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Abstract

We develop analogs of a class of weighted empirical minimum distance estimators of the underlying
parameters in errors-in-variables linear regression models, when the regression error distribution
and the conditional distribution of conditionally centered measurement error, given the surrogate,
are symmetric around the origin. This class of estimators is defined as the minimizers of integrals of
the square of a certain symmetrized weighted empirical process of the residuals. It includes the least
absolute deviation and an analog of the Hodges-Lehmann estimators. In this paper we first develop
this class of estimators when the distributions of the true covariates and measurement errors are
known, and then extend them to the case when these distributions are unknown but validation
data is available. Findings of a simulation study that is included show significant superiority of
some members of the proposed class of estimators over the bias corrected least squares estimator.

Keywords: Analog of Hodges-Lehmann estimator, Pitman efficiency, validation data.

1. Introduction

Donoho and Liu (1988a,b) argue that in the one and two sample location models the minimum
distance estimators based on L2 distances involving residual empirical distribution functions have
some desirable finite sample properties and tend to be automatically robust against some contam-
inated models. In regression models without measurement error in the covariates, analogs of these
estimators of the underlying regression parameters based on certain weighted residual empirical
processes were developed in Koul (1979, 1985, 1996). These estimators include least absolute devi-
ation (LAD), analogs of Hodges-Lehmann (H-L) estimators and several other estimators that are
robust against outliers in regression errors and asymptotically efficient at some error distributions.

There are numerous practical situations where covariates are not accurately observed. Instead
one observes their surrogates with additive errors. The regression models with such covariates are
known as the errors-in-variables (EIVs) regression models. Fuller (1987), Cheng and Van Ness
(1999), and Carroll et al. (2006) discuss numerous practical examples of these models. In the lin-
ear EIVs models, Stefanski (1985) developed the bias corrected least square estimator based on
M-estimation, given the measurement error variance is known. Cook and Stefanski (1994) con-
structed a simulation-based estimation method for parametric measurement error models which is
asymptotically equivalent to method-of-moments estimation in linear EIVs modeling. Buonaccorsi
(2010) summarizes the moment-based bias corrected estimation for different settings in linear EIVs
models. When the covariate is univariate, AI-Sharadqah (2018) proposed an adjusted maximum
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likelihood estimator for Gaussian measurement error when the variance ratio of regression error
and measurement error is known.

Given the importance of the EIVs regression models and the above mentioned properties of
the above minimum distance (m.d.) estimators, it is desirable to develop their analogs for the
EIVs regression models. Section 2 describes the m.d. estimators of interest in the EIVs linear
regression model and the assumptions needed for their asymptotic normality when distributions
of the true covariate vector X and the measurement error vector U are known. It also includes a
discussion of these assumptions for some important cases, an example of distributions of X and U
that satisfy the needed assumptions, and a discussion of the Pitman asymptotic relative efficiency
of some members of the proposed class of estimators. This relative efficiency of the analog of H-
L estimator, relative to the bias corrected least squares (BCLS) estimator, is seen to increase to
infinity as the measurement error variance σ2U increases to infinity, when X,U and the regression
error are Gaussian r.v.’s. Section 3 generalizes the m.d. estimators under the setting that the
distributions of X and U are unknown but validation data is available. Some proofs are deferred
to the Appendix.

Section 4 presents the findings of a simulation study that assesses the performance of the
empirical bias and root mean squared error (RMSE) of the two members of the proposed class of
m.d. estimators, viz, the analog of H-L and LAD estimators, calibrated least squares (LS) and BCLS
estimators. In these simulations, the regression error distributions are taken to be Gaussian(0,1),
Laplace(0,1) and the t-distribution with 2 degree of freedom denoted by t2. To assess the effect
of the measurement error U on these estimators, we used several values of the measurement error
variance σ2U . Tables 1–3 and Tables 4–6 below report the findings when the distributions of X and
U are known and unknown but validation data is available, respectively.

The analog of H-L and LAD estimators are seen to be relatively much more stable in terms
of the empirical bias and RMSE for all chosen values of σ2U and regression error distributions.
The analog of the H-L estimator is relatively more stable than the other three estimators when
the regression error distribution is t2. In comparison, RMSE of BCLS estimator is seen to be
much larger than that of the other three estimators for the chosen larger values of σ2U and error
distributions. A practical example where σ2U can be large is that of self-reported daily dietary
intake, which may be recorded by survey participants with large variation due to the lack of precise
nutritional knowledge of food intake. In such scenarios, it would be then desirable to use one of
the proposed m.d. estimators. For more on simulations see Section 4.

2. Estimators in the linear EIVs model

In this section, we introduce the linear EIVs regression model and a class of m.d. estimators in
this model. Consider the linear regression model where for some θ ∈ Rp, the response variable Y
and the p dimensional predicting covariate vector X obey the relation

Y = X ′θ + ε, ε independent of X and symmetrically distributed around 0.(2.1)

For an x ∈ Rp, x′ and ‖x‖ denote its transpose and Euclidean norm, respectively. In the EIVs
model of interest, X is the true covariate. Instead one observes a surrogate Z obeying the relation

Z = X + U,(2.2)

where X,U, ε are assumed to be mutually independent, U is p× 1 vector of errors with E(U) = 0,
E‖U‖2 <∞, E‖X‖2 <∞.

Let γ(z) := E(U |Z = z), h(z) := E(X|Z = z) = z − γ(z), z ∈ Rp. Rewrite (2.1)–(2.2) as
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Y = θ′(Z − E(U |Z)) + ε− θ′(U − E(U |Z))(2.3)

= θ′h(Z) + ζ, ζ = ε− θ′V, V := U − γ(Z), E(ζ|Z = z) = 0, ∀ z ∈ Rp.

Thus we have a regression model regressing Y on Z, with the error r.v. ζ uncorrelated with Z and
the regression function θ′h(Z) with h satisfying

E‖h(Z)‖2 <∞.(2.4)

For the time being, assume that the distributions of X and U are known. Then the functions
γ(z), h(z) and the conditional distribution function (d.f.) Hz of the r.v. V , given Z = z, are
all known. The d.f. F of ε need not be known. We assume F to have Lebesgue density f and
to be symmetric around zero and the conditional d.f. Hz to be symmetric around the origin, i.e.,
for every z ∈ Rp, −dHz(v) = dHz(−v), for all v ∈ Rp. Then, because ε is independent of Z and
V = U − γ(Z), the conditional d.f. and density of ζ, given Z = z, respectively, are

Kz(x) := P (ζ ≤ x|Z = z) = P (ε− θ′V ≤ x|Z = z) =

∫
F (x+ θ′v)dHz(v),

κz(x) :=

∫
f(x+ θ′v)dHz(v), x ∈ R, z ∈ Rp.

Both satisfy

Kz(x) = 1−Kz(−x), κz(x) = κz(−x), ∀x ∈ R, z ∈ Rp.(2.5)

The symmetry of Kz(·) motivates the following definition of a class of m.d. estimators of θ in the
model (2.3), similar to the definition in Chapter 5.2 of Koul (2002) when there is no measurement
error. Let G be as in (2.9) below and {(Yi, Zi), 1 ≤ i ≤ n} be a random sample from the model
(2.1)–(2.2). For x ∈ R, t ∈ Rp, define

V (x, t) := n−1/2
n∑
i=1

h(Zi)
[
I(Yi − t′h(Zi) ≤ x)− I(−Yi + t′h(Zi) < x)

]
,(2.6)

M(t) :=

∫ ∥∥V (x, t)
∥∥2dG(x), θ̃ := argmint∈RpM(t).

Before proceeding further, we describe the estimator θ̃ corresponding to G(x) ≡ δ0(x) – the
measure degenerate at 0 and G(x) ≡ x. In the case G(x) ≡ δ0(x), because of the continuity of the
distribution of {Yi, i ≥ 1},

M(t) =
∥∥n−1/2 n∑

i=1

h(Zi)sgn(Yi − t′h(Zi))
∥∥2, uniformly in t ∈ Rp, with prob. 1,(2.7)

so that the corresponding θ̃ is the LAD estimator.
If
∣∣G(b)−G(a)

∣∣ =
∣∣G(−b)−G(−a)

∣∣, for all a, b ∈ R, then G is continuous and symmetric around
zero and

M(t) = n−1
n∑
i=1

n∑
j=1

h(Zi)
′h(Zj)

[∣∣G(Yi − t′h(Zi)
)
−G

(
− Yj + t′h(Zj)

)∣∣
−
∣∣G(Yi − t′h(Zi)

)
−G

(
Yj − t′h(Zj)

)∣∣].
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In particular if G(x) ≡ x, then

M(t) = n−1
n∑
i=1

n∑
j=1

h(Zi)
′h(Zj)

[∣∣Yi + Yj − t′
(
h(Zi) + h(Zj)

)∣∣(2.8)

−
∣∣Yi − Yj − t′(h(Zi)− h(Zj)

)∣∣].
From this representation one sees that when the EIVs linear regression model is reduced to the one
sample location model, i.e., when p = 1, Ui ≡ 0, h(Zi) ≡ Zi ≡ Xi ≡ 1, then

M(t) = n−1
n∑
i=1

n∑
j=1

[∣∣Yi + Yj − 2t
∣∣− ∣∣Yi − Yj∣∣], θ̃ = median

{Yi + Yj
2

, 1 ≤ i ≤ j ≤ n
}
.

This estimator is the well celebrated H-L estimator of the one sample location parameter, see
Hodges and Lehmann (1963). For this reason, in general, we call θ̃ corresponding to the G(x) ≡ x
an analog of the H-L estimator in the EIVs linear regression model. Perhaps it is worth emphasizing
that the asymptotic distribution of this estimator under the EIVs linear regression setup does not
seem to be currently available in the literature.

We now state the assumptions needed for establishing the asymptotic normality of θ̃. In this
section, all limits are taken as n→∞, unless mentioned otherwise.

G is a nondecreasing right continuous function on R to R having left limits and(2.9)

dG(x) = −dG(−x), for all x ∈ R.

A :=

∫ ∞
0

E
(
‖h(Z)‖2(1−KZ(x))

)
dG(x) <∞.(2.10)

dHz(v) = −dHz(−v), for all z, v ∈ Rp.(2.11)

F is symmetric around zero and has Lebesgue density f .(2.12)

0 <

∫
κz(x)dG(x) <∞, ∀ z ∈ Rp, 0 <

∫
E
(
‖h(Z)‖2κ2Z(x)

)
dG(x) <∞.(2.13)

limu→0

∫
E
(
‖h(Z)‖jκZ(x+ u‖h(Z)‖)

)
dG(x)(2.14)

=

∫
E
(
‖h(Z)‖jκZ(x)

)
dG(x) <∞, j = 2, 3.

0 < lim
|u|→0

lim sup
n→∞

∫
E
(
‖h(Z)‖4κ2Z

(
x+ n−1/2s′h(Z) + u‖h(Z)‖

))
dG(x)

=

∫
E
(
‖h(Z)‖4κ2Z(x)

)
dG(x) <∞, ∀ s ∈ Rp.

Let

Γn(x) := n−1
n∑
i=1

h(Zi)h(Zi)
′κZi(x), Γ(x) := E

(
h(Z)h(Z)′κZ(x)

)
, x ∈ R,(2.15)

Gn :=

∫
Γn(x)′Γn(x)dG(x), G :=

∫
Γ(x)′Γ(x)dG(x).

Assume

G is positive definite and

∫ ∥∥Γn(x)− Γ(x)
∥∥2dG(x)→p 0.(2.16)
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Let cni ≡ n−1/2h(Zi). Let hj denote the jth component of h. Write hj = h+j −h
−
j , for 1 ≤ j ≤ p.

Assume there exists a constant 0 < C <∞ such that ∀ δ > 0, 0 < b <∞, ‖s‖ ≤ b,

lim sup
n

p∑
j=1

∫
E
[
n−1/2

n∑
i=1

h±j (Zi)
{
KZi(x+ s′cni + δ‖cni‖)(2.17)

−KZi(x+ s′cni − δ‖cni‖)
}]2

dG(x) ≤ Cδ2.

Remark 2.1. We shall now discuss some sufficient conditions for the above assumptions for the
three types of the integrating measure G, viz, when G is a d.f. symmetric around zero, when G(x) ≡
δ0(x) and when G(x) ≡ x. In the absence of measurement error, the estimators corresponding to
the latter two choices of G are known to be asymptotically efficient at Laplace and logistic error
distributions, respectively, while the estimator θ̃ corresponding to a d.f. G is typically robust against
gross errors in the error distribution.

Consider the following assumptions.∫
κz(x)dG(x) > 0, ∀ z ∈ Rp;

∫
E
(
κ2Z(x)

)
dG(x) > 0.(2.18)

E‖h(Z)‖4 <∞, G is positive definite.(2.19)

Density f of F is uniformly continuous, bounded and f(x) ≡ f(−x).(2.20)

Consider the case when G is a d.f. symmetric around zero. Then, because 0 ≤ 1−Kz(x) ≤ 1,
for all x, z, A ≤ E‖h(Z)‖2 < ∞, by (2.19), thereby verifying (2.10). By (2.20), κz(x) =

∫
f(x +

θ′v)dHz(v) is uniformly continuous in x, uniformly in z, and

sup
z,x

κz(x) ≤ ‖f‖∞ <∞,(2.21)

where for any function ` from R to R, ‖`‖∞ := supx∈R |`(x)|. Thus (2.18) and (2.19) imply (2.13)
here. Moreover, by (2.20), ∀ s ∈ Rp, κZ(x+ n−1/2s′h(Z) + u‖h(Z)‖)− κZ(x)→p 0, as first n→∞
and then u→ 0, and |κZ(x+n−1/2s′h(Z)+u‖h(Z)‖)−κZ(x)| ≤ 2‖f‖∞. Hence, by the DCT, (2.14)
holds. Under (2.19) and (2.20), ‖Γn(x)−Γ(x)‖ ≤ ‖f‖∞[n−1

∑n
i=1 ‖h(Zi)‖2+E(‖h(Z)‖2)] = Op(1).

By the LLNs, ‖Γn(x) − Γ(x)‖ →p 0, for every x ∈ R. Hence the DCT ensures the satisfaction of
(2.16) here. Fact (2.21), G being a d.f. and the Cauchy-Schwarz (C-S) inequality yield that the left
hand side of (2.17) is bounded from the above by

lim sup
n

p∑
j=1

E
[
2n−1/2

n∑
i=1

h±j (Zi)‖cni‖δ‖f‖∞
]2

≤ 4δ2‖f‖2∞ lim sup
n

E
(
n−1

n∑
i=1

‖h(Zi)‖4
)

= 4δ2‖f‖2∞E
(
‖h(Z)‖4

)
,

by the LLNs, thereby verifying (2.17). We also use (2.19) here.
Next, consider the case when G(x) ≡ δ0(x). Even though this is included in the case of G

being a d.f., one can directly verify that in this case the conditions (2.10)–(2.17) are implied by
κz(0) :=

∫
f(θ′v)dHz(v) > 0, ∀ z ∈ Rp, Eκ2Z(0) > 0, (2.19) and that f is continuous and bounded

on R. The latter condition is less restrictive than (2.20).
Finally, consider the case G(x) ≡ x. Here (2.18) is trivially satisfied. Assume (2.19) and

(2.20) hold. Note that E|ζ|2 ≤ Eε2 + ‖θ‖2E‖U‖2 < ∞. Then by the C-S inequality, A ≤
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E
(
‖h(Z)‖2E

(
|ζ|
∣∣Z)) ≤ E1/2(‖h(Z)‖4)E1/2

(
|ζ|2
)
<∞, by (2.19). Argue as in the case of when G

is a d.f. to see that (2.19) and (2.20) imply (2.12)–(2.14) here also.
To verify (2.16), by the LLNs, ‖Γn(x) − Γ(x)‖ →p 0, ∀x ∈ R. Also, ‖Γn(x) − Γ(x)‖2 ≤

2n−1
∑n

i=1 ‖h(Zi)‖4κ2Zi
(x)+2E(‖h(Z)‖4κ2Z(x)). The fact (2.21) and

∫
κz(x)dx = 1 imply

∫
κ2z(x)dx

≤ ‖f‖∞, for all z ∈ Rp. Hence (2.16) follows from the DCT and (2.19).
Next, consider (2.17). By the C-S inequality used twice, once with the sum and once with the

integrals and the Fubini Theorem and the fact that
∫
κ2z(x)dx ≤ ‖f‖∞,∀z ∈ Rp, the left hand side

of (2.17) is bounded from the above by

lim sup
n

E
(
n−1

n∑
i=1

‖h(Zi)‖2
∫ n∑

i=1

{∫ δ‖cni‖

−δ‖cni‖
κZi(x+ s′cni + u)du

}2
dx
)

≤ 2 lim sup
n

E
(
n−1

n∑
i=1

‖h(Zi)‖2
n∑
i=1

δ‖cni‖
∫ δ‖cni‖

−δ‖cni‖

∫
κ2Zi

(x+ s′cni + u)dxdu
)

≤ 4δ2‖f‖∞ lim sup
n

E
(
n−1

n∑
i=1

‖h(Zi)‖2
)2
≤ 4δ2‖f‖∞E‖h(Z)‖4, ∵ cni = n−1/2h(Zi),

where the last inequality again follows from the C-S inequality. Because of (2.19), this verifies
(2.17) in the case G(x) ≡ x.

We shall now return to the derivation of the asymptotic normality of θ̃. This will be done by
following the general method of Section 5.4 of Koul (2002). This method requires the two steps.
In the first step we need to show that M(t) is AULQ (asymptotically uniformly locally quadratic)
in n1/2(t − θ) for t ∈ Nn(b) := {t ∈ Rp, n1/2‖t − θ‖ ≤ b}, for every 0 < b < ∞. The second step
requires to show that n1/2‖θ̃ − θ‖ = Op(1).

In the current setup, the above mentioned second step is in part implied by having

M(θ) = Op(1).(2.22)

Proof of (2.22). Because of (2.9) and because V (x, t) ≡ V (−x, t),

M(t) ≡ 2

∫ ∞
0

∥∥V (x, t)
∥∥2dG(x), ∀ t ∈ Rp.(2.23)

Moreover, by (2.5),

EV (x, θ) = n1/2E
(
h(Z)E

[(
I(ζ ≤ x)− I(−ζ < x)

)∣∣Z])
= n1/2E

(
h(Z)

[
KZ(x)− 1 +KZ(−x)

])
= 0, x ∈ R,

E
∥∥V (x, θ)

∥∥2 = E
(
‖h(Z)‖2E

[(
I(ζ ≤ x)− I(−ζ < x)

)2∣∣Z])
= 2E

(
‖h(Z)‖2(1−KZ(x))

)
, x > 0.

Hence, by the Fubini Theorem and (2.10),

EM(θ) = 4

∫ ∞
0

E
(
‖h(Z)‖2(1−KZ(x))

)
dG(x) <∞.

The claim (2.22) follows from this fact and the Markov inequality.
The fact n1/2(θ̃ − θ) = arginfs∈RpM(θ + sn−1/2) motivates the following notation. Let
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W (x, s) := n−1/2
n∑
i=1

h(Zi)
[
I(ζi ≤ x+ s′cni)−KZi(x+ s′cni)

]
, s ∈ Rp,(2.24)

Tn :=

∫
Γ(x)′

[
W (x, 0) +W (−x, 0)

]
dG(x),

M̃(s) = M(θ) + 4T ′ns+ 4s′Gs, s̃ := argminsM̃(s) = −1

2
G−1Tn.

For a positive integer m, let Nm(µ,Σ) denote the m-dimensional normal distribution with
mean vector µ and covariance matrix Σ, N = N1. The following theorem describes the asymptotic
distribution of θ̃.

Theorem 2.1. Under (2.1), (2.2), (2.4) and assumptions (2.9)–(2.17), the following results hold.

sup
‖s‖≤b

∣∣M(θ + n−1/2s)− M̃(s)
∣∣→p 0, ∀ 0 < b <∞.(2.25)

(a) ‖n1/2
(
θ̃ − θ)− s̃ ‖ →p 0, (b) n1/2

(
θ̃ − θ)→D Np

(
0, 4−1G−1ΣG−1

)
,(2.26)

where Σ is defined at (2.28) below.

Proof. The proof of (2.25) appears in the Appendix. The proof of the claim (2.26)(a) is similar to
that of Theorem 5.4.4 of Koul (2002). The details are omitted for the sake of brevity. To prove
(2.26)(b), let

ψz(x) :=

∫ x

−∞
κz(y)dG(y), µ(z) := h(z)h(z)′, x ∈ R, z ∈ Rp.(2.27)

By (2.13), for every z ∈ Rp, ψz(x) is continuous and uniformly bounded in x, ψz(−x) ≡ ψz(∞)−
ψz(x), for all x ∈ R. Let ϕz(x) := ψz(−x)− ψz(x) = ψz(∞)− 2ψz(x). Moreover, with Q denoting
the d.f. of Z and using the Fubini Theorem and the definition of W (x, 0) +W (−x, 0) from (2.24),
we obtain the following.

Tn = n−1/2
n∑
i=1

∫
E
(
µ(Z)κZ(x)

)
h(Zi)

[
I(ζi ≤ x)− I(−ζi < x)

]
dG(x)

= n−1/2
n∑
i=1

∫ ∫
µ(z)κz(x)dQ(z)h(Zi)

[
I(ζi ≤ x)− I(−ζi < x)

]
dG(x)

= n−1/2
n∑
i=1

∫
µ(z)h(Zi)

∫ [
I(ζi ≤ x)− I(−ζi < x)

]
dψz(x)dQ(z)

= n−1/2
n∑
i=1

∫
µ(z)h(Zi)ϕz(ζi)dQ(z).

Let

Cz(u, v) := Cov
[(
ϕu(ζ), ϕv(ζ)

)∣∣Z = z
]

= 4Cov
[(
ψu(ζ), ψv(ζ)

)∣∣Z = z
]
,

K(u, v) := E
(
µ(Z)CZ(u, v)

)
, u, v ∈ Rp.

Clearly, ETn = 0 and by the Fubini Theorem, the covariance matrix of Tn is
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Σ := ETnT
′
n = E

{(∫
µ(z)h(Z)ϕz(ζ)dQ(z)

)(∫
µ(v)h(Z)ϕv(ζ)dQ(v)

)′}
(2.28)

=

∫ ∫
µ(z)K(z, v)µ(v)′dQ(z)dQ(v).

Thus Tn is a p × 1 vector of independent centered finite variance r.v.’s. By the classical CLT,
Tn →D Np(0,Σ). Hence, the minimizer s̃ = (−1/2)G−1Tn →D Np

(
0, 4−1G−1ΣG−1

)
. The claim

(2.26)(b) now follows from this result and (2.26)(a).

Remark 2.2. Here we shall discuss an example where the conditional distribution of U , given
Z, is known and that of V , given Z, does not depend on Z. We shall also discuss the Pitman’s
asymptotic relative efficiencies of some of the m.d. estimators, relative to the least squares and
maximum likelihood estimators, at some error d.f. F .

Example 2.1. Suppose p = 1, X ∼D N (a, σ2X), U ∼D N (0, σ2U ), with a, σ2X and σ2U known, and
X and U are independent r.v.’s. Then Z = X + U ∼D N (a, σ2X + σ2U ), Cov(Z,U) = σ2U so that

(Z,U) ∼D N2

(( a
0

)
,
( σ2X + σ2U σ2U

σ2U σ2U

))
.

Hence, the conditional distribution of U , given Z = z, is N ((z−a)r2, r2σ2X), where r2 := σ2U/(σ
2
X +

σ2U ). Thus, γ(z) = E(U |Z = z) = (z − a)r2, h(z) = z − γ(z) = z − r2(z − a). Because 0 ≤ r2 < 1
and σ2X > 0,

Eh2(Z) = (1− r2)2(σ2X + σ2U ) + a2 ≥ (1− r2)2(σ2X + σ2U ) > 0.(2.29)

Next, the conditional distribution of V = U − γ(Z) = U − (Z − a)r2, given Z, is N (0, r2σ2X),
which does not depend on Z and hence V is independent of Z. Thus

Kz(x) = P (ζ ≤ x|Z = z) = P (ε− θ′V |Z = z) =

∫
F (x+ θv)dΦ

(
v/rσX

)
,

also does not depend on z, i.e., ζ is also independent of Z. Here Φ denotes the d.f. of a N (0, 1)
r.v.. Write K and κ for Kz and κz in this case. Then many assumptions and entities involved in
the statement of the asymptotic normality of θ̃ simplify as follows. Note that now (2.11) and (2.16)
are a priori satisfied. The other assumptions (2.10), (2.13), (2.14) and (2.17) are equivalent to the
following conditions.

A :=

∫ ∞
0

(
1−K(x)

)
dG(x) <∞.(2.30)

F has Lebesgue density f , symmetric around zero, and such that the density(2.31)

κ(x) =
∫
f(x+ θ′v)dH(v) of K satisfies the following:

0 <
∫
κj(x)dG(x) <∞, lim

u→0

∫ (
κ(x+ u)− κ(x)

)j
dG(x) = 0, j = 1, 2.

Assumption (2.17) with Kz ≡ K holds.(2.32)

The simplification in the statement of the asymptotic normality of θ̃ occurs as follows. To
begin with, ψz(x) ≡ ψ(x) ≡

∫ x
−∞ κ(y)dG(y), ϕz(x) ≡ ϕ(x) = ψ(−x) − ψ(x), Γ(x) = Γκ(x), where

Γ := Eh2(Z) > 0, (see (2.29)), and
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Tn = Γn−1/2
n∑
i=1

h(Zi)ϕ(ζi), G =

∫
Γ(x)′Γ(x)dG(x) = Γ2

∫
κ2(x)dG(x),

Σ = Var(Tn) = Γ3Var(ϕ(ζ)),
1

4
G−1ΣG−1 =

Var(ϕ(ζ))

4Γ(
∫
κ2(x)dG(x))2

=
Var(ψ(ζ))

Γ(
∫
κ2(x)dG(x))2

.

To summarize, under the above normality assumption of X,U , the conditions (2.9) and (2.30)–
(2.32) imply that

n1/2
(
θ̃ − θ

)
→D N

(
0,

τ2G
Eh2(Z)

)
, τ2G :=

Var
( ∫ ζ
−∞ κ(x)dG(x)

)
(
∫
κ2(x)dG(x))2

.(2.33)

Consider the case when G(x) ≡ x. Write θ̃I for the corresponding m.d. estimator and τ2I for τ2G
in this case. Because K(ζ) is a uniformly distributed r.v. on [0, 1],

Var
(∫ ζ

−∞
κ(x)dG(x)

)
= Var

(∫ ζ

−∞
κ(x)dx

)
= Var(K(ζ)) = 1/12,∫

κ2(x)dG(x) =

∫
κ2(x)dx, τ2I =

1

12(
∫
κ2(x)dx)2

.

In particular, if there is no measurement error, U = 0, H is degenerate at zero, ζ = ε, κ = f and
τ2I = 1/

(
12(
∫
f2(x)dx)2

)
, the very familiar expression related to the H-L estimator.

Next, consider the case G(x) ≡ δ0(x). Write θ̃0 for the corresponding m.d. estimator and τ20
for τ2G in this case. Because ζ is symmetrically distributed around zero, Var(I(ζ > 0)) = 1/4,∫
κ2(x)dG(x) = κ2(0) and

Var
(∫ ζ

−∞
κ(x)dG(x)

)
= Var

(
κ(0)I(ζ > 0)

)
=
κ2(0)

4
, τ20 =

1

4κ2(0)
.

Again if there is no measurement error then τ20 = 1/(4f2(0)), which is the well celebrated asymptotic
variance of the one sample median or the factor that appears in the asymptotic variance of the
LAD estimator in regression models.

We shall now describe the extension of (2.33) when p > 1. Let X ∼D Np(µX ,ΣX), U ∼D
Np(0,ΣU ), X,U independent, ΣX ,ΣU both positive definite and known. Also µX is known. Then
Z = X + U ∼D Np(µX ,ΣX + ΣU ), Cov(Z,U) = ΣU so that

(Z,U) ∼D N2p

(( µX
0

)
,
( ΣX + ΣU ΣU

ΣU ΣU

))
.

Hence, the conditional distribution of U , given Z = z, is

Np
(

ΣU (ΣX + ΣU )−1(Z − µX), ΣU − ΣU (ΣX + ΣU )−1ΣU

)
.

Let R := ΣU (ΣX + ΣU )−1. Then γ(z) = E(U |Z = z) = R(z−µZ) and the conditional distribution
of V = U − R(Z − µZ), given Z, is Np(0,ΣU − RΣU ), which again does not depend on Z and
hence V is independent of Z. Now Γ = Eh(Z)h(Z)′. Like (2.33), under (2.9) and (2.30)–(2.32),
n1/2

(
θ̃ − θ

)
→D Np

(
0, τ2GΓ−1

)
.
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Pitman’s Asmyptotic Relative Efficiency (ARE). We shall now compute Pitman’s asymp-
totic relative efficiency of θ̃I , θ̃0 relative to the least squares estimator and the maximum likelihood
estimator in the current setup when F (x) = Φ(x/σε), i.e., ε ∼ N (0, σ2ε). See Lehmann (1999) for
the definition of the ARE.

Assume p = 1. Let w2 := σ2ε + θ2r2σ2X . Because V ∼ N (0, r2σ2X), ζ = ε − θV ∼ N (0, w2).
Hence κ2(0) = (2πw2)−1, τ20 = (4κ2(0))−1 = (π/2)w2 and∫

κ2(x)dx =
1

2
√
π w2

, τ2I =
1

12(
∫
κ2(x)dx)2

=
π

3
w2.

Next, by the CLT and the Slutsky’s Theorem, n1/2
(
θ̃`se − θ

)
→D N

(
0, w2/Eh2(Z)

)
, where

θ̃`se :=
∑n

i=1 h(Zi)Yi
/∑n

i=1 h
2(Zi) is the least squares estimator of θ in the model (2.3). Hence,

ARE(θ̃I , θ̃`se) = 3/π, and ARE(θ̃0, θ̃`se) = 2/π, which are the same as in the case of no measurement
error regression models.

Let τ2 := w2
/

(Eh2(Z) + 2θ2r4σ4X) and ρ := Eh2(Z)/(Eh2(Z) + 2θ2r4σ4X). Under the above

normality assumptions on the distributions of ε, U,X, a consistent solution θ̂n of the likelihood
equation exists and n1/2(θ̂n − θ)→D N (0, τ2). Consequently,

ARE(θ̃I , θ̂n) = 3ρ/π, ARE(θ̃0, θ̂n) = 2ρ/π, ARE(θ̃`se, θ̂n) = ρ.

Next, consider the bias corrected least squares estimator

θ̃bc`s :=
n∑
i=1

(Zi − Z̄)(Yi − Ȳ )/
[ n∑
i=1

(Zi − Z̄)2 − σ2U
]
.

Let

ϕ2 :=
[
σ2X(σ2ε + θ2σ2U ) + σ2Uσ

2
ε + 2θ2σ4U

]/
σ4X =

[
w2(σ2X + σ2U ) + 2θ2σ4U

]/
σ4X .

A direct application of the classical CLT and Slutksy’s Theorem yields that n1/2
(
θ̃bc`s − θ

)
→D

N
(
0, ϕ2

)
. See also Cheng and Van Ness (1999). Hence ARE(θ̃I , θ̃bc`s) = (3/π)(ϕ2/w2). Because

r2 → 0, 1, as σ2U → 0,∞, respectively, we obtain that w2 = σ2ε + θ2r2σ2X → σ2ε , σ
2
ε + θ2σ2X , as

σ2U → 0,∞, respectively. Moreover, the derivative of the ratio σ4U/w
2 with respect to σ2U is positive

for all values of σ2U so that this ratio is an increasing function of σ2U . Thus the

ARE(θ̃I , θ̃bc`s) =
3

π

ϕ2

w2
=

3

π

{σ2X + σ2U
σ4X

+ 2θ2
σ4U
σ4Xw

2

}
is an increasing function of σ2U and ARE(θ̃I , θ̃bc`s) → (3/π)σ−2X , ∞, as σ2U → 0, σ2U → ∞, respec-

tively. In other words, the estimator θ̃I is far more efficient, compared to the BCLS, against the
increasing measurement error. A similar statement holds about the ARE(θ̃0, θ̃bc`s).

3. M.D. Estimation with validation data

In this section, we develop analogs of the class of m.d. estimators {θ̃, G varies} of the previous
section when h(z) in (2.3) is unknown, but when validation data is available. Here assume that
the validation sample {(X̃k, Z̃k), 1 ≤ k ≤ N} obeys the equation (2.2) of the covariates and is
independent of the primary data set {(Zi, Yi), 1 ≤ i ≤ n}. For instance, in the dietary intake
example in Section 1, an independent validation data of dietary intake can be obtained by assessing
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urinary biomarkers in labs. Validation data are used to obtain an estimate ĥ(z) of h(z). An analog
of θ̃ is obtained by replacing h(z) by ĥ(z) in its definition.

First, we define an estimator of the function h(z) for z ∈ C where C is a compact set in Rp
with infC fZ(z) ≥ b0 for some b0 > 0. Because X̃k, Z̃k obey (2.2), we obtain a random sample
{Ũk, 1 ≤ k ≤ N} with Ũk = Z̃k − X̃k, of the measurement error U. Define the kernel density
estimators of fU and fZ as follows. Let K1(·), K2(·) be the two symmetric density kernels, w1 ≡
w1(N), w2 ≡ w2(N) be bandwidth sequences depending on N and define

f̂U (u) :=
1

Nwp1

N∑
k=1

K1

( Ũk − u
w1

)
, f̂Z(z) :=

1

Nwp2

N∑
k=1

K2

( Z̃k − z
w2

)
,(3.1)

h̃(z) :=
1

N

N∑
k=1

X̃kf̂U (z − X̃k), h0(z) :=

∫
xfU (z − x)dFX(x).

Let ε0 be a known number satisfying 0 < ε0 < b0. Because,

h(z) = E(X|Z = z) =

∫
xfX|Z(x|z)dx =

∫
xfU (z − x)dFX(x)

fZ(z)
=
h0(z)

fZ(z)
, z ∈ C,

the function h(z) can be estimated by

ĥ(z) :=
N−1

∑N
k=1 X̃kf̂U (z − X̃k)

(f̂Z(z) ∨ ε0)
=

h̃(z)

(f̂Z(z) ∨ ε0)
, z ∈ C.(3.2)

Here ε0 is introduced to avoid the vanishing denominator. For any two numbers c∨d := max{c, d}.
The lemma below gives the asymptotic distribution of ĥ(z), which may be of independent interest.

Lemma 3.1. Under model (2.2), when fZ and fU are twicely continuously differentiable and wi →
0, Nwpi →∞ as N →∞ for i = 1, 2, then

N1/2
(
ĥ(z)− h(z)− w2

1B(z)
)
→D Np(0,Ω(z)), ∀ z ∈ Rp, fZ(z) > 0,

where B(z) = 1
2

∫
xfX(x)u′f ′′U (z − x)uK1(u)dudx/fZ(z), f ′′U (u) is the p× p matrix of second order

partial derivatives of fU (u) and Ω(z) = [fZ(z)]−2{Cov(XfU (z −X)) + Cov((z − U)fX(z − U))}.
Analogous to (2.6), we propose the estimator θ̂ based on ĥ(z) as follows. Define IC(z) = 1, if

z ∈ C, otherwise 0. For x ∈ R, t ∈ Rp, let

V̂ (x, t) := n−1/2
n∑
i=1

IC(Zi)ĥ(Zi)
[
I(Yi − t′ĥ(Zi) ≤ x)− I(−Yi + t′ĥ(Zi) < x)

]
,(3.3)

M̂(t) :=

∫ ∥∥V̂ (x, t)
∥∥2dG(x), θ̂ := argmint∈RpM̂(t).

To state the asymptotic normality of θ̂, we need some more notation and the following additional
assumptions. In this section, all limits are taken as n ∧N →∞, unless mentioned otherwise. Let

Γ̂n(x) := n−1
n∑
i=1

IC(Zi)ĥ(Zi)ĥ(Zi)
′κZi(x), Γ̂(x) := E

(
IC(Z)h(Z)h(Z)′κZ(x)

)
,(3.4)

Ĝn :=

∫
Γ̂n(x)′Γ̂n(x)dG(x), Ĝ :=

∫
Γ̂(x)′Γ̂(x)dG(x),

L(Z, ζ) :=

∫
IC(Z)µ(z)h(Z)ϕz(ζ)dQ(z), α := E

∫
IC(Z)µ(z)h(Z)ψz(ζ)dQ(z),
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β(θ) := E
{
IC(Z)θ′B(Z)

∫
µ(z)h(Z)ψz(ζ)dQ(z)

}
,

Rθ(x) := E
{
IC(Z)θ′

[
X̃fU (Z − X̃)/fZ(Z)− h(Z)

]∣∣∣X̃ = x
}
,

Sθ(u) := E
{
IC(Z)θ′

[
(Z − Ũ)fX(Z − Ũ)/fZ(Z)− h(Z)

]∣∣Ũ = u
}
.

We need the following additional assumptions, where ψz and µ are as in (2.27).

E‖X‖4, E‖B(Z)‖2, Eζ2 and E
(
‖µ(Z)ψZ(ζ)‖

)
are finite.(3.5)

The measure G satisfies (2.9) and G is either a distribution function or is absolutely(3.6)

continuous with a.e. derivative g bounded, i.e., dG(x) = g(x)dx, ‖g‖∞ <∞.
The density f of ε satisfies‖f‖∞ <∞.(3.7)

inf
z∈C

fZ(z) ≥ b0 > 0, sup
z∈C

fZ(z) <∞.(3.8)

fU has an absolutely integrable characteristic function on Rp and ‖fU‖∞ <∞.(3.9)

The second partial derivative matrix f ′′Z(z) satisfies that sup{λmax(f ′′Z(z)); z ∈ Rp} <∞,(3.10)

where λmax(f ′′Z(z)) is the maximum of the absolute eigenvalues of f ′′Z(z).

Assume that the same holds for f ′′U .

The kernels K1,K2 are positive symmetric square integrable densities on [−1, 1]p.(3.11)

In addition, K2 satisfies a Lipschitz condition.

The bandwidths wi → 0,
Nwpi
| logwi|

→ ∞, | logwi|
log logN

→∞, wpi (N) ≤ cwpi (2N),(3.12)

for some c > 0, i = 1, 2.

Ĝ is positive definite and

∫
‖Γ̂n(x)− Γ̂(x)‖2dG(x)→p 0.(3.13)

The assumption (2.17) holds with h(Z) replaced by ĥ(Z).(3.14)

lim(n/N) = λ, 0 ≤ λ <∞. Moreover, nw4
1 → C1 <∞.(3.15)

lim(n/N) = λ =∞, Nw4
1 → C2 <∞.(3.16)

The limiting distribution of θ̂ is affected by the range of values of λ = lim(n/N) as is described
in the following two theorems.

Theorem 3.1. (0 ≤ λ < ∞). Under models (2.1) and (2.2), when the assumptions (2.9)–(2.14)
and (3.5)–(3.15) hold, n1/2

(
θ̂ − θ + w2

1Ĝ−1β(θ)
)
→D Np

(
0, 4−1Ĝ−1(Σ0 + 4λΣθ)Ĝ−1

)
, where Σ0 =

Cov(L(Z, ζ)) and Σθ = [Var(Rθ(X̃)) + Var(Sθ(Ũ))]αα′.

Theorem 3.2. (λ = ∞). Under models (2.1) and (2.2), when the assumptions (2.9)–(2.14),
(3.5)–(3.14) and (3.16) hold, then we have N1/2

(
θ̂ − θ + w2

1Ĝ−1β(θ)
)
→D Np

(
0, Ĝ−1ΣθĜ−1

)
.

For all 0 ≤ λ ≤ ∞, the asymptotic bias in θ̂ is inherited from the asymptotic bias in the estimator
ĥ(z), see Lemma 3.1. If λ = 0, thenN is relatively much larger than n and the asymptotic covariance
matrix in the limiting distribution of Theorem 3.1 becomes 4−1Ĝ−1Σ0Ĝ−1. This covariance matrix
is like the one when h(z) is known, except here we have the set C appearing in this matrix. On
the other extreme is the case λ = ∞. In this case, the validation sample size N is much limited
compared to the primary sample size n. In practice, this case arises more often due to the high cost
of validation studies. It is not surprising to see that the convergence rate becomes

√
N with the

limiting covariance matrix Ĝ−1ΣθĜ−1. The proofs of both the theorems appear in the Appendix.
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4. Simulation study

In this section, we report findings of a finite sample simulation study comparing the empirical
bias and RMSE of the two m.d. estimators corresponding to the integrating measure G(x) ≡ x and
G(x) = δ0(x), with the calibrated least square and the bias corrected least square estimators. We
conducted these simulations for the two cases: h(z) known and h(z) unknown but validation data
available.

4.1. M.D. estimation when the function h(z) is known

Here, data is generated from the regression model of Example 2.1, i.e., p = 1 and

Yi = θXi + εi, θ = 2, Zi = Xi + Ui, Xi ∼ N (a, σ2X), Ui ∼ N (0, σ2U ), εi ∼ F,(4.1)

a = 1, σ2X = 1, h(z) = z/(1 + σ2U ) + σ2U/(1 + σ2U ), 1 ≤ i ≤ n.

Clearly, the regression function h(z) is fully determined by σ2U . To assess the effect of measurement
error on the estimators, in this simulation study we used σU = 0.2, 0.5, 1, 1.5, 2. We choose the
sample size n = 200, 500 and F to be N (0, 1), Laplace(0, 1) and t2 d.f.’s.

Let θ̃`ad and θ̃I denote the m.d. estimators corresponding to G(x) = δ0(x) and G(x) ≡ x,
respectively. The formulas for the weighted empirical distances given in (2.7) and (2.8) were min-
imized, respectively, to obtain the numerical values of these estimators. The two other estimators
we include in this study are

θ̃`se =
∑

h(Zi)Yi/
∑

h2(Zi), θ̃bc`s = SY Z/(SZZ − σ2U ),

where SY Z = n−1
∑n

i=1(Yi − Ȳ )(Zi − Z̄) and SZZ = n−1
∑n

i=1(Zi − Z̄)2.
Tables 1– 3 give the empirical bias and RMSE based on 500 randomly simulated trials for the

four estimators (θ̃I , θ̃`ad, θ̃`se, θ̃bc`s) in the case of known distributions of X and U . In addition,
we present the boxplot of each estimator for the sample size n = 500 in Figure 1. From these
tables, we see that there is little empirical bias in θ̃I , θ̃`ad and θ̃`se for all chosen values of σU , n
and all chosen F . The empirical bias of θ̃bc`s increases significantly, compared to the other three
estimators, with the increasing σU . This is true for all chosen sample sizes and F . Regarding RMSE,
for any fixed value of σU and n, θ̃I and θ̃`se achieve minimal RMSE among the four estimators for
Gaussian and Laplace error distributions, as seen in Tables 1 and 2, while from Table 3 we see the
superior performance of the m.d. estimators θ̃I and θ̃`ad for t2 error distribution. The estimator
θ̃bc`s displays much larger RMSE for the larger values of σU = 1.5 and 2 and for all chosen F ,
which is also indicated in Figure 1. Not unexpectedly, the RMSE of each estimator increases with
increasing σU . Moreover, from the right panel of Figure 1, we see that for F = t2, θ̃`se and θ̃bc`s
display not only larger variation but also unstable estimation presented by outliers. The bias and
RMSE of θ̃I is especially robust against the larger σU .

4.2. M.D. estimation when h(z) is unknown but validation data is available

We continue generating data from the model (4.1) in Section 4.1. We simulated both the
primary sample {Yi, Zi, 1 ≤ i ≤ n} and validation sample {X̃k, Z̃k, 1 ≤ k ≤ N} following (4.1) with
the two samples size choices (n,N) = (200, 200) and (500, 500). The function h(z) is estimated
by ĥ(z) in (3.2) based on the validation sample. Let (θ̂I , θ̂`ad, θ̂`se, θ̂bc`s) denote the analog of H-L,
LAD, LS and BCLS estimators when h(z) and σ2U are replaced by ĥ(z) and σ̂2U . Here σ̂2U is the

sample variance of {Ũk := Z̃k − X̃k, 1 ≤ k ≤ N}. The kernels are chosen as K1(x) = K2(x) =
0.75(1− x2)I(|x| ≤ 1). To meet the assumptions, we specify the choices of the bandwidths w1 and
w2 as follows. Similar to the rule-of-thumb bandwidth in kernel density estimators of Silverman
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(1986), we set w1 = σ̂2UN
−1/(2+p). We adapt the univariate plug-in selector of Wand and Jones

(1994) for w2. We chose C as the interval between the 5th and 95th percentiles of {Zi, 1 ≤ i ≤ n}
and ε0 = 10−4.

The empirical bias and RMSE summary is presented in Tables 4–6 for σU = 0.2, 0.5, 1, 1.5, 2
and for Gaussian, Laplace and t2 regression errors, respectively. Boxplots of the four estimators
for sample sizes (n,N) = (500, 500) are shown in Figure 2. From these tables we see that for fixed
n,N, σU , F , the empirical bias and RMSE of all four estimators are larger than those in Tables
1–3 due to the estimation error in ĥ(z) and σ̂U . The bias and RMSE of the two m.d. estimators
θ̂I and θ̂`ad increase only slightly with the increasing σU , while bias and RMSE of θ̂bc`s increases
significantly with increasing σU . Moreover, from Figure 2 we see that the estimators θ̂`se and
θ̂bc`s display unstable estimation performance for the larger σU and all chosen F . Overall, the
m.d. estimator θ̂I achieves the smallest RMSE with controlled bias among the four estimators.
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Figure 1: Boxplot of each estimator for known h(z) and n = 500 with different values of σU under Gaussian errors
(left panel), Laplace errors (central panel) and t2 errors (right panel).
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Figure 2: Boxplot of each estimator for unknown h(z) and (n,N) = (500, 500) with different values of σU under
Gaussian errors (left panel), Laplace errors(central panel) and t2 errors (right panel).
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ε ∼ N (0, 1) n = 200 n = 500

θ̃I θ̃`ad θ̃`se θ̃bc`s θ̃I θ̃`ad θ̃`se θ̃bc`s
σU = 0.2

BIAS 0.0021 0.0102 0.0022 0.0049 -0.0029 0.0013 -0.0022 -0.0026
RMSE 0.0533 0.0791 0.0528 0.0788 0.0355 0.0525 0.0346 0.0509

σU = 0.5

BIAS 0.0017 0.0138 0.0016 0.0107 -0.0026 0.0018 -0.0017 0.0018
RMSE 0.0690 0.0968 0.0673 0.1218 0.0466 0.0676 0.0452 0.0757

σU = 1

BIAS 0.0030 0.0160 0.0019 0.0477 -0.0022 0.0073 -0.0012 0.0301
RMSE 0.0953 0.1337 0.0912 0.2930 0.0689 0.0932 0.0664 0.1800

σU = 1.5

BIAS 0.0046 -0.0056 0.0033 0.2054 < 10−4 -0.0034 0.0002 0.0841
RMSE 0.1132 0.1479 0.1092 0.8464 0.0792 0.0992 0.0777 0.3829

σU = 2

BIAS 0.0046 0.0129 0.0035 0.4586 0.0008 -0.0008 0.0010 0.2368
RMSE 0.1237 0.1661 0.1194 1.8504 0.0879 0.1156 0.0860 0.8585

Table 1: Bias and RMSE of each estimator for known h(z) under Gaussian regression error.

ε ∼ Laplace(0, 1) n = 200 n = 500

θ̃I θ̃`ad θ̃`se θ̃bc`s θ̃I θ̃`ad θ̃`se θ̃bc`s
σU = 0.2

BIAS 0.0014 -0.0009 0.0039 -0.0019 0.0011 0.0040 0.0010 0.0012
RMSE 0.0658 0.0979 0.0737 0.1040 0.0418 0.0511 0.0473 0.0690

σU = 0.5

BIAS -0.0019 0.0021 -0.0025 0.0070 0.0016 0.0086 0.0012 0.0052
RMSE 0.0860 0.1131 0.0902 0.1452 0.0543 0.0722 0.0568 0.0929

σU = 1

BIAS 0.0015 0.0063 -0.0011 0.0520 0.0020 0.0039 0.0019 0.0265
RMSE 0.1159 0.1554 0.1179 0.3224 0.0765 0.1001 0.0773 0.1878

σU = 1.5

BIAS 0.0039 -0.0086 0.0007 0.2484 0.0034 -0.0003 0.0033 0.0824
RMSE 0.1346 0.1684 0.1362 1.0327 0.0854 0.1035 0.0855 0.4044

σU = 2

BIAS 0.0070 0.0070 0.0072 0.3120 0.0037 0.0046 0.0033 0.2308
RMSE 0.1459 0.1902 0.1438 1.3663 0.0964 0.1157 0.0963 0.9375

Table 2: Bias and RMSE of each estimator for known h(z) under Laplace regression error.

ε ∼ t2 n = 200 n = 500

θ̃I θ̃`ad θ̃`se θ̃bc`s θ̃I θ̃`ad θ̃`se θ̃bc`s
σU = 0.2

BIAS -0.0024 0.0006 0.0101 0.0136 0.0020 0.0055 0.0052 0.0036
RMSE 0.0774 0.1032 0.2925 0.3371 0.0476 0.0717 0.1300 0.1912

σU = 0.5

BIAS -0.0030 -0.0019 0.0084 0.0189 0.0024 0.0068 0.0061 0.0088
RMSE 0.0966 0.1291 0.2861 0.3386 0.0607 0.0812 0.1378 0.2159

σU = 1

BIAS -0.0025 -0.0084 0.0077 0.0600 0.0035 0.0118 0.0071 0.0306
RMSE 0.1256 0.1777 0.2915 0.4611 0.0821 0.1094 0.1525 0.3032

σU = 1.5

BIAS -0.0009 -0.0202 0.0083 0.2199 0.0041 0.0032 0.0079 0.0921
RMSE 0.1450 0.1825 0.3028 0.9348 0.0971 0.1190 0.1651 0.4947

σU = 2

BIAS 0.0001 -0.0061 0.0090 0.5872 0.0047 0.0044 0.0087 0.2986
RMSE 0.1571 0.2074 0.3129 2.0090 0.1058 0.1261 0.1737 1.2157

Table 3: Bias and RMSE of each estimator for known h(z) under t2 regression error.
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ε ∼ N (0, 1) n = 200, N = 200 n = 500, N = 500

θ̂I θ̂`ad θ̂`se θ̂bc`s θ̂I θ̂`ad θ̂`se θ̂bc`s
σU = 0.2

BIAS -0.0380 -0.0025 0.0033 0.0057 -0.0241 0.0173 0.0236 -0.0027
RMSE 0.0884 0.0989 0.0811 0.0790 0.0589 0.0650 0.0592 0.0513

σU = 0.5

BIAS -0.0439 -0.0082 -0.0485 0.0139 -0.0291 0.0065 -0.0231 0.0014
RMSE 0.1167 0.1468 0.2412 0.1309 0.0821 0.0951 0.1714 0.0834

σU = 1

BIAS -0.0551 -0.0535 -0.0960 0.0775 -0.0335 -0.0070 -0.0567 0.0288
RMSE 0.1603 0.2020 0.3048 0.3764 0.1085 0.1281 0.2246 0.2267

σU = 1.5

BIAS -0.0593 -0.0612 -0.0833 0.4932 -0.0371 -0.0378 -0.0480 0.1371
RMSE 0.1843 0.2075 0.2699 2.0647 0.1231 0.1390 0.1830 0.6050

σU = 2

BIAS -0.0629 -0.0567 -0.0655 0.7770 -0.0412 -0.0421 -0.0390 0.4812
RMSE 0.1977 0.2315 0.2252 8.1122 0.1302 0.1440 0.1487 3.1191

Table 4: Bias and RMSE of each estimator for unknown h(z) with validation data under Gaussian errors.

ε ∼ Laplace(0, 1) n = 200, N = 200 n = 500, N = 500

θ̂I θ̂`ad θ̂`se θ̂bc`s θ̂I θ̂`ad θ̂`se θ̂bc`s
σU = 0.2

BIAS -0.0384 -0.0134 0.0038 0.0011 -0.0199 0.0175 0.0269 0.0009
RMSE 0.0991 0.1057 0.1146 0.1051 0.0620 0.0669 0.06418 0.0693

σU = 0.5

BIAS -0.0447 -0.0113 -0.0411 0.0131 -0.0216 0.0131 -0.0265 0.0039
RMSE 0.1355 0.1591 0.2362 0.1565 0.0838 0.0975 0.1809 0.0980

σU = 1

BIAS -0.0483 -0.0474 -0.0968 0.1015 -0.0267 -0.0062 -0.0479 0.0249
RMSE 0.1713 0.2194 0.3460 0.4507 0.1079 0.1253 0.1863 0.2333

σU = 1.5

BIAS -0.0498 -0.0534 -0.0808 0.4352 -0.0304 -0.0334 -0.0415 0.1166
RMSE 0.1917 0.2126 0.2947 2.8417 0.1224 0.1430 0.1733 0.5827

σU = 2

BIAS -0.0545 -0.0470 -0.0628 -0.2593 -0.0329 -0.0198 -0.0304 0.3198
RMSE 0.2036 0.2326 0.2567 9.8919 0.1290 0.1449 0.1501 4.5430

Table 5: Bias and RMSE of each estimator for unknown h(z) with validation data under Laplace errors.

ε ∼ t2 n = 200, N = 200 n = 500, N = 500

θ̂I θ̂`ad θ̂`se θ̂bc`s θ̂I θ̂`ad θ̂`se θ̂bc`s
σU = 0.2

BIAS -0.0452 -0.0516 0.0110 0.0131 -0.0171 -0.0173 0.0294 0.0035
RMSE 0.1138 0.1283 0.2842 0.3367 0.0691 0.0759 0.1568 0.1909

σU = 0.5

BIAS -0.0488 -0.0536 -0.0434 0.0167 -0.0201 -0.0167 -0.0221 0.0083
RMSE 0.1469 0.1657 0.3661 0.3400 0.0906 0.0996 0.2394 0.2153

σU = 1

BIAS -0.0600 -0.0678 -0.0905 0.0690 -0.0266 -0.0270 -0.0493 0.0350
RMSE 0.1834 0.2076 0.3814 0.5206 0.1197 0.1271 0.2498 0.3269

σU = 1.5

BIAS -0.0593 -0.0663 -0.0847 0.2926 -0.0245 -0.0243 -0.0530 0.1398
RMSE 0.2038 0.2272 0.3469 2.8562 0.1094 0.1179 0.2644 0.6613

σU = 2

BIAS -0.0620 -0.0694 -0.0983 0.6243 -0.0305 -0.0294 -0.0335 0.6066
RMSE 0.1983 0.2789 0.3219 7.4859 0.1369 0.1462 0.2225 3.6414

Table 6: Bias and RMSE of each estimator for unknown h(z) with validation data under t2 errors.
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Appendix

In this section some proofs are presented.

Proof of (2.25). Let D(s) :=
∫∞
0 ‖V (x, θ + n−1/2s)‖2dG(x). By (2.23), M(θ + n−1/2s) = 2D(s).

Recall that cni := n−1/2h(Zi) and define

U(x, s) := n−1/2
n∑
i=1

h(Zi)I
(
ζi ≤ x+ s′cni

)
, J(x, s) := n−1/2

n∑
i=1

h(Zi)KZi(x+ s′cni),

W (x, s) := U(x, s)− J(x, s), x ∈ Rp, s ∈ Rp.

Note that EU(x, s) ≡ EJ(x, s), EW (x, s) ≡ 0. By (2.5),

n−1/2
n∑
i=1

h(Zi)
{
KZi(x) +KZi(−x)

}
= n−1/2

n∑
i=1

h(Zi), ∀x ∈ Rp.

Recall the definition of Γn(x),Γ(x),Gn and G from (2.15). By (2.5), Γn(x) ≡ Γn(−x), Γ(x) ≡ Γ(−x).
Use the above notation and facts to rewrite

D(s) =

∫ ∞
0

∥∥U(x, s) + U(−x, s)− n−1/2
n∑
i=1

h(Zi)
∥∥2dG(x)

=

∫ ∞
0

∥∥∥{W (x, s)−W (x, 0)
}

+
{
W (−x, s)−W (−x, 0)

}
+
{
J(x, s)− J(x, 0)− Γn(x)s

}
+
{
J(−x, s)− J(−x, 0)− Γn(−x)s

}
+
{
W (x, 0) +W (−x, 0) + 2Γn(x)s

}∥∥∥2dG(x).

Expand the quadratic of the five summands in the integrand to obtain

D(s) = D1(s) +D2(s) + · · ·+D5(s) + 2× (10 cross product terms),(4.2)

where

D1(s) :=

∫ ∞
0

∥∥W (x, s)−W (x, 0)
∥∥2dG(x),

D2(s) :=

∫ ∞
0

∥∥W (−x, s)−W (−x, 0)
∥∥2dG(x),

D3(s) :=

∫ ∞
0

∥∥J(x, s)− J(x, 0)− Γn(x)s
∥∥2dG(x),

D4(s) :=

∫ ∞
0

∥∥J(−x, s)− J(−x, 0)− Γn(−x)s
∥∥2dG(x),

D5(s) :=

∫ ∞
0

∥∥W (x, 0) +W (−x, 0) + 2Γn(x)s
∥∥2dG(x).

Recall U(b) := {s ∈ Rp; ‖s‖ ≤ b}, b > 0. We shall shortly prove the following lemma.

Lemma 4.1. Under the above setup and the assumptions (2.9)–(2.17), ∀ 0 < b <∞,

sup
s∈U(b)

Dk(s) = op(1), k = 1, 2, · · · , 4,(4.3)

E
(

sup
s∈U(b)

D5(s)
)

= O(1).(4.4)
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Unless mentioned otherwise, all the supremum below are taken over s ∈ U(b). Lemma 4.1
together with the C–S inequality yield that

sup
s

∣∣∣ ∫ ∞
0

{
W (x, s)−W (x, 0)

}{
W (x, 0) +W (−x, 0) + 2Γn(x)s

}
dG(x)

∣∣∣2
≤ sup

s
D1(s) sup

s
D5(s) = op(1),

by (4.3) applied with k = 1 and (4.4). Similarly, the supremum over s of all other cross product
terms in the right hand side of (4.2) tend to zero, in probability.

Consequently, because D(s) = M(θ + n−1/2s)/2, we obtain

sup
s

∣∣M(θ + n−1/2s)− 2D5(s)
∣∣→p 0.(4.5)

Let

T ∗n :=

∫ ∞
0

Γn(x)
{
W (x, 0) +W (−x, 0)

}
dG(x).

Because of (2.5) and (2.9),
∫∞
0 Γn(x)Γn(x)′dG(x) = Gn/2,

∫∞
0 Γ(x)Γ(x)′dG(x) = G/2. Use these

facts when expanding the quadratic in D5 to write

D5(s) = 2−1M(θ) + 4s′T ∗n + 2s′Gns.(4.6)

Because Tn = 2
∫∞
0 Γ(x)

{
W (x, 0) +W (−x, 0)

}
dG(x), by the C-S inequality, (2.16) and (2.22),∥∥T ∗n − 1

2
Tn
∥∥2 =

∥∥∥∫ ∞
0

{
Γn(x)− Γ(x)

}{
W (x, 0) +W (−x, 0)

}
dG(x)

∥∥∥2
≤ D(0)

∫ ∞
0

∥∥Γn(x)− Γ(x)
∥∥2dG(x)→p 0,

‖Gn − G‖ →p 0.

Hence (2.25) follows from (4.5) and (4.6), thereby completing the proof of Theorem 2.1.

Proof of Lemma 4.1. Consider D3. Let Dis(x) := KZi(x+ s′cni)−KZi(x)−
s′cniκZi(x). Then

D3(s) :=

∫ ∞
0

∥∥∥n−1/2 n∑
i=1

h(Zi)Dis(x)
∥∥∥2dG(x)(4.7)

≤ 1

n

n∑
i=1

∥∥h(Zi)
∥∥2 ∫ ∞

0

n∑
i=1

D2
is(x)dG(x).

By the LLN’s and (2.4),

n∑
i=1

‖cni‖2 = n−1
n∑
i=1

‖h(Zi)‖2 →p E‖h(Z)‖2 <∞.(4.8)

By the C–S inequality and (2.14), for all s ∈ U(b),∫ ∞
0

n∑
i=1

D2
is(x)dG(x) ≤

∫ ∞
0

n∑
i=1

(∫ |s′cni|

−|s′cni|

(
κZi(x+ u)− κZi(x)

)
du
)2
dG(x)

≤ 2bn−1
∫ ∞
0

n∑
i=1

‖h(Zi)‖2
∫ bn−1/2

−bn−1/2

(
κZi(x+ u‖h(Zi)‖)− κZi(x)

)2
dudG(x).
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Therefore, by the Fubini Theorem and (2.14),

E
(

sup
s

∫ ∞
0

n∑
i=1

D2
is(x)dG(x)

)
(4.9)

≤ 2bn1/2
∫ bn−1/2

−bn−1/2

∫
E
{
‖h(Z)‖2

(
κZ(x+ v‖h(Z)‖)− κZ(x)

)2}
dG(x)dv → 0.

Upon combining this fact with (4.8) and (4.7), we obtain supsD3(s) = op(1), thereby proving (4.3)
for j = 3. The proof for j = 4 is exactly similar.

Now consider D1. Because the ith summand in W (x, s) −W (x, 0) is a conditionally centered
Bernoulli type r.v. and the summands are i.i.d., by the Fubini Theorem and (2.14),

ED1(s) ≤
∫ ∞
−∞

E
∥∥W (x, s)−W (x, 0)

∥∥2dG(x)(4.10)

≤ E
(
‖h(Z)‖2

∫ ∞
−∞

∣∣KZ(x+ n−1/2s′h(Z))−KZ(x)
∣∣dG(x)

)
≤

∫ bn−1/2

−bn−1/2

∫
E
(
‖h(Z)‖3κZ

(
x+ u‖h(Z)‖

))
dG(x)du→ 0.

In view of (4.10), to prove (4.3) for j = 1, because of the compactness of the ball U(b), it suffices
to show that for every ε > 0 there is a δ > 0 and an Nε such that for every s ∈ U(b),

P
(

sup
‖t−s‖<δ

∣∣D1(t)−D1(s)
∣∣ > ε

)
< ε, ∀n > Nε.(4.11)

Let hj(z) denote the jth coordinate of h(z), j = 1, · · · , p and let αi(x, t) := I(ζi ≤ x+ t′cni)−
I(ζi ≤ x)−KZi(x+ t′cni) +KZi(x). Then

D1(s) =

∫ ∞
0

∥∥W (x, s)−W (x, 0)
∥∥2dG(x)

=

p∑
j=1

∫ ∞
0

(
n−1/2

n∑
i=1

hj(Zi)αi(x, s)
)2
dG(x) =

p∑
j=1

D1j(s), say.

Thus it suffices to prove (4.11) with D1 replaced by D1j for each 1 ≤ j ≤ p.
Fix a 1 ≤ j ≤ p and write hj(Zi) = h+j (Zi)− h−j (Zi), where h+j = max(0, hj),

h−j = max(0,−hj). Let

W±j (x, s) := n−1/2
n∑
i=1

h±j (Zi)αi(x, s), D±j (x, s, t) := W±j (x, t)−W±j (x, s),

R±j (s, t) :=

∫ ∞
0

(
D±j (x, s, t)

)2
dG(x), αi(x, s, t) := αi(x, t)− αi(x, s).

Then ∣∣D1j(t)−D1j(s)
∣∣(4.12)

=

∫ ∞
0

(
n−1/2

n∑
i=1

[
h+j (Zi)− h−j (Zi)

]
αi(x, s, t)

)2
dG(x)

≤
∫ ∞
0

(
D+
j (x, s, t)

)2
dG(x) +

∫ ∞
0

(
D−j (x, s, t)

)2
dG(x)

+2
{∫ ∞

0

(
D+
j (x, s, t)

)2
dG(x)

∫ ∞
0

(
D−j (x, s, t)

)2
dG(x)

}1/2
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= R+
j (s, t) +R−j (s, t) + 2

(
R+
j (s, t)R−j (s, t)

)1/2
.

Note that

D+
j (x, s, t) = n−1/2

n∑
i=1

h+j (Zi)
[
αi(x, t)− αi(x, s)

]
.

Fix s ∈ Ub, ε > 0 and δ > 0. Then, ∀ t ∈ U(b), ‖t − s‖ < δ implies s′cni − δ‖cni‖ ≤ t′cni ≤
s′cni + δ‖cni‖, for all i. By the nondecreasing property of the indicator function and the d.f.,

I(ζi ≤ x+ s′cni − δ‖cni‖)− I(ζi ≤ x+ s′cni)−KZi(x+ s′cni + δ‖cni‖)
+KZi(x+ s′cni) +KZi(x+ s′cni + δ‖cni‖)−KZi(x+ s′cni − δ‖cni‖)

≤ αi(x, t)− αi(x, s) = I(ζi ≤ x+ t′cni)− I(ζi ≤ x+ s′cni)

−KZi(x+ t′cni) +KZi(x+ s′cni)

≤ I(ζi ≤ x+ s′cni + δ‖cni‖)− I(ζi ≤ x+ s′cni)−KZi(x+ s′cni + δ‖cni‖)
+KZi(x+ s′cni) +KZi(x+ s′cni + δ‖cni‖)−KZi(x+ s′cni − δ‖cni‖).

Let, for any a ∈ R, x ∈ R,

D±j1(x, s, a) := n−1/2
n∑
i=1

h±j (Zi)
{
I(ζi ≤ x+ s′cni + a‖cni‖)− I(ζi ≤ x+ s′cni)

−KZi(x+ s′cni + a‖cni‖) +KZi(x+ s′cni)
}
.

Using the above inequalities and h+j (Zi) being nonnegative we obtain that

R+
j (s, t) :=

∫ ∞
0

(
D+
j (x, s, t)

)2
dG(x)

≤
∫ ∞
0

(
D+
j1(x, s, δ)

)2
dG(x) +

∫ ∞
0

(
D+
j1(x, s,−δ)

)2
dG(x)

+

∫ ∞
0

(
n−1/2

n∑
i=1

h+j (Zi)
{
KZi(x+ s′cni + δ‖cni‖)−KZi(x+ s′cni − δ‖cni‖

}
dG(x)

)2
.

Argue as for (4.3) when j = 3 to see that the first two terms in the above bound tend to 0, in
probability. Let δn := n−1/2δ and ∆j(s, δ) denote the last term in the above bound. Argue as for
(4.10) to obtain that ∆j(s, δ) is bounded from the above by∫ ∞

0

(
n−1/2

n∑
i=1

h+j (Zi)‖h(Zi)‖
∫ δn

−δn
κZi(x+ n−1/2s′h(Zi) + u‖h(Zi)‖)du dG(x)

)2
≤ n−1

∫ ∞
0

( n∑
i=1

‖h(Zi)‖2
∫ δn

−δn
κZi(x+ n−1/2s′h(Zi) + u‖h(Zi)‖)du dG(x)

)2
≤ n−1

∫ n∑
i=1

‖h(Zi)‖4
n∑
i=1

(2δn)

∫ δn

−δn
κ2Zi

(x+ n−1/2s′h(Zi) + u‖h(Zi)‖)du dG(x).

Hence, by the Fubini Theorem and (2.14),

E∆j(s, δ) ≤ 2δn1/2
∫ n−1/2δ

−n−1/2δ

∫
E
(
‖h(Z)‖4κ2Z

(
x+ n−1/2s′h(Z) + u‖h(Z)‖

))
dG(x) du

→ 4δ2
∫
E
(
‖h(Z)‖4κ2Z(x)

)
dG(x), as n→∞, ∀ 1 ≤ j ≤ p.
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Since the factor multiplying δ2 is positive, the above term can be made smaller than ε by the choice
of δ. This then completes the proof of R+

j satisfying (4.11). The details of the proof for verifying

(4.11) for R−j are exactly similar. These facts together with the upper bound of (4.12) show that
(4.11) is satisfied by D1j for each j = 1, · · · , p thereby completing the proof of (4.3) for D1. The
proof of (4.3) for D2 is similar. This completes the proof of (4.3).

Next, consider (4.4). By the C-S inequality, ‖Γn(x)‖2 ≤ 1
n

∑n
i=1 ‖h(Zi)‖4 ×κ2Zi

(x), for all x ∈ R.
Recall D(0) = M(θ)/2. Hence, by (2.13) and (2.22),

E
(

sup
s
D5(s)

)
≤ 2ED(0) + 2b

∫
E‖Γn(x)‖2dG(x)

≤ 2ED(0) + 2b

∫
E
(
‖h(Z)‖4κ2Z(x)

)
dG(x) <∞. �

Proof of Lemma 3.1. It is well known that the kernel density estimator f̂Z(z) →p fZ(z) under

(3.12) for all z ∈ C. Because ε0 < b0 ≤ infz∈C fZ(z), we have that (f̂Z(z) ∨ ε0) →p fZ(z), for
all z ∈ C. Slutsky’s theorem implies that it suffices to show that h̃(z) is asymptotically normally
distributed. Rewrite

h̃(z) =
1

N2wp1

N∑
k=1

N∑
l=1

X̃kK1

( Ũl + X̃k − z
w1

)
:= N−2

N∑
k=1

N∑
l=1

φ(z, X̃k, Ũl),

where φ(z, X̃k, Ũl) = X̃kKw(Ũl + X̃k − z) and Kw(·) = K(·/w1)/w
p
1. We see that h̃(z) is in fact a

two-sample U-statistic based on the function φ. Recall h0(z) in (3.1). The conditional expectations
can be calculated as follows.

Eφ(X̃1, Ũ1) = h0(z) + w2
1B̃(z) + o(w2

1),

B̃(z) :=
1

2

∫ ∫
xfX(x)u′f ′′U (z − x)uK1(u)dudx,

E(φ|X̃1) = X̃1fU (z − X̃1) +O(w2
1), E(φ|Ũ1) = (z − Ũ1)fX(z − Ũ1) +O(w2

1).

Similar to the derivation of Lemma 6.4 in Geng and Koul (2017), we obtain that

Cov(h̃(z)) = O
( 1

N2wp1
+N−1Cov

(
E(φ|X̃1)

)
+N−1Cov(E

(
φ|Ũ1)

))
.

Under (3.12), we see that the asymptotic covariance of h̃(z) is of the order N−1, because of Nwp1 →
∞ implied by (3.12). Furthermore, Theorem 6.1.4 in Lehmann (1999) and w1 → 0 imply that

N1/2(h̃(z)− h0(z)− w2
1B̃(z))→D Np

(
0, Ω̃

)
, Ω̃ := Cov(XfU (z −X)) + Cov((z − U)fX(z − U)).

This completes the proof of Lemma 3.1.

To study the asymptotic distribution of θ̂, we need the following preliminary result about the
uniform consistency of ĥ(z) over C.

sup
z∈C
‖ĥ(z)− h(z)‖ = op(1).(4.13)

Proof of (4.13). Recall the definitions of ĥ and h0 from (3.1). Rewrite

ĥ(z)− h(z) =
1

(f̂Z(z) ∨ ε0)
(h̃(z)− h0(z)) + h0(z)

( 1

(f̂Z(z) ∨ ε0)
− 1

fZ(z)

)
.
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By (3.5) and (3.9), supz ‖h0(z)‖ < ∞. Moreover, (f̂Z(z) ∨ ε0)−1 ≤ ε−10 . Therefore, it suffices to
show that

(a) sup
z∈C
‖h̃(z)− h0(z)‖ = op(1); (b) sup

z∈C

∣∣∣ 1

(f̂Z(z) ∨ ε0)
− 1

fZ(z)

∣∣∣ = op(1).(4.14)

First, we prove (4.14)(a). Let

FN (x) := N−1
N∑
k=1

I(X̃k ≤ x), h1(z) := N−1
N∑
k=1

X̃kfU (z − X̃k).

Now write h̃(z)− h0(z) = h̃(z)− h1(z) + h1(z)− h0(z). Giné and Guillou (2002) showed that if fU
is bounded with the bandwidth w1 satisfying (3.12), then

sup
u∈Rp

∣∣f̂U (u)− Ef̂U (u)
∣∣ = Op

(√ logw−11

Nwp1

)
.(4.15)

On the other hand, Taylor expansion, the symmetry of K1 and the assumption (3.10) yield that

sup
u∈Rp

∣∣Ef̂U (u)− fU (u)
∣∣ = w2

1 sup
u∗∈Rp

∣∣∣ ∫ u′f ′′U (u∗)uK1(u)du
∣∣∣ = Op(w

2
1).(4.16)

The facts (4.15) and (4.16) together imply

sup
u∈Rp

∣∣f̂U (u)− fU (u)
∣∣ ≤ sup

u∈Rp

∣∣f̂U (u)− Ef̂U (u)
∣∣+ sup

u∈Rp

∣∣Ef̂U (u)− fU (u)
∣∣ = op(1).(4.17)

Hence, E‖X‖ <∞ implies

sup
z∈C

∥∥h̃(z)− h1(z)
∥∥ ≤ ∫ ‖x‖∣∣f̂U (x− z)− fU (z − x)

∣∣dFN (x)

≤ N−1
N∑
k=1

‖X̃k‖ sup
u∈Rp

∣∣f̂U (u)− fU (u)
∣∣ = op(1).

It remains to show that supz∈C
∥∥h1(z)−h0(z)∥∥ = op(1). By (3.9), fU has an absolutely integrable

characteristic function γ(t). Similar to the argument in Bierens (1983), by the inversion formula,

fU (u) = (2π)−p
∫
Rp

exp(−it′u)γ(t)dt.

Because E(h1(z)) = h0(z), we have

h1(z)− h0(z) =
1

(2π)pN

N∑
k=1

{
X̃k

∫
exp(−it′(z − X̃k))γ(t)dt

− E[X̃k

∫
exp(−it′(z − X̃k))γ(t)dt]

}
.

Let Zk(t) := X̃k exp(it′X̃k), Yk(t) := Zk(t)− EZk(t), GN (t) := N−1
∑N

k=1 Yk(t). Then

E sup
z∈Rp

∥∥h1(z)− h0(z)∥∥ =
1

(2π)p
E sup
z∈Rp

∥∥∥∫ exp(−it′z)×GN (t)γ(t)dt
∥∥∥

≤ 1

(2π)p

∫
E
∥∥GN (t)

∥∥|γ(t)|dt ≤ sup
t∈Rp

E
∥∥GN (t)

∥∥ 1

(2π)p

∫
|γ(t)|dt.
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Because GN (t) is an average of i.i.d. mean zero complex valued r.v.’s Yk(t)’s and because E‖Y1(t)‖2
≤ E‖Z1(t)‖2 = E(Z ′1(t)Z1(−t)) = E‖X̃‖2, for all t, we obtain

E
∥∥GN (t)

∥∥2 = N−1E‖Y1(t)‖2 ≤ N−1E‖X̃‖2, uniformly in t ∈ Rp.

Hence E supz∈C
∥∥h1(z) − h0(z)∥∥ = O(N−1/2) and supz∈C

∥∥h1(z) − h0(z)∥∥ = op(1), which together
with (4.17) completes the proof of (4.14)(a).

Next we prove (4.14)(b). Because∣∣∣ 1

(f̂Z(z) ∨ ε0)
− 1

fZ(z)

∣∣∣ ≤ ε−10 b−10

∣∣∣(f̂Z(z) ∨ ε0)− fZ(z)
∣∣∣,

it suffices to show that

sup
z∈C

∣∣∣(f̂Z(z) ∨ ε0)− fZ(z)
∣∣∣ = op(1).(4.18)

An argument similar to the one used for (4.17) and assumptions (3.10) and (3.12) yield

sup
z∈Rp

∣∣f̂Z(z)− fZ(z)
∣∣ = op(1).(4.19)

Moreover, since

sup
z∈C

∣∣∣(f̂Z(z) ∨ ε0)− fZ(z)
∣∣∣ ≤ sup

z∈C

∣∣∣(f̂Z(z) ∨ ε0)− f̂Z(z)
∣∣∣+ sup

z∈C

∣∣∣f̂Z(z)− fZ(z)
∣∣∣,

it remains to show that

sup
z∈C

∣∣∣(f̂Z(z) ∨ ε0)− f̂Z(z)
∣∣∣ = op(1).(4.20)

For a fixed 0 < ε < b0 − ε0, let An,ε :=
{
fZ(z)− ε ≤ f̂Z(z) ≤ fZ(z) + ε, ∀ z ∈ C

}
. By (4.19), ∃Nε

such that P (An,ε) ≥ 1− ε, ∀n > Nε. On An,ε, since infz∈C fZ(z) > b0, we have

f̂Z(z) ≥ fZ(z)− ε > fZ(z)− b0 + ε0 > ε0.

Hence, supz∈C
∣∣(f̂Z(z)∨ ε0)− f̂Z(z)

∣∣ = 0 on An,ε, thereby proving (4.20) and hence (4.14)(b). This
also completes the proof of (4.13). �

Let ∆(z) := ĥ(z) − h(z) and δi := θ′∆(Zi), 1 ≤ i ≤ n. From (4.13) we readily obtain the
following result for the later use.

max
1≤i≤n,Zi∈C

|δi| ≤ ‖θ‖ sup
z∈C
‖∆(z)‖ = op(1).(4.21)

Proof of Theorem 3.1. The proof is similar to that of Theorem 2.1. First, we shall prove the
following.

M̂(θ) = Op(1).(4.22)

A major difference between V (x, θ) and V̂ (x, θ) is that V (x, θ) is centered at 0 while V̂ (x, θ) has
an asymptotic bias of the order w2

1 due to the estimation of h(z). Rewrite

V̂ (x, θ) = n−1/2
n∑
i=1

IC(Zi)ĥ(Zi)
[
I(ζi ≤ x+ θ′∆(Zi))− I(−ζi < x− θ′∆(Zi))

]
.

23



Let

ξ(z, x) := [Kz(x+ θ′∆(z))−Kz(x− θ′∆(z))],

Jθ(z, x) := IC(z)
h̃(z)

(f̂Z(z) ∨ ε0)
ξ(z, x), J̃θ(z, x) = IC(z)

h̃(z)

fZ(z)
ξ(z, x).

Write V̂ (x, θ) ≡ T (x, θ) + n−1/2
∑n

i=1 Jθ(Zi, x), where

T (x, θ) := V̂ (x, θ)− n−1/2
n∑
i=1

Jθ(Zi, x).

Note that

n∑
i=1

∥∥Jθ(Zi, x)
∥∥2 =

n∑
i=1

IC(Zi)
‖h̃(Zi)‖2

(f̂Z(z) ∨ ε0)2
|ξ(Zi, x)|2

≤ sup
z∈C

( fZ(z)

(f̂Z(z) ∨ ε0)

)2 n∑
i=1

IC(Zi)
‖h̃(Zi)‖2

f2Z(Zi)
|ξ(Zi, x)|2

= sup
z∈C

( fZ(z)

(f̂Z(z) ∨ ε0)

)2 n∑
i=1

∥∥J̃θ(Zi, x)
∥∥2.

Then ∫ ∥∥V̂ (x, θ)
∥∥2dG(x) ≤ 2

∫ ∥∥T (x, θ)
∥∥2dG(x) + 2

∫
n−1

∥∥ n∑
i=1

Jθ(Zi, x)
∥∥2dG(x)(4.23)

≤ 2

∫ ∥∥T (x, θ)
∥∥2dG(x) + 2

∫ n∑
i=1

∥∥Jθ(Zi, x)
∥∥2dG(x) (by the C–S ineq.)

≤ 2

∫ ∥∥T (x, θ)
∥∥2dG(x) + 2 sup

z∈C

( fZ(z)

(f̂Z(z) ∨ ε0)

)2 ∫ n∑
i=1

∥∥J̃θ(Zi, x)
∥∥2dG(x).

It thus suffices to show that the two terms on the right hand side above are Op(1).
Because T (x, θ) ≡ T (−x, θ) and G is symmetric around zero, we obtain∫

‖T (x, θ)‖2dG(x) = 2

∫ ∞
0
‖T (x, θ)‖2dG(x).

Recall δ(z) = θ′∆(z). Let EC(L(Z)) := E
(
L(Z)I(Z ∈ C)

)
, for any integrable function L of Z. The

law of total expectation and (3.6) yield

E

∫ ∞
0

∥∥T (x, θ)
∥∥2dG(x)

= EC

∫ ∞
0
‖ĥ(Z)‖2Var

(
I(ζ ≤ x+ δ(Z))− I(−ζ < x− δ(Z))

)
dG(x)

≤ ‖g‖∞EC
(
‖ĥ(Z)‖2

∫ ∞
0

{
2−KZ(x− δ(Z))−KZ(x+ δ(Z))

}
dx
)
.
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Moreover, conditioning on the validation data and Z and using the independence between Z and
validation data, we obtain∫ ∞

0

{
1−KZ(x− δ(Z))

}
dx =

∫ ∞
0

P (ζ + δ(Z) > x)dx ≤ E
(
|ζ|
∣∣Z)+ |δ(Z)|,∫ ∞

0

{
1−KZ(x+ δ(Z))

}
dx =

∫ ∞
0

P (ζ − δ(Z) > x)dx ≤ E
(
|ζ|
∣∣Z)+ |δ(Z)|.

Therefore,

E

∫ ∞
0

∥∥T (x, θ)
∥∥2dG(x)

≤ 2‖g‖∞EC
(
‖ĥ(Z)‖2[E(|ζ||Z) + |δ(Z)|]

)
= 2‖g‖∞EC

{
‖ĥ(Z)‖2|ζ|

}
+ 2‖g‖∞EC

{
‖ĥ(Z)‖2|δ(Z)|

}
≤ 2‖g‖∞ε−20

(
EC

{
‖h̃(Z)‖2|ζ|

}
+ ‖θ‖EC

{
‖h̃(Z)‖2‖∆(Z)‖

})
≤ 2‖g‖∞ε−20

(√
EC‖h̃(Z)‖4Eζ2 + ‖θ‖

√
EC‖h̃(Z)‖4EC‖∆(Z)‖2

)
.

To proceed further, we need the following results obtained by direct calculations.

Eh̃(z) = h0(z) +
1

2
w2
1B̃(z) + o(w2

1),(4.24)

E‖h̃(z)‖2 = N−4E

N∑
i,j=1

N∑
q,r=1

X̃ ′iX̃jKw(Ũq + X̃i − z)Kw(Ũr + X̃j − z)

= ‖h0(z)‖2 + w2
1h0(z)

′B̃(z) + o(w2
1) +O(N−1) = ‖h0(z)‖2 + o(1),

E‖h̃(z)‖4 = N−8E
{ ∑
i,j,k,l

∑
q,r,s,t

X̃ ′iX̃jKw(Ũq + X̃i − z)Kw(Ũr + X̃j − z)

× X̃ ′kX̃lKw(Ũs + X̃k − z)Kw(Ũt + X̃l − z)
}

= ‖h0(z)‖4 + 2w2
1‖h0(z)‖2h0(z)′B̃(z) + o(w2

1) +O(N−1)→ ‖h0(z)‖4.

We further obtain that

E‖∆(z)‖2 = E‖ĥ(z)− h(z)‖2(4.25)

≤ 2E
{∥∥∥ 1

(f̂Z(z) ∨ ε0)
(h̃(z)− h0(z))

∥∥∥2}
+ 2E

{∥∥∥h0(z)( 1

(f̂Z(z) ∨ ε0)
− 1

fZ(z)

)∥∥∥2}
≤ 2ε−20 E‖h̃(z)− h0(z)‖2 + 2(ε−10 + b−10 )2‖h0(z)‖2

≤ 4ε−20 E‖h̃(z)‖2 + {4ε−20 + 2(ε−10 + b−10 )2}‖h0(z)‖2

=
{ 8

ε20
+ 2
( 1

ε0
+

1

b0

)2}‖h0(z)‖2 + o(1).

Combine (4.24) and (4.25) with the assumption (3.5), which implies E‖h0(Z)‖4 <∞, to conclude

that E
∫∞
0

∥∥T (x, θ)
∥∥2dG(x) = O(1) .
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Next, consider the second term in the bound of (4.23). By (4.18), supz∈C
{
fZ(z)/(f̂Z(z)∨ε0)

}2
=

Op(1). It remains to show that∫ n∑
i=1

∥∥J̃θ(Zi, x)
∥∥2dG(x) = Op(1).(4.26)

Recall δi = θ′∆(Zi). We have∫ n∑
i=1

∥∥J̃θ(Zi, x)
∥∥2dG(x)

=

n∑
i=1

∫
IC(Zi)

‖h̃(Zi)‖2

f2Z(Zi)

(
KZi(x+ δi)−KZi(x− δi)

)2
dG(x)

≤
n∑
i=1

∫
IC(Zi)

‖h̃(Zi)‖2

f2Z(Zi)

(∫ |δi|
−|δi|

κZi(x+ s)ds
)2
dG(x)

≤ 2

n∑
i=1

IC(Zi)
‖h̃(Zi)‖2

f2Z(Zi)
|δi|
∫ |δi|
−|δi|

∫
κ2Zi

(x+ s)dG(x)ds

≤ 4 max
1≤i≤n,Zi∈C

(
(2|δi|)−1

∫ |δi|
−|δi|

∫
κ2Zi

(x+ s)dG(x)ds
)
×

n∑
i=1

IC(Zi)
‖h̃(Zi)‖2

f2Z(Zi)
δ2i .

The last but one inequality is obtained by using the C–S inequality and the Fubini Theorem. Under
(3.7), we have supz,x kz(x) ≤ ‖f‖∞ <∞. Hence(

2δi
)−1 ∫ |δi|

−|δi|

∫
κ2Zi

(x+ s)dG(x) ≤ ‖f‖2∞, if G is a d.f.

≤ ‖g‖∞‖f‖∞, if dG(x) = g(x)dx, ‖g‖∞ <∞.

Let

Dn :=

n∑
i=1

IC(Zi)‖h̃(Zi)‖2δ2i .

Using the above bounds we obtain∫ n∑
i=1

∥∥J̃θ(Zi, x)
∥∥2dG(x) ≤ 4

b20
‖f‖2∞Dn, if G is a d.f.

≤ 4

b20
‖f‖∞‖g‖∞Dn, if dG(x) = g(x)dx, ‖g‖∞ <∞.

It thus remains to show that Dn = Op(1). By the definitions of h̃(z) and δi and (3.8),

E(Dn) = nE
{
IC(Z1)h̃(Z1)

′h̃(Z1)δ
2
1

}
=

n

N8

N∑
i,j,k,l=1

N∑
q,r,s,t=1

E
{
IC(Z1)X̃

′
iX̃jKw(Ũq + X̃i − Z1)Kw(Ũr + X̃j − Z1)

× θ′
[
X̃kKw

( Ũs + X̃k − Z1

fZ(Z1)

)
− h(Z1)

]
θ′
[
X̃lKw

( Ũt + X̃l − Z1

fZ(Z1)

)
− h(Z1)

]}
=

n

N8

∑
i 6=j 6=k=l

∑
q 6=r 6=s 6=t

+
∑

i 6=k 6=j 6=l

∑
q 6=r 6=s=t

+
∑

i 6=j 6=k 6=l

∑
q 6=r 6=s6=t

E
{
...
}

+ other terms,

:= D̃1 + D̃2 + D̃3 +DR.
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In D̃1, k = l and all other indices different. Hence, D̃1 is bounded from the above by

n[N(N − 1)(N − 2)]2(N − 3)

b20N
8

E
{
IC(Z1)X̃

′
1X̃2Kw(Ũ1 + X̃1 − Z1)Kw(Ũ2 + X̃2 − Z1)

× θ′
[
X̃3Kw

(
Ũ3 + X̃3 − Z1

)
− h(Z1)

]
θ′
[
X̃3Kw

(
Ũ4 + X̃3 − Z1

)
− h(Z1)

]}
= O(nN−1)E

{
IC(Z)‖h(Z)‖2

[
E
(
(θ′X̃)2f2U (Z − X̃)

∣∣Z)]} := O
(
nN−1L1(θ)

)
.

Similarly,

D̃2 = O(nN−1)E
{
IC(Z)‖h(Z)‖2E

(
(θ′(Z − Ũ))2f2X(Z − Ũ)

∣∣Z)}
:= O(nN−1)L2(θ).

In D̃3, with indices i 6= j 6= k 6= l and q 6= r 6= s 6= t, we get

D̃3 = O(nw4
1)
(
θ′E[IC(Z)B(Z)]

)2
= O(nw4

1‖θ‖2E‖B(Z)‖2) := O(nw4
1)L3(θ).

Similar calculations show that all other terms in E(Dn) are o(D̃1 + D̃2 + D̃3). The assumptions
(3.5) and (3.9) imply that Li(θ), i = 1, 2, 3 are finite. Therefore, under (3.5) and (3.15), we get, for
sufficiently large n ∧N ,

E(Dn) = O(nN−1)
[
L1(θ) + L2(θ)

]
+ nw4

1L3(θ) + o(1)(4.27)

→ λ(L1(θ) + L2(θ)) + CL3(θ) <∞.

Since Dn ≥ 0, by the Markov inequality, Dn = Op(1). This completes the proof of (4.22).

Next, we prove the asymptotic normality of the estimator θ̂. Let ĉni = n−1/2ĥ(Zi) and

Ŵ (x, s) := n−1/2
n∑
i=1

IC(Zi)ĥ(Zi)
[
I
(
ζi ≤ x+ δi + s′ĉni

)
−KZi(x+ δi + s′ĉni)

]
,(4.28)

T̂n :=

∫
Γ̂(x)′

[
Ŵ (x, 0) + Ŵ (−x, 0)

]
dG(x),

M̂1(s) := M̂(θ) + 4T̂ ′ns+ 4 s′Ĝs, ŝ := argmins M̂1(s) = −1

2
Ĝ−1T̂n,

where Γ̂n(x), Γ̂(x) and Ĝ are defined in (3.4).
Similar to the proof of Theorem 2.1, we aim to show that

sup
‖s‖≤b

∣∣M̂(θ + n−1/2s)− M̂1(s)
∣∣→p 0, ∀ 0 < b <∞, ‖n1/2(θ̂ − θ)− ŝ‖ →p 0.(4.29)

Define

Û(x, s) = n−1/2
n∑
i=1

IC(Zi)ĥ(Zi)I(ζi ≤ x+ δi + s′ĉni),

Ĵ(x, s) = n−1/2
n∑
i=1

IC(Zi)ĥ(Zi)KZi(x+ δi + s′ĉni).
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Then Ŵ (x, s) = Û(x, s)− Ĵ(x, s), and

M̂(θ + n−1/2s) =

∫ ∥∥∥Û(x, s) + Û(−x, s)− n−1/2
n∑
i=1

IC(Zi)ĥ(Zi)
∥∥∥2dG(x)

=

∫ ∥∥∥{Ŵ (x, s)− Ŵ (x, 0)
}

+
{
Ŵ (−x, s)− Ŵ (−x, 0)

}
+
{
Ĵ(x, s)− Ĵ(x, 0)− Γ̂n(x)s

}
+
{
Ĵ(−x, s)− Ĵ(−x, 0)− Γ̂n(−x)s

}
+
{
Ŵ (x, 0) + Ŵ (−x, 0) + 2Γ̂n(x)s

}∥∥∥2dG(x).

Use this decomposition and an argument similar to the one use in the proof of (2.25) to obtain
(4.29), under the given assumptions. Details are skipped for the sake of brevity.

Now it suffices to derive the asymptotic normality of T̂n to complete the proof. Similar to Tn,
T̂n can be rewritten as

T̂n = n−1/2
∫

Γ(x)′
n∑
i=1

IC(Zi)ĥ(Zi)
[
I(ζi ≤ x+ δi) + I(−ζi < x− δi)

]
dG(x)

= n−1/2
n∑
i=1

∫
IC(Zi)µ(z)ĥ(Zi)ϕz

(
ζi − θ′∆(Zi)

)
dQ(z)

= n−1/2
n∑
i=1

∫
IC(Zi)µ(z)ĥ(Zi)ϕz(ζi)dQ(z)

+ 2n−1/2
n∑
i=1

IC(Zi)[θ
′∆(Zi)]

∫
µ(z)ĥ(Zi)ψz(ζi)dQ(z) +Rn

:= T̂n1 + T̂n2 +Rn, (say),

where Rn is the reminder of the Taylor expansion and Rn = op(T̂n1 + T̂n2). Therefore, it suffices

to analyze T̂n1 and T̂n2. First, we rewrite

T̂n1 =
n1/2

nN2

n∑
i=1

N∑
k=1

N∑
l=1

∫
IC(Zi)

(f̂Z(Zi) ∨ ε0)
µ(z)X̃kKw(Ũl + X̃k − Zi)ϕz(ζi)dQ(z)

Define

φ1(Zi, ζi, X̃k, Ũl) =

∫
IC(Zi)

fZ(Zi)
µ(z)X̃kKw(Ũl + X̃k − Zi)ϕz(ζi)dQ(z)

T̃n1 =
n1/2

nN2wp1

n∑
i=1

N∑
k=1

N∑
l=1

φ1(Zi, ζi, X̃k, Ũl).

Then (4.18) implies that T̂n1 = T̃n1+op(T̃n1). Therefore it suffices to study the asymptotic property

of T̃n1 for T̂n1. It can be seen that T̃n1 is a 3-sample U statistic based on {(Zi, ζi), 1 ≤ k ≤ n},
{X̃k, 1 ≤ k ≤ N} and {Ũl, 1 ≤ l ≤ N}. We further compute that

E(φ1|X̃1) = E(φ1|Ũ1) = Eφ1 = 0,

E(φ1|Z1, ζ1) =

∫
IC(Z1)µ(z)h(Z1)ϕz(ζ1)dQ(z) +Op(w

2
1).
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So asymptotically T̂n1 only depends on the sample {(Zi, ζi), 1 ≤ i ≤ n}. Then Theorem 6.1.4 in
Lehmann (1999) implies that, with n/N → λ, L(Z, ζ) =

∫
IC(Z)µ(z)h(Z)ϕz(ζ)dQ(z) and Σ0 =

Cov(L(Z, ζ)), T̃n1 →D N
(
0,Σ0

)
. Therefore, for 0 ≤ λ <∞,

T̂n1 →D Np
(
0,Σ0

)
.(4.30)

Similarly, T̂n2 is also a 3-sample U statistic. Specifically,

T̂n2 = 2n−1/2
n∑
i=1

IC(Zi)[θ
′∆(Zi)]

∫
µ(z)ĥ(Zi)ψz(ζi)dQ(z)

=
2n1/2

nN4

∑
i,k,l,s,t

IC(Zi)

fZ(Zi)
θ′
[
X̃kKw(Ũs + X̃k − Zi)− h(Zi)fZ(Zi)

]
×
∫
µ(z)X̃l

Kw(Ũt + X̃l − Zi)
fZ(Zi)

ψz(ζi)dQ(z)

=:
2n1/2

nN4

∑
i,k,l,s,t

g1(Zi, X̃k, Ũs)g2(Zi, ζi, X̃l, Ũt)

=
2n1/2

nN4

{ ∑
i,k 6=l,s6=t

+
∑

i,k 6=l,s=t
+

∑
i,k=l,s 6=t

+
∑

i,k=l,s=t

}
g1(Zi, X̃k, Ũs)g2(Zi, ζi, X̃l, Ũt)

=: Sn1 + Sn2 + Sn3 + Sn4.

We will show that Sn1 is asymptotically normally distributed while Snj , j = 2, 3, 4 are asymptoti-
cally negligible compared to Sn1. Consider

Sn1 :=
2n1/2

nN4

∑
i,k 6=l,s 6=t

g1(Zi, X̃k, Ũs)g2(Zi, ζi, X̃l, Ũt)

=
n1/2

nN4

∑
i,k 6=l,s6=t

1

2

{
g1(Zi, X̃k, Ũs)g2(Zi, ζi, X̃l, Ũt) + g1(Zi, X̃l, Ũs)g2(Zi, ζi, X̃k, Ũt)

+ g1(Zi, X̃k, Ũt)g2(Zi, ζi, X̃l, Ũs) + g1(Zi, X̃l, Ũt)g2(Zi, ζi, X̃k, Ũs)
}

=:
n1/2

nN4

∑
i,k 6=l,s6=t

φ2(Zi, ζi, X̃k, X̃l, Ũs, Ũt).

Note that φ2 is symmetric within each sample. Recall the notation from (3.4). Direct calculation
shows that

E(g1) = w2
1E[IC(Z)θ′B(Z)] = O(w2

1), E(g2) = α +O(w2
1),

E(g1|X̃1) = Rθ(X̃1) + op(1), E(g1|Ũ1) = Sθ(Ũ1) + op(1),

E(φ2|X̃1) = E(g1|X̃1)E(g2) + E(g1)E(g2|X̃1) = Rθ(X̃1)α + op(1),

E(φ2|Ũ1) = E(g1|Ũ1)E(g2) + E(g1)E(g2|Ũ1) = Sθ(Ũ1)α + op(1),

E(φ2|Z1, ζ1) = 2w2
1IC(Z1)θ

′B(Z1)

∫
µ(z)h(Z1)ψz(ζ1)dQ(z) + op(w

2
1).
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Furthermore, applying Theorem 6.1.4 in Lehmann (1999) to Sn1, we obtain that for λ <∞,

S̃n1 :=

√
n+ 2N

n

{
Sn1 − 2n1/2w2

1β(θ)
}
→D Np(0, Σ̃),

Σ̃ = (1 + 2/λ)Cov(E(φ2|Z1, ζ1)) + (2 + λ)Cov(E(φ2|X̃1)) + 4(2 + λ)Cov(E(φ2|Ũ1))

= (2 + λ)Cov(Rθ(X̃1)α) + 4(2 + λ)Cov(Sθ(Ũ1)α)

= 4(2 + λ)[Var(Rθ(X̃)) + VarSθ(Ũ)]αα′.

Therefore, under (3.15), we have

Sn1 − 2n1/2w2
1β(θ)→D Np(0, 4λΣθ).(4.31)

Next, we analyze Sn2, Sn3 and Sn4. Similar to Lemma 6.4 in Geng and Koul (2017), tedious
calculation shows that E‖Sn2‖2 = O(nN−2) = E‖Sn3‖2, E‖Sn2‖2 = O(nN−4). Therefore, under
(3.15), Sn2 + Sn3 + Sn4 = op(1). Combine this with (4.31) to obtain that

T̂n2 − 2n1/2w2
1β(θ)→D Np(0, 4λΣθ).(4.32)

Finally, (4.30), (4.32) and the independence among the three samples imply that, under (3.15),
T̂n − 2n1/2w2

1β(θ)→D Np(0,Σ0 + 4λΣθ). This fact, together with (4.28) and (4.29), completes the
proof of Theorem 3.1.

Proof of Theorem 3.2. With V̂ (x, t) and M̂(t) as in (3.3), let

V̂(x, t) = n−1/2N1/2V̂ (x, t), M̂(t) = n−1NM̂(t).

Note that θ̂ = argmint∈RpM̂(t). The proof is similar to the proof of Theorem 3.1 with M̂(θ)

replaced by M̂(θ).

First, we show that M̂(θ) = Op(1). In fact, from the proof of Theorem 3.1, we obtain that

M̂(θ) = Op(Dn). Therefore, it suffices to show that Nn−1Dn = Op(1) for λ =∞. In view of (4.27),
under (3.16),

E(Nn−1Dn) = Nn−1 ×O
(
nN−1[L1(θ) + L2(θ)] + nw4

1L3(θ)
)

= O
(
L1(θ) + L2(θ) + C2L3(θ)

)
<∞.

Let čNi = N−1/2ĥ(Zi), define

W̃ (x, s) :=
N1/2

n

n∑
i=1

IC(Zi)ĥ(Zi)
[
I
(
ζi ≤ x+ δi + s′čNi

)
−KZi(x+ δi + s′čNi)

]
,(4.33)

T̃n :=

∫
Γ̂(x)′

[
W̃ (x, 0) + W̃ (−x, 0)

]
dG(x),

M̃(s) := M̂(θ) + 4T̃ ′ns+ 4 s′Ĝs, š := argmins M̃(s) = −1

2
Ĝ−1T̃n,

Argue as in the proof of Theorem 2.1 to obtain that

sup
‖s‖≤b

∣∣M̂(θ +N−1/2s)− M̃(s)
∣∣→p 0,∀ 0 < b <∞, ‖N1/2(θ̂ − θ)− š‖ →p 0.(4.34)
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Finally, we derive the asymptotic distribution of T̃n. With T̂n as in (4.28), rewrite T̃n =
n−1/2N1/2 T̂n = n−1/2N1/2 (T̂n1 + T̂n2) + op(1). Argue as in the proof of Lemma 6.4 of Geng

and Koul (2017) to obtain that E‖T̂n1‖2 = O(1). Since n/N → λ = ∞, we have
√
N/n T̂n1 =

op(1). Furthermore, Theorem 6.1.4 in Lehmann (1999) yields that, under (3.16),
√
N/n T̂n2 −

2N1/2w2
1β(θ) →D Np(0, 4Σθ). Therefore, T̃n − 2N1/2w2

1β(θ) →D Np(0, 4Σθ). Eventually, these
facts, (4.33) and (4.34) complete the proof.
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