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Abstract

We develop analogs of the two classes of weighted empirical m.d. estimators of the
underlying parameters in linear and nonlinear regression models when covariates are
observed with Berkson measurement error. One class is based on the integral of the
square of symmetrized weighted empirical of residuals while the other is based on a
similar integral involving a weighted empirical of residual ranks. The former class
requires the regression and measurement errors to be symmetric around zero while
the latter class does not need any such assumption. In the case of linear model, no
knowledge of the measurement error distribution is required while for the non-linear
models we need to assume that such distribution is known. The first class of estimators
includes the analogs of the least absolute deviation and Hodges-Lehmann estimators
while the second class includes an estimator that is asymptotically more efficient than
these two estimators at some error distributions when there is no measurement error.

1 Introduction

Statistical literature is replete with the various minimum distance estimation methods in
the one and two sample location parameter models. Beran (1977, 1978) and Donoho and
Liu (1988a,b) argue that the minimum distance estimators based on L2 distances involving
either density estimators or residual empirical distribution functions have some desirable
finite sample properties, tend to be robust against some contaminated models and are also
asymptotically efficient at some models.

In the classical regression models without measurement error in the covariates, classes
of minimum distance estimators of the underlying parameters based on Cramér - von Mises
type distances between certain weighted residual empirical processes were developed in Koul
(1979, 1985a,b, 1996). These classes include some estimators that are robust against outliers
in the regression errors and asymptotically efficient at some error distributions.

In practice there are numerous situations when covariates are not observable. Instead
one observes their surrogate with some error. The regression models with such covariates
are known as the measurement error regression models. Fuller (1987), Cheng and Van
Ness (1999) and Carroll et al. (2006) discuss numerous examples of the measurement error
regression models of practical importance.

Given the desirable properties of the above minimum distance (m.d.) estimators and
the importance of the measurement error regression models, it is desirable to develop their
analogs for these models. The next section describes the m.d. estimators of interest and
their asymptotic distributions in the classical linear regression model. Their analogs for
the linear regression Berkson measurement error (ME) model are developed in Section 3.
The two classes of m.d. estimators are developed. One assumes the symmetry of the errors
distributions and then basis the m.d. estimators on the symmetrized weighted empirical of
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the residuals. This class includes an analog of the Hodges-Lehmann estimator of the one
sample location parameter and the least absolute deviation (LAD) estimator. The second
class is based on a weighted empirical of residual ranks. This class of estimators does not
need the symmetry of the errors distributions. This class includes an estimator that is
asymptotically more efficient than the analog of Hodges-Lehmann and LAD estimators at
some error distributions. Neither classes need the knowledge of the measurement error or
regression error distributions.

Section 4 discusses analogs of these estimators in the nonlinear Berkson measurement
error regression models, where now the knowledge of the measurement error distribution is
needed. Again, the estimators based on residual ranks do neither need the symmetry nor the
knowledge of the regression error distribution. Some proofs are deferred to the last Section.

2 Linear regression model

In this section we recall the definition of the m.d. estimators of interest here in the no
measurement error linear regression model and their known asymptotic normality results.

Accordingly, consider the linear regression model where for some θ ∈ Rp, the response
variable Y and the p dimensional observable predicting covariate vector X obey the relation

Y = X ′θ + ε, ε independent of X and symmetrically distributed around 0.(2.1)

For an x ∈ R, x′ and ∥x∥ denote its transpose and Euclidean norm, respectively. Let
(Xi, Yi), 1 ≤ i ≤ n be a random sample from this model. The two classes of m.d. estimators
of θ based on weighted empirical processes of the residuals and residual ranks were developed
in Koul (1979, 1985a,b, 1996). To describe these estimators, let G be a nondecreasing right
continuous function from R to R having left limits and define

V (x, ϑ) := n−1/2

n∑
i=1

Xi

{
I(Yi −X ′

iϑ ≤ x)− I(−Yi +X ′
iϑ < x)

}
,

M(ϑ) :=

∫ ∥∥V (x, ϑ)
∥∥2
dG(x), θ̂ := argminϑ∈RpM(ϑ).

This class of estimators, one for each G, includes some well celebrated estimators. For
example θ̂ corresponding to G(x) ≡ x yields an analog of the one sample location parameter
Hodges-Lehmann estimator in the linear regression model. Similarly, G(x) ≡ δ0(x), the
degenerate measure at zero, makes θ̂ equal to the least absolute deviation (LAD) estimator.

Another class of estimators when the error distribution is not symmetric and unknown
is obtained by using the weighted empirical of the residual ranks defined as follows. Write
Xi = (Xi1, Xi2, · · · , Xip)

′, i = 1, · · · , n. Let X̄j := n−1
∑n

i=1Xij, and X̄ := (X̄1, · · · , X̄p)
′.

Let Riϑ denote the rank of the ith residual Yi −X ′
iϑ among Yj −X ′

jϑ, j = 1, · · · , n. Let Ψ
be a distribution function on [0, 1] and define

V(u, ϑ) := n−1/2

n∑
i=1

(
Xi − X̄

)
I(Riϑ ≤ nu), K(ϑ) :=

∫ 1

0

∥∥V(u, ϑ)∥2dΨ(u),

θ̂R := argminϑ∈RpK(ϑ).
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Yet another m.d. estimator, when error distribution is unknown and not symmetric, is

Vc(x, ϑ) := n−1/2

n∑
i=1

(
Xi − X̄

)
I(Yi −X ′

iϑ ≤ x), Mc(ϑ) :=

∫ ∥∥Vc(x, ϑ)∥2dx,
θ̂c := argminϑ∈RpMc(ϑ).

If one reduces the model (2.1) to the two sample location model, then θ̂c is the median of
pairwise differences, the so called Hodges-Lehmann estimator of the two sample location
parameter. Thus in general θ̂c is an analog of this estimator in the linear regression model.

The following asymptotic normality results can be deduced from Koul (1996) and Koul
(2002, Sec. 5.4).

Lemma 2.1 Suppose the model (2.1) holds and E∥X∥2 <∞.

(a). In addition, suppose ΣX := E(XX ′) is positive definite and the error d.f. F is symmetric
around zero and has density f . Further, suppose the following hold.

G is a nondecreasing right continuous function on R to R,(2.2)

dG(x) = −dG(−x), ∀x ∈ R.

0 <

∫
f jdG <∞, lim

z→0

∫
f j(x+ z)dG(x) =

∫
f j(x)dG(x), j = 1, 2.(2.3) ∫ ∞

0

(1− F )dG <∞.

Then n1/2(θ̂ − θ) →D N
(
0, σ2

GΣ
−1
X

)
, where

σ2
G :=

Var
( ∫ ε

−∞ f(x)dG(x)
)( ∫

f 2dG
)2 .

(b). In addition, suppose the error d.f. F has uniformly continuous bounded density f ,
Ω := E{(X − EX)(X − EX)′} is positive definite and Ψ is a d.f. on [0, 1]. Then
n1/2

(
θ̂R − θ

)
→D N(0, γ2ΨΩ

−1), where

γ2Ψ :=
Var

( ∫ F (ε)

0
f(F−1(s))dΨ(s)

)( ∫ 1

0
f 2(F−1(s))dΨ(s)

)2 .

(c). In addition, suppose Ω is positive definite, F has square integrable density f and E|ε| <
∞. Then n1/2(θ̂c − θ) →D N

(
0, σ2

IΩ
−1
)
, where

σ2
I :=

1

12
( ∫

f 2(x)dx
)2 .

Before proceeding further we now describe some comparison of the above asymptotic
variances. Let σ2

LAD and σ2
LSE denote the factors of the asymptotic covariance matrices of

the LAD and the least squares estimators, respectively. That is

σ2
LAD :=

1

4f 2(0)
, σ2

LSE := Var(ε).
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Let γ2I denote the γ2Ψ when Ψ(s) ≡ s. Then

γ2I =

∫ ∫ [
F (x ∧ y)− F (x)F (y)

]
f 2(x)f 2(y)dxdy( ∫ 1

0
f 3(x)dx

)2 .

Table 1 below, obtained from Koul (1992, 2002), gives the values of these factors for
some distributions F . From this table one sees that the estimator θ̂R corresponding to
Ψ(s) ≡ s is asymptotically more efficient than the LAD at logistic error distribution while
it is asymptotically more efficient than the Hodges-Lehmann type estimator at the double
exponential and Cauchy error distributions. For these reasons it is desirable to develop
analogs of θ̂R also for the ME models.

Table 1
F γ2I σ2

I σ2
LAD σ2

LSE

Double Exp. 1.2 1.333 1 2
Logistic 3.0357 3 4 3.2899
Normal 1.0946 1.0472 1.5708 1
Cauchy 2.5739 3.2899 2.46 ∞

As argued in Koul (Ch. 5, 2002), the m.d. estimators θ̂G, when G is a d.f., are robust
against heavy tails in the error distribution in the general linear regression model. The
estimator θ̂I , where G(x) ≡ x, not a d.f., is robust against heavy tails and also asymptotically
efficient at the logistic errors.

3 Berkson ME linear regression model

In this section we shall develop analogs of the above estimators in the Berkson ME linear
regression model, where the response variable Y obeys the relation (2.1) and where, instead
of observing X, one observes a surrogate Z obeying the relation

X = Z + η.(3.1)

In (3.1), Z, η, ε are assumed to be mutually independent and E(η) = 0. Note that η is p× 1
vector of errors and its distribution need not be known.

Analog of θ̂. We shall first develop and derive the asymptotic distribution of analogs
of the estimators θ̂ in the model (2.1) and (3.1). Rewrite the Berkson ME linear regression
model (2.1) and (3.1) as

Y = Z ′θ + ξ, ξ := η′θ + ε, ∃ θ ∈ R.(3.2)

Because Z, η, ε are mutually independent, ξ is independent of Z in (3.2).
Let H denote the distribution functions (d.f.) of η. Assume that the regression error

d.f. F is continuous and symmetric around zero and that the measurement error is also
symmetrically distributed around zero, i.e., −dH(v) = dH(−v), for all v ∈ Rp. Then the
d.f. of ξ is

L(x) := P (ξ ≤ x) = P (η′θ + ε ≤ x) =

∫
F (x− v′θ)dH(v)
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is also continuous and symmetric around zero. To see the symmetry, note that by the
symmetry of F and a change of variable from v to −u and using dH(−u) = −dH(u), for all
u ∈ Rp, we obtain

L(−x) =

∫
F (−x− v′θ)dH(v) = 1−

∫
F (x+ v′θ)dH(v) = 1−

∫
F (x− u′θ)dH(u)

= 1− L(x), ∀x ∈ R.

This symmetry in turn motivates the following definition of the class of m.d. estimators
of θ in the model (3.2), which mimics the definition of θ̂ by simply replacing Xi by Zi. Define

Ṽ (x, t) := n−1/2

n∑
i=1

Zi

{
I(Yi − Z ′

it ≤ x)− I(−Yi + Z ′
it < x)

}
,

M̃(t) :=

∫ ∥∥Ṽ (x, t)
∥∥2
dG(x), θ̃ := argmint∈RpM̃(t).

Because L is continuous and symmetric around zero and ξ is independent of Z, EṼ (x, θ) ≡ 0.

To describe the asymptotic normality of θ̃, we make the following assumptions.

E∥Z∥2 <∞ and Γ := EZZ ′ is positive definite.(3.3)

H satisfies dH(v) = −dH(−v), ∀ v ∈ Rp.(3.4)

F has Lebesgue density f , symmetric around zero, and such that the density(3.5)

ℓ(x) =
∫
f(x− v′θ)dH(v) of L satisfies the following:

(a) lim
z→0

∫
ℓ(y + z)dG(y) =

∫
ℓ(y)dG(y) <∞, 0 <

∫
ℓ2dG <∞,

(b) lim
z→0

∫ [
ℓ(y + z)− ℓ(y)

]2
dG(y) = 0.

A :=

∫ ∞

0

(1− L)dG <∞.(3.6)

Under (3.3), n−1
∑n

i=1 ZiZ
′
i →p Γ and n−1/2max1≤i≤n ∥Zi∥ →p 0. Using these facts and

arguing as in Koul (1996), one deduces that under (2.2) and the above conditions,

n1/2
(
θ̃ − θ

)
→D N (0, τ 2GΓ

−1), τ 2G :=
Var

( ∫ ξ

−∞ ℓdG
)( ∫

ℓ2dG
)2 .(3.7)

Because in the no measurement error case the estimator corresponding to G(y) ≡ y is
an analog of the Hogdes-Lehmann estimator while the one corresponding to the G(y) ≡
δ0(y)- the degenerate measure at zero, is the LAD estimator, it is of interest to investigate
some sufficient conditions that imply conditions (3.5) and (3.6) for these two important and
interesting estimators.

Consider the case G(y) ≡ y. Assume f to be continuous and
∫
f 2(y)dy < ∞. Then

because H is a d.f., ℓ is also continuous and symmetric around zero and
∫
ℓ(y + z)dy =
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∫
ℓ(y)dy = 1. Moreover, by the C-S inequality and Fubini’s Theorem,

0 <

∫
ℓ2(y)dy =

∫ (∫
f(y − v′θ)dH(v)

)2

dy

≤
∫ ∫

f 2(y − v′θ)dydH(v) =

∫
f 2(x)dx <∞.

Finally, because ℓ ∈ L2, by Theorem 9.5 in Rudin (1974), it is shift continuous in L2, i.e.,
(3.5)(b) holds. Hence all conditions of (3.5) are satisfied.

Next, consider (3.6). Note that E(ε) = 0 and E(η) = 0 imply that
∫
|x|f(x)dx < ∞,∫

∥v∥dH(v) <∞ and hence∫
|y|dL(y) =

∫
|y|

∫
f(y − v′θ)dH(v)dy =

∫ ∫
|x+ v′θ|f(x)dxdH(v) <∞.

This in turn implies (3.6) in the case G(y) ≡ y.
To summarise, in the case G(y) ≡ y, (3.3), (3.4), and F having continuous symmetric

square integrable density f implies all of the above condition needed for the asymptotic
normality of the above analog of the Hodges-Lehmann estimator in the Berkson measure-
ment error model. This fact is similar to the observation made in Berkson (1950) that the
naive least square estimator, where one replace Xi’s by Zi’s, continues to be consistent and
asymptotically normal under the same conditions as when there is no measurement error.
But, unlike in the no measurement error case, here the asymptotic variance

τ 2I :=
Var

(
L(ξ)

)( ∫
ℓ2(y)dy

)2 =
1

12
( ∫ ( ∫

f(y − v′θ)dH(v)
)2
dy

)2
depends on θ. If H is degenerate at zero, i.e., if there is no measurement error, then τ 2I =
σ2
I , the asymptotic variance of the Hodges-Lehman estimator of the one sample location

parameter not depending on θ.

Next, consider the case G(y) ≡ δ0(y)- degenerate measure at 0. Assume f to be bounded
from the above and

ℓ(0) :=

∫
f(v′θ)dH(v) > 0.(3.8)

Then the continuity and symmetry of f implies that as z → 0,∫
ℓ(y + z)dG(y) = ℓ(z) =

∫
f(z − v′θ)dH(v) →

∫
f(−v′θ)dH(v) = ℓ(0),∫ [

ℓ(y + z)− ℓ(y)
]2
dG(y) =

[ ∫ {
f(z − v′θ)− f(−v′θ)

}
dH(v)

]2
≤

∫ {
f(z − v′θ)− f(−v′θ)

}2
dH(v) → 0.

Moreover, here
∫∞
0
(1− L)dG = 1− L(0) = 1/2 so that (3.6) is also satisfied.

To summarize, in the case G(y) = δ0(y), (3.3), (3.4), (3.8) and f being continuous,
symmetric around zero and bounded from the above implies all the needed conditions for
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the asymptotic normality of the above analog of the LAD estimator in the Berkson ME
linear regression model. Moreover, here∫ ξ

−∞
ℓ(x)dG(x) = ℓ(0)I(ξ ≥ 0),

∫
ℓ2(x)dG(x) = ℓ2(0), Var

(∫ ξ

−∞
ℓ(x)dG(x)

)
=
ℓ2(0)

4
.

Consequently, here the asymptotic covariance matrix also depends on θ via

τ 20 =
1

4ℓ2(0)
=

1

4
( ∫

f(v′θ)dH(v)
)2 .

Again, in the case of no measurement error, Γ−1τ 20 equals the asymptotic covariance matrix
of the LAD estimator. Unlike in the case of the previous estimator, here the conditions
needed for f are a bit more stringent than those required for the asymptotic normality of
the LAD estimator when there is no measurement error.

Analog of θ̂R. Here we shall now describe the analogs of the class of estimators θ̂R
based on the residual ranks obtained from the model (3.2). These estimators do not need

the errors ξi’s to be symmetrically distributed. Let R̃iϑ denote the rank of Yi − Z ′
iϑ among

Yj − Z ′
jϑ, j = 1, · · · , n, and define

Ṽ(u, ϑ) := n−1/2

n∑
i=1

(
Zi − Z̄

)
I(R̃iϑ ≤ nu), K̃(ϑ) :=

∫ 1

0

∥∥Ṽ(u, ϑ)∥2dΨ(u),

θ̃R := argminϑ∈RpK̃(ϑ).

Let Zic := Zi − Z̄. Using the fact the Zic are centered and for any real numbers a, b,
Ψ(max(a, b)) = max{Ψ(a),Ψ(b)} and that max(a, b) = 2−1[a + b + |a − b|], one obtains a

computational form of K̃(t) given as follows.

K̃(t) = −1

2

n∑
i=1

n∑
j=1

Z ′
icZjc

∣∣∣Ψ(
Rit

n
−)−Ψ(

Rjt

n
−)

∣∣∣.
The following result can be deduced from Koul (1996). Assume that the density ℓ of the

r.v. ξ is uniformly continuous and bounded, E∥Z∥2 < ∞, Γ̃ := E(Z − EZ)(Z − EZ)′

is positive definite and
∫ 1

0
ℓ2(L−1(s))dΨ(s) > 0. Then n−1/2max1≤i≤n ∥Zi∥ →p 0, and

n−1
∑n

i=1(Zi − Z̄)(Zi − Z̄)′ →p Γ̃. Moreover,

n1/2
(
θ̃R − θ) →D N

(
0, τ̃ 2ΨΓ̃

−1
)
, τ̃ 2Ψ :=

Var
( ∫ L(ξ)

0
ℓ(L−1(s))dΨ(s)

)( ∫ 1

0
ℓ2(L−1(s))dΨ(s)

)2 .(3.9)

Note that density f of F being uniformly continuous and bounded implies the same for
the density ℓ(x) =

∫
f(x − v′θ)dH(v). It is also worth pointing out the assumptions on

F,H and L needed here are relatively less stringent than those needed for the asymptotic
normality of θ̃.

7



Of special interest is the case Ψ(s) ≡ s. Let τ̃ 2I denote the corresponding τ̃ 2Ψ. Then by
the change of variable formula,

τ̃ 2I =
Var

( ∫ L(ξ)

0
ℓ(L−1(s))ds

)∫ 1

0
ℓ2(L−1(s))ds

=
Var

( ∫ ξ

0
ℓ2(x)dx

)( ∫ 1

0
ℓ3(x)dx)2

=

∫ ∫ [
L(x ∧ y)− L(x)L(y)

]
ℓ2(x)ℓ2(y)dxdy( ∫ 1

0
ℓ3(x)dx

)2 .

An analog of θ̂c here is θ̃c := argminϑ∈RpMc(ϑ), where

Ṽc(x, ϑ) := n−1/2

n∑
i=1

(
Zi − Z̄

)
I(Yi − Z ′

iϑ ≤ x), M̃c(ϑ) :=

∫ ∥∥Ṽc(x, ϑ)∥2dx.
Arguing as above one obtains that n1/2

(
θ̃c − θ

)
→D N

(
0, τ 2I Γ̃

−1
)
.

4 Nonlinear regression with Berkson ME

In this section we shall investigate the analogs of the above m.d. estimators in nonlinear
regression models with Berkson ME. Accordingly, let q ≥ 1, p ≥ 1 be known positive integers,
Θ ⊆ Rq be a subset of the q-dimensional Euclidean space Rq and consider the model where
the response variable Y , p-dimensional covariate X and its surrogate Z obey the relations

Y = mθ(X) + ε, X = Z + η,(4.1)

for some θ ∈ Θ. Here ε, Z, η are assumed to be mutually independent, Eε = 0 and Eη = 0.
Moreover, mϑ(x) is a known parametric function, nonlinear in x, from Θ × Rp to R with
E|mϑ(X)| < ∞, for all ϑ ∈ Θ. Unlike in the linear case, in the absence of any other
additional information, here we need to assume that the d.f. H of η is known.

Fix a θ for which (4.1) holds. Let νϑ(z) := E(mϑ(X)|Z = z), ϑ ∈ Rq, z ∈ Rp. Under
(4.1), E(Y |Z = z) ≡ νθ(z). Moreover, because H is known,

νϑ(z) =

∫
mϑ(z + s)dH(s)

is a known parametric regression function. Thus, under (4.1), we have the regression model

Y = νθ(Z) + ζ, E(ζ|Z = z) = 0, ∀ z ∈ Rp.

Unlike in the linear case, the error ζ is no longer independent of Z.
To proceed further we need to assume the following. There is a vector of p functions

ṁϑ(x) such that, with ν̇ϑ(z) :=
∫
ṁϑ(z + s)dH(s), for every 0 < b <∞,

max
1≤i≤n,n1/2∥ϑ−θ∥≤b

n1/2
∣∣νϑ(Zi)− νθ(Zi)− (ϑ− θ)′ν̇θ(Zi)

∣∣ = op(1),(4.2)

E∥ν̇θ(Z)∥2 <∞.(4.3)
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Let

Lz(x) := P (ζ ≤ x|Z = z), z ∈ Rp.

Assume that

For every z ∈ Rp, Lz(·) is continuous and Lz(x) = 1− Lz(−x), ∀x ∈ Rp.(4.4)

We are now ready to define analogs of θ̂ here. Let G be as before and define

U(x, ϑ) := n−1/2

n∑
i=1

ν̇ϑ(Zi)
{
I(Yi − νϑ(Zi) ≤ x)− I(−Yi + νϑ(Zi) < x)

}
D(ϑ) :=

∫ ∥∥U(x, ϑ)∥∥2
dG(x), θ̂ := argminϑD(ϑ).

In the case q = p and mθ(x) = x′θ, θ̂ agrees with θ̃. Thus the class of estimators θ̂, one

for each G, is an extension of the class of estimators θ̃ from the linear case to the above
nonlinear case.

Next consider the extension of θ̂R to the above nonlinear model (4.1). Let Siϑ denote the
rank of Yi − νϑ(Zi) among Yj − νϑ(Zj), j = 1, · · · , n and define

Un(u, ϑ) := n−1/2

n∑
i=1

ν̇ϑ(Zi)
{
I(Siϑ ≤ nu)− u

}
, K(ϑ) :=

∫ 1

0

∥Un(u, ϑ)∥2dΨ(u),

θ̂R := argminϑM(ϑ).

The estimator θ̂R gives an analog of the estimator θ̂R in the present set up.
Our goal here is to prove the asymptotic normality of θ̂, θ̂R. This will be done by following

the general method of Section 5.4 of Koul (2002). This method requires the two steps. In
the first step we need to show that the defining dispersions D(ϑ) and M(ϑ) are AULQ
(asymptotically uniformly locally quadratic) in ϑ−θ for ϑ ∈ Nn(b) := {ϑ ∈ Θ, n1/2∥ϑ−θ∥ ≤
b}, for every 0 < b < ∞. The second step requires to show that n1/2∥θ̂ − θ∥ = Op(1) =

n1/2∥θ̂R − θ∥.

4.1 Asymptotic distribution of θ̂

In this subsection we shall derive the asymptotic normality of θ̂. To state the needed assump-
tions for achieving this goal we need some more notation. Let νnt(z) := νθ+n−1/2t(z), ν̇nt(z) :=
ν̇θ+n−1/2t(z), and ν̇ntj(z) denote the jth coordinate of ν̇nt(z). For any real number a, let
a± = max(0,±a) so that a = a+ − a−. Also, let

βi(x) := I(ζi ≤ x)− LZi
(x), αi(x, t) := I(ζi ≤ x+ ξit)− I(ζi ≤ x)− LZi

(x+ ξit) + LZi
(x).

Because dG(x) ≡ −dG(−x) and U(x, ϑ) ≡ U(−x, ϑ), we have

D(ϑ) ≡ 2

∫ ∞

0

∥∥U(x, ϑ)∥∥2
dG(x) ≡ 2D̃(ϑ), say.(4.5)
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We are now ready to state our assumptions.∫ ∞

0

E
(∥∥ν̇θ(Z)∥2(1− LZ(x

))
dG(x) <∞.(4.6) ∫ ∞

0

E
(
∥ν̇nt(Z)− ν̇θ(Z)∥2LZ(x)(1− LZ(x)

)
dG(x) → 0, ∀ t ∈ Rq.(4.7)

sup
∥t∥≤b,1≤i≤n

∥∥ν̇nt(Zi)− ν̇θ(Zi)
∥∥ →p 0.(4.8)

Density ℓz of Lz exists for all z ∈ Rp and satisfies 0 <
∫
ℓz(x)dG(x) <∞, ∀ z ∈ Rp,(4.9) ∫

E
(
∥ν̇θ(Z)∥2ℓjZ(x)

)
dG(x) <∞, j = 1, 2, and

∫
E(ℓ2Z(x))dG(x) <∞.

For all z ∈ Rp, limu→0

∫∞
−∞

(
ℓz(x+ u)− ℓz(x)

)2
dG(x) = 0.(4.10)

limu→0

∫∞
−∞E

(
∥ν̇nt(Z)∥2ℓZ(x+ u)

)
dG(x) =

∫∞
−∞E

(
∥ν̇nt(Z)∥2ℓZ(x)

)
dG(x), ∀ t ∈ Rq.(4.11)

With ξt(z) := νnt(z)− νθ(z), E
( ∫ |ξt(Z)|

−|ξt(Z)| ∥ν̇nt(Z)∥
2
∫∞
−∞ ℓZ(x+ u)dG(x)du

)
→ 0,(4.12)

∀ t ∈ Rq, z ∈ Rp.

With Γθ(x) := E
(
ν̇θ(Z)ν̇θ(Z)

′ℓZ(x)
)
, the matrix Ωθ :=

∫∞
−∞ Γθ(x)Γθ(x)

′dG(x)(4.13)

is positive definite.

For every ϵ > 0 there is a δ > 0 and Nϵ <∞ such that ∀ ∥s∥ ≤ b,,

P
(

sup
∥t−s∥<δ

∫ (
n−1/2

n∑
i=1

[
ν̇±ntj(Zi)− ν̇±nsj(Zi)

]
αi(x, t)dG(x)

)2

> ϵ
)
< ϵ, ∀n > Nϵ,(4.14)

P
(

sup
∥t−s∥<δ

n−1

∫ ∞

0

∥∥ n∑
i=1

{ν̇nt(Zi)− ν̇ns(Zi)}βi(x)
∥∥2
dG(x) > ϵ

)
< ϵ, ∀n > Nϵ.(4.15)

For every ϵ > 0, α > 0 there exists Nϵ and b = bα,ϵ such that(4.16)

P ( inf
∥t∥>b

D(θ + n−1/2t) ≥ α) ≥ 1− ϵ, ∀n > N.

From now onwards we shall write ν and ν̇ for νθ and ν̇θ, respectively.
First, we show that E(D(θ)) <∞, so that by the Markov inequality, D(θ) is bounded in

probability. To see this, by (4.4), EU(x, θ) ≡ 0 and, for x ≥ 0,

E∥U(x, θ)∥2 = E
(∥∥ν̇(Z)∥{I(ζ ≤ x)− I(ζ > −x)

})2

= 2E
(∥∥ν̇(Z)∥2(1− LZ(x

))
.

By Fubini Theorem and (4.6),

E(D(θ)) = 2E(D̃(θ)) = 4

∫ ∞

0

E
(∥∥ν̇(Z)∥2(1− LZ(x

))
dG(x) <∞.(4.17)

To state the AULQ result for D, we need some more notation. With Γθ(x) and Ωθ as in
(4.13), define

W (x, 0) := n−1/2

n∑
i=1

ν̇(Zi)
{
I
(
ζi ≤ x)− LZi

(x)
}
,(4.18)

Tn :=

∫ ∞

−∞
Γθ(x)

{
W (x, 0) +W (−x, 0)

}
dG(x), t̃ = −Ω−1

θ Tn/2.
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Note that for any function K(ϑ), supϑ∈Nn(b)K(ϑ) = sup∥t∥≤bK(θ+n−1/2t). We are ready to
state the following lemma.

Lemma 4.1 Suppose the above set up and assumptions (4.6)– (4.15) hold. Then for every
b <∞,

sup
∥t∥≤b

∣∣D(θ + n−1/2t)−D(θ)− 4T ′
nt− 4t′Ωθt

∣∣ →p 0.(4.19)

If in addition (4.16) holds, then

∥n1/2
(
θ̃ − θ)− t̃∥ →p 0.(4.20)

n1/2
(
θ̃ − θ) →D N

(
0, 4−1Ω−1

θ ΣθΩ
−1
θ

)
.(4.21)

Proof. The proof of (4.19) appears in the last section. The proof of the claim (4.20), which
uses (4.16), (4.17) and (4.19), is similar to that of Theorem 5.4.1 of Koul (2002).

Define

ψu(y) :=

∫ y

−∞
ℓu(x)dG(x), y ∈ R, u ∈ Rp.

By (4.9), 0 < ψu(y) ≤ ψu(∞) =
∫∞
−∞ ℓu(x)dG(x) < ∞, for all u ∈ Rp. Thus for each u,

ψu(y) is an increasing continuous bounded function of y and ψu(−y) ≡ ψu(∞) − ψu(y), for
all y ∈ R. Let φu(y) := ψu(−y)− ψu(y) = ψu(∞)− 2ψu(y). By (4.4), E(φu(ζ)|Z = z) = 0,
for all u, z ∈ Rp. Let

Cz(u, v) := Cov
[(
φu(ζ), φv(ζ)

)∣∣Z = z
]
= 4Cov

[(
ψu(ζ), ψv(ζ)

)∣∣Z = z
]
,

K(u, v) := E
(
ν̇(Z)ν̇(Z)′CZ(u, v)

)
, u, v ∈ Rp.

Next let µ(z) := ν̇(z)ν̇(z)′, Q denote the d.f. of Z and rewrite Γθ(x) =
∫
µ(z)ℓz(x)dQ(z).

By the Fubini Theorem,

Tn :=

∫ ∞

−∞
Γθ(x)

{
W (x, 0) +W (−x, 0)

}
dG(x)(4.22)

=

∫ ∫ ∞

−∞
µ(z)

{
W (x, 0) +W (−x, 0)

}
ℓz(x)dG(x)dQ(z)

=

∫ ∫ ∞

−∞
µ(z)

n∑
i=1

ν̇(Zi)
{
I(ζi ≤ x)− I(−ζi < x)

}
dψz(x)dQ(z)

= n−1/2

∫
µ(z)

n∑
i=1

ν̇(Zi)
{
ψz(−ζi)− ψz(ζi)

}
dQ(z)

= n−1/2

n∑
i=1

∫
µ(z)ν̇(Zi)φz(ζi)dQ(z).

Clearly, ETn = 0 and by the Fubini Theorem, the covariance matrix of Tn is

Σθ := ETnT
′
n = E

{(∫
µ(z)ν̇(Z)φz(ζ)dQ(z)

)(∫
µ(v)ν̇(Z)φv(ζ)dQ(v)

)′}
(4.23)

=

∫ ∫
µ(z)K(z, v)µ(v)′dQ(z)dQ(v).

11



Thus Tn is a p×1 vector of independent centered finite variance r.v.’s. By the classical CLT,
Tn →D N(0,Σθ). Hence, the minimizer t̃ of the approximating quadratic form D(θ)+4Tnt+
4t′Ωθt with respect to t satisfies t̃ = −Ω−1

θ Tn/2 →D N
(
0, 4−1Ω−1

θ ΣθΩ
−1
θ

)
. The claim (4.21)

now follows from this result and (4.20).

4.2 Asymptotic distribution of θ̂R

In this subsection we shall establish the asymptotic normality of θ̂R. For this we need the
following additional assumptions, where U(b) := {t ∈ Rq; ∥t∥ ≤ b}, and 0 < b <∞.

ℓz is uniformly continuous and bounded for every z ∈ Rp.(4.24)

n−1

n∑
i=1

E∥ν̇nt(Zi)− ν̇(Zi)∥2 → 0, ∀t ∈ U(b).(4.25)

n−1/2

n∑
i=1

∥ν̇nt(Zi)− ν̇(Zi)∥ = Op(1), ∀t ∈ U(b).(4.26)

For every ϵ > 0, there exists δ > 0 and nϵ <∞ such that for each s ∈ U(b),

P
(

sup
t∈U(b);∥t−s∥≤δ

n−1/2

n∑
i=1

∥ν̇nt(Zi)− ν̇ns(Zi)∥ ≤ ϵ
)
> 1− ϵ, ∀n > nϵ.(4.27)

For every ϵ > 0, 0 < α <∞, there exist an Nϵ and b ≡ bϵ,α such that

P
(

inf
∥t∥>b

K(θ + n−1/2t) ≥ α
)
≥ 1− ϵ, ∀n > Nϵ.(4.28)

Let

¯̇ν := n−1

n∑
i=1

ν̇(Zi), ν̇c(Zi) := ν̇(Zi)− ¯̇ν, Γ̂θ(u) := E
(
ν̇c(Z)ν̇c(Z)′ℓZ(L

−1
Z (u))

)
,

Û(u) := n−1/2

n∑
i=1

ν̇c(Zi)
{
I(LZi

(ζi) ≤ u)− u
}
, Ω̂θ :=

∫ 1

0

Γ̂θ(u)Γ̂θ(u)
′dΨ(u),

T̂n :=

∫ 1

0

Γ̂θ(u)Û(u)dΨ(u), K̂(t) :=

∫ 1

0

∥∥Û(u)∥∥2
dΨ(u) + 2T̃ ′

nt+ t′Ω̃θt.

We need to compute the covariance matrix of T̂n. Let

κz(v) :=

∫ v

0

ℓz(L
−1
z (u))dΨ(u), z ∈ Rp, 0 ≤ v ≤ 1.

By (4.24), κz is a continuous increasing and bounded function on [0, 1], for all z ∈ Rp. Let
µc(z) := ν̇c(z)ν̇c(z)′. Argue as for (4.22) and use the fact that

∑n
i=1 ν̇c(Zi) ≡ 0 to obtain

T̂n =

∫ ∫ 1

0

µc(z)Û(u)ℓz(L−1
z (u))dΨ(u)dQ(z)

= −n−1/2

n∑
i=1

∫
µc(z)ν̇c(Zi)κz

(
LZi

(ζi)
)
dQ(z).
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Note that the conditional distribution of LZ(ζ), given Z, is uniform on [0, 1]. Let U be such

a r.v. Define Ĉz(s, t) := E
[
κs(LZ(ζ))κt(LZ(ζ))

∣∣Z = z
]
= E

[
κs(U)κt(U)

]
and K̂(s, t) :=

E
(
ν̇c(Z)ν̇c(Z)′ĈZ(s, t)

)
. Then arguing as in (4.23), we obtain

Σ̂θ := ET̂nT̂
′
n =

∫ ∫
µc(z)K̂(z, v)µc(v)′dQ(z)dQ(v).

We are now ready to state the following asymptotic normality result for θ̂R.

Lemma 4.2 Suppose the nonlinear Berkson measurement error model (4.1) and the as-
sumptions (4.2), (4.3), (4.24)–(4.27) hold. Then the following holds.

sup
∥t∥≤b

∣∣K(θ + n−1/2t)− K̂(t)
∣∣ = op(1).(4.29)

In addition, if (4.28) holds and Ω̂θ is positive definite then n
1/2(θ̂R−θ) →d N

(
0, Ω̂−1

θ Σ̂θΩ̂
−1
θ

)
.

The proof of this lemma is similar to that of Theorem 1.2 of Koul (1996), hence no details
are given here.

Remark 4.1 Because of the importance of the estimators θ̂ when G(x) = x, G(x) = δ0(x)

and θ̂R when Ψ(u) ≡ u, it is of interest to restate the given assumptions under the Berskon

ME set up for these three estimators. Consider first θ̂ when G(x) ≡ x and the following
assumptions.

E
(∥∥ν̇(Z)∥2E(|ζ|∣∣Z)) <∞.(4.30)

E
(
∥ν̇nt(Z)− ν̇(Z)∥2E

(
|ζ|

∣∣Z)) → 0, ∀ t ∈ Rq.(4.31)

Density ℓz of Lz exists for all z ∈ Rp and satisfies
∫
ℓ2z(x)dx <∞, ∀ z ∈ Rp,(4.32) ∫

E(ℓ2Z(x))dx <∞,

∫
E
(
∥ν̇(Z)∥2ℓ2Z(x)

)
dx <∞.

E
(
∥ν̇nt(Z)∥2|νnt(Z)− ν(Z)|

)
→ 0.(4.33)

In the case G(x) ≡ x, (4.6) and (4.7) are implied by (4.30) and (4.31), while (4.32) implies
(4.9) and (4.10). Assumption (4.11) is trivially satisfied and (4.12) reduces to (4.33).

Next consider the analog of the LAD estimator, i.e., when G(x) = δ0(x) and the following
assumptions.

supx∈R ℓz(x) <∞, 0 < limu→0 ℓz(u) = ℓz(0) <∞, ∀ z ∈ Rp.(4.34)

E
(
∥ν̇nt(Z)− ν̇(Z)∥2

)
→ 0, ∀ t ∈ Rq.(4.35)

Γθ(0) is positive definite.(4.36)

In this case (4.3), (4.33) and (4.34)–(4.36) together imply the assumptions (4.6)–(4.13). Not
much simplification occurs in the remaining three assumptions (4.14)–(4.16).

As far as θ̂R is concerned, there are no changes in the assumptions (4.24) to (4.27), as
they do not involve Ψ(u).
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Remark 4.2 Polynomial regression. Let h(x) := (h1(x), · · · , hq(x))′ be a vector of q
functions from R to R such that E∥h(X)∥2 < ∞. Consider the model (4.1) with p = 1 and
mθ(x) = θ′h(x). An example of this is the polynomial regression model with Berkson ME,
where hj(x) = xj, j = 1, · · · , q. Then νϑ(z) = ϑ′γ(z), where γ(z) := E

(
h(X)|Z = z

)
. Thus

ν̇ϑ(z) ≡ γ(z) and the assumptions (4.2), (4.3), (4.7), (4.8), (4.14) and (4.15) are a priori
satisfied. Argue as in the proof of Lemma 5.5.4, Koul (2002), to verify that assumption

(4.16) holds in this case. To summarize, in this example the asymptotic normality of θ̂ holds
if the following assumptions hold.∫

E
(
∥γ(Z)∥2(1− LZ(x))dG(x) <∞, 0 <

∫
ℓ2z(x)dG(x) <∞, ∀ z ∈ Rp,∫

E
(
∥γ(Z)∥2ℓjZ(x)

)
dG(x) <∞, j = 1, 2,

∫
E
(
ℓ2Z(x)

)
dG(x) <∞.

limu→0

∫∞
−∞E

(
∥γ(Z)∥2ℓZ(x+ u)

)
dG(x) =

∫
E
(
∥γ(Z)∥2ℓZ(x)

)
dG(x).

With ξt(z) := n−1/2γ(z)′t, E
( ∫ |ξt(Z)|

−|ξt(Z)| ∥γ(Z)∥
2
∫
ℓZ(x+ u)dG(x)du

)
→ 0.

With Γ(x) := E
(
γ(Z)γ(Z)′ℓZ(x)

)
, Ω :=

∫
Γ(x)Γ(x)′dG(x) is positive definite.

Then n1/2(θ̂ − θ) →D N(0,Ω−1ΣΩ−1), with Σ :=
∫ ∫

h(u)h(u)′K(u, v)h(v)h′(v)dQ(u)dQ(v),
K(u, v) := E

(
h(Z)h(Z)′CZ(u, v)

)
, u, v ∈ Rp, not depending on θ.

In contrast, for the asymptotic normality of θ̂R here, one only needs (4.24) and Ψ

to be a d.f. such that Ω̂ is positive definite. Note that here µc(z) = γc(z) := γ(z) −
γ̄, K̂(s, t) := E

(
γc(Z)γc(Z)′ĈZ(s, t)

)
, Σ̂ =

∫ ∫
γc(z)γc(z)′K̂(z, v)γc(v)γc(v)′dQ(z)dQ(v),

Γ̂(u) := E
(
γc(Z)γc(Z)′ℓZ(L

−1
Z (u))

)
, and Ω̂ =

∫ 1

0
Γ̂(u)Γ̂(u)′dΨ(u) do not depend on θ.

5 Appendix

Proof of (4.19). Recall the definition of D̃(ϑ) from (4.5). Let M̃(t) = D̃(θ + n−1/2t) and
define

νnt(z) := νθ+n−1/2t(z), ξit := νnt(Zi)− νθ(Zi),(5.1)

Vs(x, t) := n−1/2

n∑
i=1

ν̇ns(Zi)I(Yi − νnt(Zi) ≤ x) = n−1/2

n∑
i=1

ν̇ns(Zi)I
(
ζi ≤ x+ ξit

)
,

V (x, t) := n−1/2

n∑
i=1

ν̇(Zi)I
(
ζi ≤ x+ ξit

)
,

Js(x, t) := n−1/2

n∑
i=1

E
(
ν̇ns(Zi)I

(
ζi ≤ x+ ξit

)∣∣Zi

)
= n−1/2

n∑
i=1

ν̇ns(Zi)LZi
(x+ ξit),

J(x, t) := n−1/2

n∑
i=1

ν̇(Zi)LZi
(x+ ξit),

Ws(x, t) := Vs(x, t)− Js(x, t), W (x, t) := V (x, t)− J(x, t), s, t ∈ Rq.
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Note that EVs(x, t) ≡ EJs(x, t), EWs(x, t) ≡ 0. Also, by (4.4),

n−1/2

n∑
i=1

ν̇ns(Zi)
{
LZi

(x) + LZi
(−x)

}
= n−1/2

n∑
i=1

ν̇ns(Zi), ∀ s ∈ Rq, x ∈ Rp.

Define

γnt(x) := n−1/2

n∑
i=1

ν̇nt(Zi)ξitℓZi
(x), gn(x) := n−1

n∑
i=1

ν̇(Zi)ν̇(Zi)
′ℓZi

(x).

Because of (4.4), γnt(x) ≡ γnt(−x), gn(x) ≡ gn(−x). Use the above notation and facts to
rewrite

M̃(t) =

∫ ∞

0

∥∥Vt(x, t) + Vt(−x, t)− n−1/2

n∑
i=1

ν̇nt(Zi)
∥∥2
dG(x)

=

∫ ∞

0

∥∥∥{Wt(x, t)−Wt(x, 0)
}
+
{
Wt(x, 0)−W (x, 0)

}
+
{
Wt(−x, t)−Wt(−x, 0)

}
+
{
Wt(−x, 0)−W (−x, 0)

}
+
{
Jt(x, t)− Jt(x, 0)− γnt(x)

}
+
{
Jt(−x, t)− Jt(−x, 0)− γnt(−x)

}
+2

{
γnt(x)− gn(x)t

}
+
{
W (x, 0) +W (−x, 0) + 2gn(x)t

}∥∥∥2

dG(x).

Expand the quadratic of the six summands in the integrand to obtain

M̃(t) =M1(t) +M2(t) + · · ·+M8(t) + 28 cross product terms,

where

M1(t) :=

∫ ∞

0

∥∥Wt(x, t)−Wt(x, 0)
∥∥2
dG(x), M2(t) :=

∫ ∞

0

∥∥Wt(x, 0)−W (x, 0)
∥∥2
dG(x),

M3(t) :=

∫ ∞

0

∥∥Wt(−x, t)−Wt(−x, 0)
∥∥2
dG(x),

M4(t) :=

∫ ∞

0

∥∥Wt(−x, 0)−W (−x, 0)
∥∥2
dG(x),

M5(t) :=

∫ ∞

0

∥∥Jt(x, t)− Jt(x, 0)− γnt(x)
∥∥2
dG(x),

M6(t) :=

∫ ∞

0

∥∥Jt(−x, t)− Jt(−x, 0)− γnt(−x)
∥∥2
dG(x),

M7(t) := 4

∫ ∞

0

∥∥γnt(x)− gn(x)t
∥∥2
dG(x),

M8(t) :=

∫ ∞

0

∥∥W (x, 0) +W (−x, 0) + 2gn(x)t
∥∥2
dG(x).

Recall U(b) := {t ∈ Rq; ∥t∥ ≤ b}, b > 0. We shall prove the following lemma shortly.
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Lemma 5.1 Under the above set up and the assumptions (4.2) to (4.7), ∀ 0 < b <∞,

sup
t∈U(b)

Mj(t) →p 0, j = 1, 2, · · · , 7,(5.2)

sup
t∈U(b)

M8(t) = Op(1).(5.3)

Unless mentioned otherwise, all the supremum below are taken over t ∈ U(b). Lemma
5.1 together with the C-S inequality implies that the supremum over t ∈ U(b) of all the cross
product terms tends to zero, in probability. For example, by the C-S inequality

sup
t

∣∣∣ ∫
0

{
Wt(x, t)−Wt(x, 0)

}{
Jt(x, t)− Jt(x, 0)− γnt(x)

}
dG(x)

∣∣∣2
≤ sup

t
M1(t) sup

t
M5(t) = op(1),

by (5.2) used with j = 1, 5. Similarly, by (5.2) with j = 1 and (5.3),

sup
t

∣∣∣ ∫ ∞

0

{
Wt(x, t)−Wt(x, 0)

}{
W (x, 0) +W (−x, 0) + 2gn(x)t

}
dG(x)

∣∣∣2
≤ sup

t
M1(t) sup

t
M8(t) = op(1)×Op(1) = op(1).

Consequently, we obtain

sup
t

∣∣∣M̃(t)−M8(t)
∣∣∣ = op(1).(5.4)

Now, expand the quadratic in M8 to write

M8(t) :=

∫ ∞

0

∥∥W (x, 0) +W (−x, 0)
∥∥2
dG(x)(5.5)

+4t′
∫ ∞

0

gn(x)
{
W (x, 0) +W (−x, 0)

}
dG(x) + 4

∫ ∞

0

(
t′gn(x)

)2
dG(x)

= M̃(0) + 4t′T̃n + 4

∫ ∞

0

(
t′gn(x)

)2
dG(x),

where

T̃n :=

∫ ∞

0

gn(x)
{
W (x, 0) +W (−x, 0)

}
dG(x).

Let

T ∗
n :=

∫ ∞

0

Γθ(x)
{
W (x, 0) +W (−x, 0)

}
dG(x)

By the LLNs and an extended Dominated converdence theorem

sup
t

∥∥t′(gn(x)− Γθ(x))
∥∥ →p 0, ∀x ∈ R; sup

t

∫ ∞

0

∥∥t′(gn(x)− Γθ(x))
∥∥2
dG(x) →p 0.
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Moreover, recall M̃(0) = D̃(θ), so that by (4.17), M̃(0) = Op(1). These facts together with
the C-S inequality imply that∥∥T̃n − T ∗

n

∥∥2
=

∥∥∥∫ ∞

0

{
gn(x)− Γθ(x)

}{
W (x, 0) +W (−x, 0)

}
dG(x)

∥∥∥2

≤ M̃(0)

∫ ∞

0

∥∥gn(x)− Γθ(x)
∥∥2
dG(x) →p 0.

These facts combined with (4.13), (5.4), (5.5) yield that

sup
t

∣∣∣M̃(t)− M̃(0)− 4T ∗
nt− 4t′

∫ ∞

0

Γθ(x)Γθ(x)dG(x) t
∣∣∣ = op(1).

Now recall that D(ϑ) = 2D̃(ϑ), M̃(t) = D̃(θ+n−1/2t), Ωθ = 2
∫∞
0

ΓθΓθdG and Tn = 2T ∗
n ,

see (4.18). Hence the above expansion is equivalent to the expansion

sup
t

∣∣D̃(θ + n−1/2t)− D̃(θ)− 2Tnt− 2t′Ωθt
∣∣ = op(1),

sup
t

∣∣D(θ + n−1/2t)−D(θ)− 4Tnt− 4t′Ωθt
∣∣ = op(1),

which is precisely the claim (4.19).

Proof of Lemma 5.1. Let δit := ξit − n−1/2t′ν̇(Zi). By (4.2) and (4.3),

max
1≤i≤n, t

n1/2
∣∣δit∣∣ = op(1), max

1≤i≤n
n−1/2∥ν̇(Zi)∥ = op(1).(5.6)

Hence,

max
1≤i≤n, t

∣∣ξit∣∣ ≤ max
1≤i≤n, ∥t∥≤b

∣∣δit∣∣.+ max
1≤i≤n, t

n−1/2
∥∥t∥∥ν̇(Zi)∥(5.7)

≤ op(n
−1/2) + b max

1≤i≤n
n−1/2∥ν̇(Zi)∥ = op(1),

n∑
i=1

ξ2it =
n∑

i=1

(νnt(Zi)− ν(Zi))
2 =

n∑
i=1

δ2it + n−1

n∑
i=1

(t′ν̇(Zi))
2,

sup
t

n∑
i=1

ξ2it ≤ n max
1≤i≤n, ∥t∥≤b

∣∣δit∣∣2 + b2n−1

n∑
i=1

∥ν̇(Zi)∥2 = Op(1),(5.8)

by (4.3).
Moreover, by (4.3) and the Law of Large Numbers,

sup
t

∥∥n−1/2

n∑
i=1

ν̇θ(Zi)ξit
∥∥(5.9)

≤ max
1≤i≤n, ∥t∥≤b

n1/2|δit|n−1

n∑
i=1

∥ν̇θ(Zi)
∥∥+ bn−1

∥∥ n∑
i=1

ν̇θ(Zi)ν̇θ(Zi)
′∥∥

= op(1) +Op(1) = Op(1).
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These facts will be use in the sequel.
Consider the term M7. Write

γnt(x)− gn(x)t = n−1/2

n∑
i=1

ν̇nt(Zi)ξitℓZi
(x)− n−1

n∑
i=1

ν̇(Zi)ν̇(Zi)
′ℓZi

(x)t

= n−1/2

n∑
i=1

[
ν̇nt(Zi)− ν̇(Zi)

]
ξitℓZi

(x) + n−1/2

n∑
i=1

ν̇(Zi)δitℓZi
(x)

= n−1/2

n∑
i=1

[
ν̇nt(Zi)− ν̇(Zi)

]
δitℓZi

(x)

+n−1

n∑
i=1

[
ν̇nt(Zi)− ν̇(Zi)

]
ν̇(Zi)

′ℓZi
(x)t+ n−1/2

n∑
i=1

ν̇(Zi)δitℓZi
(x)

Hence

M7 =

∫ ∞

0

∥∥γnt(x)− gn(x)t
∥∥2
dG(x) ≤ 4{M71(t) +M72(t) +M73(t)}(5.10)

where

M71(t) = n−1

∫ ∞

0

∥∥∥ n∑
i=1

[
ν̇nt(Zi)− ν̇(Zi)

]
δitℓZi

(x)
∥∥∥2

dG(x),

M72(t) = n−2

∫ ∞

0

∥∥∥ n∑
i=1

[
ν̇nt(Zi)− ν̇(Zi)

]
ν̇(Zi)

′ℓZi
(x)t

∥∥∥2

dG(x),

M73(t) = n−1

∫ ∞

0

∥∥∥ n∑
i=1

ν̇(Zi)δitℓZi
(x)

∥∥∥2

dG(x).

But, by (4.8) and (5.6),

sup
t
M71(t) ≤ n sup

t,1≤i≤n
δ2it sup

t,1≤i≤n

∥∥ν̇nt(Zi)− ν̇(Zi)
∥∥2

∫ ∞

0

n−1

n∑
i=1

ℓ2Zi
(x)dG(x)

= op(1).

Similarly, by the C-S inequality,

sup
t
M72(t) ≤ b2 sup

t,1≤i≤n

∥∥ν̇nt(Zi)− ν̇(Zi)
∥∥2
n−1

∫ ∞

0

n∑
i=1

∥ν̇(Zi)∥2ℓ2Zi
(x)dG(x)

= op(1)Op(1) = op(1),

by (4.8) and (4.9). Again, by (4.9) and (5.6),

sup
t
M73(t) ≤ sup

t,1≤i≤n
n|δit|2n−1

∫ ∞

0

n∑
i=1

∥ν̇(Zi)∥2ℓ2Zi
(x)dG(x) = op(1).
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These facts together with (5.10) prove (5.2) for j = 7.
Next consider M5. Let Dit(x) := LZi

(x+ ξit)− LZi
(x)− ξitℓZi

(x). Then

M5(t)(5.11)

:= n−1

∫ ∞

0

∥∥∥ n∑
i=1

[
ν̇nt(Zi)LZi

(x+ ξit)− ν̇nt(Zi)LZi
(x)− ν̇nt(Zi)ξitℓZi

(x)
]∥∥∥2

dG(x)

= n−1

∫ ∞

0

∥∥∥ n∑
i=1

ν̇nt(Zi)Dit(x)
∥∥∥2

dG(x) ≤ n−1

n∑
i=1

∥∥∥ν̇nt(Zi)
∥∥∥2

∫ ∞

0

n∑
i=1

D2
it(x)dG(x).

By (4.3) and (4.8),

sup
t
n−1

n∑
i=1

∥∥∥ν̇nt(Zi)
∥∥∥2

≤ sup
t
n−1

n∑
i=1

∥∥∥ν̇nt(Zi)− ν̇(Zi)
∥∥∥2

+ sup
t
n−1

n∑
i=1

∥∥∥ν̇(Zi)
∥∥∥2

= op(1) +Op(1) = Op(1).

By the C-S inequality, Fubini Theorem, (4.10) and (5.8),∫ ∞

0

n∑
i=1

D2
it(x)dG(x) ≤

∫ ∞

0

n∑
i=1

(∫ |ξit|

−|ξit|

(
ℓZi

(x+ u)− ℓZi
(x)

)
du

)2

dG(x)

≤
∫ ∞

0

n∑
i=1

|ξit|
∫ |ξit|

−|ξit|

(
ℓZi

(x+ u)− ℓZi
(x)

)2
dudG(x)

≤ max
1≤i≤n,t

|ξit|−1

∫ |ξit|

−|ξit|

∫ ∞

0

(
ℓZi

(x+ u)− ℓZi
(x)

)2
dG(x)du

n∑
i=1

|ξit|2

= op(1).

Upon combining these facts with (5.11) we obtain suptM5(t) = op(1), thereby proving (5.2)
for j = 5. The proof for j = 6 is exactly similar.

Now consider M1. Let ξt(Z) := νnt(Z)− ν(Z). Then

EM1(t) :≤
∫ ∞

−∞
E
∥∥Wt(x, t)−Wt(x, 0)

∥∥2
dG(x)

≤ n−1

n∑
i=1

E
(
∥ν̇nt(Zi)∥2

∫ ∞

−∞

∣∣∣LZi
(x+ ξit)− LZi

(x)
∣∣∣dG(x))

≤ n−1

n∑
i=1

E
(
∥ν̇nt(Zi)∥2

∫ ∞

−∞

∫ |ξit|

−|ξit|
ℓZi

(x+ u)dudG(x)

= E
(∫ |ξt(Z)|

−|ξt(Z)|
∥ν̇nt(Z)∥2

∫ ∞

−∞
ℓZ(x+ u)dG(x) du

)
→ 0,

by (4.12). Thus

M1(t) = op(1), ∀ t ∈ U(b).(5.12)
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To prove that this holds uniformly in ∥t∥ ≤ b, because of the compactness of the ball U(b), it
suffices to show that for every ϵ > 0 there is a δ > 0 and an Nϵ such that for every s ∈ U(b),

P
(

sup
∥t−s∥<δ

∥M1(t)−M1(s)| ≥ ϵ
)
≤ ϵ, ∀n > Nϵ.(5.13)

Let ν̇ntj(z) denote the jth coordinate of ν̇nt(z), j = 1, · · · , q and let

αi(x, t) := I(ζi ≤ x+ ξit)− I(ζi ≤ x)− LZi
(x+ ξit) + LZi

(x).

Then

M1(t) =

∫ ∞

0

∥∥Wt(x, t)−Wt(x, 0)
∥∥2
dG(x)

=

q∑
j=1

∫ ∞

0

(
n−1/2

n∑
i=1

ν̇ntj(Zi)αi(x, t)
)2

dG(x) =

q∑
j=1

M1j(t), say.

Thus it suffices to prove (5.13) with M1 replaced by M1j for each j = 1, · · · , q.
Any real number a can be written as a = a+ − a−, where a+ = max(0, a), a− =

max(0,−a). Note that a± ≥ 0. Fix a j = 1, · · · , q, write ν̇ntj(Zi) = ν̇+ntj(Zi) − ν̇−ntj(Zi)
and define

W±
j (x, t) := n−1/2

n∑
i=1

ν̇±ntj(Zi)αi(x, t), D±
j (x, s, t) := W±

j (x, t)−W±
j (x, s),

R±
j (s, t) :=

∫ ∞

0

(
D±

j (x, s, t)
)2
dG(x).

Then ∣∣M1j(t)−M1j(s)
∣∣(5.14)

=
∣∣∣ ∫ ∞

0

(
W+

j (x, t)−W−
j (x, t)

)2
dG(x)−

∫ ∞

0

(
W+

j (x, s)−W−
j (x, s)

)2
dG(x)

∣∣∣
≤

∫ ∞

0

(
D+

j (x, s, t)
)2
dG(x) +

∫ ∞

0

(
D−

j (x, s, t)
)2
dG(x)

+2
{∫ ∞

0

(
D+

j (x, s, t)
)2
dG(x)

∫ ∞

0

(
D−

j (x, s, t)
)2
dG(x)

}1/2

+2
[{∫ ∞

0

(
D+

j (x, s, t)
)2
dG(x)

}1/2

+
{∫ ∞

0

(
D−

j (x, s, t)
)2
dG(x)

}1/2]
M

1/2
1j (s)

= R+
j (s, t) +R−

j (s, t) + 2
(
R+

j (s, t)R
−
j (s, t)

)1/2
+
{
(R+

j (s, t))
1/2 + (R−

j (s, t)
)1/2}

M
1/2
1j (s).

Write

D+
j (x, s, t)

= n−1/2

n∑
i=1

ν̇+ntj(Zi)αi(x, t)− n−1/2

n∑
i=1

ν̇+nsj(Zi)αi(x, s)

= n−1/2

n∑
i=1

[
ν̇+ntj(Zi)− ν̇+nsj(Zi)

]
αi(x, t) + n−1/2

n∑
i=1

ν̇+nsj(Zi)
[
αi(x, t)− αi(x, s)

]
= D+

j1(x, s, t) +D+
j2(x, s, t), say.
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Hence

R+
j (s, t) ≤ 2

∫ ∞

0

(
D+

j1(x, s, t)
)2
dG(x) + 2

∫ ∞

0

(
D+

j2(x, s, t)
)2
dG(x).(5.15)

By (4.14), the first term here satisfies (5.13). We proceed to verify it for the second term.
Fix an s ∈ Ub, ϵ > 0 and δ > 0. Let

∆ni := n−1/2
(
δ∥ν̇(Zi)∥+ 2ϵ), Bn :=

{
sup

t∈Nb,∥t−s∥≤δ

∣∣ξit − ξis
∣∣ ≤ ∆ni

}
.

By (4.8), there exists an Nϵ such that P (Bn) > 1 − ϵ, for all n > Nϵ. On Bn, ξis − ∆ni ≤
ξit ≤ ξis + ∆ni and, by the nondecreasing property of the indicator function and d.f., we
obtain

I(ζi ≤ x+ ξis −∆ni)− I(ζi ≤ x)− LZi
(x− ξis +∆ni) + LZi

(x)

−LZi
(x+ ξis +∆ni) + LZi

(x+ ξis −∆ni)

≤ αi(x, t) = I(ζi ≤ x+ ξit)− I(ζi ≤ x)− LZi
(x+ ξit) + LZi

(x)

≤ I(ζi ≤ x+ ξis +∆ni)− I(ζi ≤ x)− LZi
(x+ ξis +∆ni) + LZi

(x)

+LZi
(x+ ξis +∆ni)− LZi

(x+ ξis −∆ni).

Let

D±
j2(x, s, a)

:= n−1/2

n∑
i=1

ν̇±njs
{
I(ζi ≤ x+ ξis + a∆ni)− I(ζi ≤ x)− LZi

(x+ ξis + a∆ni) + LZi
(x)

}
.

Using the above inequalities and ν̇+njs(Zi) being nonnegative we obtain that on Bn,∫ ∞

0

(
D+

j2(x, s, t)
)2
dG(x)

≤
∫ ∞

0

(
D+

j2(x, s, 1)−D+
j2(x, s, 0)

)2
dG(x) +

∫ ∞

0

(
D+

j2(x, s,−1)−D+
j2(x, s, 0)

)2
dG(x)

+

∫ ∞

0

(
n−1/2

n∑
i=1

ν̇+njs(Zi)
{
LZi

(x+ ξis +∆ni)− LZi
(x+ ξis −∆ni)

}
dG(x)

)2

.

Note that max1≤i≤n(|ξis|+∆ni) = op(1). Argue as for (5.12) to see that the first two terms
in the above bound are op(1), while the last term is bounded from the above by∫ ∞

0

(
n−1/2

n∑
i=1

ν̇+njs(Zi)

∫ ξis+∆ni

ξis−∆ni

ℓZi
(x+ u)du dG(x)

)2

(5.16)

≤ 2n−1

n∑
i=1

(ν̇+njs(Zi))
2

n∑
i=1

∆ni

∫ ξis+∆ni

ξis−∆ni

∫ ∞

0

[
ℓ2Zi

(x+ u)− ℓ2Zi
(x)

]
dG(x) du

+4n−1

n∑
i=1

(ν̇+njs(Zi))
2

n∑
i=1

∆2
ni

∫ ∞

0

ℓ2Zi
(x)dG(x).
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The first summand in the above bound is bounded above by

2 max
1≤i≤n

(2∆ni)
−1

∫ ξis+∆ni

ξis−∆ni

∫ ∞

0

[
ℓ2Zi

(x+u)−ℓ2Zi
(x)

]
dudG(x)n−1

n∑
i=1

(ν̇+njs(Zi))
2

n∑
i=1

∆2
ni = op(1),

because the first factor tends to zero in probability by (4.10) and the second factor satisfies

n−1

n∑
i=1

(ν̇+njs(Zi))
2

n∑
i=1

∆2
ni ≤ n−1

n∑
i=1

∥ν̇ns∥2
(
2n−1δ2

n∑
i=1

∥ν̇(Zi)∥2 + 4ϵ2).

The second summand in the upper bound of (5.16) is bounded from the above by

4n−1

n∑
i=1

∥ν̇ns(Zi)∥2 n−1

n∑
i=1

(
δ2∥ν̇(Zi)∥2 + 4ϵ2)

∫ ∞

0

ℓ2Zi
(x)dG(x)

→p E∥ν̇(Z)∥2
[
δ2

∫ ∞

0

E(∥ν̇(Z)∥2ℓ2Z(x))dG(x) + 4ϵ2
∫ ∞

0

E(ℓ2Z(x))dG(x)
]

Since the factor multiplying δ2 is positive, the above term can be made smaller than ϵ by
the choice of δ. Hence (5.13) is satisfied by the second term in the upper bound of (5.15).
This then completes the proof of R+

j satisfying (5.13). The details of the proof for verifying
(5.13) for R−

j are exactly similar. These facts together with the upper bound of (5.14) show
that (5.13) is satisfied by M1j for each j = 1, · · · , q. We have thus completed the proof of
showing suptM1(t) = op(1), thereby proving (5.2) for j = 1. The proof for j = 3 is similar.

Next, consider M2. Recall βi(x) := I(ζi ≤ x)− LZi
(x). Then

M2(t) := n−1

∫ ∞

0

∥∥ n∑
i=1

{ν̇nt(Zi)− ν̇(Zi)}βi(x)
∥∥2
dG(x).

Because E(βi(x)|Zi) ≡ 0, a.s., we have

EM2(t) =

∫ ∞

0

E
(∥∥ν̇nt(Z)− ν̇(Z)∥2LZ(x)(1− LZ(x)

)
dG(x) → 0,

by (4.7). Thus

M2(t) = op(1), ∀ t ∈ Rq.(5.17)

To prove this holds uniformly we shall verify (5.13) for M2. Accordingly, let δ > 0, s ∈ U(b)
be fixed and consider t ∈ U(b) such that ∥t− s∥ < δ. Then

∣∣M2(t)−M2(s)
∣∣ ≤ n−1

∫ ∞

0

∥∥ n∑
i=1

{ν̇nt(Zi)− ν̇ns(Zi)}βi(x)
∥∥2
dG(x)

+2
(
n−1

∫ ∞

0

∥∥ n∑
i=1

{ν̇nt(Zi)− ν̇ns(Zi)}βi(x)
∥∥2
dG(x)

)1/2

M2(s)
1/2
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This bound, (4.15) and (5.17) now readily verifies (5.13) for M2, which also completes the
proof of (5.2) for j = 2. The proof of (5.2) for j = 4 is precisely similar. This in turn
completes the proof of Lemma 5.1.
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