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Abstract

This note establishes a uniform convergence result for a large class of weighted resid-
ual empirical processes. The underlying random variables appearing in these processes
need neither be independent nor stationary.

1 Main result

Let ηi, 1 ≤ i ≤ n be r.v.’s, ξni, 1 ≤ i ≤ n be an array of q × 1 random vectors and
γni, 1 ≤ i ≤ n be another array of r.v.’s. Define the weighted residual empirical processes

Hn(x, t, u) := n−1

n∑
i=1

γniI
(
ηi ≤ x+ n−1/2xt+ u′ξni

)
, t ∈ R, u ∈ Rq,

Gn(x) := n−1

n∑
i=1

γniI
(
ηi ≤ x), Γn(x) := EGn(x), x ∈ R.

Consider the following assumptions, where all limits are taken as n → ∞.

γni ≥ 0, ∀ 1 ≤ i ≤ n, sup
n≥1

n−1

n∑
i=1

Eγni < ∞.(1.1)

max
1≤i≤n

∥ξni∥ →p 0.(1.2)

For every x ∈ R,
∣∣Gn(x)− Γn(x)

∣∣ →p 0.(1.3)

There exists a nondecreasing and continuous function Γ(y), y ∈ R, such that(1.4)

0 < Γ(∞) < ∞, supx∈R
∣∣Γn(x)− Γ(x)

∣∣ → 0, and ∀ 0 < K < ∞,

supx∈R
∣∣Γ(x+ n−1/2|x|K)− Γ(x)

∣∣ → 0.

The following lemma gives the main result about the process Hn.

Lemma 1.1 Under (1.1)-(1.4), the following holds. For every 0 < K < ∞,

Dn := sup
x∈R,|t|≤K,∥u∥≤K

∣∣Hn(x, t, u)− Γ(x)
∣∣ →p 0.(1.5)

The proof of this lemma is facilitated by the following preliminary lemma.

Lemma 1.2 Suppose (1.1) and (1.3) hold and there exists a real valued nondecreasing right
continuous function Γ(x), x ∈ R such that

0 < Γ(∞) < ∞, sup
x∈R

∣∣Γn(x)− Γ(x)
∣∣ → 0.(1.6)
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Then

(a) ∆n := sup
x∈R

∣∣Gn(x)− Γn(x)
∣∣ →p 0, (b) sup

x∈R
|Gn(x)− Γ(x)| →p 0.(1.7)

Proof. We prove only (1.7)(a) while (1.7)(b) follows trivially from (1.6). Let ∆n(x) :=
Gn(x) − Γn(x). By (1.3), |∆n(x)| →p 0, for every fixed x ∈ R. To prove that this holds
uniformly in x ∈ R, let k > 0 be positive integer, δ > 0 and −∞ = x0 < x1 < · · · < xk <
xk+1 = ∞ be such that max0≤j≤k+1

(
Γ(xj)−Γ(xj−1)

)
≤ δ. This is possible because Γ(·)/Γ(∞)

is a distribution function. Note that ∆n = max1≤j≤k+1 supxj−1<x≤xj

∣∣∆n(x)
∣∣. Because γni ≥ 0,

Gn(y), Γn(y) are nondecreasing functions of y ∈ R. Hence, for xj−1 < x ≤ xj,

∆n(xj−1) + Γn(xj−1)− Γn(xj) ≤ ∆n(x) ≤ ∆n(xj) + Γn(xj)− Γn(xj−1).

In other words,

∆n ≤ max
1≤j≤k+1

∣∣∆n(xj)
∣∣+ max

1≤j≤k+1

∣∣∆n(xj−1)
∣∣+ 2 max

1≤j≤k+1

∣∣Γn(xj)− Γn(xj−1)
∣∣.

By (1.3), the first two terms in this bound tend to zero, in probability, for every fixed k.
Moreover, by the triangle inequality, the third term is bounded from the above by

4 sup
x∈R

∣∣Γn(x)− Γ(x)
∣∣+ 2 max

1≤j≤k+1

∣∣Γ(xj)− Γ(xj−1)
∣∣ ≤ 4 sup

x∈R

∣∣Γn(x)− Γ(x)
∣∣+ 2δ.

By (1.6), the first term in this bound tends to zero. The proof of the Lemma 1.2 is completed
upon letting δ → 0 in this bound.

Proof of Lemma 1.1. Fix a 0 < K < ∞. Let An,δ :=
{
max1≤i≤n ∥ξni∥ ≤ δ

}
, δ > 0. By

(1.2), for every δ > 0, there exists N ≡ Nδ < ∞ such that P (An,δ) ≥ 1 − δ, for all n ≥ N .
Because the indicator function I(ηi ≤ z) is nondecreasing in z ∈ R, we obtain that on An,δ

and for all |t| ≤ K, ∥u∥ ≤ K, 1 ≤ i ≤ n,

I(ηi ≤ x− n−1/2|x|K −Kδ) ≤ I
(
ηi ≤ x+ n−1/2xt+ u′ξni

)
≤ I

(
ηi ≤ x+ n−1/2|x|K +Kδ

)
.

Multiply all sides of these inequalities by γni ≥ 0, sum over 1 ≤ i ≤ n and divide all sides
by n to obtain

Gn(x− n−1/2|x|K −Kδ) ≤ Hn(x, t, u) ≤ Gn(x+ n−1/2|x|K +Kδ), ∀x ∈ R, n ≥ 1.

Hence,

Dn ≤ sup
x∈R

∣∣∣Gn(x+ n−1/2|x|K +Kδ)− Γ(x)
∣∣∣+ sup

x∈R

∣∣∣Gn(x− n−1/2|x|K −Kδ)− Γ(x)
∣∣∣.(1.8)

Consider the first term of the upper bound (1.8). Decompose

Gn(x+ n−1/2|x|K +Kδ)− Γ(x) =
[
Gn(x+ n−1/2|x|K +Kδ)− Γn(x+ n−1/2|x|K +Kδ)

]
+
[
Γn(x+ n−1/2|x|K +Kδ)− Γn(x+ n−1/2|x|K)

]
+
[
Γn(x+ n−1/2|x|K)− Γ(x)

]
,
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so that

sup
x∈R

∣∣Gn(x+ n−1/2|x|K + kδ)− Γ(x)
∣∣

≤ sup
y∈R

∣∣Gn(y)− Γn(y)
∣∣+ sup

y∈R

∣∣Γn(y +Kδ)− Γn(y)
∣∣+ sup

x∈R

∣∣Γn(x+ n−1/2|x|K)− Γ(x)
∣∣.

By (1.7), the first term in this bound tends to zero, in probability. Next, consider

sup
x∈R

∣∣Γn(x+ n−1/2|x|K)− Γ(x)
∣∣

≤ sup
y∈R

∣∣Γn(y)− Γ(y)
∣∣+ sup

x∈R

∣∣Γ(x+ n−1/2|x|K)− Γ(x)
∣∣ → 0,

by (1.4).
Next,

sup
y∈R

∣∣Γn(y +Kδ)− Γn(y)
∣∣ ≤ 2 sup

y∈R

∣∣Γn(y)− Γ(y)
∣∣+ sup

y∈R

∣∣Γ(y +Kδ)− Γ(y)
∣∣.

The first term in this bound tends to zero by (1.4) as n → ∞. By the uniform continuity of
Γ, implied by (1.4), the second term tends to zero as δ → 0.

This then shows that the first term in the upper bound of (1.8) tends to zero, in prob-
ability. A similar arguments shows that the same thing holds for the second term in the
upper bound of (1.8), thereby completing the proof of (1.5) and Lemma 1.1.

The above lemmas extend to the situation where the weights γni are not nonnegative.
More precisely, let ζni real r.v.’s and define

Un(x, t, u) := n−1

n∑
i=1

ζniI
(
ηi ≤ x+ n−1/2xt+ u′ξni

)
, t ∈ R, u ∈ Rq,

Vn(x) := n−1

n∑
i=1

ζniI
(
ηi ≤ x), x ∈ R.

For y ∈ R, let y = max(0, y), y− = max(0,−y) so that y = y+ − y−. Note that both
y± ≥ 0. Write ζni = ζ+ni − ζ−ni. Let U

±
n , V

±
n denote Un, Vn, where {ζni} are replaced by {ζ±ni},

respectively. Then Un(x, t, u) ≡ U+
n (x, t, u) − U−

n (x, t, u), Vn(x) ≡ V +
n (x) − V −

n (x). Define
ν±
n (x) := EV ±

n (x), νn(x) ≡ ν+
n (x)− ν−

n (x). We are now ready to state the following lemma.

Lemma 1.3 Suppose (1.2) and the following assumptions hold.

sup
n≥1

n−1

n∑
i=1

Eζ±ni < ∞.(1.9)

For every x ∈ R,
∣∣V ±

n (x)− ν±
n (x)

∣∣ →p 0.(1.10)

There exists a nondecreasing and continuous function ν±(x), x ∈ R, such that(1.11)

0 < ν±(∞) < ∞, supx∈R
∣∣ν±

n (x)− ν±(x)
∣∣ → 0, and ∀ 0 < K < ∞,

supx∈R
∣∣ν±(x+ n−1/2|x|K)− ν±(x)

∣∣ → 0.
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Then the following hold, where ν = ν+ − ν−.

sup
x∈R

∣∣Vn(x)− νn(x)
∣∣ →p 0, sup

x∈R

∣∣Vn(x)− ν(x)
∣∣ →p 0,

sup
x∈R,|t|≤K,∥u∥≤K

∣∣Un(x, t, u)− ν(x)
∣∣ →p 0, ∀ 0 < K < ∞.

The proof follows from Lemmas 1.1 and 1.2 applied with γni ≡ ζ±ni and the triangle inequality.

The above proofs show that the convergence in probability in the above lemmas can be
replaced by the almost sure convergence, if (1.2) and (1.3) hold almost surely. Also note
that there were no probabilistic assumptions like independence or stationarity, etc., made
on the given r.v.’s.

The above uniform consistency results have roots in the literature. See for example
Lemma 3.1 in Chang (1990), Lemma 3.4 in Stute, Thies and Zhu (1998), Lemma 4.2 in Koul
and Stute (1999) and the monograph of Koul (2002).
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