation of the parameters of the limiting

Gaussian distribution, which is discussed below.

Asymptotic CI for 3. Recall from Corollary 4.1(v) that under d,,,x < 1/2 and under some
additional conditions on the innovations, n'/2(3 — ) —p N(0, 03) where 03 = 0% /0% and
0% = 0% — 02. Because o2 is assumed to be known, 6% = n'>" (Z;, — Z)? — o2 is a
consistent estimator of 0% and 6% is consistent for o%.

Next, consider 0%, := Y., p Cov(Ry, R;), where R, := e,(Z; — EZ;) = (g0 — fug)(Xy —
EX; + u;). The parameter 0% is called the long-run variance of the stationary process
{RY.Let Ry == &/(Z, — Z), ¢, = Y, —a—BZ, 1<t <n, R =n'Y", R, Then,
following Abadir et al (2009), GKS, sec.9.4, an estimate of % is given by the HAC estimator

based on fit, 1 <t < n,viz,

(4.12) 0%, = nty (1

|k|<q

L
q

)Y (R R)(R, - R).

1<t,s<n:t—s=k

2

In (4.12), ¢ = q(n) = 0,1, -+ ,n is the bandwidth parameter. The consistency of (3Rq is

derived in the following proposition, where limits are taken as n,q,n/q — oo.

12



Proposition 4.1 Suppose assumptions (E), (X), (U), and (I) hold, E(£*+ (') < oo, En? =

0, En® < 0o and Dy = max{dx + d.,dx + dy, dy, + d.,2d,} < 1/2. Then &éq —p Oh.

The proof of this proposition is given in the Appendix section of this paper. It uses
cumulants and is rather lengthy due to the fact that process R; is a quadratic form in
iid.r.v.s.

An estimator of 3 is given by 73 := &}2%7(1 /6% Under the conditions of Proposition 4.1,

0% —p 03 and the asymptotic confidence level of the CI

LA _*2 2. _~/2 }
for 5 is 1 — €, where z, is the (1 — €)100th percentile of the N (0, 1) distribution, 0 < € < 1.
Asymptotic CI for a. By Corollary 4.1(v), n'/2=(dVd)(4 — o) —p N(0,02). By (2.6)

d. = d, V d. is the LM parameter of stationary process {e; = &, — Su,}. More precisely, by

(3.9), as t — oo the covariance Cov(eq, ¢;) = Cov(gg, ;) + S2Cov(ug, u;) satisfies

k2B(d., 1 — 2d, )t~ 1—2de), d. > d,,

(4.13) Cov(eg,er) ~
B22B(dy, 1 —2d,)t~ 172 d, < d,,

d.(1+42d)t=07%) 4. > d,,
do(1 +2d,)t~0-2) a4 < d,,

e 0‘2

Moreover, Var(3 1, e;) ~ o2nlt2(dVde) 'y — o0 5o that o2 is the long-run variance of {e;}:
see GKS, (3.3.5). The consistent and log(n)-consistent estimators of o2 and d, are the HAC

and LW estimators, g, and C/Z\é, respectively, based on the residuals
(4.14) b=Y,—a—BZi=e+(a—a)+(B-0)Z, 1<t<n,
see GKS, sec. 8.6, 9.4. Then, the CI

~ Zy/2 2y /2
{Oé; G- —2 _<a<a+ W—/AA}
nl/2—deG nl/2—de

Q)

for « is of the asymptotic level 1 —

We shall now describe the above estimators of d, and 0 . The LW estimator of d,. is

= . 2d o~
(4.15) de = argmingg_q1/9Un(d), U,(d) :=log ( Z]2dl ) - Z log 7,
j=1

2mj
N, = < . ‘ 1t>\'~
/ n’ " 2mn Z

, € [—m, 7.

13



see GKS, (8.5.2). Here, m =1,2,--- ,m = m(n) — oo, m = o(n) is the bandwidth parame-
ter. The HAC estimator of o2 is

A~ —92d, — k ~ N/ A = = _ - ~
(4.16) G2, = ¢ *%n! Z(l - u) Z (6, —é)(és—é), é:=n"" Zet.
=1

|k|<q q 1<t,s<n:t—s=k

We shall use the results of Section 8.5, 8.6 of GKS to prove the consistency of c?e for
d.. Accordingly, we need to show that (4.14) satisfies the conditions of the ‘signal+noise’
model in GKS, sec.8.6. Let d. > d, for concreteness (the case d. < d, can be discussed
analogously). Then é; = ¢, + Z;, where {g;} is a LMMA ‘signal’ process, and the ‘noise’

process Z; is given by

~

Zi=—Pu+ (a—a)+ (8 —P)Z.

According to GKS Thm. 8.5.2 (i), the LMMA process {;} satisfies Assumptions A and B
of GKS provided its spectral density has the representation

(4.17) L) =[N 2%=g.(\), |MN<a

where g¢. is a positive Lipschitz function on [0,a] for some a > 0. Conditions (4.17) is
satisfied by ARFIMA and some other classes of LMMA processes. We also need to assume
the existence of the 4th moment of innovations of {g;}. Under these conditions the LW

estimator dAE of d. satisfies
(4.18) d. —d. = O,(m™?) + O,(m/n),
see GKS, Thm. 8.5.2 (iii). Let dz :=d, V dx be the LM parameter of {Z; = u; + X;} and

Op((m/n)=71%), d. > dz,

@19) o = Ollm/mEIH OE =B X iy <y

Then by GKS Thm. 8.6.2 we obtain

A~ ~

(4.20) G —d, = (d. = d)(1+ 0,(1)) + Oy (s0).

Note ndz=4(3 — B) = 0,(n?x~1/2). These facts and (4.18), (4.19) guarantee the log(n)-
consistency of d; in (4.15): de—d, = 0p(log(n)) for any bandwidth choice m = [n%],0 < a < 1.
The consistency of 02 of (4.16) is established following the proofs of GKS, Theorem 9.4.1

and Proposition 4.1. See also Lavancier et al. (2010).
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5 Structural ME multiple linear regression model

Here we shall now discuss the asymptotic distributions of the bias adjusted LSEs in the
structural multiple linear regression model. Accordingly, now 3, X;, Z;, u; are p-dimensional

random vectors and the model of interest is
(51) K:Oé‘i‘X;ﬁ‘i‘gt, Zt:Xt‘i‘Ut, tEZ,

where X and wu are vector-valued LMMA processes satisfying the following assumptions and
2’ denotes the transpose of a vector x € RP.
Assumption (X), Covariates X; = (X1, -+, X;,) form a LMMA process

(5.2) Xei = pxi+ Zak,iftfkm teZ, with ap;~ kx k") k — oo,
k=0

where pux; € R, rx; > 0,0 < dx; < 1/2, and i.i.d. innovations {& = (&1, , &) s € Z}
Wlth ESO’Z‘ = O, E§O7i§07j = O-E,ij) Z,j — 1’ S .

Assumption (U), Measurement errors u; = (ugq, - -+ ,usp) form a LMMA process

(5.3) U = ch,ﬂ?tfkm teZ, with c¢,; ~ /suyik_(l_d“’i), k — oo,
k=0

where k,; > 0,0 < d,; < 1/2, the innovations {ns = (951, ,Nsp);s € Z} are i.i.d. with
Eno; =0,En9m0,; = 0nij, 4,7 =1,-+- ,p, and 3, := E(upuy) is known and positive definite.
Assumption (I), The innovation sequences {(s;s € Z}, {&;s € Z}, and {ns;s € Z} in
Assumptions (E), (X), and (U), are mutually independent.

We also assume that
(5.4) B>t + B|&i* T <00 (Fe > 0), Eny; <oo, V1<i<p.

The bias corrected LSEs of «, 3 here are defined as

n

SZZ =n" Z Z Z) SZY = nil (Zl—Z)(Y;—Y),

i=1

B = (SZZ - Eu) SZY> a:=Y Zﬁ
Whence as in the case of simple linear regression model we obtain

(55) B\_ B = (SZZ - ) (SXE + Sus SXuﬁ - (Suu - EU)B))
a—a = é—aﬁ—Z’(ﬁ—ﬁ).
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Since Szz — ¥, —p Lx = EXoX{, we see from (5.5) that the limit distribution of B— I5;
coincides with that of T, := X3 (T}, + E(ui')3), where

Tn = SXs + Sus - SXUB - (Suu - ESuu)ﬁ

is a zero-mean quadratic form in LMMA satisfying Assumptions (E), (X), and (U),. As it
follows from Theorem 3.1 and Remark 3.3, under these assumptions the limit distribution

of T,, and Tn is essentially determined by the maximum
(56) Dmax = max{dxyi + dg7 d%i + dg, dXJ' + duﬂ‘, d%i + du,j; 1 S Z,] S p}

Accordingly, the limit distribution of B\ — 3 is non-gaussian or Gaussian depending on whether
Dyax > 1/2 or Dpax < 1/2. In general, & and Bi, 1 <i < p may have different convergence
rates and a complicated joint limit distribution. We first discuss the case Dp.x < 1/2 where

the limit result admits a relatively simple formulation as seen in the following corollary.

Corollary 5.1 Suppose (E), (X),, (U), and (1), hold and Dy.x < 1/2. In addition, assume
that d,;,1 < i < p are all different, dymax = max{d,;, 1 < i < p}, the 3rd moment of the

innovations of wy; with dy; = dy max 1S zer0 when dymax > de, and (5.4) hold. Then
(5.7) (n!/2rldVdemed (@ — ), 02 (B = B)) = (0aZas B Z5)-

Here Z, ~ N(0,1), Zs is a normal vector independent of Z,, with EZg =0 and covariance
matriv EZgZjy := ), ., Cov(Ro, Ry), where Ry := (g, —B'w;) (Xo— EXi+up) = (60— B'ug) (2 —
EZ,), t € Z is a stationary RP-valued process with ER, = =X, and ), , [|Cov(Ry, Ry)|| <
oo. Moreover,

2. Bz‘2||fdu,i||27 du,max:du,i >da>i: L ,p,
||deH27 d€ > dU,max~

Next, we discuss the limit distribution of the LSE (@, 3) in (5.5) when 6yay > 1/2. The
description of this limit distribution is complicated for the case p > 2 and when long memory
parameters of components of { X;} and {u;} are all different. For this reason we shall describe
these distributions only in the case when these long memory parameters are equal, viz.,
dx; =dx,dy; = dy,,i =1,---,p, and in the case when p = 2 but dx 1 # dx2,dy1 # dya.
We note that in the latter case, the convergence rates of Bl, 32 are generally different.

Consider first the former case, p > 1 arbitrary. Let ¥, = Engng, X = E&&, denote
the respective covariance matrices of innovations in Assumption (U), and (X),. Introduce
a scalar-valued standard Brownian motion W, = W_(¢),t € R, and vector-valued Brown-
ian motions Wx(t) = (Wxa(t), -+, Wx,(t)), Wu(t) = (Wya(t), -+, Wup(t)),t € R with
respective covariance matrices EWx (£)Wx (t)" = [t|Xe, EW, ()W, (t)" = [t|X,, W, Wx, W,
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mutually independent. Recall from (3.3), (3.17) the definition of the stochastic integrals
with respect to these Brownian motions: I,(f) = ( [, fi(s)Wu,i(ds))KKp, f=0 50,
Liu(9) = (fpo gz‘j(81,SQ)Wuﬂ:(dSl)WuJ(dSQ))1Sid§p, g = (9ij)1<ij<p defined for vector- and
matrix-valued valued integrands from L?*(R) and L?*(R?), respectively, the stochastic inte-
grals Ix(f), Ix:(g), Iu:(g) defined in a similar fashion. Note [, [x, are matrix-valued and

Ix, 1, Ix., Ix. are vector-valued r.v.’s.

Corollary 5.2 Let Assumptions (E), (X),, (U), and (1), be satisfied. In addition, assume
that d,; = d,, dx; =dx, 1 <i<p and (5.4) hold.

(i) Case Dpax = 2d,, > 1/2. Then

(5.8) (020G =), 0B = 8)) p (= BT S (o S2) — Tua9ana))B).

where f, = (fa,, -, fa,) and g4, a4, = (gdi,dj)lfi,jgp are defined as in (3.5) where d; = d; =
dy, Ki = Ky, Kj = Kqyj-

(ii) Case Dyax = dx +d, > 1/2. Then

(5.9 (@), G- 8) 5o (= L), SR xal9ax.a)B).

where f, is the same as in (5.8) and gay 4, = (9d,,4;)1<ij<p a5 i (3.5) where d; := dx, d; =

du,:‘ii = RXhg, Rj = Ry

(iii) Case Dyax = dy +d. > 1/2. Then

(610) @G a) B B) o (L) R el ).
where ga, a. = (9a,.4;)1<i<p and fo. = fa; as in (3.5) where d; := dy; = dy, ki = Kug, dj =
de, Kj = Ke.

(iv) Case Dyax = dx +d. > 1/2. Then

(5'11) (n1/2—d5 (a - Oé), nl_dx_da (B\_ 6)) —D (Ie(fds)a E)_(IIXs(gdx,dE)>7

where fq. is the same as in (5.10) and gay a. = (9d,,4;)1<i<p as n (3.5) where d; := dx; =

dx, Ki == Kx;, dj :=d., K;j = Ke.

Next, consider the case p = 2,3 = (31,32)’, dx1 # dxzo, dys # du2 and Dy, >
1/2, where Dy, is defined in (5.6). Let 3" = (px.j)i<ij<o- As noted above, the limit
distribution of 3 — 3 coincides with that of T, := Y (T, + E(ut')B) = (Th, Tha)' where

(512) T = pxa1(Sxie + Sure — Sxi B — SxiueB2 — (Surar — ESuyur)r
— (Surus — ESuug) B2 + (61)2B1 + Urtiafa)
+0x,12(Sxs2 + Susie — Sxpu 81 — Sxous B2 — (Suzur — ESusur) B
— (Susus — ESugus) B2 + U tin 1 + (%)2/32)-
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We omit a similar expression for fm, where the only difference is that px 11, px12 in (5.12)
are replaced by px.o1, px 22, respectively. We have the two cases: (a) px12 = px21 # 0
(or Xx is not a diagonal matrix), and (b) px 12 = px21 = 0 (Xx is diagonal). From these
formulas it is easy to see that in case (a) that the convergence rate of Tvm-,z' = 1,2 hence

1=Dmax_ Tn case (b), B;,i = 1,2 may have

also of Bi,i = 1,2 is the same and is equal to n
different convergence rates and their limit distribution is more complex. As an illustration,
the following corollary details this limit distribution when Dy, = 2d,, 1. In the cases Dyax
is achieved at other pairs of LM indices in (5.6), this limit distribution can be derived in a

similar fashion.

Corollary 5.3 Let p = 2 and Assumptions (E), (X)a, (U)a, (I)2 and (5.4) be satisfied. In
addition, assume that d,,; > max{d,a, dx1, dxa, d:} and Dyax = 2d,1 > 1/2.
(a) Let 0x12 = COV(XOJ,X()Q) 7& 0. Then

(nl/z_d”’l(a —a), nl_zd“‘vl(g@ — Bi),i=1, 2)
—D /Bl<_‘[ul(fdu,1) leZ(Hfdul” U1U1(gdu1 dul))’i = 172)'
(b) Let 0x,12 = COV(XOJ, X072) =0 and dX72 7£ du’g. Then

(nl/Q—duJ(a _ a), n1—2du,1(31 B 51)’ 1—dy1—dx 2vdu2(5 52))
—D ﬁl( - [ul (fdu,l) PX, 11(Hfdu1H u1u1 (gdulydul))7pX722W>7

where
_Iul,Xz (gdu 1,dx, 2)7 dX,2 > du72a

<fdu 19 fdu 2> - U1U2 (gdul du2> dX,Q < du,2'

6 Functional ME model: nonrandom design

In this section we describe the analogs of the previous results in the functional linear regres-
sion model with LMMA regression and measurement errors, and nonrandom design satisfying
the following assumption. For clarity of exposition, the subsequent discussion is confined to
the case p = 1, or the simple linear regression model in (2.1).
Assumption (X)4: There exists a (nonrandom) piece-wise continuous function V' : [0, 1] —
R such that X; =V (t/n), t=1,--- ,n.

The above form of regressors also assumes that V' is not a constant so that of :=
fo V)2dt > 0, where V := fo t)dt. As shown below, the limit behavior of LSE
(@, 5) in the nonrandom design case is Gau551an and generally simpler than in the random

design case. The dominating role in the limit distribution now is being played by terms
Sxe, Sxu, &, U in (41) and (44)
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Note first that Assumption (X)g; implies X -V and Sxx — a%/ as n — 0o. Moreover,
Sxu = Op(n®=Y2) = 0,(1), Sx. = O,(n%="Y2) = 0,(1), see (6.2) below, while S,, — o2.

Therefore the normalization entity Szz — o2 in (2.9) tends to 0¥, viz.,
(6.1) Sy — 02—, 0p.

Let V.(t) := V(t) =V, t € [0,1]. Assumptions (X)4s, (E), and (U) imply
(6.2) n'?"%Sx. =p L(fr.e), n? S —=p Lo frow),

where I, I,, are the same (Gaussian) stochastic integrals as in Corollary 4.1 with respective
integrands

(63) froe(s) = re / Vet)(t = ) hdt, frou(s) = m / Ve(t)(t — s) .

Note I.(fv. ), Lu(fv. ) in (6.2) are independent and have a Gaussian distribution with zero

mean and respective variances

(6.4) EI(fv.c) = I frie d
BI(fv.0) = | fir (du,1

where for any two bounded functions f, g, (f, g)q f[o e f)g(s)t - s|?¥=1dtds is a strictly

( €9 1-— 2ds><‘/ca ‘/c>d57

?=kiB
| _’%uB _Qdu)<‘/C7‘/c>dua

positive definite quadratic form, for all 0 < d < 1/2. The convergences in (6.2) can be
proved by using the Criterion in GKS, Cor.4.7.1, for linear forms in i.i.d.r.v.’s. Moreover,
Z —, V and Sy, — 02 = Oy(n~0-2=DV/2(1 4 1(d, = 1/2)log"/*n) = 0,(n®™~/?) and
Sue = 0,(n%"1/2) follow from Theorem 3.1. These facts together with (4.1), (4.4), (6.1),
(6.2) result in the following corollary.

Corollary 6.1 Let Assumptions (E), (X)aet, (U) and (1) be satisfied. In addition, assume
that (5.4) hold.

(i) Suppose d. > d,,. Then
(6.5) W@ =0, B B) —p (Wae, Wae),
where (W1, Ws.) have a bivariate Gaussian distribution with zero mean and (co)variances

(6.6) EWE. = fall? + V2o, I fv.ell® = 2V, *(fa., frne),
EW22,5 - UV4||fVc,6||27 EW1,6W2,6 - U\;z(<fdaafVc,6> - V||fVc,s||2)7

(i1) Suppose d. < d,,. Then

o~

1/2 du(a - q, B ﬁ) —D _(Wl,’lM WQ,U)57

where (Wi, Wa,,) have a similar bivariate Gaussian distribution as in (6.5)-(6.6) with the

only difference that fq_, fv,. in (6.6) are replaced by fa,, fv..u, respectively.
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7 Proofs of Theorem 3.1 and Corollary 3.1

Proof of Theorem 3.1. Let §7mj =n"' Y iy so that S, = S . — NiY;

YisVj

for any t,t' € Z.

COV(’Yt,ia /Yt’,i)cov<’yt,j7 /yt’,j)u (17 .]) = (/L.,L]./)?i 7& jv

(7.1) Cov(yieg, i) = 4§ Cov(n7s i), i=j=i=j,
0, (&, 5) # (i, 5)
From (7.1) we obtain
(7.2) COV(Sy,mys Sy ) = COV(Syys Sy ) =0, (6,5) # (7, ).
From GKS, Prop.3.2.1(ii), it follows that
(7.3) Cov(Vei,v0:) = Z bp—sibosi ~ Xt t — o0,
5<0

where x; := k7 [ (14 s)%1s%1ds = k7 B(d;, 1 — 2d;). We shall prove that
(7.4) Var(S,, ;) ~ Var(S,, ,) ~ o/n, di+d; < 1/2,
Var(S., ,,) ~ Var(S,, ;) ~ o%(logn)/n, d;+d; =1/2,
Var(g”%%.) ~ 5?jn2(di+dj_1), Var(S,, ;) ~ a?an(di+dj_1), d;+d; >1/2,
where 575 := (14 05)[|Ga, a4, 11,
> ver Cov(Veiveg Y0,i%0,5),  di +dj < 1/2,
(7.5) o = Q2014 8, di +dj = 1/2,
(1 +035)[|9a,.a; 117, di +d; > 1/2;

and ||gq,q,]|* is defined in (3.9), 6;; :== 1(i = j).

. Note

Consider (7.4) for d; 4 d; > 1/2. Here, the asymptotics of Var(S,, ;) is immediate from
(7.1), (7.3) and GKS, Prop.3.3.1(i). To check the asymptotics of Var(S,, ,,), consider first
the case of 7 # j. Write Var(9,, ,,) = Var(gwﬁj) - 2Cov(§7iﬁj,7yﬁj) + Var(%;7;), where the

variance Var(S,, ,,) satisfies (7.4) and Var(%:y;) = Var(y;)Var(y;) ~ || fa,
see (3.9). The asymptotics of the covariance

(7.6) COV(S%,W’%:YJ’) = n”’ Z Env it iV, Ve,
t,t1,t2=1
~ Xinn_g Z |t _ t1|2di—1|t _ t2|2dj_1
tit1,t2=1

~ GG o fa © fa)
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follows by integral approximation and a calculation as in (3.6). This proves (7.4) for d;+d; >
1/2 and i # j.

Next, we shall prove (7.4) for i = j,d; > 1/4. We have Cov(v7;,77 ;) = 2(Cov(ye, yr4))*+
hi—vi, where hy_pi = va; D, cing Ui by and vy, = E(&; — 1) =2 = E&; — 3
is the 4th cumulant of &;, see GKS, (6.2.25). The sumability >, ., ht; < oo implies
n? ZZt’:l hi—vi = O(n™") = o(n**%~V). Then Var(g%'yj) ~ 2n7? ZZt':1(COV(%,ia%’,i))2
~ 2[|Ga;.a; ||?n?3%E— = 53 4, follows as in the case i # j above. By writing Var(S,, +,)
= Var(S,, ,,) — 2Cov(S,, ., (7:)?) + Var((7;)?), (7.4) follows from

(7.7) COV(S% Yio (%) )~ 2n2(2di_1)<§di7di7 fa, ® fg;) and Var(@i) ) ~ 2n°C |

c.f. the case i # j above. To prove the second relation in (7.7) use Var((%;)?) = Cumy(¥;) +
_ _ _ n 4 _ nod—1\4
2(Var(5:))? where Cum4<%-> Y (S bie) € O Y (20 1)
Yoeon (i ()BT < Onth P = (@il and (Var(7;))® ~ || fal[*n®47Y; see
above NeXt COV(S'Yz Vi (71) ) - n*?’ 22t17t2:1 E(/yzz _E%Z,z')%l,i%z,z‘ = n*?) zzth@:l 251,82§t
ZulgtlquSt bt—s1,ibt—sg,ibt1—u1,ibt2—u2,i,¢}(31a S2, U1, Ug), where ¢(31> S2, U1, UZ) = E(gsl,igsg,i -
B, i€spi)6uri€usi = 0 except for (si,s2) = (u1,uz) and (s1,82) = (ug,up). Particu-

larly, for s := s1 = sy = u; = uy we have ¥(s,s,s,5) = vy; + 2 while s; # s9 yield
(81, S2, $1,82) = (81, 82, S2,51) = 1. Hence we obtain COV(S% v (30)?) = Ji + 2J; where
| Ji| = vain” ‘ ?tl tQ 1Zs<t1/\t2ms2 bf szbtl 5,0ty — SZ‘ < Cn? Ztl to= 1Zs<t1/\t2 bty —s,ibt, 81|
= O(n?@=1) = o(n??%=1)) and .J, coincides with the r.h.s. of (7.6) with i = j, thus proving
the first relation (7.7) and completing the proof of (7.4) for d; +d; > 1/2.

Consider (7.4) for d; +d; = 1/2. Let ¢ # j. Then by (7.3)

Var(gwﬁj) ~ Xixjn_g Z it —s|7! ~ U%n—1 log n,
t,s=1
with afj = 2x;x;- The case i = j follows similarly. Finally, (7.4) for the case d; + d; < 1/2
follows from (7.3), (7.1) and the fact that the r.h.s. of (7.1) is summable.

Next, we prove the convergence in (3.12). Because of the differences in the normalization
and the limit distribution, the cases dmax > 1/2, dmax = 1/2, and dpax < 1/2, where Dy, is
as in (3.1), will be discussed separately. Let Il := {(4,)) € ILn;d; + dj = max }-

Proof of (3.12): Case 0wax > 1/2. Since (7.4) imply A(n)(S,,,, — ES,,,,) —p 0 for
(1,7) & Ilax, relation (3.12) follows from

(78) {nl_émax<s'yi,'yj - ES"YZ‘,"/J‘); (27]) € Hmax} —D {[ij(gdi,dj); (Zaj) € Hmax}a

where I;; are the double Wiener-It6 integrals in (3.3). Assume first that that Il con-
sists of a single element (,7),7 # j. Then, because dnax = d; +d; and ES,, ., = 0 for
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. . 1—6max . o1—d.—d; . . .
i # g, nT0mex(S,  —ES, ) =n'""%"%S, . can be written as a quadratic form in i.i.d.

innovations {&s;, &5, s € Z}, viz.,

Qlgn) = E Gn(51,52)Es,,is0.5, With coefficients
S1,82€7
n n
o —di—d; —1—dj—d;
gn(81752) = n " J§ bt—s1,ibt—82,j_n v §:bt1—817ibt2—82,j'
t=1 t1,t2=1

Let

- N~ 1 =

gn(@1,22) 1= ngn([nai], [nzs]) = nditd; Zl Dt—fnar] ibe—[nas).j — nditd; Zl bt, —[na1),ibta — nas] -
t= t1,ta=

We use GKS, Prop.11.5.5. Accordingly, the result n!=%4-4 g

viry —D 1ij(ga;.a;) follows from

the following convergence in L*(R?):

(7.9) 190 = ga.a; 1| = 0

Since by ; ~ k%1 k — oo the point-wise convergence
! d d;i—1
Gnl1.22) = gag (o) = way{ [ (= s)E 7= )
0

1 1
_/ (tl — :L‘l)iildtl/ (tg - $2)ij71dt2},
0 0

see (3.5), for any fixed (wy,25) € R% z; # 0,1,i = 1,2 follows by integral approximation.
Then, (7.9) follows by the DCT similarly as GKS, Prop.11.5.6. The general case in (7.8)

follows similarly and we omit the details.

Proof of (3.12): Case 0p.x = 1/2. Let ﬁl/g = {(¢,j) € IL,,, : d; + d; = 1/2}. Then by
(7.4) relation (3.12) reduces to

(7.10) {(n/ log n)1/2<S'Yiy'Yj - ES%%)? (i,5) € 1:/[1/2} —D {Uz'jZiﬁ (i,9) € ﬁ1/2}7

where Z;;, (z;,j) € ﬁ1/2 are independent N(0,1) r.v.’s and o7, = 2(1 + 055)xix;, see (7.5).
Also, since §; = O,(n%=12), i =1,--- ;m so 37y; = Op(n¥471) = 0,(n"1?), (i,5) € 1Ly
and hence (n/logn)'/?3,%; = O,((logn)~/2) = 0,(1), (4,5) € ;2. Thus, (7.10) follows from

(7.11) {(n/ 10%”)1/2(§wm - Eg%,%-)? (i,5) € H1/2} —D {Uz'sz'j; (i,5) € H1/2};

where g%w =n"tY " Vit as above. We shall prove (7.11) for a single pair (i, j) € ﬁl/g.
Let i # j. Then ES ., = 0. Moreover, §%m. = gi/mj + §;’mj where

n n
o L -1 § : § : an | § : 2 :
S%-ﬁj = n bt—sl,ibt—sz,jfsl,ifsz,j7 Sfyi;yj =n bt—s,ibt—sjgs,igs,j

t=1 s;<t,i=1,2,51#s2 t=1 s<t
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are off-diagonal and diagonal terms, respectively. Moreover, S 5o |b, b ;| < C Y22 732 <

oo implies g,’y’mj = 0,(n"'/%) = 0,(1). Hence it suffices to prove

(7.12) (n/logn)'/2S! _ —p N(0,03).

) ’Lj

To prove (7.12), as in in Bhansali et al. (2007), we use martingale CLT in Hall and Heyde
(1980). Towards this aim rewrite the L.h.s. of (7.12) as the martingale transform

(7.13) (nlogn)~'/? Zvn(s), where  v,(5) 1= Up,i(5)Es,; + Un;(5)Es,

s<n
Uni(s) =Y cals',8)evis Uny(s) =Y _enls,8)wys  cals'8) =) biwibiosj.
s'<s s'<s t=1
Let F := 0{&.,i, &5, s < t} be the o-field generated by innovations. Then E[v,(s)|Fs—1] =
0, E[v(s)|Feo1] = u, ;(s) + u? ;(s). By the classical martingale CLT, (7.12) follows from

(7.14) Bij(n) = Var(z vn(s)) = nQVar(ggmj) ~ J?jnlog n,
s<n
s<n
(7.16) (n) Y B[2(s)I(Jva(s)] > 0B/*(n))] —=p 0, V6> 0.
s<n

The proof of (7.14) follows easily from (7.4). Consider (7.15). Using By;(n) =Y., _,, Evi(s),
the relation (7.15) follows from (7.14) and

Z(E[vi(s)\]—"s,l] — Ev2(s)) = op(nlogn), or

s<n

(7.17) Z(uik(s) — Euik(s)) = op(nlogn), k=1,j.

s<n

Consider (7.17) for k = ¢; the proof for k = j is analogous. By writing the Lh.s. of (7.17)
as a centered quadratic form Qn, = >, o, §e.iberi D gygncsen Cnl8', 8)ca(s”,s) iniid. r.v.’s
€ i's, (7.17) and (7.15) follow from Var(@Q),) < 8E§6{iRn, and

(7.18) R, = Z ( Z cn(s’,s)cn(s”,s))2 = 0(n?) = o(n?*log®n),

§'"<s'<n s'<s<n

see also GKS, (4.5.4). Using the definition of ¢,(s',s) in (7.13) it follows that
R, < C/ ds’ds”(/ Cn(s'8)cn(s", s)ds)2 =: COR,,
co<s<s'<n s'<s<n

where ¢,(s',s) := fo Yt — s)i"*ldt. By change of variables, én = n2R, and hence
(7.18) follows from

(7.19) Ry < oc.
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To check (7.19) use the following bound: for any —oco < &' < s < 1

1
a(s,s) < 1(s € (—1,1))/(t—s’)i"1(t—s)‘fj_1dt+1(s’< —1) 'di—1/ (t—s)5dt
R 0
< O01(s € (—=1,1))]s — /|41 L C1(s' < —1)|8'| %1 (1 + |s)%
(7.20) = C1(s' € (=1,1))|s — | 2+ C1(s' < =1)|¢'|% 1 (1 + |s) !

since d; + d; = 1/2. Then

R (s < 1(s' < —1)
R < C ds’ds"{/ N
1 = /(_0071)2 s/\s!! ( |5 — S/|1/2 ’S’|1_di(1 + |S|)1_dj)

1(]s"| < 1) 1(s” < —1)
)d } <N g,
X( ’S _ 8//|1/2 + |S//|1—di(1 + |S’) d; S Z k

where

1
ds 9
J = d /d ”{/ 7
' /(—1,1)2 o -1 |3—8’|1/2|3—3”|1/2}
1
ds 2
no= - asas{ [ _ 3y
(=0, =1)x(=1,1) Sy (L4 |s])tdi|s — 5|12
1
ds 2
J3 = / |S//|72(17di)d5/d8//{ / . } 7
(—1,1)x (—00,~1) 1 (14 |s])tdi]s — s/]1/2

J o / |S/ //| 2(1—d;) dS/dS//{/l ds }2
L (_007_1)2 s\ (1 + |S‘)2(17dj) ’

The fact that J, < 0o,k = 1,2,3,4 is elementary by 0 < d;,d; < 1/2. This proves (7.19)
and (7.18), (7.15).

To prove (7.16) we use condition (3.10). By the Markov inequality, E[v2(s)I(|v,(s)] >
5Bi1j/2(n))] < E|vn(s)|2+E(CSBZ-1]-/2(n))*6 and (7.16) follows from

(7.21) ZE’Un ’2+€ _ ( 2+e /2(n>> _ O((nlogn)(2+e)/2).

s<n
We have E|v,(8)]*7 < C(Eluni(s)*T + Elu, ;(s)]*7¢) < C(Li(s) + Lj(s)), where L;(s) :=
ElY .., cn(s’,s)fs,i‘%e, Li(s) == E|>,_, cn(s,s’)fs’jfﬂ. By Rosenthal’s inequality, see
GKS, Lemma 2.5.2,

(7.22) Lis) < ¢( Ty (s, s)>(2+6)/ g

We use the following bound similar to (7.20).

n|s |d —1 ’

——a.  1—d. s < —n

(7.23) eas, )] < 04 |
s —s[7% I <.
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From (7.22), (7.23) we obtain

S < of Y+ W (e o) M = o+ .

s<n s<—n |s|l<n s'<s

where

-n -n (2+4€)/2
I < 0/ ds(/ (n|s'|d"_1|s|di_1)2d$'>

o0

—1 1 )
= C’n/ |S|2(dj—1)(2+6)/2d8</ |Sl|2(d"_1)d5’> (2+€)/2 —on

since the last integral converges. On the other hand, since d; + d; = 1/2,

g < CZ ( Z nzdj|5/|2(di—1>( +e)/ +CZ < Z |s—s+\+>

[s|<n  s'<-n [s|<n |¢'|<n

< Cn+ Cn(logn)®t9/2,

(2+€)/2

implying >_._, Li(s) = O(n(logn)®+9/2). Since Y_._ L;(s) = O(n(logn)®+t/2) follows
cen Elon(s)|?T¢ = O(n(logn)@+9/2) = o((nlogn)@+9/2) for
e > 0, proving (7.21), (7.16) and completing the proof of (7.12).

exactly similarly, we obtain >

Proof of (3.12): Case dpax < 1/2. Then by (7.4) relation (3.12) is equivalent to

(7.24) {n'2(Syn; — ESyiny)i (3.4) € M} —p {04,255 (3,5) € Iy},

where Zy;, (i,7) € Il are independent N (0,1) r.v.’s and o7, are defined in (7.5). Moreover
since X; X; = O,(n®t4~1) = 0,(n=1/2) for d; + d; < 1/2, s0 S, ,, in (7.24) can be replaced
by gij =n" Y i and (7.24) follows from

(7.25) {n2(Syn; = ESyny); (1:5) € T} —p {03255 (i, 5) € T}

We shall prove (7.25) for a single pair (i,7) € 1I,,. Let ¢ # j. Then Eg%w = 0. Hence it

suffices to prove

(7.26) n'/?S.. .. —p N(0,02%)

9 z]
We use the argument as in GKS, Thm.4.8.1. For ¢ > 1 introduce ‘truncated’ processes:
’ytz . th sz Sﬁf)fs,z’, izl?"'7m7
s<t

and the corresponding gfy@ L = n Sy t(?%(? Thus, for each 1 < ¢ < oo fixed,
i

Yig-é) (t) := yt( z)%( ]), t € Z is a (-dependent stationary process with autocovariance ,og) (t) =
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Cov(Y; (e)(t) v2(0)) such that

) 1]

PO = (3 beibiail(t+s < 0) (Y bysbrraslt +5 < 0))
s=0 s=0

S C( i ‘bs,ibt+s,i‘) (i ‘bs,jbt+s,j’) S OtQ(dierjil)a t Z 17

s=0
and pg) (t) = pij(t) == Cov(Y;;(1),Y;;(0), as £ — oo, where Y;;(t) := 4 V,;. These facts and
the CLT for ¢-dependent stationary processes, see e.g. GKS, Prop.4.3.2, imply that

25w 0 =p NO(07)),  n— oo,
RS
sz(‘?( ) oy, o0,
teZ

Hence, (7.26) follows provided we show that uniformly in n > 1

(7.27) nVar(S,, ., S’,yy)ﬁ;@) =y (1- |n|)C0V( Yi(t) — YO (1), Y35(0) — Y7(0)) — oo,
[t|<n

as £ — oo. The proof of (7.27) mimics that of (GKS, (4.8.7)). We omit the details. This
proves (7.26) and the extension to (7.25) seems straightforward. Theorem 3.1 is proved. O

Proof of Corollary 3.1. Assume for concreteness that the sets Iy, = {k},11,, = {(4,4)}
each consist of a single element, dyax = di, Omax = d;+d;. Let pax > 1/2. Following the proof
of Theorem 3.1 in this case, write n'/2=%7, = > sz Jn(8)&s k as a linear form in innovations
with coefficients f,(s) = n=Y2% 3" b, .45 € Z. Let fo(x) := n'/%f,([s7]),2 € R and
| - |1 denote the norm in L?(R). According to (GKS, Propositions 11.5.5, 14.3.3), the joint
convergence in (3.15), or (n!/?~ %5y, pl=4=di(S,  —ES, . )) —p (Ie(fa,), 1ij(9a;.4,)) follows
from (7.9) and ||f, — f4.|1 — 0, where the last relation can be verified similarly to (7.9).
This proves (3.15) for dmax > 1/2. For dpax = d; + d;j < 1/2 the joint convergence in (3.15)
can be proved similarly as in the proof of Theorem 3.1 and we omit the details.

Consider (3.16). For dpax > 1/2 (3.16) follows the orthogonality of single and double
Wiener-1t6 integrals, see (3.4). Suppose Opmax < 1/2. As in the proof of Theorem 3.1, let

Sy = n~t Y ie- 1t suffices to prove that

n—oo

, _ =~ ~ K
(7.28) lim n! dkE(’yk(S%,w — ES%,W)) = m E(&0,160,i0,5) stzbSJ

To show (7.28), split g%ﬂj - Eg,ymj = S;, 457, where nS), := 37 D bimsibios i (£siés.
_Egs,ifs,j), S;z, =n ZSl;ﬁzSn,m#w Z?:l\/sﬂ/sz bt*Shibt*Sz,ngl,igSz,j' Since Ei/ksg =0, it suf-

fices to prove (7.28) with S, ,, — ES,, ,, replaced by S},. We have

(729> nl_dkE<’_YkS;L) = (50 k§07,§0j _1 dkz Z bt skLsz]

s<n t=1Vs
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where Lg;;(n) == Y 1 1 ebisibi—s; — Lij == > poobiib; < oo for any 1 < s < n and
|Lsij(n)] < C Y22 4 #4472 < C(1+ [s[)%% ", s < 0. Thus, by (10.2.53) of GKS,

noo deth sklsij(n) ~ Lijﬁkn_l_deZ(t—s)i’“_l—>(/4k/dk(1+dk))Lij,

s=1 t=s s=1 t=s

‘ > an bt—s,kLs,z‘j(n)‘ < C zn: i(t 4 )1 4 g)ditdi—t

s<0 t=s t=1 s=0

n
< Cztkordierjfl < Cndk+di+dj — O(?”L1+dk)-
t=1

This completes the proof of (7.28). The last relation also implies the statement (3.16) of the
corollary when . < 1/2 and also when d,,.x = 1/2 due to the presence of the logarithmic
factor in the normalization A(n) (3.1). O

Proof of (4.11). For any two sets of variables {U;},{V;}, let Spy := n* A
EUV;),Uf := U; — EU;. Then (4.1) can be rewritten as T), + 802 = T" — T", where

T' = Sye — BSxeq + Sue — BSuu, T =X — fXcu+ uz — B(a)>
Note all summands in 7)” are uncorrelated, implying
Var(T!) = Var(X¢)Var(g) + $*>Var(X¢)Var(u) + Var(a)Var(g) + f*Var((a)?) = O(n?).
Hence and from (2.9) and (4.1),
(7.30) n'2(B-B) = n'?T; /0% + 0,(1).
Similarly from (4.4) and (7.30) we obtain

(7.31) n2@—a) = n'?(E - Ba) —n'*(B - B)(ux + 0,(1))
= 0"z~ Bu) — (ux/o%)n* T, + 0,(1).

Note n'/2T" and n'/2(z — pu) + (ux /0% )T are sums of i.i.d. r.v.’s with zero mean and finite

variance. Moreover, since all terms in 7 are mutually uncorrelated,
Var(T!) = Var(Sxe.) + 3*Var(Syey )+Var(§u€) + 3?Var(S,,)
= n7 (0%l + fPokon +otol + B2 (1 — 0y,)).

Hence, Var(n'/?T" /62%) = ¢, see (4.11). We also find that the covariance matrix of (n'/?(z —
Bu) + (px/o%)T!, n'/*T" /o%) (the main terms in (7.30), (7.31)) coincides with I" in (4.11).
Then (4.11) follows from (7.30), (7.31) and the classical CLT for sums of i.i.d. r.v.’s. O
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8 Appendix

This appendix contains the proof of Proposition 4.1. In the process of proving the consistency
of 6]25”] we also establish some results of independent interest.
Accordingly, let {(V;,W,;),t € Z} be a covariance stationary process with summable

cross-covariances » ,_, |Cov(Vy, W;)| < oo. The limit

gxolonlcov<i v, i W,) = ovw = 3 Cov(Ve, W) = 3 Cov (Wi, Vi)

t=1 s=1 teZ teZ

is called the long-run cross covariance of V, W (the long-run variance of V' when V; = W,).
Let g = q(n) =1,2,--- ,n be a sequence integers and let 0%, = oy, 03 = oww. Similar to
the HAC estimator of 0%, see Abadir et al (2009), GKS (2012), the HAC estimator of oy
is defined to be

(8.1) Gvwg = Yy (1 E) Yoo Vi=V)(W,—W).

|k|<q q 1<t,s<n,t—s=k

See Lavancier et al. (2009), (2.1). Write 67, = dvvq, Giy, = Ow,w,q- The representation in

(8.1) implies &‘24 g =0, &%V, g = 0, for all ¢, and by the Cauchy-Schwarz inequality,

(82) 6-12/+I/V,q < 2(6\2/,11 + 612/[/41)7 |6-V7VV,€]| < 6-\2/,(16-12/‘/,(1'

See also Abadir et al. (2009), (A.2) and Koul and Surgailis (2016), p.176. In the sequel all
limits are taken as n — 00, ¢ — 00, n/q — 0o, unless mentioned otherwise.

Note that R, := e(Z; — EZ;) = (&0 — Puy)(Xy — EXy + uy) is a stationary process.
Because of the assumed mutual independence of the processes {e;}, {X;}, {u:}, we obtain
ERy = —po?, Var(Ry) = (02 + f?02)o% + 020’ + B?02, and

Tr(t) = Cov(Ro, Ri) = 7(t)yx(t) + B2 (t)yx () + v (t)y(t) + 572 (1)
~ (|20 (detdx)) + 1201 (dutdx)) + $—2(1=(de+du)) + p—2(1=2du) | — O(t_Q(l_D"‘ax)),

where Dy, = max{d. + dx,d, + dx,d. + d,,2d,}. Hence Dy, < 1/2 implies that vg(t) is
summable, i.e., {R;} is a short memory stationary process. Its long-run variance is 0% :=

> ez Vr(t). We are now ready to give the

Proof of Proposition 4.1. The claim that 6]2% —, 0% follows from the following two

claims.

(8.3) (a) [0%g— 0kl —=p0. (b)) El6}, — 0k, —0.
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Proof of (8.3)(a). The proof here is similar to that of Theorem 9.4.1, p279-280 of GKS.
Let

k - N
(8.4) Ghg=n"> (1- u) > RR., Ri:=R,—ER,

|k|<q q 1<t,s<n,t—s=k

Since E6%,, — 0%, (8.3)(a) follows from
(8.5) (a) Var(ép,) —0, (b) Elop,—dr,l —0.

Proof of (8.5)(b). Let

Yo=n Y (Ri— R)(Rig —R),  Ar=n""Y_ R, [kl<n.
=1 =1

Then

T L T T L T T

ORq = Z( ?)%7 ORq = Z( — )k |UR URq| Z |7k %

|k|<q |k|<q |k|<q
Moreover,
: n—|k| n—|k|

Ve =T = n_TW ——(ZR%-ZR@JF\M)

Because >, [vr(t)] < 0o, E( Y1, RZ) < Cn. This together with the stationarity and the
Cauchy-Shwarz inequality yield

Eljr — 9| < Cn~ +2n_1E1/2 E1/2<Z >

Ol + 1=y < o

n

IA
IN

Blo, — R, < Cla/n) =0,
thereby completing the proof of (8.5)(b).
Proof of (8.5)(a). Let X, = X, — EX,. Since R, = £,X; — Bu,X; + £uy — Bu?, we rewrite

52 =2 2~2 22 ~
(8'6) ORq = Usf(q+ Jqu+05Uq+ JuQ,q_QﬁasX,uX,q

2~ ~
+20€X EU,Q 2BO_&X,uQ,q + 25 o-uX,qu,q - 250‘6%7“2,117
where

. _ k S
el oL SIS

|k|<q q 1<t,s<n,t—s=k

~ _ k . -
OcXuXg = T ! Z(l - u) Z €1 X1 us X,

|k|<q q 1<t,s<n,t—s=k
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and the other quantities in (8.6) are defined analogously. Clearly, (8.5)(a) will follow if we
show that the variance of each term on the r.h.s. of (8.6) tends to zero. Since the terms on
the r.h.s. of (8.6) are particular cases of (8.7) below, these convergence results will follow

from Lemma 8.1(i).

Lemma 8.1 Let X;; = > 7 bpil—kis t € Z,1 = 1,2,3,4 be four LMMA processes with
bei ~ Kkt d; € (0,1/2), ki > 0, &, standardized i.i.d., EE; < oo (independence of
iyt = 1,2,3,4 is not assumed). Let dpyay = max{d;+ds, ds+ds}, X112 := X1 X0, Xi34 1=
X 3X¢a and

- _ k
(8-7) 0X19,X34,q — T ! Z( - u) Z (Xt,12 - EXt,12)(Xs,34 - EXs,34)-

|k|<q q 1<t,s<n,t—s=k

(1) If Omax < 1/2, then Y, ., |Cov(Xg12X¢34)| < 00 and

(88) (a) EOX15 X319 = OX12,X50 = Z COV(XO,H? Xt734)7 (b> Var<5-X12,X34,Q) — 0.

teZ

Particularly, 0x,, x5,4 %S a consistent estimator of ox,, xs, -

(ii) If Smax > 1/2, then
(8'9) 6X127X34,q = OP (q%mmﬁl(l + (log Q)[<5max = 1/2)))

The proof of this lemma will be given later. Here we show how it is used to conclude
(8.5)(a). Recall (8.6). In Lemma 8.1, take X;1 = ¢, = Xi3, Xto = X, = Xi4. Then

O X190, X300 = 552)2,11’ di =d. = ds, dy = dx = dy, and Opax = max{d; + ds,ds + dy} = d. + dx.
The assumption Dy, = max{dx +d.,dx +d,, d, +d.,2d,} < 1/2 of Proposition 4.1 implies
that 0. < 1/2. Hence by Lemma 8.1(i)(b), Var(&?X’q) — 0.

Next, take Xy1 = &4, Xip = Xy = Xoa, Xi3 = w. Then 6x, X500 = Ox 0z 4 = de
dy = dx, d3s = dy = dy, Omax = max{d; + do,ds + dy} = max{d. + dx,2d,}, and again
Diax < 1/2 implies oy < 1/2 and we obtain Var(o.z,5,) — 0, by Lemma 8.1(i)(b).
Similarly, the variances of the other terms on the right hand side of (8.6) are shown to tend

to zero, thereby completing the proof of (8.5)(a). This also completes the proof of (8.3)(a).
Proof of (8.3)(b). Let e =n=1Y1 e, 22 :=n"1Y"  Z2 Use Y, = a+ BZ; + ¢ to
write
é—e = Yi—a—fBZ—e=(a—a&)+(B—B)Z,
R = e(Zi—2)+(a—&)Z—2)+ (8- P) 2% — Z),
= RitelBZ = 2)+(a=a)Z—2)+ (8- D) 22 — 2),
= Ri+ gny
R+e(EZ = 2)+ (8- B)(2* — (2)%),

o —

:Uﬂ
Il
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where
gt =e(EZ = Z)+(a—&)(Z— Z)+ (B - 322, — 7).

22 x2 oo 52
Then Ohg  Ohq = 20R,g,.q t+ 0, , Where

C}Rygn,q = 71 Zﬁ 1—q (Zlgtgn:1+éﬁt§q+€(Rt - R)) ( Zlgsgnzl-l—ﬁgsgq-l-ﬁ(gn,s - gn))

satisfies [0r g, < /0% /02, 4 see (8.2), also Koul et al (2016), p.176. Hence (8.3)(b)
follows from 6%, = O,(1) (which is implied by (8.3)(a)) and
(8.10) 52 =, 0.

9n,q

By the first inequality in (8.2), the proof of (8.10) reduces to the corresponding statements
for processes e,(EZy — Z), (o — &) (Zy — Z), (8 — B) 22, and —(8 — 3)Z Z, whose sum is g,..
More precisely, (8.10) follows from
(8.11) (i) (BEZy—2Z2)*62, —, 0, (i) (&—a)’cy, — 0,

e,q

(i) (B8—B)%6%, —» 0,  (iv) (B—P)*(2)%%, — 0.

Consider (8.11)(i). We have E(EZy — Z)? < 2Var(X) + 2Var(a) < C(n?x~1 4 p2d—1)
and 67, < 262, +26°57 , where ¢7*%62 = O,(1),q*"57 , = Op(1), see GKS Thm. 9.4.1
or Lavancier et al (2010) (under (2 + €)-condition on the innovations as in Corollary 4.1).
Therefore (8.11)(i) holds provided n, g satisfy

172du) 172dx) 172du> 172dx)

i o(n . ¢ = o(n . ¢ = o(n . ¢ = o(n

Y

or (q/n)*® = o(n!~Hh+d)) = o(n!=Pm), (q/n)*t = o(n!~HhHI)) = o(n!=Hm=) (q/n)**
= o(n!'4d) = o(n!=Pmax) (q/n)? = o(n!~Adutdx)) = o(n!=20max) which clearly hold by
q/n — 0, 0max < 1/2, proving (8.11)(i).

Consider (8.11)(ii). Since & — a = O, (n'~24Vd:)) by Cor. 4.1(v), (8.11)(ii) follows from

1—2(du\/d€)) 2d,,

7 q _ O(nl—Z(duvds))

=o(n

which again reduce to g/n — 0,0max < 1/2. The proof of (8.11)(iv) is analogous since B
converges faster than &, see Corollary 4.1(v).

It remains to prove (8.11)(iii) which follows from
(8.12) 02 q = 0p(n)

since (8 — 8)2 = O(n~!) by Corollary 4.1(v). We have 6%y < 2(0%,+ 02 ,). Arguing as
for the proof of (8.3)(a)-(b) one can show that 67, — o2,. Hence (8.12) follows from

(8.13) 6524 = 0p(n).
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For this, we use Lemma 8.1 with X;,; = ... = X, 4, = X, and d; = ... = dy = dx, Omax = 2dx.
If dxy < 1/4 then (i) of the above lemma applies, yielding &3(2’(] = 0,(1) = op(n). 1If
dx > 1/4 then by part (ii), O’X2 = 0,(¢**71) = 0,(q) = 0p(n) and for dx = 1/4 we get
6524 = Op(log(q)) = 0,(n), proving (8.13). This proves (8.11)(iii) and completes the proof
of (8.3)(a), hence that of the Proposition 4.1. O

The proof of Lemma 8.1 is facilitated by the following lemma, which provides inequalities

that are often used in the sequel.

Lemma 8.2 (i) Fora>0,0<b<l,a+b>1

ti e 0<a<l,
teZ.

(8.14) dolslt—slib <

SEZL |t|4_r ) a > 1’

(ii)) Fora>1,0<b<1l,g>1,teZ

(8.15) S Isl e = 15 < Cat g vt
Is|>q
(8.16) D lt—sli" < CalqVvtly)™"
Is|<q

(i1i) For a > 0,b> 0,¢>0,q > 1

(817)2 ‘t’;a’S’;bhﬁ _ S‘I_C S C(q(].*a)-i,-“r(].*bfc)-‘r _'_ q(lfb)++(1*afc)+) (1 + loga’b’c(q)),

ltl,]s|<q

where 10g,,.(q) = log(¢)(1(a = 1)+ 1(b+c = 1)+ 1(b = 1)+ L(a+ ¢ = 1)), (2); :=
zV0,xeR

Proof. (i) follows from (10.2.53) of GKS.

(ii) To check (8.15), let ¢t > 1 w.l.g. bFlrst let ¢ > t then Zbl 5 1817 Ut—s|P < 2D g8
)7 =2+ ) (s +a— 1) < XZ(s+a) sy < f (@ +g) a0 de = Cgtth
Next, let 1 < ¢ <t then Y s7%s—1)" = D e C 670 + Dotja<s<arr S (s —
)=+ Dsarye s (s — )= < (t/2)7" Dossg S /27 X g<en |s|7*+C D s31/2 s <
C(tbg e + 1727 < Ot~%¢' =2, proving (8.15).

To show (8.16), let [t| < 2¢ then }7 [t — 5|70 < > lsl<3q |5|7° < Cq'~*. Next, let [t| > 2¢
then > [t — s|7? < C' > <s<iti+a |s| 7 < Cqlt|~, proving (8.16).

(iii) Let log,;.(q) = 0 for simplicity. Split J,(= the Lh.s. of (8.17)) as J, = S T
according to whether |s| < |[t|/2,]s| > 2|t| and |t|/2 < |s| < 2]t|, respectively. Note
|s| < |t|/2 implies |s — t| > |t|/2 while |s| > 2|t| implies |s — ¢| > |s|/2. Hence J,; <
C i psl<q [HF “s|3 < Oqi=a=)++(=b+ and similarly, J,3 < C > i psl<q 1L |s]307¢ <
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Cq=9)++(1=0=0)+ which agree with (8.17).

Consider J, 3 = J3 + J, 5 where the £ subscripts refer to sign(t) = sign(s) and sign(t) #
sign(s). Clearly, J3 < Jf3 < 22 o<t s<ait/o<s<at t7%s7|t — s|3° Note t/2 < s < 2t im-
plies |t — s| < [t| and hence Ju3 < CY o, ,p 57 |t — s|797¢ < Cgltmom+ =0 For
log, .(q) > log(q) # 0 (8.17) follows similarly. This proves (8.17) and the lemma, too. O

Proof of Lemma 8.1. Proof of (i). We have X; 10— EXy10 =Y, i bios1,101-5,285, 18552 =
Vs + Yiaz 4 Yior, where

(8.18) Y, = th—s,lbt—s,2<€s,1§s,2_Egs,lfs,Q)a

s<t
Y;f,lZ = E bt—Sl,1bt—52,2£81,155272) Y;Ql = E bt—sl71bt—5272§sl,1€sz,2
S2<s1<t s1<s2<t

are stationary processes with zero means, finite variances and respective covariance functions

COV()/t?lQ? Y1?,12) - Var(fo,lfog) ngt/\u bt—s,lbt—s,Qbu—s,lbu—s,27

COV(YQ,12, Yu,lz) = E btfsl,1bt732,2bu751,1bu732,27
s2<s51<tAu

COV(Y;,217 Yu,m) = g bt—sl,1bt—sz,2bu—sl,1bu—52,2.
s1<s2<tAu

Similarly, X; 34— E X34 = 2837343 b 53,301 —54,4855,38 504 = }/;?34+)/7€,34+}/7f,437 where Yt?34a Y} 34,
Y; 45 are defined analogously as (8.18). Since

o 00 0o ~
Z b, 1bk,2] < CZ kil+d2_2 < 00, Z |br.3bra| < (]Z kglrg+d4—2 < 00,
h=0 k=0 k=0 k=0

we conclude that Y,%,, Y%, are linear processes with summable covariances and cross covari-
: 0 o 0 o 0 yo
ances, i.¢., > e (|Cov(Yya, Yoio)| +[Cov(Yyay, Yoza)| +|Cov(Yiia, Yoie)[) < oo
Next, let

(819) A= d1 +d2+d3+d4
Because dyax = max{d; + da,d3z + ds} < 1/2, 0 < A < 2,0 < 1 and, by (8.14),
|Cov (Y212, Yo,310)| + [Cov(Yiia, Yous)| + |Cov(Yiar, Yo34)| + [Cov(Yiar, You3)| < C‘t|$72-

Also note that for all t,u € Z, Cov(Y )y, Yuss) = Cov(Y s, Yuus) = Cov(Yi12,Ys,) =
Cov(Yi21,Y,34) = 0. These facts imply that

n n
Z ’COV(Xt,12>XO,12)’ < o9, nli_I}OIOTLACOV(ZXm,ZXs,M) = 0X15,X345

T€Z t=1 s=1
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with ox,, x,, defined at (8.8). As in GKS (9.4.8), these facts in turn yield (8.8)(a).
It remains to prove (8.8)(b). Similarly to (8.6) we rewrite

(8'20) O0X12,X30,0 = OYi2,Yaa,q T O¥ig,Vag,q + O0Y19,Y9 q T 0Y1,Ya4,0 T OYa1,Ya3,q
+0_Y217Y3047q + UY102,Y34,¢] + O-Y102:Y43,q + O-Y1027Y3047Q‘

Clearly (8.8)(b) follows once we prove that the variance of each term on the r.h.s. of (8.20)

vanishes in the limit. The subsequent discussion is limited to the proof of
(8.21) (a) Var(oy,ys,g — O and (b) Var((}ym’yaqu) — 0,

since the remaining variances can be evaluated in a similar fashion.
Consider the claim (8.21)(a). Write Y; 1o =: Y}, Yi34 =: Y/ for brevity. Then

i B k k
Varveg) = n? Y (=l Bl S o (v Vi, YY)
|k1\,|k2\§q q q 1<ty,t2<n
(8'22) < n~? Z Z |COV(Y;51)/751+1€1’Y;€,2§/16/2+k2)|

[k1],|k2|<g 1<t1,t2<n

< Y ) |Cov(YoYs, VY, )| = 0,

k1 ,lk2|<q [t|<n
provided for some v > 0
(8.23) M, = Z Z |Cov (YoYa,, VY h,)| < Cnl(q/n)".
k1l,|k2|<q [t|<n
As in GKS, p.281, use the bound |Cov(Yp, Y/)| < CJt|372, see above, and the identity

Cov(YoYr,, Yi' Vi)
= Cum(Yo, Yier }/t/’ }/tl—l-l@) + COV(}/O’ Yt,)COV(Yklv YZ—H@) + COV(}/Ov Yt,—i-kz)COV(Yk‘lv YZ)?

to obtain M, , < 377 M, i, where

My g1 = Z Z‘Cum(Yo,Ykl,n’,Ytﬁrb)

|E1],|k2]<q [t|<n
> o0
Mgz <C S0 2+ ke — k272 < oA (O k) < ¢,
k1 ,k2|<q,t|<n P —

Mugs <C Y i+ kel 7t — k|42 < Cq.

|k1\,|k2\§%‘t|§”

)

Whence (8.23) with v = 1 follows if we prove that

(8.24) M, < Cq.
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We note that (8.24) is weaker than Assumption M in GKS thm. 9.4.1, viz,

max » - [Cum(Yo, ¥, Yy, ¥)| < C

t1,ta=—n

for the consistency of the HAC estimator which apparently is not satisfied by X} ;2 and some

other processes discussed here. Let

Bo,kl,t,t+k2 (ulv S1,° 0, Uy, 84) = b—sl,lb—u1,Qbk‘l—82,1bk‘1—u2,th—83,3bt—u3,4bt+k2—84,3bt+k2—U4,4'

By the multilinearity property of cumulants

(825) Cum(%; Y;{Jl? }/;,7 }/;f/-|—k2) - Z Bo,kl,t,t—‘rkg (Ul, Sl; tee 7u4a 34)

si<u;,1=1,2,3,4

Xcum(gshlgm,% 65271§u2,27 653,3&13,47 584,3€u4,4)-

To proceed further we need to introduce the tables

S1 Uy S1 U
(8.26) =" mn=""
83 U3 S3 U3
S4 Uy S4  S4
Using GKS (14.1.15), we rewrite
(8.27) Cum(&s,,16u1,25 €s2,18u2,25 Es3,38us 4y Esa,38usa) = Z Iv,
{vycrsg,

where Iy = [[,_, Cum(&, 1, &3, §uj 20 Euj 4380 € Vi,u; € Vi) and the sum is taken over
all connected diagrams {V'} = (Vi,---,V,) (partitions) of the table 7}. Since random vec-
tors (€s1,&s.2, &s3,854), 8 € Z are independent and s; < w;,¢ = 1,2,3,4 this implies that
Cum(&s, 1, &3, Su; 25 Cuya3 88 € Viuy € V) = 0 for any V which contains both elements
from a single row of Ti; in other words, diagrams {V} = (Vi,---,V;) with Iy # 0 con-
sist of ‘vertical’ partitions connecting different rows of 77. There are four types of such
partitions designated as D1) {V} = (2,2,2,2), D2) {V} = (4,2,2), D3) {V} = (3,3,2)
and D4) {V} = (4,4). More precisely, D1) corresponds to {V} = (Vi, V5, V3, Vi), |Vi| =
Vol = |Va| = [Va] = 2, D1) to {V} = (Vi,V5,V5),[Vi| = 4,[Vo| = [V3| = 2, D3) to
[V} = (Vi Va, Vo), [Vl = Val = 3, 1Va] = 2, and D4) to {V'} = (Vi, Va), [Vil = V3| = 4.

By (8.25)—(8.27), the Lh.s. of (8.25) can be written as Z{V}Cf%l My (0, k1, t, t+ky), where

(8.28) My (0, k1, t,t + ko) = Z Bo oy ks (U1, 81,7+, Ua, S4).

si<u;,i=1,2,3,4
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Below we estimate My (0, ky,t,t + ko) in each case D1)-D4), which will prove (8.24).

Case D1) Tt suffices to consider the three diagrams: wu; = sy =: u,us = 3 =: v,u3 =
Sy = w,uy = $1 =: s Dla), uy = ug =: u,$1 = S3 =: S,us = ug =: v, 89 = 84 =: w D1b),
and u; = uq =: U, S = S3 =: S, So = Uz =: v, S4 = up =: w Dlc) in table T in (8.26).

(Here and below, we identify a diagram with a set of equalities between the variables in 7T7.
E.g., Dlc) corresponds to partition {V'} = (Vi, Vo, V3, V), Vi = {ug,us}, Vo = {s1,s3}, V3 =
{s2,us}, Vi = {s4,us}.)

For Dla), by (8.14),

| My (0, k1, t,t+ ko) < C Z 16_5.16—u.20k1 —u, 1081 —0,20t— 30t —10,40t 1 kg~ 30t ey —s5,4]
S,U,V,W

< C|t + /{52|_T_(1_d1_d4)|]{51|_T_(1_d1_d2)|k;1 . t’;(l—dg—dz)|k2|;(1—d3—d4).

Hence, using (8.14) with a =1 —dy —dy,b=1—dy —d3,a+b=2— A > 1, see (8.19),

(829) Z ’MV(Oa k17t7t+k2)’
|t|§n,|k1|,|k2|§q
1
< C
Z |t + k2|}r_d1_d4 |k’1|}r_dl_d2 |k31 + t|}r_d2_d3 |k2|1+—d3—d4

teZ, | k1), k2| <q

<C Y L < C¢® < Cq.

1—di—d 1—ds—ds —
bl fai<q Rl R
For D1b), use (8.14) w.r.t. s,u,v,w € Z to obtain

(8.30) | My (0, ki, t,t+ ks
< C > bcabeesboubesks b, —v2bt—v.abky —w1beiky w3l

S,U,V,W

e e P RS )
Next, use (8.14) w.r.t. t € Z and ky € Z to obtain
(8:31) X yj<n i bl <q MV (0. kn, tt + k) | S C 1<, ko| 327 < 0g®ADr < Cg.
For Dlc), exactly similarly as above,

| My (0, k1, t, t + ko)

< C E | b—s,l bt—s,3 b—u,th—i—kg —u,4bk1 —v,1 bt—v,4bk1 —w,2Ct+ko—w,3 |
EXTRORT

< Oft707 00| 4 foy| Ty gy OO g, |0

resulting in the same bound as (8.30) above.
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Case D2). It suffices to consider two diagrams s; = sy = 83 = 84 =: 8, U] = Uy =: U, Uz =

ug =:v D2a), and $1 = 89 = 83 = §4 =: 8, U3 = uz =: u, uy = uy =: v D2b). For D2a),

| My (0, k1, t, t+ ko) < C Z 1b_s.10k,—s,101—s 3014 ky—s,30—0. 20k —u,2bt—p 40t ky—o 4]
ERYRY)

< C
U

1—2d, Z |b—s,1 bkl—s,lbt—s,Sbt—i—kQ—s,i’: | .
ol 5

Because dyax < 1/2, the above bound and (8.14) imply

(8.32) D M0kt t 4 k)l

[tI<n,|k1],|k2|<q

1
< C Z T ody 1 124, Z |b—5,10%, —5,101—5,3bt+1k5 5,3
(a7 R

[k1l,|k2|<q + t,s€Z

1
¢ Z |/€1 |i(1—d1—d2) |/€2|3_(1_d3_d4)

k1,k2€Z
Similarly, for D2b),

My (0, k1, t,t+ k)| < C Z |b_s,1bk; 5,101 30t 41y — 530,201,401y —p 2014 iy —0.4]

S, U,V

Ot ke — [T S T by —sbe-s sbesi sl

IN

and hence, by (8.14) and the fact 2 — A > 1,

(833) > My (0, kit t + ko)

|t|§n7|k1|7|k2|§q

< C Y HETNTNE A ke — RS | R — s — s Ry — |

t,s,k1,k2

1
S C Z 1—do—dy 1—dy 2—A 1—ds
’t‘+ ’5‘+ K1 _5’+ ‘t_5‘+

t,s,k1
1 1
< C <C» ——= < C
< O = O

Case D3) Consider the two diagrams s; = Sy = $3 =: S,u; = S4 =: U, Uy = Ug = Uy =: V
D3a) and s1 = s9 = 53 =: S, u; = Up = uy =: u,ug = sS4 =: v D3b).
For D3a),

[ My (0, byt t+ ko) < C b bk —s1bi—s.3b—u2besks—u3bh—v.2bt—v.abis ks,

ERTR0}

< Ct+ k‘2|1(1_d2_d3) Z |b_s 16k, —s1b1—s 3] Z |bky —0,20t—0,4bt 4 ky 0.4 -
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Therefore, 3, k1 kal<q | MV (0, k1, 2 + ko) | < C'J where

(8.34) T = Yt ol <quso [ R 75T s 7 R — |97 — 8|7
X|ky —v|27t — o) BT kg —o|BT = )+
and Ji =D ko [<qwilslz2k ) T P2 T 2tk kal<quvJsl<2lky| *» SPit according to
|s| > 2|ki| and |s| < 2Jky|. In Jy, we have that |s|T Yk — o]0 < C[s)2 ™™V where
2(1 — dy) > 1. Therefore applying inequality (8.15) with a = 2(1 — d;),b =1 — d3 results in
S S C Y i<n i ol <qw [T+ e Y e (T VAT I Ea
x|y — 0|27t — v| BTty — o|B

We further split the last sum as J; = Ji; + Jio according to whether |t|, > 6q or |t|+ < 6q.
By change ko +t — ko it follows that |k:2| < 8q in Jis. Therefore J5 can be bounded as

(8.35)J1, < C > g 2L | o [2hHda =2 o a1y i, |,

[t1<q,|k1],|k2]|<8q,v

Finally, split the last sum as Jjo < C'(J};, + Jp3) according to whether |v| < 3q or |v] > 3¢.
Use the elementary fact that >, [t — v|%~! < Cg¢% uniformly in |v| < 3¢, see also (8.16),
and (8.14) w.r.t. v € Z to obtain

(8.36) Jh < Cg™ > [Fea| 20 ey [F B2 Ry — 0] £k — 0]

[k1 k2] <2q,lv|<3q

d dotds—1 2d1+ds—2 dotds—1 AT
< Cq™ E || 2TE TR ST Tk — o 2T < Cgtiz,
[k1],)k2]<2¢

where \[, := max{dy +ds+d;+ (A+dy —2),ds+ (2dy +d3— 1)y + (2da+d3+dy— 1)+ } and
where we used (8.17) with a =1 — dy — d3,b =2 — 2dy — d3,c¢ = 1 — dy — dy. By definition,

(837) )\IFQ S max{QA — 2, d2 -+ d3 -+ d4, 2d1 + d3 + d4 - 1, 2d2 -+ d3 + 2d4 - 1}

Observe that dy,.x < 1/2 implies that each term on the r.h.s. is less than 1 and hence )\B <1,
implying J}, < Cq.

Consider Jp,. In this case |k; — vl, |t — v]|, |k — v| > |v| in (8.35) and we obtain

(8.38) J, < C Z |k2|iz+d3—1|k1|3_d1+d3—2 Z |U|d2+2d4—3 < CqA;Q

[t],|~1],1k2|<3q [v]>3q

where

(8.39) A :=2dy + ds + 2ds — 1+ (2dy + d5 — 1), < max{2A — 2, 2dy + ds + ds — 1}
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Observe again that 0. < 1/2 implies A, < 1 and hence J, < Cq and Jy5 < Cq.

Next, consider
Ji < 028q<|t|<n k1 |, k2| <q,v |t|d2+2d3 ?[ky |2d1 Hky — U’dQ e — |d4 it 4 kg — |d4 g

where we used the fact that |t + ko| > |¢t|4/2 for [t| > 8¢, |ko| < q. Split Ji; < J + J;
according to whether |v| < 2q or |v|] > 2¢. Note |t — v|. > [t|+/2, |t + ko — v|L > |t|+/2 in
Ji5. Therefore,

(840) Jl—ii S C Z |t|d2+2d3+2d4 4|k |2d1 1|k1 |d2 1
8q<[t|<n,|k1],|k2],|v|<2¢
< Ogithitd Z [#[dat2da+2da—4 < Cqh, M =24 -2,
[t|>8¢

On the other hand, for Ji, using » ;. <, |t+ky—v| B! < Cqlt—v|B7 see (8.16), |k —v|; >
v|4 /2, the facts 2(1 — dy) > 1,2ds 4+ 2d3 < 2 and inequality (8.14) we obtain
+

(8.41) J, < Cq1+2d1 Z |t|d2+2d3 2|U|d2 1|t—vi(d4_1)

8¢<|t|<n,v

< Cgith Z |t]242+24:=3 < Ol A = 2(dy +dy + d3) — 1.

[t|>8¢

It remains to evaluate Jo. Note |s| < 2|k;| implies |s| < 2¢. By taking the sum over k;
and using (8.14) we obtain

J, < C Z |t—|—/{: |d2+d3 1| |d1 1|t |d3 1|S |d1+d2 llt |d4 1|t+k‘ |d4 )
|t|§n7|k2|§q7|s|§2%

Split the last sum Jy < C(J9; + Jo2) according to |t| > 3¢ and |t| < 3¢. Note the former
assumption implies |t + ko| < |t]/2, |t — s| > |t|/3. Hence

le < C Z |t|d2+2d3 2| ‘dl 1’8 ’d1+d2 1|t |d4 1‘t+k2 |d4 1
3q<|t|<n, |k2|<q,]s|<2qv
< Cq Z |t‘d2+2d3 2 ‘dl 1’8 ’d1+d2 l‘t ’2d4 2

3q<[t|<n,|s|<2q,v

< Cq Z |t|d2+2d3 2| |d1 1|t—8|cj_1+d2_1
3g<|t|<n,|s|<2q

(8.42) < Cq Z [t da+2da+2d5=3 | g =1
3g<|t|<n,|s|<2q

(843) § C’q)‘zl, )\21 = 2d1 + 2d2 + 2d3 —1 since 3 — dl — 2d2 — 2d3 > 1.
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Finally, consider Jy,. By change t + ko — ks, |/::2] < 3¢ rewrite

(844) J22 S C Z ‘k. ‘d2+d3 1’ |d1 1|t _ kQ o S|d371’8 . ’U’il+d271
[t1<3q,|k2]<3q,|s|<2q,v
|t — kg — v P [k — 0| {7
C Z ks ‘d2+d3 1| ‘dl 1]s—v]+ Q‘kZ_U‘cL; 17

|k2|<3q,]s|<2q,v

IN

where the last inequality follows by application of (8.14) w.r.t. ¢ € Z. Since A < 1 use
(8.14) w.r.t. v € Z to obtain

Jo < C Y [kl EET |0 ky — s|f

k2| <3q,]s|<2q
Now apply (8.17) with a =1 —d;,b=1—dy,c =1 — dy — d3 to obtain
(8.45) Joo < CP2, gy i=max{dy + (dy +ds — 1)y, dy + (dy + dy +ds — 1)},
Combining the bounds in (8.36)—(8.45) we get J < C¢* where
A = max{ {5, Ao, Af1, ALy Ay Ao, Asa} < 1

and the last inequality follows 0. < 1/2 by the explicit form of )\;S’s, see (8.37), (8.39),
(8.40), (8.41), (8.43), (8.45). This proves (8.24) for D3a).

For D3b),

My (0, k1t t+ ko) < C Z |b_s 10k, —s10t—s 30— 2081 0 2Dt ky—u, 401 — 04Ut 1y —0 3]

S,U,v

Ol 77 b ibiy —anbrssl D 10-u2bhy —u2besks—ual-

s

IN

Therefore, 2(1 —dy) > 1,2(1 —dy) > 1,2(1 —d3 — d4) > 1 and (8.14) yield

(8.46) > M0kttt k)| < g [My(0,0,t,t + ky)
|t|Sn7|k1|7‘k2|Sq t, ko
< Cq Y [kl sV — sl a4y —
t,k2,8,u
< C«CJZU€ |d3+d4 1’t‘d3 1’t+k ‘d4 1 < CqZ’ké';Z(lfdgfdzl) S Cq
th kQ

Case D4) It suffices to consider the diagram s; = sy = 53 = 54 =: S, U] = Uy = U3 = Uy =
u. Then ’MV<07 k17t7t + k2>| S CZs,u ’bfs,lbkl73,1btfs,3bt+k275,3b7u,2bk1fu,2bt7u,4bt+k27u,4 .
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Because > - < 00,1 =1,2,3,4, by the C-S inequality and (8.14)

uOuz

(847) Y [My(0, ki t,t + k)

[tI<n,|k1] |k2|<q
< Z 105,10t —5,30t 4+ ky— 5,301,208, — 20t —,4Dt4 1y~ 4|
|t\<n ki,k2,s,u
< H 5 S Jslf e — sl up e — wft < € ST A < € for A<
[t|<n,s,u [t|I<n
This proves (8.21)(a).
Next, we shall prove (8.21)(b), which follows similarly from (8.23) or

(848) nq, = Z Z }Cum YvOaYklayvta t+k2 | < Cn(q/n)”

|k1],|k2]|<q [t|<n

with Vi ==Y, 10 =V}, Y/ =YY%, for some v > 0. As in (8.25)~(8.27) we can write

0
(8.49) Cum(Yp, Yk: Y, t+k2) Zsi<ui,i:1,3,sz,34 BO,kl,t,t+k2 (s1,u1, 83, us, 52, 84)
X Cum(531,15u1,27 552,1552,2) 553,35U3,47 554,3654,4)7
Bg’kl’t’t+k2 (81; Uy, S2, 53, U3, 84) = BO,k1,t,t+k2(817 U1, S2, 52, S3, U3, S4, 84)

where Cum (&, 1€, 2, Es5.1855.25 Ess 38 us 45 Es4.36s,.4) 18 written as a sum in (8.27) over all con-
nected diagrams {V'} = (Vi,---,V;) C I'q, over the table T given at (8.26). Then similarly
as above Cum(Yp, Y%, Y/, Y/,;,) = Z{V}CF%Q My (0, ky,t,t+ ko), where My (0, ky, t,t + k) =
Zsi<ui,i=172,33754 Bg,kl,t,t+k2 (517 U1, S2, 83, U3, 84)-

Consider the three diagrams: D5: s; = s9 =: s,u; = uz =: u,83 = s4 =: v; D6:
S$1 =84 =:8,U; =U3=:U,S = S3=:v; and D7: 51 = s3 =: s,u; = Uz = S = S4 =: U.

Case D5). Here,

My (0, kbt + k)| < C |bogibo,

ERTR}

—(1—d2—d4)
S C(|t|+ E |b—5,1bk1—s,1bk1—S,th—v,Sbt-l—kQ—v,Sbt-l—kQ—vA|a

S,V

and hence, by using (8.14) and 2 —dy —dy > 1,2 —dg — dy > 1,
Z |MV(07 k17tat+k2)|

[t|<n,|k1],|k2]|<q

S C Z 1—do—dy —di 2—d1— dt 1—d3 2—d3z—dy
t|<n, k1], k2| <q,5,0 | | | | |k1 | |t - U|+ ‘t—i_ ks _U|+
1
% € s PR

[tI<n,|k1].|k2]<q
< CpPtdightds — C(g/n)hFdBps < C(g/n)B . A as in (8.19).
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Case D6) Here, we have

|MV<O’ klat7t+k2)| S

S,UyU

—(1—d2—d4)
S C’t|+ E |bfs,lbk:lf'u,lbkl7v,2bt7v,36t+k273,3bt+k2fs,4’7

S,V

and hence, similarly as above,

> [My(0, kbt k)l

[t]<n,|k1],|k2|<q

1
<c X
[ ey — o = ol e+ Ry — s

[t|<n,|k1],|k2|<q,s,v
1
< C
- 2 (2 Ay N e [ N e

[t1<n, k1], |k2]<q

Split the last sum over |t| < n into two sums I; + I3, where I := th|S2q’ Iy = Z2q<lt\§n'
(1—da—da) “(=dy);; —(1—-d

Then Il < Oz|t|<2q |t|+ 2T 4 Z‘kl \k2|<2q |k2 1 |k‘ | ( 3) < Cnd2+d4qd1+d3

< COn®(g/n)m+% < Cn(g/n)mT% and I, < C@ > 7 % ~B-4) < C(g/n)*n® < Cn(q/n)?.

Case D7) We have

My (0, kvt t+ ko) < C [bogiby,

Ll Db,

IN

and hence

> My(0, kbt Ky

[t|<n, k1], |k2|<q

<c Y 1
- di—d d di—d d dn—d
kl,]@ut’ ‘1 1— 3’u‘1 2’]{ ‘2 1— 2’15 ’+ 4‘If—|—k2 ‘2 3—dy

1
S CZ | |1 di— d3|u|1 d2|l{5 |2 di— d2|t |1 dy

k1,u,t
1
< OZWAM: R < (O < .
k1,0 +

This completes the proof of (8.48) and, hence, also that of (8.21) and Lemma 8.1(3).

Proof of Lemma 8.1(ii). Recall the decomposition in (8.20). Clearly, it suffices to show (8.9)
for each term on the r.h.s. of (8.20). Note A < 20y, where A is defined in (8.19). In order

to simplify subsequent evaluations we restrict the discussion to the case

(8.50) 1/2 < dpax < 1, I<A<2.
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Following (8.21) we confine the subsequent proof to showing

(8.51) G¥isYarg = Op(q®™>1) and OYinY0q = O, (%=1,
Clearly, the first relation in (8.51) follows from the following two relations:

(852) (3) |Eovuyal = O@®™7), (b)) Var(@yyq) = O(g"®m=),

Consider (852)(&) We have |COV(Y2712, }/;’34>| = | Zu2<u1§t/\s bt—ul,lbt—us,2bs—u1,3bs—u2,4| S
C|t — s|*~! and hence

|Edviyvangl < 1Cov(Yinz, You)| < C Y [K]472 = 0(¢*"), implying (8.52)(a).
lkl<q lkl<q
Consider (8.52)(b). By evaluating the variance as in (8.22) we see that (8.52)(b) follows

from

(853) Mmq = Z Z ‘COV(}/OYRU)/Z}/;;]@Q)‘ S Cn q2(26max71).

[k1], k2] <q [t|<n

Next My, < 322 M, as the proof of (8.23), where M, ,» < Cq > lk<qft<n k|32t +
k372 < CqPnA7 < Cng®® 2 (¢ < n) and

(854) Mugs < Cqg Y [t )t+k2

|k|<g,|t|<n

< CP(I(A < 3/2) +log(n/q) (A =3/2) +n*23I(A > 3/2)) < Cng** 2
do not exceed the r.h.s. of (8.53). Hence (8.52)(b) follows from

(8.55) Mugi= Y [Cam(Y5, Y5 Y/, Yiy,)| < Cng?®meh),

|k1‘7|k2‘§q7‘t|gn

To prove (8.55), we rewrite the Lh.s. as the sum M, ,1 = Z{V}CF%Q Z|k1\,|k2|gq,|t|gn My (0, kq,
t,t + ko) over all connected diagrams over table T} of (8.26) as in the proof of (8.24) and
evaluate the last sum for each diagram in the latter proof. We designate the following
evaluations as Cases D1") - D4') to distinguish from the previous Cases D1) - D4). Obviously,
the differences between these evaluations are due to dmax < 1/2 in the latter case and

dmax > 1/2 in the former case.
Case D1') For D1, exactly as in (8.29) we get D, 1o <q sj<n Mv (0, k1, T, + ko) < Cq”,
proving the bound in (8.55) for this case.

k|32 < Cng*»~% as in (8.54) proving the bound in (8.55) for this case.
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For D1’c), the same bound applies, see D1).

Case D2') For D2'a), by following (8.32) we obtain

Z ’M\/<0,l€1,t,t+k2)‘ S CQZA_2,

[t|<n, k1], k2| <q

thereby proving the bound in (8.55) for this case.
For D2'b) following (8.33) we obtain

Z ‘MV(()? kla ta t+ kQ)‘ < C Z ’t‘i2+d4_l S‘iii-l_l’kl - S‘ﬁ_zyt - 8‘13_1
[t1<n,[k1],|k2]|<q [t|<n,|k1|<q,s
< Cq Z |t|glr2+d4_1|3|il+A_3|t_3|i3_1 —J

[t|<n,s

since >y 1<, [k — s|272 < Oqls|3 7%, s € Z follows from (8.16). Using (8.14) we obtain

Z‘t|§n|t’iz+d3+d4727 dy +A <2,

= t2a-t dy+A>2
P | e 1+ A>2

Whence one can easily check that J satisfies the bound in (8.55). E.g. for d;+A > 2, A > 3/2
we get J < Cgn?273 < Ong?*~? where the last inequality is equivalent to ¢34 < Cn4=24
which trivially holds due to 3 — 2A < 0,4 — 2A > 0. For d; + A > 2, A < 3/2 we get
J < Cqg < COng* % due to ¢ <n,3 — 2A < 1; see (8.50).

Case D3') For D3'a) following (8.34) recall the decompositions J = J;+Jy < Z?,j:l Jijy J11 <
C(J{i+J5), Jiz < C(Jf5 + Jp3) in the evaluation of D3a) above. The respective evaluations
(8.36), (8.38), (8.40), (8.41), (8.43), (8.45) must be updated in view of Oy > 1/2.

For J35 bounds (8.36), (8.38) remain valid and (8.55) reduces to
(8.56) A <2A -1

Note A\, < max{2A — 2, A} A\, < max{2A — 2,2A — 1}, implying (8.56) by A > 1.
For J3; bounds (8.40), (8.41) remain valid with A\, < max{2A — 2,A — 1} and (8.55)
holds. For Jy; (8.43) need not be true but (8.42) leads to Jy < Cqdin(dit2d2+2ds=2)+ (1 4
log(n)1(dy + 2dy + 2d3 = 2)). First, let d; + 2dy + 2d3 > 2. Then Jy; < Cng?*~2 and (8.55)
follow from d; + 2 — 2A < 3 — dy — 2dy — 2d3 which is equivalent to 1 > —2d,. Next, let
di+2dy+2ds < 2. Then the same conclusion follows from d; +2—2A < 1 which is immediate
by A > 1. For Jy, following (8.44) and using A > 1, (8.14), (8.17) we get Joy < C¢*? with
Ao = max{d; + (do +ds +dy — 2)4,do+ds + (di + A —2);} < 2A —1 as in (8.56). This
proves the required bound J < Cng®~2 and hence (8.55) for Case D3'a).
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' ~2(1—-d3—d
For DI'b) in (8.46) we 80t 3y <y i esjq | Mv (0, 1, 1K) € Cq 31, [R5 <
Cq2(d3+d4) < OgPmax < qu2(26max—1) since 20, > 1,q < n.
Case D4'). Following (8.47) we see that this sum is bounded by Cn®~* (A > 1) and (8.55)
holds by 2 — 2A < 2 — A.

The above calculations prove (8.55), (8.52)(b) and the first relation in (8.51). Using (8.2)

we see that the second relation in (8.51) can be reduced to
(857) &le,q 5_Y304,q = Op(q26max_1)‘

As noted in the beginning of the proof of Lemma 8.1, {Y%, } is a linear process with summable
covariance function and finite variance. By applying the criterion in (8.23) (with Y; =Y, =
Y3)) it easily follows that &yg , = O,(1) provided ¢ = o(n) (GKS Thm. 9.4.1 provides such
a result under slightly more stringent condition on ¢). We also have from the first relation
in (8.51) that Gy,,, = O,(q*=~1/2). These facts prove (8.57) and complete the proof of
(8.51) and Lemma 8.1, O
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