Weighted empirical minimum distance estimators in linear errors-in-variables regression models

Pei Geng ${ }^{\text {a,* }}$, Hira L. Koul ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Illinois State University, Normal, IL, US, 61790
${ }^{b}$ Department of Statistics and Probability, Michigan State University, East Lansing, 48824

Abstract

We develop analogs of a class of weighted empirical minimum distance estimators of the underlying parameters in errors-in-variables linear regression models, when the regression error distribution and the conditional distribution of conditionally centered measurement error, given the surrogate, are symmetric around the origin. This class of estimators is defined as the minimizers of integrals of the square of a certain symmetrized weighted empirical process of the residuals. It includes the least absolute deviation and an analog of the Hodges-Lehmann estimators. In this paper we first develop this class of estimators when the distributions of the true covariates and measurement errors are known, and then extend them to the case when these distributions are unknown but validation data is available. Findings of a simulation study that is included show significant superiority of some members of the proposed class of estimators over the bias corrected least squares estimator.

Keywords: Analog of Hodges-Lehmann estimator, Pitman efficiency, validation data.

1. Introduction

Donoho and Liu (1988a,b) argue that in the one and two sample location models the minimum distance estimators based on L_{2} distances involving residual empirical distribution functions have some desirable finite sample properties and tend to be automatically robust against some contaminated models. In regression models without measurement error in the covariates, analogs of these estimators of the underlying regression parameters based on certain weighted residual empirical processes were developed in $\operatorname{Koul}(1979,1985,1996)$. These estimators include least absolute deviation (LAD), analogs of Hodges-Lehmann (H-L) estimators and several other estimators that are robust against outliers in regression errors and asymptotically efficient at some error distributions.

There are numerous practical situations where covariates are not accurately observed. Instead one observes their surrogates with additive errors. The regression models with such covariates are known as the errors-in-variables (EIVs) regression models. Fuller (1987), Cheng and Van Ness (1999), and Carroll et al. (2006) discuss numerous practical examples of these models. In the linear EIVs models, Stefanski (1985) developed the bias corrected least square estimator based on M-estimation, given the measurement error variance is known. Cook and Stefanski (1994) constructed a simulation-based estimation method for parametric measurement error models which is asymptotically equivalent to method-of-moments estimation in linear EIVs modeling. Buonaccorsi (2010) summarizes the moment-based bias corrected estimation for different settings in linear EIVs models. When the covariate is univariate, AI-Sharadqah (2018) proposed an adjusted maximum

[^0]likelihood estimator for Gaussian measurement error when the variance ratio of regression error and measurement error is known.

Given the importance of the EIVs regression models and the above mentioned properties of the above minimum distance (m.d.) estimators, it is desirable to develop their analogs for the EIVs regression models. Section 2 describes the m.d. estimators of interest in the EIVs linear regression model and the assumptions needed for their asymptotic normality when distributions of the true covariate vector X and the measurement error vector U are known. It also includes a discussion of these assumptions for some important cases, an example of distributions of X and U that satisfy the needed assumptions, and a discussion of the Pitman asymptotic relative efficiency of some members of the proposed class of estimators. This relative efficiency of the analog of HL estimator, relative to the bias corrected least squares (BCLS) estimator, is seen to increase to infinity as the measurement error variance σ_{U}^{2} increases to infinity, when X, U and the regression error are Gaussian r.v.'s. Section 3 generalizes the m.d. estimators under the setting that the distributions of X and U are unknown but validation data is available. Some proofs are deferred to the Appendix.

Section 4 presents the findings of a simulation study that assesses the performance of the empirical bias and root mean squared error (RMSE) of the two members of the proposed class of m.d. estimators, viz, the analog of H-L and LAD estimators, calibrated least squares (LS) and BCLS estimators. In these simulations, the regression error distributions are taken to be Gaussian $(0,1)$, Laplace $(0,1)$ and the t-distribution with 2 degree of freedom denoted by t_{2}. To assess the effect of the measurement error U on these estimators, we used several values of the measurement error variance σ_{U}^{2}. Tables $1-3$ and Tables $4-6$ below report the findings when the distributions of X and U are known and unknown but validation data is available, respectively.

The analog of H-L and LAD estimators are seen to be relatively much more stable in terms of the empirical bias and RMSE for all chosen values of σ_{U}^{2} and regression error distributions. The analog of the H-L estimator is relatively more stable than the other three estimators when the regression error distribution is t_{2}. In comparison, RMSE of BCLS estimator is seen to be much larger than that of the other three estimators for the chosen larger values of σ_{U}^{2} and error distributions. A practical example where σ_{U}^{2} can be large is that of self-reported daily dietary intake, which may be recorded by survey participants with large variation due to the lack of precise nutritional knowledge of food intake. In such scenarios, it would be then desirable to use one of the proposed m.d. estimators. For more on simulations see Section 4.

2. Estimators in the linear EIVs model

In this section, we introduce the linear EIVs regression model and a class of m.d. estimators in this model. Consider the linear regression model where for some $\theta \in \mathbb{R}^{p}$, the response variable Y and the p dimensional predicting covariate vector X obey the relation

$$
\begin{equation*}
Y=X^{\prime} \theta+\varepsilon, \quad \varepsilon \text { independent of } X \text { and symmetrically distributed around } 0 . \tag{2.1}
\end{equation*}
$$

For an $x \in \mathbb{R}^{p}, x^{\prime}$ and $\|x\|$ denote its transpose and Euclidean norm, respectively. In the EIVs model of interest, X is the true covariate. Instead one observes a surrogate Z obeying the relation

$$
\begin{equation*}
Z=X+U \tag{2.2}
\end{equation*}
$$

where X, U, ε are assumed to be mutually independent, U is $p \times 1$ vector of errors with $E(U)=0$, $E\|U\|^{2}<\infty, E\|X\|^{2}<\infty$.

Let $\gamma(z):=E(U \mid Z=z), h(z):=E(X \mid Z=z)=z-\gamma(z), z \in \mathbb{R}^{p}$. Rewrite (2.1)-(2.2) as

$$
\begin{align*}
Y & =\theta^{\prime}(Z-E(U \mid Z))+\varepsilon-\theta^{\prime}(U-E(U \mid Z)) \tag{2.3}\\
& =\theta^{\prime} h(Z)+\zeta, \quad \zeta=\varepsilon-\theta^{\prime} V, \quad V:=U-\gamma(Z), \quad E(\zeta \mid Z=z)=0, \forall z \in \mathbb{R}^{p} .
\end{align*}
$$

Thus we have a regression model regressing Y on Z, with the error r.v. ζ uncorrelated with Z and the regression function $\theta^{\prime} h(Z)$ with h satisfying

$$
\begin{equation*}
E\|h(Z)\|^{2}<\infty . \tag{2.4}
\end{equation*}
$$

For the time being, assume that the distributions of X and U are known. Then the functions $\gamma(z), h(z)$ and the conditional distribution function (d.f.) H_{z} of the r.v. V, given $Z=z$, are all known. The d.f. F of ε need not be known. We assume F to have Lebesgue density f and to be symmetric around zero and the conditional d.f. H_{z} to be symmetric around the origin, i.e., for every $z \in \mathbb{R}^{p},-d H_{z}(v)=d H_{z}(-v)$, for all $v \in \mathbb{R}^{p}$. Then, because ε is independent of Z and $V=U-\gamma(Z)$, the conditional d.f. and density of ζ, given $Z=z$, respectively, are

$$
\begin{aligned}
K_{z}(x) & :=P(\zeta \leq x \mid Z=z)=P\left(\varepsilon-\theta^{\prime} V \leq x \mid Z=z\right)=\int F\left(x+\theta^{\prime} v\right) d H_{z}(v), \\
\kappa_{z}(x) & :=\int f\left(x+\theta^{\prime} v\right) d H_{z}(v), \quad x \in \mathbb{R}, z \in \mathbb{R}^{p} .
\end{aligned}
$$

Both satisfy

$$
\begin{equation*}
K_{z}(x)=1-K_{z}(-x), \quad \kappa_{z}(x)=\kappa_{z}(-x), \quad \forall x \in \mathbb{R}, z \in \mathbb{R}^{p} . \tag{2.5}
\end{equation*}
$$

The symmetry of $K_{z}(\cdot)$ motivates the following definition of a class of m.d. estimators of θ in the model (2.3), similar to the definition in Chapter 5.2 of Koul (2002) when there is no measurement error. Let G be as in (2.9) below and $\left\{\left(Y_{i}, Z_{i}\right), 1 \leq i \leq n\right\}$ be a random sample from the model (2.1)-(2.2). For $x \in \mathbb{R}, t \in \mathbb{R}^{p}$, define

$$
\begin{align*}
& V(x, t):=n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right)\left[I\left(Y_{i}-t^{\prime} h\left(Z_{i}\right) \leq x\right)-I\left(-Y_{i}+t^{\prime} h\left(Z_{i}\right)<x\right)\right] \tag{2.6}\\
& M(t):=\int\|V(x, t)\|^{2} d G(x), \quad \widetilde{\theta}:=\operatorname{argmin}_{t \in \mathbb{R}^{p}} M(t) .
\end{align*}
$$

Before proceeding further, we describe the estimator $\tilde{\theta}$ corresponding to $G(x) \equiv \delta_{0}(x)$ - the measure degenerate at 0 and $G(x) \equiv x$. In the case $G(x) \equiv \delta_{0}(x)$, because of the continuity of the distribution of $\left\{Y_{i}, i \geq 1\right\}$,

$$
\begin{equation*}
M(t)=\left\|n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right) \operatorname{sgn}\left(Y_{i}-t^{\prime} h\left(Z_{i}\right)\right)\right\|^{2}, \quad \text { uniformly in } t \in \mathbb{R}^{p}, \text { with prob. } 1, \tag{2.7}
\end{equation*}
$$

so that the corresponding $\tilde{\theta}$ is the LAD estimator.
If $|G(b)-G(a)|=|G(-b)-G(-a)|$, for all $a, b \in \mathbb{R}$, then G is continuous and symmetric around zero and

$$
\begin{aligned}
& M(t)=n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} h\left(Z_{i}\right)^{\prime} h\left(Z_{j}\right)\left[\left|G\left(Y_{i}-t^{\prime} h\left(Z_{i}\right)\right)-G\left(-Y_{j}+t^{\prime} h\left(Z_{j}\right)\right)\right|\right. \\
&\left.-\left|G\left(Y_{i}-t^{\prime} h\left(Z_{i}\right)\right)-G\left(Y_{j}-t^{\prime} h\left(Z_{j}\right)\right)\right|\right] .
\end{aligned}
$$

In particular if $G(x) \equiv x$, then

$$
\begin{align*}
M(t)=n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} h\left(Z_{i}\right)^{\prime} h\left(Z_{j}\right)\left[\mid Y_{i}\right. & +Y_{j}-t^{\prime}\left(h\left(Z_{i}\right)+h\left(Z_{j}\right)\right) \mid \tag{2.8}\\
& \left.-\left|Y_{i}-Y_{j}-t^{\prime}\left(h\left(Z_{i}\right)-h\left(Z_{j}\right)\right)\right|\right]
\end{align*}
$$

From this representation one sees that when the EIVs linear regression model is reduced to the one sample location model, i.e., when $p=1, U_{i} \equiv 0, h\left(Z_{i}\right) \equiv Z_{i} \equiv X_{i} \equiv 1$, then

$$
M(t)=n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\left|Y_{i}+Y_{j}-2 t\right|-\left|Y_{i}-Y_{j}\right|\right], \quad \tilde{\theta}=\operatorname{median}\left\{\frac{Y_{i}+Y_{j}}{2}, 1 \leq i \leq j \leq n\right\}
$$

This estimator is the well celebrated H-L estimator of the one sample location parameter, see Hodges and Lehmann (1963). For this reason, in general, we call $\widetilde{\theta}$ corresponding to the $G(x) \equiv x$ an analog of the H-L estimator in the EIVs linear regression model. Perhaps it is worth emphasizing that the asymptotic distribution of this estimator under the EIVs linear regression setup does not seem to be currently available in the literature.

We now state the assumptions needed for establishing the asymptotic normality of $\widetilde{\theta}$. In this section, all limits are taken as $n \rightarrow \infty$, unless mentioned otherwise.
G is a nondecreasing right continuous function on \mathbb{R} to \mathbb{R} having left limits and $d G(x)=-d G(-x)$, for all $x \in \mathbb{R}$.
$A:=\int_{0}^{\infty} E\left(\|h(Z)\|^{2}\left(1-K_{Z}(x)\right)\right) d G(x)<\infty$.

$$
\begin{equation*}
d H_{z}(v)=-d H_{z}(-v), \text { for all } z, v \in \mathbb{R}^{p} \tag{2.10}
\end{equation*}
$$

F is symmetric around zero and has Lebesgue density f.

$$
\begin{gather*}
0<\int \kappa_{z}(x) d G(x)<\infty, \forall z \in \mathbb{R}^{p}, \quad 0<\int E\left(\|h(Z)\|^{2} \kappa_{Z}^{2}(x)\right) d G(x)<\infty \tag{2.13}\\
\lim _{u \rightarrow 0} \int E\left(\|h(Z)\|^{j} \kappa_{Z}(x+u\|h(Z)\|)\right) d G(x) \tag{2.14}\\
=\int E\left(\|h(Z)\|^{j} \kappa_{Z}(x)\right) d G(x)<\infty, \quad j=2,3 \\
0<\lim _{|u| \rightarrow 0} \limsup _{n \rightarrow \infty} \int E\left(\|h(Z)\|^{4} \kappa_{Z}^{2}\left(x+n^{-1 / 2} s^{\prime} h(Z)+u\|h(Z)\|\right)\right) d G(x) \\
=\int E\left(\|h(Z)\|^{4} \kappa_{Z}^{2}(x)\right) d G(x)<\infty, \quad \forall s \in \mathbb{R}^{p}
\end{gather*}
$$

Let

$$
\begin{align*}
\Gamma_{n}(x) & :=n^{-1} \sum_{i=1}^{n} h\left(Z_{i}\right) h\left(Z_{i}\right)^{\prime} \kappa_{Z_{i}}(x), \quad \Gamma(x):=E\left(h(Z) h(Z)^{\prime} \kappa_{Z}(x)\right), \quad x \in \mathbb{R} \tag{2.15}\\
\mathcal{G}_{n} & :=\int \Gamma_{n}(x)^{\prime} \Gamma_{n}(x) d G(x), \quad \mathcal{G}:=\int \Gamma(x)^{\prime} \Gamma(x) d G(x)
\end{align*}
$$

Assume

$$
\begin{equation*}
\mathcal{G} \text { is positive definite and } \int\left\|\Gamma_{n}(x)-\Gamma(x)\right\|^{2} d G(x) \rightarrow_{p} 0 \tag{2.16}
\end{equation*}
$$

Let $c_{n i} \equiv n^{-1 / 2} h\left(Z_{i}\right)$. Let h_{j} denote the j th component of h. Write $h_{j}=h_{j}^{+}-h_{j}^{-}$, for $1 \leq j \leq p$. Assume there exists a constant $0<C<\infty$ such that $\forall \delta>0,0<b<\infty,\|s\| \leq b$,

$$
\begin{align*}
\underset{n}{\limsup } \sum_{j=1}^{p} \int E\left[n^{-1 / 2} \sum_{i=1}^{n} h_{j}^{ \pm}\left(Z_{i}\right)\{ \right. & \left\{K_{Z_{i}}\left(x+s^{\prime} c_{n i}+\delta\left\|c_{n i}\right\|\right)\right. \tag{2.17}\\
& \left.\left.-K_{Z_{i}}\left(x+s^{\prime} c_{n i}-\delta\left\|c_{n i}\right\|\right)\right\}\right]^{2} d G(x) \leq C \delta^{2}
\end{align*}
$$

Remark 2.1. We shall now discuss some sufficient conditions for the above assumptions for the three types of the integrating measure G, viz, when G is a d.f. symmetric around zero, when $G(x) \equiv$ $\delta_{0}(x)$ and when $G(x) \equiv x$. In the absence of measurement error, the estimators corresponding to the latter two choices of G are known to be asymptotically efficient at Laplace and logistic error distributions, respectively, while the estimator $\tilde{\theta}$ corresponding to a d.f. G is typically robust against gross errors in the error distribution.

Consider the following assumptions.

$$
\begin{align*}
& \int \kappa_{z}(x) d G(x)>0, \quad \forall z \in \mathbb{R}^{p} ; \quad \int E\left(\kappa_{Z}^{2}(x)\right) d G(x)>0 \tag{2.18}\\
& E\|h(Z)\|^{4}<\infty, \quad \mathcal{G} \text { is positive definite. } \tag{2.19}\\
& \text { Density } f \text { of } F \text { is uniformly continuous, bounded and } f(x) \equiv f(-x) . \tag{2.20}
\end{align*}
$$

Consider the case when G is a d.f. symmetric around zero. Then, because $0 \leq 1-K_{z}(x) \leq 1$, for all $x, z, A \leq E\|h(Z)\|^{2}<\infty$, by (2.19), thereby verifying (2.10). By (2.20), $\kappa_{z}(x)=\int f(x+$ $\left.\theta^{\prime} v\right) d H_{z}(v)$ is uniformly continuous in x, uniformly in z, and

$$
\begin{equation*}
\sup _{z, x} \kappa_{z}(x) \leq\|f\|_{\infty}<\infty \tag{2.21}
\end{equation*}
$$

where for any function ℓ from \mathbb{R} to $\mathbb{R},\|\ell\|_{\infty}:=\sup _{x \in \mathbb{R}}|\ell(x)|$. Thus (2.18) and (2.19) imply (2.13) here. Moreover, by $(2.20), \forall s \in \mathbb{R}^{p}, \kappa_{Z}\left(x+n^{-1 / 2} s^{\prime} h(Z)+u\|h(Z)\|\right)-\kappa_{Z}(x) \rightarrow_{p} 0$, as first $n \rightarrow \infty$ and then $u \rightarrow 0$, and $\left|\kappa_{Z}\left(x+n^{-1 / 2} s^{\prime} h(Z)+u\|h(Z)\|\right)-\kappa_{Z}(x)\right| \leq 2\|f\|_{\infty}$. Hence, by the DCT, (2.14) holds. Under (2.19) and (2.20), $\left\|\Gamma_{n}(x)-\Gamma(x)\right\| \leq\|f\|_{\infty}\left[n^{-1} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{2}+E\left(\|h(Z)\|^{2}\right)\right]=O_{p}(1)$. By the LLNs, $\left\|\Gamma_{n}(x)-\Gamma(x)\right\| \rightarrow_{p} 0$, for every $x \in \mathbb{R}$. Hence the DCT ensures the satisfaction of (2.16) here. Fact (2.21), G being a d.f. and the Cauchy-Schwarz (C-S) inequality yield that the left hand side of (2.17) is bounded from the above by

$$
\begin{aligned}
& \underset{n}{\limsup } \sum_{j=1}^{p} E\left[2 n^{-1 / 2} \sum_{i=1}^{n} h_{j}^{ \pm}\left(Z_{i}\right)\left\|c_{n i}\right\| \delta\|f\|_{\infty}\right]^{2} \\
& \quad \leq 4 \delta^{2}\|f\|_{\infty}^{2} \limsup _{n} E\left(n^{-1} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{4}\right)=4 \delta^{2}\|f\|_{\infty}^{2} E\left(\|h(Z)\|^{4}\right),
\end{aligned}
$$

by the LLNs, thereby verifying (2.17). We also use (2.19) here.
Next, consider the case when $G(x) \equiv \delta_{0}(x)$. Even though this is included in the case of G being a d.f., one can directly verify that in this case the conditions (2.10)-(2.17) are implied by $\kappa_{z}(0):=\int f\left(\theta^{\prime} v\right) d H_{z}(v)>0, \forall z \in \mathbb{R}^{p}, E \kappa_{Z}^{2}(0)>0$, (2.19) and that f is continuous and bounded on \mathbb{R}. The latter condition is less restrictive than (2.20).

Finally, consider the case $G(x) \equiv x$. Here (2.18) is trivially satisfied. Assume (2.19) and (2.20) hold. Note that $E|\zeta|^{2} \leq E \varepsilon^{2}+\|\theta\|^{2} E\|U\|^{2}<\infty$. Then by the C-S inequality, $A \leq$
$E\left(\|h(Z)\|^{2} E(|\zeta| \mid Z)\right) \leq E^{1 / 2}\left(\|h(Z)\|^{4}\right) E^{1 / 2}\left(|\zeta|^{2}\right)<\infty$, by (2.19). Argue as in the case of when G is a d.f. to see that (2.19) and (2.20) imply (2.12)-(2.14) here also.

To verify (2.16), by the LLNs, $\left\|\Gamma_{n}(x)-\Gamma(x)\right\| \rightarrow_{p} 0, \forall x \in \mathbb{R}$. Also, $\left\|\Gamma_{n}(x)-\Gamma(x)\right\|^{2} \leq$ $2 n^{-1} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{4} \kappa_{Z_{i}}^{2}(x)+2 E\left(\|h(Z)\|^{4} \kappa_{Z}^{2}(x)\right)$. The fact (2.21) and $\int \kappa_{z}(x) d x=1$ imply $\int \kappa_{z}^{2}(x) d x$ $\leq\|f\|_{\infty}$, for all $z \in \mathbb{R}^{p}$. Hence (2.16) follows from the DCT and (2.19).

Next, consider (2.17). By the C-S inequality used twice, once with the sum and once with the integrals and the Fubini Theorem and the fact that $\int \kappa_{z}^{2}(x) d x \leq\|f\|_{\infty}, \forall z \in \mathbb{R}^{p}$, the left hand side of (2.17) is bounded from the above by

$$
\begin{aligned}
& \underset{n}{\lim \sup } E\left(n^{-1} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{2} \int \sum_{i=1}^{n}\left\{\int_{-\delta\left\|c_{n i}\right\|}^{\delta\left\|c_{n i}\right\|} \kappa_{Z_{i}}\left(x+s^{\prime} c_{n i}+u\right) d u\right\}^{2} d x\right) \\
& \leq 2 \limsup E\left(n^{-1} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{2} \sum_{i=1}^{n} \delta\left\|c_{n i}\right\| \int_{-\delta\left\|c_{n i}\right\|}^{\delta\left\|c_{n i}\right\|} \int \kappa_{Z_{i}}^{2}\left(x+s^{\prime} c_{n i}+u\right) d x d u\right) \\
& \leq 4 \delta^{2}\|f\|_{\infty} \limsup _{n} E\left(n^{-1} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{2}\right)^{2} \leq 4 \delta^{2}\|f\|_{\infty} E\|h(Z)\|^{4}, \quad \because c_{n i}=n^{-1 / 2} h\left(Z_{i}\right),
\end{aligned}
$$

where the last inequality again follows from the C-S inequality. Because of (2.19), this verifies (2.17) in the case $G(x) \equiv x$.

We shall now return to the derivation of the asymptotic normality of $\tilde{\theta}$. This will be done by following the general method of Section 5.4 of Koul (2002). This method requires the two steps. In the first step we need to show that $M(t)$ is AULQ (asymptotically uniformly locally quadratic) in $n^{1 / 2}(t-\theta)$ for $t \in \mathcal{N}_{n}(b):=\left\{t \in \mathbb{R}^{p}, n^{1 / 2}\|t-\theta\| \leq b\right\}$, for every $0<b<\infty$. The second step requires to show that $n^{1 / 2}\|\widetilde{\theta}-\theta\|=O_{p}(1)$.

In the current setup, the above mentioned second step is in part implied by having

$$
\begin{equation*}
M(\theta)=O_{p}(1) \tag{2.22}
\end{equation*}
$$

Proof of (2.22). Because of (2.9) and because $V(x, t) \equiv V(-x, t)$,

$$
\begin{equation*}
M(t) \equiv 2 \int_{0}^{\infty}\|V(x, t)\|^{2} d G(x), \quad \forall t \in \mathbb{R}^{p} \tag{2.23}
\end{equation*}
$$

Moreover, by (2.5),

$$
\begin{aligned}
E V(x, \theta) & =n^{1 / 2} E(h(Z) E[(I(\zeta \leq x)-I(-\zeta<x)) \mid Z]) \\
& =n^{1 / 2} E\left(h(Z)\left[K_{Z}(x)-1+K_{Z}(-x)\right]\right)=0, \quad x \in \mathbb{R}, \\
E\|V(x, \theta)\|^{2} & =E\left(\|h(Z)\|^{2} E\left[(I(\zeta \leq x)-I(-\zeta<x))^{2} \mid Z\right]\right) \\
& =2 E\left(\|h(Z)\|^{2}\left(1-K_{Z}(x)\right)\right), \quad x>0 .
\end{aligned}
$$

Hence, by the Fubini Theorem and (2.10),

$$
E M(\theta)=4 \int_{0}^{\infty} E\left(\|h(Z)\|^{2}\left(1-K_{Z}(x)\right)\right) d G(x)<\infty .
$$

The claim (2.22) follows from this fact and the Markov inequality.
The fact $n^{1 / 2}(\widetilde{\theta}-\theta)=\operatorname{arginf}_{s \in \mathbb{R}^{p}} M\left(\theta+s n^{-1 / 2}\right)$ motivates the following notation. Let

$$
\begin{align*}
& W(x, s):=n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right)\left[I\left(\zeta_{i} \leq x+s^{\prime} c_{n i}\right)-K_{Z_{i}}\left(x+s^{\prime} c_{n i}\right)\right], \quad s \in \mathbb{R}^{p}, \tag{2.24}\\
& T_{n}:=\int \Gamma(x)^{\prime}[W(x, 0)+W(-x, 0)] d G(x), \\
& \widetilde{M}(s)=M(\theta)+4 T_{n}^{\prime} s+4 s^{\prime} \mathcal{G} s, \quad \widetilde{s}:=\operatorname{argmin}_{s} \widetilde{M}(s)=-\frac{1}{2} \mathcal{G}^{-1} T_{n} .
\end{align*}
$$

For a positive integer m, let $\mathcal{N}_{m}(\mu, \Sigma)$ denote the m-dimensional normal distribution with mean vector μ and covariance matrix $\Sigma, \mathcal{N}=\mathcal{N}_{1}$. The following theorem describes the asymptotic distribution of $\widetilde{\theta}$.

Theorem 2.1. Under (2.1), (2.2), (2.4) and assumptions (2.9)-(2.17), the following results hold.

$$
\begin{equation*}
\sup _{\|s\| \leq b}\left|M\left(\theta+n^{-1 / 2} s\right)-\widetilde{M}(s)\right| \rightarrow_{p} 0, \quad \forall 0<b<\infty \tag{2.25}
\end{equation*}
$$

(a) $\left\|n^{1 / 2}(\widetilde{\theta}-\theta)-\widetilde{s}\right\| \rightarrow_{p} 0$,
(b) $n^{1 / 2}(\widetilde{\theta}-\theta) \rightarrow_{D} \mathcal{N}_{p}\left(0,4^{-1} \mathcal{G}^{-1} \Sigma \mathcal{G}^{-1}\right)$,
where Σ is defined at (2.28) below.
Proof. The proof of (2.25) appears in the Appendix. The proof of the claim (2.26)(a) is similar to that of Theorem 5.4.4 of Koul (2002). The details are omitted for the sake of brevity. To prove (2.26)(b), let

$$
\begin{equation*}
\psi_{z}(x):=\int_{-\infty}^{x} \kappa_{z}(y) d G(y), \quad \mu(z):=h(z) h(z)^{\prime}, \quad x \in \mathbb{R}, z \in \mathbb{R}^{p} \tag{2.27}
\end{equation*}
$$

By (2.13), for every $z \in \mathbb{R}^{p}, \psi_{z}(x)$ is continuous and uniformly bounded in $x, \psi_{z}(-x) \equiv \psi_{z}(\infty)-$ $\psi_{z}(x)$, for all $x \in \mathbb{R}$. Let $\varphi_{z}(x):=\psi_{z}(-x)-\psi_{z}(x)=\psi_{z}(\infty)-2 \psi_{z}(x)$. Moreover, with Q denoting the d.f. of Z and using the Fubini Theorem and the definition of $W(x, 0)+W(-x, 0)$ from (2.24), we obtain the following.

$$
\begin{aligned}
T_{n} & =n^{-1 / 2} \sum_{i=1}^{n} \int E\left(\mu(Z) \kappa_{Z}(x)\right) h\left(Z_{i}\right)\left[I\left(\zeta_{i} \leq x\right)-I\left(-\zeta_{i}<x\right)\right] d G(x) \\
& =n^{-1 / 2} \sum_{i=1}^{n} \iint \mu(z) \kappa_{z}(x) d Q(z) h\left(Z_{i}\right)\left[I\left(\zeta_{i} \leq x\right)-I\left(-\zeta_{i}<x\right)\right] d G(x) \\
& =n^{-1 / 2} \sum_{i=1}^{n} \int \mu(z) h\left(Z_{i}\right) \int\left[I\left(\zeta_{i} \leq x\right)-I\left(-\zeta_{i}<x\right)\right] d \psi_{z}(x) d Q(z) \\
& =n^{-1 / 2} \sum_{i=1}^{n} \int \mu(z) h\left(Z_{i}\right) \varphi_{z}\left(\zeta_{i}\right) d Q(z) .
\end{aligned}
$$

Let

$$
\begin{aligned}
C_{z}(u, v) & :=\operatorname{Cov}\left[\left(\varphi_{u}(\zeta), \varphi_{v}(\zeta)\right) \mid Z=z\right]=4 \operatorname{Cov}\left[\left(\psi_{u}(\zeta), \psi_{v}(\zeta)\right) \mid Z=z\right], \\
\mathcal{K}(u, v) & :=E\left(\mu(Z) C_{Z}(u, v)\right), \quad u, v \in \mathbb{R}^{p} .
\end{aligned}
$$

Clearly, $E T_{n}=0$ and by the Fubini Theorem, the covariance matrix of T_{n} is

$$
\begin{align*}
\Sigma:=E T_{n} T_{n}^{\prime} & =E\left\{\left(\int \mu(z) h(Z) \varphi_{z}(\zeta) d Q(z)\right)\left(\int \mu(v) h(Z) \varphi_{v}(\zeta) d Q(v)\right)^{\prime}\right\} \tag{2.28}\\
& =\iint \mu(z) \mathcal{K}(z, v) \mu(v)^{\prime} d Q(z) d Q(v)
\end{align*}
$$

Thus T_{n} is a $p \times 1$ vector of independent centered finite variance r.v.'s. By the classical CLT, $T_{n} \rightarrow_{D} \mathcal{N}_{p}(0, \Sigma)$. Hence, the minimizer $\widetilde{s}=(-1 / 2) \mathcal{G}^{-1} T_{n} \rightarrow_{D} \mathcal{N}_{p}\left(0,4^{-1} \mathcal{G}^{-1} \Sigma \mathcal{G}^{-1}\right)$. The claim (2.26)(b) now follows from this result and (2.26)(a).

Remark 2.2. Here we shall discuss an example where the conditional distribution of U, given Z, is known and that of V, given Z, does not depend on Z. We shall also discuss the Pitman's asymptotic relative efficiencies of some of the m.d. estimators, relative to the least squares and maximum likelihood estimators, at some error d.f. F.

Example 2.1. Suppose $p=1, X \sim_{D} \mathcal{N}\left(a, \sigma_{X}^{2}\right), U \sim_{D} \mathcal{N}\left(0, \sigma_{U}^{2}\right)$, with a, σ_{X}^{2} and σ_{U}^{2} known, and X and U are independent r.v.'s. Then $Z=X+U \sim_{D} \mathcal{N}\left(a, \sigma_{X}^{2}+\sigma_{U}^{2}\right), \operatorname{Cov}(Z, U)=\sigma_{U}^{2}$ so that

$$
(Z, U) \sim_{D} \mathcal{N}_{2}\left(\binom{a}{0},\left(\begin{array}{cc}
\sigma_{X}^{2}+\sigma_{U}^{2} & \sigma_{U}^{2} \\
\sigma_{U}^{2} & \sigma_{U}^{2}
\end{array}\right)\right) .
$$

Hence, the conditional distribution of U, given $Z=z$, is $\mathcal{N}\left((z-a) r^{2}, r^{2} \sigma_{X}^{2}\right)$, where $r^{2}:=\sigma_{U}^{2} /\left(\sigma_{X}^{2}+\right.$ $\left.\sigma_{U}^{2}\right)$. Thus, $\gamma(z)=E(U \mid Z=z)=(z-a) r^{2}, h(z)=z-\gamma(z)=z-r^{2}(z-a)$. Because $0 \leq r^{2}<1$ and $\sigma_{X}^{2}>0$,

$$
\begin{equation*}
E h^{2}(Z)=\left(1-r^{2}\right)^{2}\left(\sigma_{X}^{2}+\sigma_{U}^{2}\right)+a^{2} \geq\left(1-r^{2}\right)^{2}\left(\sigma_{X}^{2}+\sigma_{U}^{2}\right)>0 \tag{2.29}
\end{equation*}
$$

Next, the conditional distribution of $V=U-\gamma(Z)=U-(Z-a) r^{2}$, given Z, is $\mathcal{N}\left(0, r^{2} \sigma_{X}^{2}\right)$, which does not depend on Z and hence V is independent of Z. Thus

$$
K_{z}(x)=P(\zeta \leq x \mid Z=z)=P\left(\varepsilon-\theta^{\prime} V \mid Z=z\right)=\int F(x+\theta v) d \Phi\left(v / r \sigma_{X}\right)
$$

also does not depend on z, i.e., ζ is also independent of Z. Here Φ denotes the d.f. of a $\mathcal{N}(0,1)$ r.v.. Write K and κ for K_{z} and κ_{z} in this case. Then many assumptions and entities involved in the statement of the asymptotic normality of $\widetilde{\theta}$ simplify as follows. Note that now (2.11) and (2.16) are a priori satisfied. The other assumptions (2.10), (2.13), (2.14) and (2.17) are equivalent to the following conditions.

$$
\begin{equation*}
A:=\int_{0}^{\infty}(1-K(x)) d G(x)<\infty \tag{2.30}
\end{equation*}
$$

F has Lebesgue density f, symmetric around zero, and such that the density $\kappa(x)=\int f\left(x+\theta^{\prime} v\right) d H(v)$ of K satisfies the following:

$$
\begin{equation*}
0<\int \kappa^{j}(x) d G(x)<\infty, \quad \lim _{u \rightarrow 0} \int(\kappa(x+u)-\kappa(x))^{j} d G(x)=0, j=1,2 \tag{2.32}
\end{equation*}
$$

Assumption (2.17) with $K_{z} \equiv K$ holds.
The simplification in the statement of the asymptotic normality of $\widetilde{\theta}$ occurs as follows. To begin with, $\psi_{z}(x) \equiv \psi(x) \equiv \int_{-\infty}^{x} \kappa(y) d G(y), \varphi_{z}(x) \equiv \varphi(x)=\psi(-x)-\psi(x), \Gamma(x)=\Gamma \kappa(x)$, where $\Gamma:=E h^{2}(Z)>0$, (see (2.29)), and

$$
\begin{aligned}
& T_{n}=\Gamma n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right) \varphi\left(\zeta_{i}\right), \quad \mathcal{G}=\int \Gamma(x)^{\prime} \Gamma(x) d G(x)=\Gamma^{2} \int \kappa^{2}(x) d G(x), \\
& \Sigma=\operatorname{Var}\left(T_{n}\right)=\Gamma^{3} \operatorname{Var}(\varphi(\zeta)), \quad \frac{1}{4} \mathcal{G}^{-1} \Sigma \mathcal{G}^{-1}=\frac{\operatorname{Var}(\varphi(\zeta))}{4 \Gamma\left(\int \kappa^{2}(x) d G(x)\right)^{2}}=\frac{\operatorname{Var}(\psi(\zeta))}{\Gamma\left(\int \kappa^{2}(x) d G(x)\right)^{2}} .
\end{aligned}
$$

To summarize, under the above normality assumption of X, U, the conditions (2.9) and (2.30)(2.32) imply that

$$
\begin{equation*}
n^{1 / 2}(\widetilde{\theta}-\theta) \rightarrow_{D} \mathcal{N}\left(0, \frac{\tau_{G}^{2}}{E h^{2}(Z)}\right), \quad \tau_{G}^{2}:=\frac{\operatorname{Var}\left(\int_{-\infty}^{\zeta} \kappa(x) d G(x)\right)}{\left(\int \kappa^{2}(x) d G(x)\right)^{2}} . \tag{2.33}
\end{equation*}
$$

Consider the case when $G(x) \equiv x$. Write $\widetilde{\theta}_{I}$ for the corresponding m.d. estimator and τ_{I}^{2} for τ_{G}^{2} in this case. Because $K(\zeta)$ is a uniformly distributed r.v. on $[0,1]$,

$$
\begin{aligned}
& \operatorname{Var}\left(\int_{-\infty}^{\zeta} \kappa(x) d G(x)\right)=\operatorname{Var}\left(\int_{-\infty}^{\zeta} \kappa(x) d x\right)=\operatorname{Var}(K(\zeta))=1 / 12 \\
& \int \kappa^{2}(x) d G(x)=\int \kappa^{2}(x) d x, \quad \tau_{I}^{2}=\frac{1}{12\left(\int \kappa^{2}(x) d x\right)^{2}}
\end{aligned}
$$

In particular, if there is no measurement error, $U=0, H$ is degenerate at zero, $\zeta=\varepsilon, \kappa=f$ and $\tau_{I}^{2}=1 /\left(12\left(\int f^{2}(x) d x\right)^{2}\right)$, the very familiar expression related to the H-L estimator.

Next, consider the case $G(x) \equiv \delta_{0}(x)$. Write $\widetilde{\theta}_{0}$ for the corresponding m.d. estimator and τ_{0}^{2} for τ_{G}^{2} in this case. Because ζ is symmetrically distributed around zero, $\operatorname{Var}(I(\zeta>0))=1 / 4$, $\int \kappa^{2}(x) d G(x)=\kappa^{2}(0)$ and

$$
\operatorname{Var}\left(\int_{-\infty}^{\zeta} \kappa(x) d G(x)\right)=\operatorname{Var}(\kappa(0) I(\zeta>0))=\frac{\kappa^{2}(0)}{4}, \quad \tau_{0}^{2}=\frac{1}{4 \kappa^{2}(0)} .
$$

Again if there is no measurement error then $\tau_{0}^{2}=1 /\left(4 f^{2}(0)\right)$, which is the well celebrated asymptotic variance of the one sample median or the factor that appears in the asymptotic variance of the LAD estimator in regression models.

We shall now describe the extension of (2.33) when $p>1$. Let $X \sim_{D} \mathcal{N}_{p}\left(\mu_{X}, \Sigma_{X}\right), U \sim_{D}$ $\mathcal{N}_{p}\left(0, \Sigma_{U}\right), X, U$ independent, Σ_{X}, Σ_{U} both positive definite and known. Also μ_{X} is known. Then $Z=X+U \sim_{D} \mathcal{N}_{p}\left(\mu_{X}, \Sigma_{X}+\Sigma_{U}\right), \operatorname{Cov}(Z, U)=\Sigma_{U}$ so that

$$
(Z, U) \sim_{D} \mathcal{N}_{2 p}\left(\binom{\mu_{X}}{0},\left(\begin{array}{cc}
\Sigma_{X}+\Sigma_{U} & \Sigma_{U} \\
\Sigma_{U} & \Sigma_{U}
\end{array}\right)\right) .
$$

Hence, the conditional distribution of U, given $Z=z$, is

$$
\mathcal{N}_{p}\left(\Sigma_{U}\left(\Sigma_{X}+\Sigma_{U}\right)^{-1}\left(Z-\mu_{X}\right), \Sigma_{U}-\Sigma_{U}\left(\Sigma_{X}+\Sigma_{U}\right)^{-1} \Sigma_{U}\right)
$$

Let $R:=\Sigma_{U}\left(\Sigma_{X}+\Sigma_{U}\right)^{-1}$. Then $\gamma(z)=E(U \mid Z=z)=R\left(z-\mu_{Z}\right)$ and the conditional distribution of $V=U-R\left(Z-\mu_{Z}\right)$, given Z, is $\mathcal{N}_{p}\left(0, \Sigma_{U}-R \Sigma_{U}\right)$, which again does not depend on Z and hence V is independent of Z. Now $\Gamma=E h(Z) h(Z)^{\prime}$. Like (2.33), under (2.9) and (2.30)-(2.32), $n^{1 / 2}(\widetilde{\theta}-\theta) \rightarrow_{D} \mathcal{N}_{p}\left(0, \tau_{G}^{2} \Gamma^{-1}\right)$.

Pitman's Asmyptotic Relative Efficiency (ARE). We shall now compute Pitman's asymptotic relative efficiency of $\widetilde{\theta}_{I}, \widetilde{\theta}_{0}$ relative to the least squares estimator and the maximum likelihood estimator in the current setup when $F(x)=\Phi\left(x / \sigma_{\varepsilon}\right)$, i.e., $\varepsilon \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)$. See Lehmann (1999) for the definition of the ARE.

Assume $p=1$. Let $w^{2}:=\sigma_{\varepsilon}^{2}+\theta^{2} r^{2} \sigma_{X}^{2}$. Because $V \sim \mathcal{N}\left(0, r^{2} \sigma_{X}^{2}\right), \zeta=\varepsilon-\theta V \sim \mathcal{N}\left(0, w^{2}\right)$. Hence $\kappa^{2}(0)=\left(2 \pi w^{2}\right)^{-1}, \tau_{0}^{2}=\left(4 \kappa^{2}(0)\right)^{-1}=(\pi / 2) w^{2}$ and

$$
\int \kappa^{2}(x) d x=\frac{1}{2 \sqrt{\pi w^{2}}}, \quad \tau_{I}^{2}=\frac{1}{12\left(\int \kappa^{2}(x) d x\right)^{2}}=\frac{\pi}{3} w^{2}
$$

Next, by the CLT and the Slutsky's Theorem, $n^{1 / 2}\left(\widetilde{\theta}_{\ell s e}-\theta\right) \rightarrow_{D} \mathcal{N}\left(0, w^{2} / E h^{2}(Z)\right)$, where $\widetilde{\theta}_{\ell s e}:=\sum_{i=1}^{n} h\left(Z_{i}\right) Y_{i} / \sum_{i=1}^{n} h^{2}\left(Z_{i}\right)$ is the least squares estimator of θ in the model (2.3). Hence, $\operatorname{ARE}\left(\widetilde{\theta}_{I}, \widetilde{\theta}_{\ell s e}\right)=3 / \pi$, and $\operatorname{ARE}\left(\widetilde{\theta}_{0}, \widetilde{\theta}_{\ell s e}\right)=2 / \pi$, which are the same as in the case of no measurement error regression models.

Let $\tau^{2}:=w^{2} /\left(E h^{2}(Z)+2 \theta^{2} r^{4} \sigma_{X}^{4}\right)$ and $\rho:=E h^{2}(Z) /\left(E h^{2}(Z)+2 \theta^{2} r^{4} \sigma_{X}^{4}\right)$. Under the above normality assumptions on the distributions of ε, U, X, a consistent solution $\hat{\theta}_{n}$ of the likelihood equation exists and $n^{1 / 2}\left(\hat{\theta}_{n}-\theta\right) \rightarrow_{D} \mathcal{N}\left(0, \tau^{2}\right)$. Consequently,

$$
\operatorname{ARE}\left(\widetilde{\theta}_{I}, \hat{\theta}_{n}\right)=3 \rho / \pi, \quad \operatorname{ARE}\left(\widetilde{\theta}_{0}, \hat{\theta}_{n}\right)=2 \rho / \pi, \quad \operatorname{ARE}\left(\widetilde{\theta}_{l s e}, \hat{\theta}_{n}\right)=\rho
$$

Next, consider the bias corrected least squares estimator

$$
\widetilde{\theta}_{b c l s}:=\sum_{i=1}^{n}\left(Z_{i}-\bar{Z}\right)\left(Y_{i}-\bar{Y}\right) /\left[\sum_{i=1}^{n}\left(Z_{i}-\bar{Z}\right)^{2}-\sigma_{U}^{2}\right] .
$$

Let

$$
\varphi^{2}:=\left[\sigma_{X}^{2}\left(\sigma_{\varepsilon}^{2}+\theta^{2} \sigma_{U}^{2}\right)+\sigma_{U}^{2} \sigma_{\varepsilon}^{2}+2 \theta^{2} \sigma_{U}^{4}\right] / \sigma_{X}^{4}=\left[w^{2}\left(\sigma_{X}^{2}+\sigma_{U}^{2}\right)+2 \theta^{2} \sigma_{U}^{4}\right] / \sigma_{X}^{4}
$$

A direct application of the classical CLT and Slutksy's Theorem yields that $n^{1 / 2}\left(\widetilde{\theta}_{b c l s}-\theta\right) \rightarrow_{D}$ $\mathcal{N}\left(0, \varphi^{2}\right)$. See also Cheng and Van Ness (1999). Hence $\operatorname{ARE}\left(\widetilde{\theta}_{I}, \widetilde{\theta}_{b c l s}\right)=(3 / \pi)\left(\varphi^{2} / w^{2}\right)$. Because $r^{2} \rightarrow 0,1$, as $\sigma_{U}^{2} \rightarrow 0, \infty$, respectively, we obtain that $w^{2}=\sigma_{\varepsilon}^{2}+\theta^{2} r^{2} \sigma_{X}^{2} \rightarrow \sigma_{\varepsilon}^{2}, \sigma_{\varepsilon}^{2}+\theta^{2} \sigma_{X}^{2}$, as $\sigma_{U}^{2} \rightarrow 0, \infty$, respectively. Moreover, the derivative of the ratio σ_{U}^{4} / w^{2} with respect to σ_{U}^{2} is positive for all values of σ_{U}^{2} so that this ratio is an increasing function of σ_{U}^{2}. Thus the

$$
\operatorname{ARE}\left(\widetilde{\theta}_{I}, \widetilde{\theta}_{b c l s}\right)=\frac{3}{\pi} \frac{\varphi^{2}}{w^{2}}=\frac{3}{\pi}\left\{\frac{\sigma_{X}^{2}+\sigma_{U}^{2}}{\sigma_{X}^{4}}+2 \theta^{2} \frac{\sigma_{U}^{4}}{\sigma_{X}^{4} w^{2}}\right\}
$$

is an increasing function of σ_{U}^{2} and $\operatorname{ARE}\left(\widetilde{\theta}_{I}, \widetilde{\theta}_{b c}\right) \rightarrow(3 / \pi) \sigma_{X}^{-2}, \infty$, as $\sigma_{U}^{2} \rightarrow 0, \sigma_{U}^{2} \rightarrow \infty$, respectively. In other words, the estimator $\widetilde{\theta}_{I}$ is far more efficient, compared to the BCLS, against the increasing measurement error. A similar statement holds about the $\operatorname{ARE}\left(\widetilde{\theta}_{0}, \widetilde{\theta}_{b c t s}\right)$.

3. M.D. Estimation with validation data

In this section, we develop analogs of the class of m.d. estimators $\{\widetilde{\theta}, G$ varies $\}$ of the previous section when $h(z)$ in (2.3) is unknown, but when validation data is available. Here assume that the validation sample $\left\{\left(\widetilde{X}_{k}, \widetilde{Z}_{k}\right), 1 \leq k \leq N\right\}$ obeys the equation (2.2) of the covariates and is independent of the primary data set $\left\{\left(Z_{i}, Y_{i}\right), 1 \leq i \leq n\right\}$. For instance, in the dietary intake example in Section 1, an independent validation data of dietary intake can be obtained by assessing
urinary biomarkers in labs. Validation data are used to obtain an estimate $\widehat{h}(z)$ of $h(z)$. An analog of $\widetilde{\theta}$ is obtained by replacing $h(z)$ by $\widehat{h}(z)$ in its definition.

First, we define an estimator of the function $h(z)$ for $z \in \mathcal{C}$ where \mathcal{C} is a compact set in \mathbb{R}^{p} with $\inf _{\mathcal{C}} f_{Z}(z) \geq b_{0}$ for some $b_{0}>\widetilde{\widetilde{U}}^{2}$. Because $\widetilde{X}_{k}, \widetilde{Z}_{k}$ obey (2.2), we obtain a random sample $\left\{\widetilde{U}_{k}, 1 \leq k \leq N\right\}$ with $\widetilde{U}_{k}=\widetilde{Z}_{k}-\widetilde{X}_{k}$, of the measurement error U. Define the kernel density estimators of f_{U} and f_{Z} as follows. Let $K_{1}(\cdot), K_{2}(\cdot)$ be the two symmetric density kernels, $w_{1} \equiv$ $w_{1}(N), w_{2} \equiv w_{2}(N)$ be bandwidth sequences depending on N and define

$$
\begin{align*}
\hat{f}_{U}(u):=\frac{1}{N w_{1}^{p}} \sum_{k=1}^{N} K_{1}\left(\frac{\widetilde{U}_{k}-u}{w_{1}}\right), \quad \hat{f}_{Z}(z):=\frac{1}{N w_{2}^{p}} \sum_{k=1}^{N} K_{2}\left(\frac{\widetilde{Z}_{k}-z}{w_{2}}\right), \tag{3.1}\\
\tilde{h}(z):=\frac{1}{N} \sum_{k=1}^{N} \widetilde{X}_{k} \hat{f}_{U}\left(z-\widetilde{X}_{k}\right), \quad h_{0}(z):=\int x f_{U}(z-x) d F_{X}(x) .
\end{align*}
$$

Let ϵ_{0} be a known number satisfying $0<\epsilon_{0}<b_{0}$. Because,

$$
h(z)=E(X \mid Z=z)=\int x f_{X \mid Z}(x \mid z) d x=\frac{\int x f_{U}(z-x) d F_{X}(x)}{f_{Z}(z)}=\frac{h_{0}(z)}{f_{Z}(z)}, \quad z \in \mathcal{C}
$$

the function $h(z)$ can be estimated by

$$
\begin{equation*}
\widehat{h}(z):=\frac{N^{-1} \sum_{k=1}^{N} \widetilde{X}_{k} \hat{f}_{U}\left(z-\widetilde{X}_{k}\right)}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}=\frac{\tilde{h}(z)}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}, \quad z \in \mathcal{C} . \tag{3.2}
\end{equation*}
$$

Here ϵ_{0} is introduced to avoid the vanishing denominator. For any two numbers $c \vee d:=\max \{c, d\}$. The lemma below gives the asymptotic distribution of $\widehat{h}(z)$, which may be of independent interest.

Lemma 3.1. Under model (2.2), when f_{Z} and f_{U} are twicely continuously differentiable and $w_{i} \rightarrow$ $0, N w_{i}^{p} \rightarrow \infty$ as $N \rightarrow \infty$ for $i=1,2$, then

$$
N^{1 / 2}\left(\widehat{h}(z)-h(z)-w_{1}^{2} B(z)\right) \rightarrow_{D} \mathcal{N}_{p}(0, \Omega(z)), \quad \forall z \in \mathbb{R}^{p}, f_{Z}(z)>0
$$

where $B(z)=\frac{1}{2} \int x f_{X}(x) u^{\prime} f_{U}^{\prime \prime}(z-x) u K_{1}(u) d u d x / f_{Z}(z), f_{U}^{\prime \prime}(u)$ is the $p \times p$ matrix of second order partial derivatives of $f_{U}(u)$ and $\Omega(z)=\left[f_{Z}(z)\right]^{-2}\left\{\operatorname{Cov}\left(X f_{U}(z-X)\right)+\operatorname{Cov}\left((z-U) f_{X}(z-U)\right)\right\}$.

Analogous to (2.6), we propose the estimator $\widehat{\theta}$ based on $\widehat{h}(z)$ as follows. Define $I_{\mathcal{C}}(z)=1$, if $z \in \mathcal{C}$, otherwise 0 . For $x \in \mathbb{R}, t \in \mathbb{R}^{p}$, let

$$
\begin{align*}
& \widehat{V}(x, t):=n^{-1 / 2} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right)\left[I\left(Y_{i}-t^{\prime} \widehat{h}\left(Z_{i}\right) \leq x\right)-I\left(-Y_{i}+t^{\prime} \widehat{h}\left(Z_{i}\right)<x\right)\right], \tag{3.3}\\
& \widehat{M}(t):=\int\|\widehat{V}(x, t)\|^{2} d G(x), \quad \widehat{\theta}:=\operatorname{argmin}_{t \in \mathbb{R}^{p}} \widehat{M}(t) .
\end{align*}
$$

To state the asymptotic normality of $\hat{\theta}$, we need some more notation and the following additional assumptions. In this section, all limits are taken as $n \wedge N \rightarrow \infty$, unless mentioned otherwise. Let

$$
\begin{align*}
& \widehat{\Gamma}_{n}(x):=n^{-1} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right)^{\prime} \kappa_{Z_{i}}(x), \quad \widehat{\Gamma}(x):=E\left(I_{\mathcal{C}}(Z) h(Z) h(Z)^{\prime} \kappa_{Z}(x)\right), \tag{3.4}\\
& \widehat{\mathcal{G}}_{n}:=\int \widehat{\Gamma}_{n}(x)^{\prime} \widehat{\Gamma}_{n}(x) d G(x), \quad \widehat{\mathcal{G}}:=\int \widehat{\Gamma}(x)^{\prime} \widehat{\Gamma}(x) d G(x) \\
& L(Z, \zeta):=\int I_{\mathcal{C}}(Z) \mu(z) h(Z) \varphi_{z}(\zeta) d Q(z), \quad \alpha:=E \int I_{\mathcal{C}}(Z) \mu(z) h(Z) \psi_{z}(\zeta) d Q(z)
\end{align*}
$$

$$
\begin{aligned}
\boldsymbol{\beta}(\theta) & :=E\left\{I_{\mathcal{C}}(Z) \theta^{\prime} B(Z) \int \mu(z) h(Z) \psi_{z}(\zeta) d Q(z)\right\} \\
R_{\theta}(x) & :=E\left\{I_{\mathcal{C}}(Z) \theta^{\prime}\left[\widetilde{X} f_{U}(Z-\widetilde{X}) / f_{Z}(Z)-h(Z)\right] \mid \widetilde{X}=x\right\} \\
S_{\theta}(u) & :=E\left\{I_{\mathcal{C}}(Z) \theta^{\prime}\left[(Z-\widetilde{U}) f_{X}(Z-\widetilde{U}) / f_{Z}(Z)-h(Z)\right] \mid \widetilde{U}=u\right\} .
\end{aligned}
$$

We need the following additional assumptions, where ψ_{z} and μ are as in (2.27).
(3.5) $E\|X\|^{4}, E\|B(Z)\|^{2}, E \zeta^{2}$ and $E\left(\left\|\mu(Z) \psi_{Z}(\zeta)\right\|\right)$ are finite.
(3.6) The measure G satisfies (2.9) and G is either a distribution function or is absolutely continuous with a.e. derivative g bounded, i.e., $d G(x)=g(x) d x,\|g\|_{\infty}<\infty$.
(3.7) The density f of ε satisfies $\|f\|_{\infty}<\infty$.
$\inf _{z \in \mathcal{C}} f_{Z}(z) \geq b_{0}>0, \quad \sup _{z \in \mathcal{C}} f_{Z}(z)<\infty$.
(3.9) f_{U} has an absolutely integrable characteristic function on \mathbb{R}^{p} and $\left\|f_{U}\right\|_{\infty}<\infty$.
(3.10) The second partial derivative matrix $f_{Z}^{\prime \prime}(z)$ satisfies that $\sup \left\{\lambda_{\max }\left(f_{Z}^{\prime \prime}(z)\right) ; z \in \mathbb{R}^{p}\right\}<\infty$, where $\lambda_{\max }\left(f_{Z}^{\prime \prime}(z)\right)$ is the maximum of the absolute eigenvalues of $f_{Z}^{\prime \prime}(z)$.
Assume that the same holds for $f_{U}^{\prime \prime}$.
(3.11) The kernels K_{1}, K_{2} are positive symmetric square integrable densities on $[-1,1]^{p}$.

In addition, K_{2} satisfies a Lipschitz condition.
(3.12) The bandwidths $w_{i} \rightarrow 0, \frac{N w_{i}^{p}}{\left|\log w_{i}\right|} \rightarrow \infty, \frac{\left|\log w_{i}\right|}{\log \log N} \rightarrow \infty, w_{i}^{p}(N) \leq c w_{i}^{p}(2 N)$,
for some $c>0, i=1,2$.
(3.13) $\widehat{\mathcal{G}}$ is positive definite and $\int\left\|\widehat{\Gamma}_{n}(x)-\widehat{\Gamma}(x)\right\|^{2} d G(x) \rightarrow_{p} 0$.
(3.14) The assumption (2.17) holds with $h(Z)$ replaced by $\widehat{h}(Z)$.
(3.15) $\lim (n / N)=\lambda, 0 \leq \lambda<\infty$. Moreover, $n w_{1}^{4} \rightarrow C_{1}<\infty$.
(3.16) $\lim (n / N)=\lambda=\infty, N w_{1}^{4} \rightarrow C_{2}<\infty$.

The limiting distribution of $\widehat{\theta}$ is affected by the range of values of $\lambda=\lim (n / N)$ as is described in the following two theorems.

Theorem 3.1. $(0 \leq \lambda<\infty)$. Under models (2.1) and (2.2), when the assumptions (2.9)-(2.14) and (3.5)-(3.15) hold, $n^{1 / 2}\left(\widehat{\theta}-\theta+w_{1}^{2} \widehat{\mathcal{G}}^{-1} \boldsymbol{\beta}(\theta)\right) \rightarrow_{D} \mathcal{N}_{p}\left(0,4^{-1} \widehat{\mathcal{G}}^{-1}\left(\Sigma_{0}+4 \lambda \Sigma_{\theta}\right) \widehat{\mathcal{G}}^{-1}\right)$, where $\Sigma_{0}=$ $\operatorname{Cov}(L(Z, \zeta))$ and $\Sigma_{\theta}=\left[\operatorname{Var}\left(R_{\theta}(\widetilde{X})\right)+\operatorname{Var}\left(S_{\theta}(\widetilde{U})\right)\right] \boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime}$.

Theorem 3.2. $(\lambda=\infty)$. Under models (2.1) and (2.2), when the assumptions (2.9)-(2.14), (3.5)-(3.14) and (3.16) hold, then we have $N^{1 / 2}\left(\widehat{\theta}-\theta+w_{1}^{2} \widehat{\mathcal{G}}^{-1} \boldsymbol{\beta}(\theta)\right) \rightarrow_{D} \mathcal{N}_{p}\left(0, \widehat{\mathcal{G}}^{-1} \Sigma_{\theta} \widehat{\mathcal{G}}^{-1}\right)$.

For all $0 \leq \lambda \leq \infty$, the asymptotic bias in $\widehat{\theta}$ is inherited from the asymptotic bias in the estimator $\widehat{h}(z)$, see Lemma 3.1. If $\lambda=0$, then N is relatively much larger than n and the asymptotic covariance matrix in the limiting distribution of Theorem 3.1 becomes $4^{-1} \widehat{\mathcal{G}}^{-1} \Sigma_{0} \widehat{\mathcal{G}}^{-1}$. This covariance matrix is like the one when $h(z)$ is known, except here we have the set \mathcal{C} appearing in this matrix. On the other extreme is the case $\lambda=\infty$. In this case, the validation sample size N is much limited compared to the primary sample size n. In practice, this case arises more often due to the high cost of validation studies. It is not surprising to see that the convergence rate becomes \sqrt{N} with the limiting covariance matrix $\widehat{\mathcal{G}}^{-1} \Sigma_{\theta} \widehat{\mathcal{G}}^{-1}$. The proofs of both the theorems appear in the Appendix.

4. Simulation study

In this section, we report findings of a finite sample simulation study comparing the empirical bias and RMSE of the two m.d. estimators corresponding to the integrating measure $G(x) \equiv x$ and $G(x)=\delta_{0}(x)$, with the calibrated least square and the bias corrected least square estimators. We conducted these simulations for the two cases: $h(z)$ known and $h(z)$ unknown but validation data available.

4.1. M.D. estimation when the function $h(z)$ is known

Here, data is generated from the regression model of Example 2.1, i.e., $p=1$ and

$$
\begin{align*}
& Y_{i}=\theta X_{i}+\varepsilon_{i}, \theta=2, Z_{i}=X_{i}+U_{i}, X_{i} \sim \mathcal{N}\left(a, \sigma_{X}^{2}\right), U_{i} \sim \mathcal{N}\left(0, \sigma_{U}^{2}\right), \varepsilon_{i} \sim F, \tag{4.1}\\
& a=1, \sigma_{X}^{2}=1, h(z)=z /\left(1+\sigma_{U}^{2}\right)+\sigma_{U}^{2} /\left(1+\sigma_{U}^{2}\right), \quad 1 \leq i \leq n .
\end{align*}
$$

Clearly, the regression function $h(z)$ is fully determined by σ_{U}^{2}. To assess the effect of measurement error on the estimators, in this simulation study we used $\sigma_{U}=0.2,0.5,1,1.5,2$. We choose the sample size $n=200,500$ and F to be $\mathcal{N}(0,1)$, Laplace $(0,1)$ and t_{2} d.f.'s.

Let $\widetilde{\theta}_{\ell a d}$ and $\widetilde{\theta}_{I}$ denote the m.d. estimators corresponding to $G(x)=\delta_{0}(x)$ and $G(x) \equiv x$, respectively. The formulas for the weighted empirical distances given in (2.7) and (2.8) were minimized, respectively, to obtain the numerical values of these estimators. The two other estimators we include in this study are

$$
\tilde{\theta}_{\ell s e}=\sum h\left(Z_{i}\right) Y_{i} / \sum h^{2}\left(Z_{i}\right), \quad \widetilde{\theta}_{b c l s}=S_{Y Z} /\left(S_{Z Z}-\sigma_{U}^{2}\right),
$$

where $S_{Y Z}=n^{-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(Z_{i}-\bar{Z}\right)$ and $S_{Z Z}=n^{-1} \sum_{i=1}^{n}\left(Z_{i}-\bar{Z}\right)^{2}$.
Tables 1-3 give the empirical bias and RMSE based on 500 randomly simulated trials for the four estimators ($\widetilde{\theta}_{I}, \widetilde{\theta}_{\ell a d}, \widetilde{\theta}_{\ell s e}, \widetilde{\theta}_{b c l s}$) in the case of known distributions of X and U. In addition, we present the boxplot of each estimator for the sample size $n=500$ in Figure 1. From these tables, we see that there is little empirical bias in $\widetilde{\theta}_{I}, \widetilde{\theta}_{\ell a d}$ and $\widetilde{\theta}_{\ell s e}$ for all chosen values of σ_{U}, n and all chosen F. The empirical bias of $\widetilde{\theta}_{b c l}$ increases significantly, compared to the other three estimators, with the increasing σ_{U}. This is true for all chosen sample sizes and F. Regarding RMSE, for any fixed value of σ_{U} and $n, \widetilde{\theta}_{I}$ and $\widetilde{\theta}_{\ell s e}$ achieve minimal RMSE among the four estimators for Gaussian and Laplace error distributions, as seen in Tables 1 and 2, while from Table 3 we see the superior performance of the m.d. estimators $\widetilde{\theta}_{I}$ and $\widetilde{\theta}_{\ell a d}$ for t_{2} error distribution. The estimator $\widetilde{\theta}_{b c l s}$ displays much larger RMSE for the larger values of $\sigma_{U}=1.5$ and 2 and for all chosen F, which is also indicated in Figure 1. Not unexpectedly, the RMSE of each estimator increases with increasing σ_{U}. Moreover, from the right panel of Figure 1, we see that for $F=t_{2}, \widetilde{\theta}_{\ell s e}$ and $\widetilde{\theta}_{b c l s}$ display not only larger variation but also unstable estimation presented by outliers. The bias and RMSE of $\widetilde{\theta}_{I}$ is especially robust against the larger σ_{U}.

4.2. M.D. estimation when $h(z)$ is unknown but validation data is available

We continue generating data from the model (4.1) in Section 4.1. We simulated both the primary sample $\left\{Y_{i}, Z_{i}, 1 \leq i \leq n\right\}$ and validation sample $\left\{\widetilde{X}_{k}, \widetilde{Z}_{k}, 1 \leq k \leq N\right\}$ following (4.1) with the two samples size choices $(n, N)=(200,200)$ and $(500,500)$. The function $h(z)$ is estimated by $\widehat{h}(z)$ in (3.2) based on the validation sample. Let ($\widehat{\theta}_{I}, \widehat{\theta}_{\text {lad }}, \widehat{\theta}_{\ell s e}, \widehat{\theta}_{b c l_{s}}$) denote the analog of H-L, LAD, LS and BCLS estimators when $h(z)$ and σ_{U}^{2} are replaced by $\widehat{h}(z)$ and $\hat{\sigma}_{U}^{2}$. Here $\hat{\sigma}_{U}^{2}$ is the sample variance of $\left\{\widetilde{U}_{k}:=\widetilde{Z}_{k}-\widetilde{X}_{k}, 1 \leq k \leq N\right\}$. The kernels are chosen as $K_{1}(x)=K_{2}(x)=$ $0.75\left(1-x^{2}\right) I(|x| \leq 1)$. To meet the assumptions, we specify the choices of the bandwidths w_{1} and w_{2} as follows. Similar to the rule-of-thumb bandwidth in kernel density estimators of Silverman
(1986), we set $w_{1}=\hat{\sigma}_{U}^{2} N^{-1 /(2+p)}$. We adapt the univariate plug-in selector of Wand and Jones (1994) for w_{2}. We chose \mathcal{C} as the interval between the 5 th and 95 th percentiles of $\left\{Z_{i}, 1 \leq i \leq n\right\}$ and $\epsilon_{0}=10^{-4}$.

The empirical bias and RMSE summary is presented in Tables $4-6$ for $\sigma_{U}=0.2,0.5,1,1.5,2$ and for Gaussian, Laplace and t_{2} regression errors, respectively. Boxplots of the four estimators for sample sizes $(n, N)=(500,500)$ are shown in Figure 2. From these tables we see that for fixed n, N, σ_{U}, F, the empirical bias and RMSE of all four estimators are larger than those in Tables $1-3$ due to the estimation error in $\widehat{h}(z)$ and $\widehat{\sigma}_{U}$. The bias and RMSE of the two m.d. estimators $\widehat{\theta}_{I}$ and $\widehat{\theta}_{\ell a d}$ increase only slightly with the increasing σ_{U}, while bias and RMSE of $\widehat{\theta}_{b c \ell s}$ increases significantly with increasing σ_{U}. Moreover, from Figure 2 we see that the estimators $\widehat{\theta}_{\ell s e}$ and $\widehat{\theta}_{b c e s}$ display unstable estimation performance for the larger σ_{U} and all chosen F. Overall, the m.d. estimator $\widehat{\theta}_{I}$ achieves the smallest RMSE with controlled bias among the four estimators.

Figure 1: Boxplot of each estimator for known $h(z)$ and $n=500$ with different values of σ_{U} under Gaussian errors (left panel), Laplace errors (central panel) and t_{2} errors (right panel).

Figure 2: Boxplot of each estimator for unknown $h(z)$ and $(n, N)=(500,500)$ with different values of σ_{U} under Gaussian errors (left panel), Laplace errors(central panel) and t_{2} errors (right panel).

$\varepsilon \sim \mathcal{N}(0,1)$	$n=200$				$n=500$			
	$\widetilde{\theta}_{I}$	$\widetilde{\theta}_{\ell a d}$	$\widetilde{\theta}_{\ell s e}$	$\widetilde{\theta}_{b c l s}$	$\widetilde{\theta}_{I}$	$\widetilde{\theta}_{\ell a d}$	$\widetilde{\theta}_{\ell s e}$	$\widetilde{\theta}_{b c l s}$
$\sigma_{U}=0.2$								
BIAS	0.0021	0.0102	0.0022	0.0049	-0.0029	0.0013	-0.0022	-0.0026
RMSE	0.0533	0.0791	0.0528	0.0788	0.0355	0.0525	0.0346	0.0509
$\sigma_{U}=0.5$								
BIAS	0.0017	0.0138	0.0016	0.0107	-0.0026	0.0018	-0.0017	0.0018
RMSE	0.0690	0.0968	0.0673	0.1218	0.0466	0.0676	0.0452	0.0757
$\sigma_{U}=1$								
BIAS	0.0030	0.0160	0.0019	0.0477	-0.0022	0.0073	-0.0012	0.0301
RMSE	0.0953	0.1337	0.0912	0.2930	0.0689	0.0932	0.0664	0.1800
$\sigma_{U}=1.5$								
BIAS	0.0046	-0.0056	0.0033	0.2054	$<10^{-4}$	-0.0034	0.0002	0.0841
RMSE	0.1132	0.1479	0.1092	0.8464	0.0792	0.0992	0.0777	0.3829
$\sigma_{U}=2$								
BIAS	0.0046	0.0129	0.0035	0.4586	0.0008	-0.0008	0.0010	0.2368
RMSE	0.1237	0.1661	0.1194	1.8504	0.0879	0.1156	0.0860	0.8585

Table 1: Bias and RMSE of each estimator for known $h(z)$ under Gaussian regression error.

$\varepsilon \sim$ Laplace $(0,1)$	$n=200$				$n=500$				
	$\widetilde{\theta}_{I}$	$\widetilde{\theta}_{\text {lad }}$	$\widetilde{\theta}_{\text {lse }}$	$\widetilde{\theta}_{\text {bcls }}$	$\widetilde{\theta}_{I}$	$\widetilde{\theta}_{\text {lad }}$	$\widetilde{\theta}_{\text {lse }}$	$\widetilde{\theta}_{\text {bcls }}$	
$\sigma_{U}=0.2$									
BIAS	0.0014	-0.0009	0.0039	-0.0019	0.0011	0.0040	0.0010	0.0012	
RMSE	0.0658	0.0979	0.0737	0.1040	0.0418	0.0511	0.0473	0.0690	
$\sigma_{U}=0.5$									
BIAS	-0.0019	0.0021	-0.0025	0.0070	0.0016	0.0086	0.0012	0.0052	
RMSE	0.0860	0.1131	0.0902	0.1452	0.0543	0.0722	0.0568	0.0929	
$\sigma_{U}=1$									
BIAS	0.0015	0.0063	-0.0011	0.0520	0.0020	0.0039	0.0019	0.0265	
RMSE	0.1159	0.1554	0.1179	0.3224	0.0765	0.1001	0.0773	0.1878	
$\sigma_{U}=1.5$									
BIAS	0.0039	-0.0086	0.0007	0.2484	0.0034	-0.0003	0.0033	0.0824	
RMSE	0.1346	0.1684	0.1362	1.0327	0.0854	0.1035	0.0855	0.4044	
$\sigma_{U}=2$									
BIAS	0.0070	0.0070	0.0072	0.3120	0.0037	0.0046	0.0033	0.2308	
RMSE	0.1459	0.1902	0.1438	1.3663	0.0964	0.1157	0.0963	0.9375	

Table 2: Bias and RMSE of each estimator for known $h(z)$ under Laplace regression error.

$\varepsilon \sim t_{2}$	$n=200$				$n=500$			
	$\widetilde{\theta}_{I}$	$\widetilde{\theta}_{\ell}$ ad	$\widetilde{\theta}_{\ell s e}$	$\widetilde{\theta}_{b c l s}$	$\widetilde{\theta}_{I}$	$\widetilde{\theta}_{\ell a d}$	$\widetilde{\theta}_{\ell s e}$	$\widetilde{\theta}_{b c l s}$
$\sigma_{U}=0.2$								
BIAS	-0.0024	0.0006	0.0101	0.0136	0.0020	0.0055	0.0052	0.0036
RMSE	0.0774	0.1032	0.2925	0.3371	0.0476	0.0717	0.1300	0.1912
$\sigma_{U}=0.5$								
BIAS	-0.0030	-0.0019	0.0084	0.0189	0.0024	0.0068	0.0061	0.0088
RMSE	0.0966	0.1291	0.2861	0.3386	0.0607	0.0812	0.1378	0.2159
$\sigma_{U}=1$								
BIAS	-0.0025	-0.0084	0.0077	0.0600	0.0035	0.0118	0.0071	0.0306
RMSE	0.1256	0.1777	0.2915	0.4611	0.0821	0.1094	0.1525	0.3032
$\sigma_{U}=1.5$								
BIAS	-0.0009	-0.0202	0.0083	0.2199	0.0041	0.0032	0.0079	0.0921
RMSE	0.1450	0.1825	0.3028	0.9348	0.0971	0.1190	0.1651	0.4947
$\sigma_{U}=2$								
BIAS	0.0001	-0.0061	0.0090	0.5872	0.0047	0.0044	0.0087	0.2986
RMSE	0.1571	0.2074	0.3129	2.0090	0.1058	0.1261	0.1737	1.2157

Table 3: Bias and RMSE of each estimator for known $h(z)$ under t_{2} regression error.

$\varepsilon \sim \mathcal{N}(0,1)$	$n=200, N=200$				$n=500, N=500$				
	$\widehat{\theta}_{I}$	$\widehat{\theta}_{\ell a d}$	$\widehat{\theta}_{\ell s e}$	$\widehat{\theta}_{b c \ell}$	$\widehat{\theta}_{I}$	$\widehat{\theta}_{\ell a d}$	$\widehat{\theta}_{\ell s e}$	$\widehat{\theta}_{b c l}$	
$\sigma_{U}=0.2$									
BIAS	-0.0380	-0.0025	0.0033	0.0057	-0.0241	0.0173	0.0236	-0.0027	
RMSE	0.0884	0.0989	0.0811	0.0790	0.0589	0.0650	0.0592	0.0513	
$\sigma_{U}=0.5$									
BIAS	-0.0439	-0.0082	-0.0485	0.0139	-0.0291	0.0065	-0.0231	0.0014	
RMSE	0.1167	0.1468	0.2412	0.1309	0.0821	0.0951	0.1714	0.0834	
$\sigma_{U}=1$									
BIAS	-0.0551	-0.0535	-0.0960	0.0775	-0.0335	-0.0070	-0.0567	0.0288	
RMSE	0.1603	0.2020	0.3048	0.3764	0.1085	0.1281	0.2246	0.2267	
$\sigma_{U}=1.5$									
BIAS	-0.0593	-0.0612	-0.0833	0.4932	-0.0371	-0.0378	-0.0480	0.1371	
RMSE	0.1843	0.2075	0.2699	2.0647	0.1231	0.1390	0.1830	0.6050	
$\sigma_{U}=2$									
BIAS	-0.0629	-0.0567	-0.0655	0.7770	-0.0412	-0.0421	-0.0390	0.4812	
RMSE	0.1977	0.2315	0.2252	8.1122	0.1302	0.1440	0.1487	3.1191	

Table 4: Bias and RMSE of each estimator for unknown $h(z)$ with validation data under Gaussian errors.

$\varepsilon \sim$ Laplace (0,1)	$n=200, N=200$				$n=500, N=500$			
	$\widehat{\theta}_{I}$	$\widehat{\theta}_{\ell a d}$	$\widehat{\theta}_{\ell s e}$	$\widehat{\theta}_{\text {bcls }}$	$\widehat{\theta}_{I}$	$\widehat{\theta}_{\text {ead }}$	$\widehat{\theta}_{\text {lse }}$	$\widehat{\theta}_{b c l s}$
$\sigma_{U}=0.2$								
BIAS	-0.0384	-0.0134	0.0038	0.0011	-0.0199	0.0175	0.0269	0.0009
RMSE	0.0991	0.1057	0.1146	0.1051	0.0620	0.0669	0.06418	0.0693
$\sigma_{U}=0.5$								
BIAS	-0.0447	-0.0113	-0.0411	0.0131	-0.0216	0.0131	-0.0265	0.0039
RMSE	0.1355	0.1591	0.2362	0.1565	0.0838	0.0975	0.1809	0.0980
$\sigma_{U}=1$								
BIAS	-0.0483	-0.0474	-0.0968	0.1015	-0.0267	-0.0062	-0.0479	0.0249
RMSE	0.1713	0.2194	0.3460	0.4507	0.1079	0.1253	0.1863	0.2333
$\sigma_{U}=1.5$								
BIAS	-0.0498	-0.0534	-0.0808	0.4352	-0.0304	-0.0334	-0.0415	0.1166
RMSE	0.1917	0.2126	0.2947	2.8417	0.1224	0.1430	0.1733	0.5827
$\sigma_{U}=2$								
BIAS	-0.0545	-0.0470	-0.0628	-0.2593	-0.0329	-0.0198	-0.0304	0.3198
RMSE	0.2036	0.2326	0.2567	9.8919	0.1290	0.1449	0.1501	4.5430

Table 5: Bias and RMSE of each estimator for unknown $h(z)$ with validation data under Laplace errors.

$\varepsilon \sim t_{2}$	$n=200, N=200$				$n=500, N=500$			
	$\widehat{\theta}_{I}$	$\widehat{\theta}_{\ell a d}$	$\widehat{\theta}_{\ell s e}$	$\widehat{\theta}_{b c l s}$	$\widehat{\theta}_{I}$	$\widehat{\theta}_{\ell a d}$	$\widehat{\theta}_{\ell s e}$	$\widehat{\theta}_{b c l s}$
$\sigma_{U}=0.2$								
BIAS	-0.0452	-0.0516	0.0110	0.0131	-0.0171	-0.0173	0.0294	0.0035
RMSE	0.1138	0.1283	0.2842	0.3367	0.0691	0.0759	0.1568	0.1909
$\sigma_{U}=0.5$								
BIAS	-0.0488	-0.0536	-0.0434	0.0167	-0.0201	-0.0167	-0.0221	0.0083
RMSE	0.1469	0.1657	0.3661	0.3400	0.0906	0.0996	0.2394	0.2153
$\sigma_{U}=1$								
BIAS	-0.0600	-0.0678	-0.0905	0.0690	-0.0266	-0.0270	-0.0493	0.0350
RMSE	0.1834	0.2076	0.3814	0.5206	0.1197	0.1271	0.2498	0.3269
$\sigma_{U}=1.5$								
BIAS	-0.0593	-0.0663	-0.0847	0.2926	-0.0245	-0.0243	-0.0530	0.1398
RMSE	0.2038	0.2272	0.3469	2.8562	0.1094	0.1179	0.2644	0.6613
$\sigma_{U}=2$								
BIAS	-0.0620	-0.0694	-0.0983	0.6243	-0.0305	-0.0294	-0.0335	0.6066
RMSE	0.1983	0.2789	0.3219	7.4859	0.1369	0.1462	0.2225	3.6414

Table 6: Bias and RMSE of each estimator for unknown $h(z)$ with validation data under t_{2} errors.

Appendix

In this section some proofs are presented.
Proof of (2.25). Let $D(s):=\int_{0}^{\infty}\left\|V\left(x, \theta+n^{-1 / 2} s\right)\right\|^{2} d G(x)$. By (2.23), $M\left(\theta+n^{-1 / 2} s\right)=2 D(s)$. Recall that $c_{n i}:=n^{-1 / 2} h\left(Z_{i}\right)$ and define

$$
\begin{aligned}
& U(x, s):=n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right) I\left(\zeta_{i} \leq x+s^{\prime} c_{n i}\right), \quad J(x, s):=n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right) K_{Z_{i}}\left(x+s^{\prime} c_{n i}\right), \\
& W(x, s):=U(x, s)-J(x, s), \quad x \in \mathbb{R}^{p}, s \in \mathbb{R}^{p} .
\end{aligned}
$$

Note that $E U(x, s) \equiv E J(x, s), E W(x, s) \equiv 0$. By (2.5),

$$
n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right)\left\{K_{Z_{i}}(x)+K_{Z_{i}}(-x)\right\}=n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right), \quad \forall x \in \mathbb{R}^{p} .
$$

Recall the definition of $\Gamma_{n}(x), \Gamma(x), \mathcal{G}_{n}$ and \mathcal{G} from (2.15). By (2.5), $\Gamma_{n}(x) \equiv \Gamma_{n}(-x), \Gamma(x) \equiv \Gamma(-x)$. Use the above notation and facts to rewrite

$$
\begin{aligned}
& D(s)=\int_{0}^{\infty}\left\|U(x, s)+U(-x, s)-n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right)\right\|^{2} d G(x) \\
& =\int_{0}^{\infty} \|\{W(x, s)-W(x, 0)\}+\{W(-x, s)-W(-x, 0)\} \\
& +\left\{J(x, s)-J(x, 0)-\Gamma_{n}(x) s\right\}+\left\{J(-x, s)-J(-x, 0)-\Gamma_{n}(-x) s\right\} \\
& +\left\{W(x, 0)+W(-x, 0)+2 \Gamma_{n}(x) s\right\} \|^{2} d G(x) .
\end{aligned}
$$

Expand the quadratic of the five summands in the integrand to obtain

$$
\begin{equation*}
D(s)=D_{1}(s)+D_{2}(s)+\cdots+D_{5}(s)+2 \times(10 \text { cross product terms }), \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
D_{1}(s) & :=\int_{0}^{\infty}\|W(x, s)-W(x, 0)\|^{2} d G(x), \\
D_{2}(s) & :=\int_{0}^{\infty}\|W(-x, s)-W(-x, 0)\|^{2} d G(x), \\
D_{3}(s) & :=\int_{0}^{\infty}\left\|J(x, s)-J(x, 0)-\Gamma_{n}(x) s\right\|^{2} d G(x), \\
D_{4}(s) & :=\int_{0}^{\infty}\left\|J(-x, s)-J(-x, 0)-\Gamma_{n}(-x) s\right\|^{2} d G(x), \\
D_{5}(s) & :=\int_{0}^{\infty}\left\|W(x, 0)+W(-x, 0)+2 \Gamma_{n}(x) s\right\|^{2} d G(x) .
\end{aligned}
$$

Recall $\mathcal{U}(b):=\left\{s \in \mathbb{R}^{p} ;\|s\| \leq b\right\}, b>0$. We shall shortly prove the following lemma.
Lemma 4.1. Under the above setup and the assumptions (2.9)-(2.17), $\forall 0<b<\infty$,

$$
\begin{align*}
& \sup _{s \in \mathcal{U}(b)} D_{k}(s)=o_{p}(1), \quad k=1,2, \cdots, 4, \tag{4.3}\\
& E\left(\sup _{s \in \mathcal{U}(b)} D_{5}(s)\right)=O(1) . \tag{4.4}
\end{align*}
$$

Unless mentioned otherwise, all the supremum below are taken over $s \in \mathcal{U}(b)$. Lemma 4.1 together with the C-S inequality yield that

$$
\begin{aligned}
\sup _{s} \mid & \left.\int_{0}^{\infty}\{W(x, s)-W(x, 0)\}\left\{W(x, 0)+W(-x, 0)+2 \Gamma_{n}(x) s\right\} d G(x)\right|^{2} \\
& \leq \sup _{s} D_{1}(s) \sup _{s} D_{5}(s)=o_{p}(1),
\end{aligned}
$$

by (4.3) applied with $k=1$ and (4.4). Similarly, the supremum over s of all other cross product terms in the right hand side of (4.2) tend to zero, in probability.

Consequently, because $D(s)=M\left(\theta+n^{-1 / 2} s\right) / 2$, we obtain

$$
\begin{equation*}
\sup _{s}\left|M\left(\theta+n^{-1 / 2} s\right)-2 D_{5}(s)\right| \rightarrow_{p} 0 . \tag{4.5}
\end{equation*}
$$

Let

$$
T_{n}^{*}:=\int_{0}^{\infty} \Gamma_{n}(x)\{W(x, 0)+W(-x, 0)\} d G(x) .
$$

Because of (2.5) and (2.9), $\int_{0}^{\infty} \Gamma_{n}(x) \Gamma_{n}(x)^{\prime} d G(x)=\mathcal{G}_{n} / 2, \int_{0}^{\infty} \Gamma(x) \Gamma(x)^{\prime} d G(x)=\mathcal{G} / 2$. Use these facts when expanding the quadratic in D_{5} to write

$$
\begin{equation*}
D_{5}(s)=2^{-1} M(\theta)+4 s^{\prime} T_{n}^{*}+2 s^{\prime} \mathcal{G}_{n} s \tag{4.6}
\end{equation*}
$$

Because $T_{n}=2 \int_{0}^{\infty} \Gamma(x)\{W(x, 0)+W(-x, 0)\} d G(x)$, by the C-S inequality, (2.16) and (2.22),

$$
\begin{aligned}
\left\|T_{n}^{*}-\frac{1}{2} T_{n}\right\|^{2} & =\left\|\int_{0}^{\infty}\left\{\Gamma_{n}(x)-\Gamma(x)\right\}\{W(x, 0)+W(-x, 0)\} d G(x)\right\|^{2} \\
& \leq D(0) \int_{0}^{\infty}\left\|\Gamma_{n}(x)-\Gamma(x)\right\|^{2} d G(x) \rightarrow_{p} 0 \\
\left\|\mathcal{G}_{n}-\mathcal{G}\right\| & \rightarrow_{p} 0 .
\end{aligned}
$$

Hence (2.25) follows from (4.5) and (4.6), thereby completing the proof of Theorem 2.1.
Proof of Lemma 4.1. Consider D_{3}. Let $D_{i s}(x):=K_{Z_{i}}\left(x+s^{\prime} c_{n i}\right)-K_{Z_{i}}(x)-$ $s^{\prime} c_{n i} k_{Z_{i}}(x)$. Then

$$
\begin{align*}
D_{3}(s) & :=\int_{0}^{\infty}\left\|n^{-1 / 2} \sum_{i=1}^{n} h\left(Z_{i}\right) D_{i s}(x)\right\|^{2} d G(x) \tag{4.7}\\
& \leq \frac{1}{n} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{2} \int_{0}^{\infty} \sum_{i=1}^{n} D_{i s}^{2}(x) d G(x) .
\end{align*}
$$

By the LLN's and (2.4),

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|c_{n i}\right\|^{2}=n^{-1} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{2} \rightarrow_{p} E\|h(Z)\|^{2}<\infty . \tag{4.8}
\end{equation*}
$$

By the C-S inequality and (2.14), for all $s \in \mathcal{U}(b)$,

$$
\begin{aligned}
& \int_{0}^{\infty} \sum_{i=1}^{n} D_{i s}^{2}(x) d G(x) \leq \int_{0}^{\infty} \sum_{i=1}^{n}\left(\int_{-\left|s^{\prime} c_{n i}\right|}^{\left|s^{\prime} c_{n i}\right|}\left(\kappa_{Z_{i}}(x+u)-\kappa_{Z_{i}}(x)\right) d u\right)^{2} d G(x) \\
& \leq 2 b n^{-1} \int_{0}^{\infty} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{2} \int_{-b n^{-1 / 2}}^{b n^{-1 / 2}}\left(\kappa_{Z_{i}}\left(x+u\left\|h\left(Z_{i}\right)\right\|\right)-\kappa_{Z_{i}}(x)\right)^{2} d u d G(x) .
\end{aligned}
$$

Therefore, by the Fubini Theorem and (2.14),

$$
\begin{align*}
& E\left(\sup _{s} \int_{0}^{\infty} \sum_{i=1}^{n} D_{i s}^{2}(x) d G(x)\right) \tag{4.9}\\
& \leq 2 b n^{1 / 2} \int_{-b n^{-1 / 2}}^{b n^{-1 / 2}} \int E\left\{\|h(Z)\|^{2}\left(\kappa_{Z}(x+v\|h(Z)\|)-\kappa_{Z}(x)\right)^{2}\right\} d G(x) d v \rightarrow 0 .
\end{align*}
$$

Upon combining this fact with (4.8) and (4.7), we obtain $\sup _{s} D_{3}(s)=o_{p}(1)$, thereby proving (4.3) for $j=3$. The proof for $j=4$ is exactly similar.

Now consider D_{1}. Because the i th summand in $W(x, s)-W(x, 0)$ is a conditionally centered Bernoulli type r.v. and the summands are i.i.d., by the Fubini Theorem and (2.14),

$$
\begin{align*}
E D_{1}(s) & \leq \int_{-\infty}^{\infty} E\|W(x, s)-W(x, 0)\|^{2} d G(x) \tag{4.10}\\
& \leq E\left(\|h(Z)\|^{2} \int_{-\infty}^{\infty}\left|K_{Z}\left(x+n^{-1 / 2} s^{\prime} h(Z)\right)-K_{Z}(x)\right| d G(x)\right) \\
& \leq \int_{-b n^{-1 / 2}}^{b n^{-1 / 2}} \int E\left(\|h(Z)\|^{3} \kappa_{Z}(x+u\|h(Z)\|)\right) d G(x) d u \rightarrow 0 .
\end{align*}
$$

In view of (4.10), to prove (4.3) for $j=1$, because of the compactness of the ball $\mathcal{U}(b)$, it suffices to show that for every $\epsilon>0$ there is a $\delta>0$ and an N_{ϵ} such that for every $s \in \mathcal{U}(b)$,

$$
\begin{equation*}
P\left(\sup _{\|t-s\|<\delta}\left|D_{1}(t)-D_{1}(s)\right|>\epsilon\right)<\epsilon, \quad \forall n>N_{\epsilon} . \tag{4.11}
\end{equation*}
$$

Let $h_{j}(z)$ denote the j th coordinate of $h(z), j=1, \cdots, p$ and let $\alpha_{i}(x, t):=I\left(\zeta_{i} \leq x+t^{\prime} c_{n i}\right)-$ $I\left(\zeta_{i} \leq x\right)-K_{Z_{i}}\left(x+t^{\prime} c_{n i}\right)+K_{Z_{i}}(x)$. Then

$$
\begin{aligned}
D_{1}(s) & =\int_{0}^{\infty}\|W(x, s)-W(x, 0)\|^{2} d G(x) \\
& =\sum_{j=1}^{p} \int_{0}^{\infty}\left(n^{-1 / 2} \sum_{i=1}^{n} h_{j}\left(Z_{i}\right) \alpha_{i}(x, s)\right)^{2} d G(x)=\sum_{j=1}^{p} D_{1 j}(s), \quad \text { say. }
\end{aligned}
$$

Thus it suffices to prove (4.11) with D_{1} replaced by $D_{1 j}$ for each $1 \leq j \leq p$.
Fix a $1 \leq j \leq p$ and write $h_{j}\left(Z_{i}\right)=h_{j}^{+}\left(Z_{i}\right)-h_{j}^{-}\left(Z_{i}\right)$, where $h_{j}^{+}=\max \left(0, h_{j}\right)$, $h_{j}^{-}=\max \left(0,-h_{j}\right)$. Let

$$
\begin{aligned}
W_{j}^{ \pm}(x, s) & :=n^{-1 / 2} \sum_{i=1}^{n} h_{j}^{ \pm}\left(Z_{i}\right) \alpha_{i}(x, s), \quad \mathcal{D}_{j}^{ \pm}(x, s, t):=W_{j}^{ \pm}(x, t)-W_{j}^{ \pm}(x, s), \\
R_{j}^{ \pm}(s, t) & :=\int_{0}^{\infty}\left(\mathcal{D}_{j}^{ \pm}(x, s, t)\right)^{2} d G(x), \quad \alpha_{i}(x, s, t):=\alpha_{i}(x, t)-\alpha_{i}(x, s) .
\end{aligned}
$$

Then

$$
\begin{align*}
& \left|D_{1 j}(t)-D_{1 j}(s)\right| \tag{4.12}\\
& \quad=\int_{0}^{\infty}\left(n^{-1 / 2} \sum_{i=1}^{n}\left[h_{j}^{+}\left(Z_{i}\right)-h_{j}^{-}\left(Z_{i}\right)\right] \alpha_{i}(x, s, t)\right)^{2} d G(x) \\
& \leq \int_{0}^{\infty}\left(\mathcal{D}_{j}^{+}(x, s, t)\right)^{2} d G(x)+\int_{0}^{\infty}\left(\mathcal{D}_{j}^{-}(x, s, t)\right)^{2} d G(x) \\
& \quad+2\left\{\int_{0}^{\infty}\left(\mathcal{D}_{j}^{+}(x, s, t)\right)^{2} d G(x) \int_{0}^{\infty}\left(\mathcal{D}_{j}^{-}(x, s, t)\right)^{2} d G(x)\right\}^{1 / 2}
\end{align*}
$$

$$
=R_{j}^{+}(s, t)+R_{j}^{-}(s, t)+2\left(R_{j}^{+}(s, t) R_{j}^{-}(s, t)\right)^{1 / 2}
$$

Note that

$$
\mathcal{D}_{j}^{+}(x, s, t)=n^{-1 / 2} \sum_{i=1}^{n} h_{j}^{+}\left(Z_{i}\right)\left[\alpha_{i}(x, t)-\alpha_{i}(x, s)\right] .
$$

Fix $s \in \mathcal{U}_{b}, \epsilon>0$ and $\delta>0$. Then, $\forall t \in \mathcal{U}(b),\|t-s\|<\delta$ implies $s^{\prime} c_{n i}-\delta\left\|c_{n i}\right\| \leq t^{\prime} c_{n i} \leq$ $s^{\prime} c_{n i}+\delta\left\|c_{n i}\right\|$, for all i. By the nondecreasing property of the indicator function and the d.f.,

$$
\begin{aligned}
& I\left(\zeta_{i} \leq x+s^{\prime} c_{n i}-\delta\left\|c_{n i}\right\|\right)-I\left(\zeta_{i} \leq x+s^{\prime} c_{n n}\right)-K_{Z_{i}}\left(x+s^{\prime} c_{n i}+\delta\left\|c_{n i}\right\|\right) \\
& \quad+K_{Z_{i}}\left(x+s^{\prime} c_{n i}\right)+K_{Z_{i}}\left(x+s^{\prime} c_{n i}+\delta\left\|c_{n i}\right\|\right)-K_{Z_{i}}\left(x+s^{\prime} c_{n i}-\delta\left\|c_{n i}\right\|\right) \\
& \leq \alpha_{i}(x, t)-\alpha_{i}(x, s)=I\left(\zeta_{i} \leq x+t^{\prime} c_{n i}\right)-I\left(\zeta_{i} \leq x+s^{\prime} c_{n i}\right) \\
& \quad-K_{Z_{i}}\left(x+t^{\prime} c_{n i}\right)+K_{Z_{i}}\left(x+s^{\prime} c_{n i}\right) \\
& \leq I\left(\zeta_{i} \leq x+s^{\prime} c_{n i}+\delta\left\|c_{n i}\right\|\right)-I\left(\zeta_{i} \leq x+s^{\prime} c_{n i}\right)-K_{Z_{i}}\left(x+s^{\prime} c_{n i}+\delta\left\|c_{n i}\right\|\right) \\
& \quad+K_{Z_{i}}\left(x+s^{\prime} c_{n i}\right)+K_{Z_{i}}\left(x+s^{\prime} c_{n i}+\delta\left\|c_{n i}\right\|\right)-K_{Z_{i}}\left(x+s^{\prime} c_{n i}-\delta\left\|c_{n i}\right\|\right) .
\end{aligned}
$$

Let, for any $a \in \mathbb{R}, x \in \mathbb{R}$,

$$
\begin{aligned}
\mathcal{D}_{j 1}^{ \pm}(x, s, a):=n^{-1 / 2} \sum_{i=1}^{n} h_{j}^{ \pm}\left(Z_{i}\right)\left\{I \left(\zeta_{i}\right.\right. & \left.\leq x+s^{\prime} c_{n i}+a\left\|c_{n i}\right\|\right)-I\left(\zeta_{i} \leq x+s^{\prime} c_{n i}\right) \\
& \left.-K_{Z_{i}}\left(x+s^{\prime} c_{n i}+a\left\|c_{n i}\right\|\right)+K_{Z_{i}}\left(x+s^{\prime} c_{n i}\right)\right\}
\end{aligned}
$$

Using the above inequalities and $h_{j}^{+}\left(Z_{i}\right)$ being nonnegative we obtain that

$$
\begin{aligned}
& \mathcal{R}_{j}^{+}(s, t):=\int_{0}^{\infty}\left(D_{j}^{+}(x, s, t)\right)^{2} d G(x) \\
& \leq \int_{0}^{\infty}\left(\mathcal{D}_{j 1}^{+}(x, s, \delta)\right)^{2} d G(x)+\int_{0}^{\infty}\left(\mathcal{D}_{j 1}^{+}(x, s,-\delta)\right)^{2} d G(x) \\
& \quad+\int_{0}^{\infty}\left(n^{-1 / 2} \sum_{i=1}^{n} h_{j}^{+}\left(Z_{i}\right)\left\{K_{Z_{i}}\left(x+s^{\prime} c_{n i}+\delta\left\|c_{n i}\right\|\right)-K_{Z_{i}}\left(x+s^{\prime} c_{n i}-\delta\left\|c_{n i}\right\|\right\} d G(x)\right)^{2} .\right.
\end{aligned}
$$

Argue as for (4.3) when $j=3$ to see that the first two terms in the above bound tend to 0 , in probability. Let $\delta_{n}:=n^{-1 / 2} \delta$ and $\Delta_{j}(s, \delta)$ denote the last term in the above bound. Argue as for (4.10) to obtain that $\Delta_{j}(s, \delta)$ is bounded from the above by

$$
\begin{aligned}
& \int_{0}^{\infty}\left(n^{-1 / 2} \sum_{i=1}^{n} h_{j}^{+}\left(Z_{i}\right)\left\|h\left(Z_{i}\right)\right\| \int_{-\delta_{n}}^{\delta_{n}} \kappa_{Z_{i}}\left(x+n^{-1 / 2} s^{\prime} h\left(Z_{i}\right)+u\left\|h\left(Z_{i}\right)\right\|\right) d u d G(x)\right)^{2} \\
& \leq n^{-1} \int_{0}^{\infty}\left(\sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{2} \int_{-\delta_{n}}^{\delta_{n}} \kappa_{Z_{i}}\left(x+n^{-1 / 2} s^{\prime} h\left(Z_{i}\right)+u\left\|h\left(Z_{i}\right)\right\|\right) d u d G(x)\right)^{2} \\
& \leq n^{-1} \int \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{4} \sum_{i=1}^{n}\left(2 \delta_{n}\right) \int_{-\delta_{n}}^{\delta_{n}} \kappa_{Z_{i}}^{2}\left(x+n^{-1 / 2} s^{\prime} h\left(Z_{i}\right)+u\left\|h\left(Z_{i}\right)\right\|\right) d u d G(x) .
\end{aligned}
$$

Hence, by the Fubini Theorem and (2.14),

$$
\begin{aligned}
E \Delta_{j}(s, \delta) & \leq 2 \delta n^{1 / 2} \int_{-n^{-1 / 2} \delta}^{n^{-1 / 2} \delta} \int E\left(\|h(Z)\|^{4} \kappa_{Z}^{2}\left(x+n^{-1 / 2} s^{\prime} h(Z)+u\|h(Z)\|\right)\right) d G(x) d u \\
& \rightarrow 4 \delta^{2} \int E\left(\|h(Z)\|^{4} \kappa_{Z}^{2}(x)\right) d G(x), \quad \text { as } n \rightarrow \infty, \forall 1 \leq j \leq p
\end{aligned}
$$

Since the factor multiplying δ^{2} is positive, the above term can be made smaller than ϵ by the choice of δ. This then completes the proof of R_{j}^{+}satisfying (4.11). The details of the proof for verifying (4.11) for R_{j}^{-}are exactly similar. These facts together with the upper bound of (4.12) show that (4.11) is satisfied by $D_{1 j}$ for each $j=1, \cdots, p$ thereby completing the proof of (4.3) for D_{1}. The proof of (4.3) for D_{2} is similar. This completes the proof of (4.3).

Next, consider (4.4). By the C-S inequality, $\left\|\Gamma_{n}(x)\right\|^{2} \leq \frac{1}{n} \sum_{i=1}^{n}\left\|h\left(Z_{i}\right)\right\|^{4} \times \kappa_{Z_{i}}^{2}(x)$, for all $x \in \mathbb{R}$. Recall $D(0)=M(\theta) / 2$. Hence, by (2.13) and (2.22),

$$
\begin{aligned}
E\left(\sup _{s} D_{5}(s)\right) & \leq 2 E D(0)+2 b \int E\left\|\Gamma_{n}(x)\right\|^{2} d G(x) \\
& \leq 2 E D(0)+2 b \int E\left(\|h(Z)\|^{4} \kappa_{Z}^{2}(x)\right) d G(x)<\infty
\end{aligned}
$$

Proof of Lemma 3.1. It is well known that the kernel density estimator $\hat{f}_{Z}(z) \rightarrow_{p} f_{Z}(z)$ under (3.12) for all $z \in \mathcal{C}$. Because $\epsilon_{0}<b_{0} \leq \inf _{z \in \mathcal{C}} f_{Z}(z)$, we have that $\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right) \rightarrow_{p} f_{Z}(z)$, for all $z \in \mathcal{C}$. Slutsky's theorem implies that it suffices to show that $\tilde{h}(z)$ is asymptotically normally distributed. Rewrite

$$
\tilde{h}(z)=\frac{1}{N^{2} w_{1}^{p}} \sum_{k=1}^{N} \sum_{l=1}^{N} \widetilde{X}_{k} K_{1}\left(\frac{\widetilde{U}_{l}+\widetilde{X}_{k}-z}{w_{1}}\right):=N^{-2} \sum_{k=1}^{N} \sum_{l=1}^{N} \phi\left(z, \widetilde{X}_{k}, \widetilde{U}_{l}\right),
$$

where $\phi\left(z, \widetilde{X}_{k}, \widetilde{U}_{l}\right)=\widetilde{X}_{k} K_{w}\left(\widetilde{U}_{l}+\widetilde{X}_{k}-z\right)$ and $K_{w}(\cdot)=K\left(\cdot / w_{1}\right) / w_{1}^{p}$. We see that $\tilde{h}(z)$ is in fact a two-sample U-statistic based on the function ϕ. Recall $h_{0}(z)$ in (3.1). The conditional expectations can be calculated as follows.

$$
\begin{aligned}
& E \phi\left(\widetilde{X}_{1}, \widetilde{U}_{1}\right)=h_{0}(z)+w_{1}^{2} \widetilde{B}(z)+o\left(w_{1}^{2}\right), \\
& \widetilde{B}(z):=\frac{1}{2} \iint x f_{X}(x) u^{\prime} f_{U}^{\prime \prime}(z-x) u K_{1}(u) d u d x \\
& E\left(\phi \mid \widetilde{X}_{1}\right)=\widetilde{X}_{1} f_{U}\left(z-\widetilde{X}_{1}\right)+O\left(w_{1}^{2}\right), E\left(\phi \mid \widetilde{U}_{1}\right)=\left(z-\widetilde{U}_{1}\right) f_{X}\left(z-\widetilde{U}_{1}\right)+O\left(w_{1}^{2}\right) .
\end{aligned}
$$

Similar to the derivation of Lemma 6.4 in Geng and Koul (2017), we obtain that

$$
\operatorname{Cov}(\tilde{h}(z))=O\left(\frac{1}{N^{2} w_{1}^{p}}+N^{-1} \operatorname{Cov}\left(E\left(\phi \mid \widetilde{X}_{1}\right)\right)+N^{-1} \operatorname{Cov}\left(E\left(\phi \mid \widetilde{U}_{1}\right)\right)\right)
$$

Under (3.12), we see that the asymptotic covariance of $\tilde{h}(z)$ is of the order N^{-1}, because of $N w_{1}^{p} \rightarrow$ ∞ implied by (3.12). Furthermore, Theorem 6.1.4 in Lehmann (1999) and $w_{1} \rightarrow 0$ imply that

$$
N^{1 / 2}\left(\tilde{h}(z)-h_{0}(z)-w_{1}^{2} \widetilde{B}(z)\right) \rightarrow_{D} \mathcal{N}_{p}(0, \widetilde{\Omega}), \widetilde{\Omega}:=\operatorname{Cov}\left(X f_{U}(z-X)\right)+\operatorname{Cov}\left((z-U) f_{X}(z-U)\right) .
$$

This completes the proof of Lemma 3.1.
To study the asymptotic distribution of $\widehat{\theta}$, we need the following preliminary result about the uniform consistency of $\widehat{h}(z)$ over \mathcal{C}.

$$
\begin{equation*}
\sup _{z \in \mathcal{C}}\|\widehat{h}(z)-h(z)\|=o_{p}(1) \tag{4.13}
\end{equation*}
$$

Proof of (4.13). Recall the definitions of \widehat{h} and h_{0} from (3.1). Rewrite

$$
\widehat{h}(z)-h(z)=\frac{1}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}\left(\tilde{h}(z)-h_{0}(z)\right)+h_{0}(z)\left(\frac{1}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}-\frac{1}{f_{Z}(z)}\right) .
$$

By (3.5) and (3.9), $\sup _{z}\left\|h_{0}(z)\right\|<\infty$. Moreover, $\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)^{-1} \leq \epsilon_{0}^{-1}$. Therefore, it suffices to show that

$$
\begin{equation*}
\text { (a) } \sup _{z \in \mathcal{C}}\left\|\tilde{h}(z)-h_{0}(z)\right\|=o_{p}(1) ; \quad \text { (b) } \sup _{z \in \mathcal{C}}\left|\frac{1}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}-\frac{1}{f_{Z}(z)}\right|=o_{p}(1) \text {. } \tag{4.14}
\end{equation*}
$$

First, we prove (4.14)(a). Let

$$
F_{N}(x):=N^{-1} \sum_{k=1}^{N} I\left(\tilde{X}_{k} \leq x\right), \quad h_{1}(z):=N^{-1} \sum_{k=1}^{N} \tilde{X}_{k} f_{U}\left(z-\widetilde{X}_{k}\right) .
$$

Now write $\tilde{h}(z)-h_{0}(z)=\tilde{h}(z)-h_{1}(z)+h_{1}(z)-h_{0}(z)$. Giné and Guillou (2002) showed that if f_{U} is bounded with the bandwidth w_{1} satisfying (3.12), then

$$
\begin{equation*}
\sup _{u \in \mathbb{R}^{p}}\left|\hat{f}_{U}(u)-E \hat{f}_{U}(u)\right|=O_{p}\left(\sqrt{\frac{\log w_{1}^{-1}}{N w_{1}^{p}}}\right) . \tag{4.15}
\end{equation*}
$$

On the other hand, Taylor expansion, the symmetry of K_{1} and the assumption (3.10) yield that

$$
\begin{equation*}
\sup _{u \in \mathbb{R}^{p}}\left|E \hat{f}_{U}(u)-f_{U}(u)\right|=w_{1}^{2} \sup _{u^{*} \in \mathbb{R}^{p}}\left|\int u^{\prime} f_{U}^{\prime \prime}\left(u^{*}\right) u K_{1}(u) d u\right|=O_{p}\left(w_{1}^{2}\right) . \tag{4.16}
\end{equation*}
$$

The facts (4.15) and (4.16) together imply

$$
\begin{equation*}
\sup _{u \in \mathbb{R}^{p}}\left|\hat{f}_{U}(u)-f_{U}(u)\right| \leq \sup _{u \in \mathbb{R}^{p}}\left|\hat{f}_{U}(u)-E \hat{f}_{U}(u)\right|+\sup _{u \in \mathbb{R}^{p}}\left|E \hat{f}_{U}(u)-f_{U}(u)\right|=o_{p}(1) . \tag{4.17}
\end{equation*}
$$

Hence, $E\|X\|<\infty$ implies

$$
\begin{aligned}
\sup _{z \in \mathcal{C}}\left\|\tilde{h}(z)-h_{1}(z)\right\| & \leq \int\|x\|\left|\hat{f}_{U}(x-z)-f_{U}(z-x)\right| d F_{N}(x) \\
& \leq N^{-1} \sum_{k=1}^{N}\left\|\widetilde{X}_{k}\right\| \sup _{u \in \mathbb{R}^{p}}\left|\hat{f}_{U}(u)-f_{U}(u)\right|=o_{p}(1) .
\end{aligned}
$$

It remains to show that $\sup _{z \in \mathcal{C}}\left\|h_{1}(z)-h_{0}(z)\right\|=o_{p}(1)$. By (3.9), f_{U} has an absolutely integrable characteristic function $\gamma(t)$. Similar to the argument in Bierens (1983), by the inversion formula,

$$
f_{U}(u)=(2 \pi)^{-p} \int_{\mathbb{R}^{p}} \exp \left(-i t^{\prime} u\right) \gamma(t) d t .
$$

Because $E\left(h_{1}(z)\right)=h_{0}(z)$, we have

$$
\begin{aligned}
& h_{1}(z)-h_{0}(z)=\frac{1}{(2 \pi)^{p} N} \sum_{k=1}^{N}\left\{\widetilde{X}_{k} \int \exp \left(-i t^{\prime}\left(z-\widetilde{X}_{k}\right)\right) \gamma(t) d t\right. \\
&\left.-E\left[\widetilde{X}_{k} \int \exp \left(-i t^{\prime}\left(z-\widetilde{X}_{k}\right)\right) \gamma(t) d t\right]\right\} .
\end{aligned}
$$

Let $Z_{k}(t):=\widetilde{X}_{k} \exp \left(i t^{\prime} \widetilde{X}_{k}\right), Y_{k}(t):=Z_{k}(t)-E Z_{k}(t), G_{N}(t):=N^{-1} \sum_{k=1}^{N} Y_{k}(t)$. Then

$$
\begin{aligned}
E \sup _{z \in \mathbb{R}^{p}}\left\|h_{1}(z)-h_{0}(z)\right\| & =\frac{1}{(2 \pi)^{p}} E \sup _{z \in \mathbb{R}^{p}}\left\|\int \exp \left(-i t^{\prime} z\right) \times G_{N}(t) \gamma(t) d t\right\| \\
& \leq \frac{1}{(2 \pi)^{p}} \int E\left\|G_{N}(t)\right\||\gamma(t)| d t \leq \sup _{t \in \mathbb{R}^{p}} E\left\|G_{N}(t)\right\| \frac{1}{(2 \pi)^{p}} \int|\gamma(t)| d t .
\end{aligned}
$$

Because $G_{N}(t)$ is an average of i.i.d. mean zero complex valued r.v.'s $Y_{k}(t)$'s and because $E\left\|Y_{1}(t)\right\|^{2}$ $\leq E\left\|Z_{1}(t)\right\|^{2}=E\left(Z_{1}^{\prime}(t) Z_{1}(-t)\right)=E\|\widetilde{X}\|^{2}$, for all t, we obtain

$$
E\left\|G_{N}(t)\right\|^{2}=N^{-1} E\left\|Y_{1}(t)\right\|^{2} \leq N^{-1} E\|\widetilde{X}\|^{2}, \quad \text { uniformly in } t \in \mathbb{R}^{p}
$$

Hence $E \sup _{z \in \mathcal{C}}\left\|h_{1}(z)-h_{0}(z)\right\|=O\left(N^{-1 / 2}\right)$ and $\sup _{z \in \mathcal{C}}\left\|h_{1}(z)-h_{0}(z)\right\|=o_{p}(1)$, which together with (4.17) completes the proof of (4.14)(a).

Next we prove (4.14)(b). Because

$$
\left|\frac{1}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}-\frac{1}{f_{Z}(z)}\right| \leq \epsilon_{0}^{-1} b_{0}^{-1}\left|\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)-f_{Z}(z)\right|,
$$

it suffices to show that

$$
\begin{equation*}
\sup _{z \in \mathcal{C}}\left|\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)-f_{Z}(z)\right|=o_{p}(1) \tag{4.18}
\end{equation*}
$$

An argument similar to the one used for (4.17) and assumptions (3.10) and (3.12) yield

$$
\begin{equation*}
\sup _{z \in \mathbb{R}^{p}}\left|\hat{f}_{Z}(z)-f_{Z}(z)\right|=o_{p}(1) \tag{4.19}
\end{equation*}
$$

Moreover, since

$$
\sup _{z \in \mathcal{C}}\left|\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)-f_{Z}(z)\right| \leq \sup _{z \in \mathcal{C}}\left|\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)-\hat{f}_{Z}(z)\right|+\sup _{z \in \mathcal{C}}\left|\hat{f}_{Z}(z)-f_{Z}(z)\right|,
$$

it remains to show that

$$
\begin{equation*}
\sup _{z \in \mathcal{C}}\left|\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)-\hat{f}_{Z}(z)\right|=o_{p}(1) . \tag{4.20}
\end{equation*}
$$

For a fixed $0<\epsilon<b_{0}-\epsilon_{0}$, let $A_{n, \epsilon}:=\left\{f_{Z}(z)-\epsilon \leq \hat{f}_{Z}(z) \leq f_{Z}(z)+\epsilon, \forall z \in \mathcal{C}\right\}$. By (4.19), $\exists N_{\epsilon}$ such that $P\left(A_{n, \epsilon}\right) \geq 1-\epsilon, \forall n>N_{\epsilon}$. On $A_{n, \epsilon}, \operatorname{since}^{\inf } z_{z \in \mathcal{C}} f_{Z}(z)>b_{0}$, we have

$$
\hat{f}_{Z}(z) \geq f_{Z}(z)-\epsilon>f_{Z}(z)-b_{0}+\epsilon_{0}>\epsilon_{0} .
$$

Hence, $\sup _{z \in \mathcal{C}}\left|\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)-\hat{f}_{Z}(z)\right|=0$ on $A_{n, \epsilon}$, thereby proving (4.20) and hence (4.14)(b). This also completes the proof of (4.13).

Let $\Delta(z):=\widehat{h}(z)-h(z)$ and $\delta_{i}:=\theta^{\prime} \Delta\left(Z_{i}\right), 1 \leq i \leq n$. From (4.13) we readily obtain the following result for the later use.

$$
\begin{equation*}
\max _{1 \leq i \leq n, Z_{i} \in \mathcal{C}}\left|\delta_{i}\right| \leq\|\theta\| \sup _{z \in \mathcal{C}}\|\Delta(z)\|=o_{p}(1) . \tag{4.21}
\end{equation*}
$$

Proof of Theorem 3.1. The proof is similar to that of Theorem 2.1. First, we shall prove the following.

$$
\begin{equation*}
\widehat{M}(\theta)=O_{p}(1) . \tag{4.22}
\end{equation*}
$$

A major difference between $V(x, \theta)$ and $\widehat{V}(x, \theta)$ is that $V(x, \theta)$ is centered at 0 while $\widehat{V}(x, \theta)$ has an asymptotic bias of the order w_{1}^{2} due to the estimation of $h(z)$. Rewrite

$$
\widehat{V}(x, \theta)=n^{-1 / 2} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right)\left[I\left(\zeta_{i} \leq x+\theta^{\prime} \Delta\left(Z_{i}\right)\right)-I\left(-\zeta_{i}<x-\theta^{\prime} \Delta\left(Z_{i}\right)\right)\right]
$$

Let

$$
\begin{aligned}
\xi(z, x) & :=\left[K_{z}\left(x+\theta^{\prime} \Delta(z)\right)-K_{z}\left(x-\theta^{\prime} \Delta(z)\right)\right], \\
J_{\theta}(z, x) & :=I_{\mathcal{C}}(z) \frac{\tilde{h}(z)}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)} \xi(z, x), \quad \widetilde{J}_{\theta}(z, x)=I_{\mathcal{C}}(z) \frac{\tilde{h}(z)}{f_{Z}(z)} \xi(z, x) .
\end{aligned}
$$

Write $\widehat{V}(x, \theta) \equiv T(x, \theta)+n^{-1 / 2} \sum_{i=1}^{n} J_{\theta}\left(Z_{i}, x\right)$, where

$$
T(x, \theta):=\widehat{V}(x, \theta)-n^{-1 / 2} \sum_{i=1}^{n} J_{\theta}\left(Z_{i}, x\right) .
$$

Note that

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|J_{\theta}\left(Z_{i}, x\right)\right\|^{2} & =\sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \frac{\left\|\tilde{h}\left(Z_{i}\right)\right\|^{2}}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)^{2}}\left|\xi\left(Z_{i}, x\right)\right|^{2} \\
& \leq \sup _{z \in \mathcal{C}}\left(\frac{f_{Z}(z)}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}\right)^{2} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \frac{\left\|\tilde{h}\left(Z_{i}\right)\right\|^{2}}{f_{Z}^{2}\left(Z_{i}\right)}\left|\xi\left(Z_{i}, x\right)\right|^{2} \\
& =\sup _{z \in \mathcal{C}}\left(\frac{f_{Z}(z)}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}\right)^{2} \sum_{i=1}^{n}\left\|\widetilde{J}_{\theta}\left(Z_{i}, x\right)\right\|^{2} .
\end{aligned}
$$

Then

$$
\begin{align*}
& \int\|\widehat{V}(x, \theta)\|^{2} d G(x) \leq 2 \int\|T(x, \theta)\|^{2} d G(x)+2 \int n^{-1}\left\|\sum_{i=1}^{n} J_{\theta}\left(Z_{i}, x\right)\right\|^{2} d G(x) \tag{4.23}\\
& \leq 2 \int\|T(x, \theta)\|^{2} d G(x)+2 \int \sum_{i=1}^{n}\left\|J_{\theta}\left(Z_{i}, x\right)\right\|^{2} d G(x) \quad \text { (by the C-S ineq.) } \\
& \leq 2 \int\|T(x, \theta)\|^{2} d G(x)+2 \sup _{z \in \mathcal{C}}\left(\frac{f_{Z}(z)}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}\right)^{2} \int \sum_{i=1}^{n}\left\|\tilde{J}_{\theta}\left(Z_{i}, x\right)\right\|^{2} d G(x) .
\end{align*}
$$

It thus suffices to show that the two terms on the right hand side above are $O_{p}(1)$.
Because $T(x, \theta) \equiv T(-x, \theta)$ and G is symmetric around zero, we obtain

$$
\int\|T(x, \theta)\|^{2} d G(x)=2 \int_{0}^{\infty}\|T(x, \theta)\|^{2} d G(x)
$$

Recall $\delta(z)=\theta^{\prime} \Delta(z)$. Let $E_{\mathcal{C}}(L(Z)):=E(L(Z) I(Z \in \mathcal{C}))$, for any integrable function L of Z. The law of total expectation and (3.6) yield

$$
\begin{aligned}
& E \int_{0}^{\infty}\|T(x, \theta)\|^{2} d G(x) \\
& =E_{\mathcal{C}} \int_{0}^{\infty}\|\widehat{h}(Z)\|^{2} \operatorname{Var}(I(\zeta \leq x+\delta(Z))-I(-\zeta<x-\delta(Z))) d G(x) \\
& \leq\|g\|_{\infty} E_{\mathcal{C}}\left(\|\widehat{h}(Z)\|^{2} \int_{0}^{\infty}\left\{2-K_{Z}(x-\delta(Z))-K_{Z}(x+\delta(Z))\right\} d x\right) .
\end{aligned}
$$

Moreover, conditioning on the validation data and Z and using the independence between Z and validation data, we obtain

$$
\begin{aligned}
\int_{0}^{\infty}\left\{1-K_{Z}(x-\delta(Z))\right\} d x & =\int_{0}^{\infty} P(\zeta+\delta(Z)>x) d x \leq E(|\zeta| \mid Z)+|\delta(Z)| \\
\int_{0}^{\infty}\left\{1-K_{Z}(x+\delta(Z))\right\} d x & =\int_{0}^{\infty} P(\zeta-\delta(Z)>x) d x \leq E(|\zeta| \mid Z)+|\delta(Z)|
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& E \int_{0}^{\infty}\|T(x, \theta)\|^{2} d G(x) \\
& \leq 2\|g\|_{\infty} E_{\mathcal{C}}\left(\|\widehat{h}(Z)\|^{2}[E(\mid \zeta \| Z)+|\delta(Z)|]\right) \\
& =2\|g\|_{\infty} E_{\mathcal{C}}\left\{\|\widehat{h}(Z)\|^{2}|\zeta|\right\}+2\|g\|_{\infty} E_{\mathcal{C}}\left\{\|\widehat{h}(Z)\|^{2}|\delta(Z)|\right\} \\
& \leq 2\|g\|_{\infty} \epsilon_{0}^{-2}\left(E_{\mathcal{C}}\left\{\|\tilde{h}(Z)\|^{2}|\zeta|\right\}+\|\theta\| E_{\mathcal{C}}\left\{\|\tilde{h}(Z)\|^{2}\|\Delta(Z)\|\right\}\right) \\
& \leq 2\|g\|_{\infty} \epsilon_{0}^{-2}\left(\sqrt{E_{\mathcal{C}}\|\tilde{h}(Z)\|^{4} E \zeta^{2}}+\|\theta\| \sqrt{E_{\mathcal{C}}\|\tilde{h}(Z)\|^{4} E_{\mathcal{C}}\|\Delta(Z)\|^{2}}\right) .
\end{aligned}
$$

To proceed further, we need the following results obtained by direct calculations.

$$
\begin{align*}
E \tilde{h}(z)= & h_{0}(z)+\frac{1}{2} w_{1}^{2} \widetilde{B}(z)+o\left(w_{1}^{2}\right), \tag{4.24}\\
E\|\tilde{h}(z)\|^{2}= & N^{-4} E \sum_{i, j=1}^{N} \sum_{q, r=1}^{N} \widetilde{X}_{i}^{\prime} \widetilde{X}_{j} K_{w}\left(\widetilde{U}_{q}+\widetilde{X}_{i}-z\right) K_{w}\left(\tilde{U}_{r}+\widetilde{X}_{j}-z\right) \\
= & \left\|h_{0}(z)\right\|^{2}+w_{1}^{2} h_{0}(z)^{\prime} \widetilde{B}(z)+o\left(w_{1}^{2}\right)+O\left(N^{-1}\right)=\left\|h_{0}(z)\right\|^{2}+o(1), \\
E\|\tilde{h}(z)\|^{4}= & N^{-8} E\left\{\sum_{i, j, k, l} \sum_{q, r, s, t} \widetilde{X}_{i}^{\prime} \widetilde{X}_{j} K_{w}\left(\widetilde{U}_{q}+\widetilde{X}_{i}-z\right) K_{w}\left(\widetilde{U}_{r}+\widetilde{X}_{j}-z\right)\right. \\
& \left.\quad \times \widetilde{X}_{k}^{\prime} \widetilde{X}_{l} K_{w}\left(\widetilde{U}_{s}+\widetilde{X}_{k}-z\right) K_{w}\left(\widetilde{U}_{t}+\widetilde{X}_{l}-z\right)\right\} \\
= & \left\|h_{0}(z)\right\|^{4}+2 w_{1}^{2}\left\|h_{0}(z)\right\|^{2} h_{0}(z)^{\prime} \widetilde{B}(z)+o\left(w_{1}^{2}\right)+O\left(N^{-1}\right) \rightarrow\left\|h_{0}(z)\right\|^{4} .
\end{align*}
$$

We further obtain that

$$
\begin{align*}
& E\|\Delta(z)\|^{2}=E\|\widehat{h}(z)-h(z)\|^{2} \tag{4.25}\\
& \leq 2 E\left\{\left\|\frac{1}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}\left(\tilde{h}(z)-h_{0}(z)\right)\right\|^{2}\right\} \\
& \quad+2 E\left\{\left\|h_{0}(z)\left(\frac{1}{\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)}-\frac{1}{f_{Z}(z)}\right)\right\|^{2}\right\} \\
& \leq 2 \epsilon_{0}^{-2} E\left\|\tilde{h}(z)-h_{0}(z)\right\|^{2}+2\left(\epsilon_{0}^{-1}+b_{0}^{-1}\right)^{2}\left\|h_{0}(z)\right\|^{2} \\
& \leq 4 \epsilon_{0}^{-2} E\|\tilde{h}(z)\|^{2}+\left\{4 \epsilon_{0}^{-2}+2\left(\epsilon_{0}^{-1}+b_{0}^{-1}\right)^{2}\right\}\left\|h_{0}(z)\right\|^{2} \\
& =\left\{\frac{8}{\epsilon_{0}^{2}}+2\left(\frac{1}{\epsilon_{0}}+\frac{1}{b_{0}}\right)^{2}\right\}\left\|h_{0}(z)\right\|^{2}+o(1) .
\end{align*}
$$

Combine (4.24) and (4.25) with the assumption (3.5), which implies $E\left\|h_{0}(Z)\right\|^{4}<\infty$, to conclude that $E \int_{0}^{\infty}\|T(x, \theta)\|^{2} d G(x)=O(1)$.

Next, consider the second term in the bound of (4.23). By (4.18), $\sup _{z \in \mathcal{C}}\left\{f_{Z}(z) /\left(\hat{f}_{Z}(z) \vee \epsilon_{0}\right)\right\}^{2}=$ $O_{p}(1)$. It remains to show that

$$
\begin{equation*}
\int \sum_{i=1}^{n}\left\|\tilde{J}_{\theta}\left(Z_{i}, x\right)\right\|^{2} d G(x)=O_{p}(1) \tag{4.26}
\end{equation*}
$$

Recall $\delta_{i}=\theta^{\prime} \Delta\left(Z_{i}\right)$. We have

$$
\begin{aligned}
\int & \sum_{i=1}^{n}\left\|\tilde{J}_{\theta}\left(Z_{i}, x\right)\right\|^{2} d G(x) \\
& =\sum_{i=1}^{n} \int I_{\mathcal{C}}\left(Z_{i}\right) \frac{\left\|\tilde{h}\left(Z_{i}\right)\right\|^{2}}{f_{Z}^{2}\left(Z_{i}\right)}\left(K_{Z_{i}}\left(x+\delta_{i}\right)-K_{Z_{i}}\left(x-\delta_{i}\right)\right)^{2} d G(x) \\
& \leq \sum_{i=1}^{n} \int I_{\mathcal{C}}\left(Z_{i}\right) \frac{\left\|\tilde{h}\left(Z_{i}\right)\right\|^{2}}{f_{Z}^{2}\left(Z_{i}\right)}\left(\int_{-\left|\delta_{i}\right|}^{\left|\delta_{i}\right|} \kappa_{Z_{i}}(x+s) d s\right)^{2} d G(x) \\
& \leq 2 \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \frac{\left\|\tilde{h}\left(Z_{i}\right)\right\|^{2}}{f_{Z}^{2}\left(Z_{i}\right)}\left|\delta_{i}\right| \int_{-\left|\delta_{i}\right|}^{\left|\delta_{i}\right|} \int \kappa_{Z_{i}}^{2}(x+s) d G(x) d s \\
& \leq 4 \max _{1 \leq i \leq n, Z_{i} \in \mathcal{C}}\left(\left(2\left|\delta_{i}\right|\right)^{-1} \int_{-\left|\delta_{i}\right|}^{\left|\delta_{i}\right|} \int \kappa_{Z_{i}}^{2}(x+s) d G(x) d s\right) \times \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \frac{\left\|\tilde{h}\left(Z_{i}\right)\right\|^{2}}{f_{Z}^{2}\left(Z_{i}\right)} \delta_{i}^{2} .
\end{aligned}
$$

The last but one inequality is obtained by using the C-S inequality and the Fubini Theorem. Under (3.7), we have $\sup _{z, x} k_{z}(x) \leq\|f\|_{\infty}<\infty$. Hence

$$
\begin{aligned}
\left(2 \delta_{i}\right)^{-1} \int_{-\left|\delta_{i}\right|}^{\left|\delta_{i}\right|} \int \kappa_{Z_{i}}^{2}(x+s) d G(x) & \leq\|f\|_{\infty}^{2}, & & \text { if } G \text { is a d.f. } \\
& \leq\|g\|_{\infty}\|f\|_{\infty}, & & \text { if } d G(x)=g(x) d x,\|g\|_{\infty}<\infty
\end{aligned}
$$

Let

$$
D_{n}:=\sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right)\left\|\tilde{h}\left(Z_{i}\right)\right\|^{2} \delta_{i}^{2}
$$

Using the above bounds we obtain

$$
\begin{aligned}
\int \sum_{i=1}^{n}\left\|\tilde{J}_{\theta}\left(Z_{i}, x\right)\right\|^{2} d G(x) & \leq \frac{4}{b_{0}^{2}}\|f\|_{\infty}^{2} D_{n}, & \text { if } G \text { is a d.f. } \\
& \leq \frac{4}{b_{0}^{2}}\|f\|_{\infty}\|g\|_{\infty} D_{n}, & \text { if } d G(x)=g(x) d x,\|g\|_{\infty}<\infty
\end{aligned}
$$

It thus remains to show that $D_{n}=O_{p}(1)$. By the definitions of $\tilde{h}(z)$ and δ_{i} and (3.8),

$$
\begin{aligned}
& E\left(D_{n}\right)=n E\left\{I_{\mathcal{C}}\left(Z_{1}\right) \tilde{h}\left(Z_{1}\right)^{\prime} \tilde{h}\left(Z_{1}\right) \delta_{1}^{2}\right\} \\
& =\frac{n}{N^{8}} \sum_{i, j, k, l=1}^{N} \sum_{q, r, s, t=1}^{N} E\left\{I_{\mathcal{C}}\left(Z_{1}\right) \widetilde{X}_{i}^{\prime} \widetilde{X}_{j} K_{w}\left(\widetilde{U}_{q}+\widetilde{X}_{i}-Z_{1}\right) K_{w}\left(\widetilde{U}_{r}+\widetilde{X}_{j}-Z_{1}\right)\right. \\
& \left.\quad \times \theta^{\prime}\left[\widetilde{X}_{k} K_{w}\left(\frac{\widetilde{U}_{s}+\widetilde{X}_{k}-Z_{1}}{f_{Z}\left(Z_{1}\right)}\right)-h\left(Z_{1}\right)\right] \theta^{\prime}\left[\widetilde{X}_{l} K_{w}\left(\frac{\widetilde{U}_{t}+\widetilde{X}_{l}-Z_{1}}{f_{Z}\left(Z_{1}\right)}\right)-h\left(Z_{1}\right)\right]\right\} \\
& =\frac{n}{N^{8}} \sum_{i \neq j \neq k=l} \sum_{q \neq r \neq s \neq t}+\sum_{i \neq k \neq j \neq l} \sum_{q \neq r \neq s=t}+\sum_{i \neq j \neq k \neq l} \sum_{q \neq r \neq s \neq t} E\{\ldots\}+\text { other terms, } \\
& :=\tilde{D}_{1}+\tilde{D}_{2}+\tilde{D}_{3}+D_{R} .
\end{aligned}
$$

In $\tilde{D}_{1}, k=l$ and all other indices different. Hence, \tilde{D}_{1} is bounded from the above by

$$
\begin{aligned}
& \frac{n[N(N-1)(N-2)]^{2}(N-3)}{b_{0}^{2} N^{8}} E\left\{I_{\mathcal{C}}\left(Z_{1}\right) \widetilde{X}_{1}^{\prime} \widetilde{X}_{2} K_{w}\left(\widetilde{U}_{1}+\widetilde{X}_{1}-Z_{1}\right) K_{w}\left(\widetilde{U}_{2}+\widetilde{X}_{2}-Z_{1}\right)\right. \\
& \left.\times \theta^{\prime}\left[\widetilde{X}_{3} K_{w}\left(\widetilde{U}_{3}+\widetilde{X}_{3}-Z_{1}\right)-h\left(Z_{1}\right)\right] \theta^{\prime}\left[\widetilde{X}_{3} K_{w}\left(\widetilde{U}_{4}+\widetilde{X}_{3}-Z_{1}\right)-h\left(Z_{1}\right)\right]\right\} \\
& =O\left(n N^{-1}\right) E\left\{I_{\mathcal{C}}(Z)\|h(Z)\|^{2}\left[E\left(\left(\theta^{\prime} \widetilde{X}\right)^{2} f_{U}^{2}(Z-\widetilde{X}) \mid Z\right)\right]\right\}:=O\left(n N^{-1} L_{1}(\theta)\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\tilde{D}_{2} & =O\left(n N^{-1}\right) E\left\{I_{\mathcal{C}}(Z)\|h(Z)\|^{2} E\left(\left(\theta^{\prime}(Z-\widetilde{U})\right)^{2} f_{X}^{2}(Z-\widetilde{U}) \mid Z\right)\right\} \\
& :=O\left(n N^{-1}\right) L_{2}(\theta)
\end{aligned}
$$

In \tilde{D}_{3}, with indices $i \neq j \neq k \neq l$ and $q \neq r \neq s \neq t$, we get

$$
\tilde{D}_{3}=O\left(n w_{1}^{4}\right)\left(\theta^{\prime} E\left[I_{\mathcal{C}}(Z) B(Z)\right]\right)^{2}=O\left(n w_{1}^{4}\|\theta\|^{2} E\|B(Z)\|^{2}\right):=O\left(n w_{1}^{4}\right) L_{3}(\theta)
$$

Similar calculations show that all other terms in $E\left(D_{n}\right)$ are $o\left(\tilde{D}_{1}+\tilde{D}_{2}+\tilde{D}_{3}\right)$. The assumptions (3.5) and (3.9) imply that $L_{i}(\theta), i=1,2,3$ are finite. Therefore, under (3.5) and (3.15), we get, for sufficiently large $n \wedge N$,

$$
\begin{align*}
E\left(D_{n}\right) & =O\left(n N^{-1}\right)\left[L_{1}(\theta)+L_{2}(\theta)\right]+n w_{1}^{4} L_{3}(\theta)+o(1) \tag{4.27}\\
& \rightarrow \lambda\left(L_{1}(\theta)+L_{2}(\theta)\right)+C L_{3}(\theta)<\infty .
\end{align*}
$$

Since $D_{n} \geq 0$, by the Markov inequality, $D_{n}=O_{p}(1)$. This completes the proof of (4.22).
Next, we prove the asymptotic normality of the estimator $\widehat{\theta}$. Let $\hat{c}_{n i}=n^{-1 / 2} \widehat{h}\left(Z_{i}\right)$ and

$$
\begin{align*}
\widehat{W}(x, s) & :=n^{-1 / 2} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right)\left[I\left(\zeta_{i} \leq x+\delta_{i}+s^{\prime} \hat{c}_{n i}\right)-K_{Z_{i}}\left(x+\delta_{i}+s^{\prime} \hat{c}_{n i}\right)\right] \tag{4.28}\\
\widehat{T}_{n} & :=\int \widehat{\Gamma}(x)^{\prime}[\widehat{W}(x, 0)+\widehat{W}(-x, 0)] d G(x) \\
\widehat{M}_{1}(s) & :=\widehat{M}(\theta)+4 \widehat{T}_{n}^{\prime} s+4 s^{\prime} \widehat{\mathcal{G}} s, \quad \widehat{s}:=\operatorname{argmin}_{s} \widehat{M}_{1}(s)=-\frac{1}{2} \widehat{\mathcal{G}}^{-1} \widehat{T}_{n}
\end{align*}
$$

where $\widehat{\Gamma}_{n}(x), \widehat{\Gamma}(x)$ and $\widehat{\mathcal{G}}$ are defined in (3.4).
Similar to the proof of Theorem 2.1, we aim to show that

$$
\begin{equation*}
\sup _{\|s\| \leq b}\left|\widehat{M}\left(\theta+n^{-1 / 2} s\right)-\widehat{M}_{1}(s)\right| \rightarrow_{p} 0, \quad \forall 0<b<\infty, \quad\left\|n^{1 / 2}(\widehat{\theta}-\theta)-\widehat{s}\right\| \rightarrow_{p} 0 \tag{4.29}
\end{equation*}
$$

Define

$$
\begin{aligned}
& \widehat{U}(x, s)=n^{-1 / 2} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right) I\left(\zeta_{i} \leq x+\delta_{i}+s^{\prime} \hat{c}_{n i}\right), \\
& \widehat{J}(x, s)=n^{-1 / 2} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right) K_{Z_{i}}\left(x+\delta_{i}+s^{\prime} \hat{c}_{n i}\right)
\end{aligned}
$$

Then $\widehat{W}(x, s)=\widehat{U}(x, s)-\widehat{J}(x, s)$, and

$$
\begin{aligned}
\widehat{M}\left(\theta+n^{-1 / 2} s\right)= & \int\left\|\widehat{U}(x, s)+\widehat{U}(-x, s)-n^{-1 / 2} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right)\right\|^{2} d G(x) \\
= & \int \|\{\widehat{W}(x, s)-\widehat{W}(x, 0)\}+\{\widehat{W}(-x, s)-\widehat{W}(-x, 0)\} \\
& +\left\{\widehat{J}(x, s)-\widehat{J}(x, 0)-\widehat{\Gamma}_{n}(x) s\right\}+\left\{\widehat{J}(-x, s)-\widehat{J}(-x, 0)-\widehat{\Gamma}_{n}(-x) s\right\} \\
& +\left\{\widehat{W}(x, 0)+\widehat{W}(-x, 0)+2 \widehat{\Gamma}_{n}(x) s\right\} \|^{2} d G(x) .
\end{aligned}
$$

Use this decomposition and an argument similar to the one use in the proof of (2.25) to obtain (4.29), under the given assumptions. Details are skipped for the sake of brevity.

Now it suffices to derive the asymptotic normality of \widehat{T}_{n} to complete the proof. Similar to T_{n}, \widehat{T}_{n} can be rewritten as

$$
\begin{aligned}
\widehat{T}_{n}= & n^{-1 / 2} \int \Gamma(x)^{\prime} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right)\left[I\left(\zeta_{i} \leq x+\delta_{i}\right)+I\left(-\zeta_{i}<x-\delta_{i}\right)\right] d G(x) \\
= & n^{-1 / 2} \sum_{i=1}^{n} \int I_{\mathcal{C}}\left(Z_{i}\right) \mu(z) \widehat{h}\left(Z_{i}\right) \varphi_{z}\left(\zeta_{i}-\theta^{\prime} \Delta\left(Z_{i}\right)\right) d Q(z) \\
= & n^{-1 / 2} \sum_{i=1}^{n} \int I_{\mathcal{C}}\left(Z_{i}\right) \mu(z) \widehat{h}\left(Z_{i}\right) \varphi_{z}\left(\zeta_{i}\right) d Q(z) \\
& \quad+2 n^{-1 / 2} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right)\left[\theta^{\prime} \Delta\left(Z_{i}\right)\right] \int \mu(z) \widehat{h}\left(Z_{i}\right) \psi_{z}\left(\zeta_{i}\right) d Q(z)+R_{n} \\
: & =\widehat{T}_{n 1}+\widehat{T}_{n 2}+R_{n}, \quad(\text { say }),
\end{aligned}
$$

where R_{n} is the reminder of the Taylor expansion and $R_{n}=o_{p}\left(\widehat{T}_{n 1}+\widehat{T}_{n 2}\right)$. Therefore, it suffices to analyze $\widehat{T}_{n 1}$ and $\widehat{T}_{n 2}$. First, we rewrite

$$
\widehat{T}_{n 1}=\frac{n^{1 / 2}}{n N^{2}} \sum_{i=1}^{n} \sum_{k=1}^{N} \sum_{l=1}^{N} \int \frac{I_{\mathcal{C}}\left(Z_{i}\right)}{\left(\hat{f}_{Z}\left(Z_{i}\right) \vee \epsilon_{0}\right)} \mu(z) \widetilde{X}_{k} K_{w}\left(\widetilde{U}_{l}+\widetilde{X}_{k}-Z_{i}\right) \varphi_{z}\left(\zeta_{i}\right) d Q(z)
$$

Define

$$
\begin{aligned}
& \phi_{1}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{k}, \widetilde{U}_{l}\right)=\int \frac{I_{\mathcal{C}}\left(Z_{i}\right)}{f_{Z}\left(Z_{i}\right)} \mu(z) \widetilde{X}_{k} K_{w}\left(\widetilde{U}_{l}+\widetilde{X}_{k}-Z_{i}\right) \varphi_{z}\left(\zeta_{i}\right) d Q(z) \\
& \widetilde{T}_{n 1}=\frac{n^{1 / 2}}{n N^{2} w_{1}^{p}} \sum_{i=1}^{n} \sum_{k=1}^{N} \sum_{l=1}^{N} \phi_{1}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{k}, \widetilde{U}_{l}\right) .
\end{aligned}
$$

Then (4.18) implies that $\widehat{T}_{n 1}=\widetilde{T}_{n 1}+o_{p}\left(\widetilde{T}_{n 1}\right)$. Therefore it suffices to study the asymptotic property of $\widetilde{T}_{n 1}$ for $\widehat{T}_{n 1}$. It can be seen that $\widetilde{T}_{n 1}$ is a 3 -sample U statistic based on $\left\{\left(Z_{i}, \zeta_{i}\right), 1 \leq k \leq n\right\}$, $\left\{\widetilde{X}_{k}, 1 \leq k \leq N\right\}$ and $\left\{\widetilde{U}_{l}, 1 \leq l \leq N\right\}$. We further compute that

$$
\begin{aligned}
E\left(\phi_{1} \mid \widetilde{X}_{1}\right) & =E\left(\phi_{1} \mid \widetilde{U}_{1}\right)=E \phi_{1}=0 \\
E\left(\phi_{1} \mid Z_{1}, \zeta_{1}\right) & =\int I_{\mathcal{C}}\left(Z_{1}\right) \mu(z) h\left(Z_{1}\right) \varphi_{z}\left(\zeta_{1}\right) d Q(z)+O_{p}\left(w_{1}^{2}\right) .
\end{aligned}
$$

So asymptotically $\widehat{T}_{n 1}$ only depends on the sample $\left\{\left(Z_{i}, \zeta_{i}\right), 1 \leq i \leq n\right\}$. Then Theorem 6.1.4 in Lehmann (1999) implies that, with $n / N \rightarrow \lambda, L(Z, \zeta)=\int I_{\mathcal{C}}(Z) \mu(z) h(Z) \varphi_{z}(\zeta) d Q(z)$ and $\Sigma_{0}=$ $\operatorname{Cov}(L(Z, \zeta)), \widetilde{T}_{n 1} \rightarrow_{D} N\left(0, \Sigma_{0}\right)$. Therefore, for $0 \leq \lambda<\infty$,

$$
\begin{equation*}
\widehat{T}_{n 1} \rightarrow_{D} \mathcal{N}_{p}\left(0, \Sigma_{0}\right) . \tag{4.30}
\end{equation*}
$$

Similarly, $\widehat{T}_{n 2}$ is also a 3 -sample U statistic. Specifically,

$$
\begin{aligned}
\widehat{T}_{n 2}= & 2 n^{-1 / 2} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right)\left[\theta^{\prime} \Delta\left(Z_{i}\right)\right] \int \mu(z) \widehat{h}\left(Z_{i}\right) \psi_{z}\left(\zeta_{i}\right) d Q(z) \\
= & \frac{2 n^{1 / 2}}{n N^{4}} \sum_{i, k, l, s, t} \frac{I_{\mathcal{C}}\left(Z_{i}\right)}{f_{Z}\left(Z_{i}\right)} \theta^{\prime}\left[\widetilde{X}_{k} K_{w}\left(\widetilde{U}_{s}+\widetilde{X}_{k}-Z_{i}\right)-h\left(Z_{i}\right) f_{Z}\left(Z_{i}\right)\right] \\
& \times \int \mu(z) \widetilde{X}_{l} \frac{K_{w}\left(\widetilde{U}_{t}+\widetilde{X}_{l}-Z_{i}\right)}{f_{Z}\left(Z_{i}\right)} \psi_{z}\left(\zeta_{i}\right) d Q(z) \\
= & \frac{2 n^{1 / 2}}{n N^{4}} \sum_{i, k, l, s, t} g_{1}\left(Z_{i}, \widetilde{X}_{k}, \widetilde{U}_{s}\right) g_{2}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{l}, \widetilde{U}_{t}\right) \\
= & \frac{2 n^{1 / 2}}{n N^{4}}\left\{\sum_{i, k \neq l, s \neq t}+\sum_{i, k \neq l, s=t}+\sum_{i, k=l, s \neq t}+\sum_{i, k=l, s=t}\right\} g_{1}\left(Z_{i}, \widetilde{X}_{k}, \widetilde{U}_{s}\right) g_{2}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{l}, \widetilde{U}_{t}\right) \\
= & : S_{n 1}+S_{n 2}+S_{n 3}+S_{n 4} .
\end{aligned}
$$

We will show that $S_{n 1}$ is asymptotically normally distributed while $S_{n j}, j=2,3,4$ are asymptotically negligible compared to $S_{n 1}$. Consider

$$
\begin{aligned}
& S_{n 1}:= \frac{2 n^{1 / 2}}{n N^{4}} \sum_{i, k \neq l, s \neq t} g_{1}\left(Z_{i}, \widetilde{X}_{k}, \widetilde{U}_{s}\right) g_{2}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{l}, \widetilde{U}_{t}\right) \\
&=\frac{n^{1 / 2}}{n N^{4}} \sum_{i, k \neq l, s \neq t} \frac{1}{2}\left\{g_{1}\left(Z_{i}, \widetilde{X}_{k}, \widetilde{U}_{s}\right) g_{2}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{l}, \widetilde{U}_{t}\right)+g_{1}\left(Z_{i}, \widetilde{X}_{l}, \widetilde{U}_{s}\right) g_{2}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{k}, \widetilde{U}_{t}\right)\right. \\
&\left.\quad+g_{1}\left(Z_{i}, \widetilde{X}_{k}, \widetilde{U}_{t}\right) g_{2}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{l}, \widetilde{U}_{s}\right)+g_{1}\left(Z_{i}, \widetilde{X}_{l}, \widetilde{U}_{t}\right) g_{2}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{k}, \widetilde{U}_{s}\right)\right\} \\
&= \frac{n^{1 / 2}}{n N^{4}} \sum_{i, k \neq l, s \neq t} \phi_{2}\left(Z_{i}, \zeta_{i}, \widetilde{X}_{k}, \widetilde{X}_{l}, \widetilde{U}_{s}, \widetilde{U}_{t}\right) .
\end{aligned}
$$

Note that ϕ_{2} is symmetric within each sample. Recall the notation from (3.4). Direct calculation shows that

$$
\begin{aligned}
& E\left(g_{1}\right)=w_{1}^{2} E\left[I_{\mathcal{C}}(Z) \theta^{\prime} B(Z)\right]=O\left(w_{1}^{2}\right), \quad E\left(g_{2}\right)=\boldsymbol{\alpha}+O\left(w_{1}^{2}\right), \\
& E\left(g_{1} \mid \widetilde{X}_{1}\right)=R_{\theta}\left(\widetilde{X}_{1}\right)+o_{p}(1), \quad E\left(g_{1} \mid \widetilde{U}_{1}\right)=S_{\theta}\left(\widetilde{U}_{1}\right)+o_{p}(1), \\
& E\left(\phi_{2} \mid \widetilde{X}_{1}\right)=E\left(g_{1} \mid \widetilde{X}_{1}\right) E\left(g_{2}\right)+E\left(g_{1}\right) E\left(g_{2} \mid \widetilde{X}_{1}\right)=R_{\theta}\left(\widetilde{X}_{1}\right) \boldsymbol{\alpha}+o_{p}(1), \\
& E\left(\phi_{2} \mid \widetilde{U}_{1}\right)=E\left(g_{1} \mid \widetilde{U}_{1}\right) E\left(g_{2}\right)+E\left(g_{1}\right) E\left(g_{2} \mid \widetilde{U}_{1}\right)=S_{\theta}\left(\widetilde{U}_{1}\right) \boldsymbol{\alpha}+o_{p}(1), \\
& E\left(\phi_{2} \mid Z_{1}, \zeta_{1}\right)=2 w_{1}^{2} I_{\mathcal{C}}\left(Z_{1}\right) \theta^{\prime} B\left(Z_{1}\right) \int \mu(z) h\left(Z_{1}\right) \psi_{z}\left(\zeta_{1}\right) d Q(z)+o_{p}\left(w_{1}^{2}\right) .
\end{aligned}
$$

Furthermore, applying Theorem 6.1.4 in Lehmann (1999) to $S_{n 1}$, we obtain that for $\lambda<\infty$,

$$
\begin{aligned}
\widetilde{S}_{n 1} & :=\sqrt{\frac{n+2 N}{n}}\left\{S_{n 1}-2 n^{1 / 2} w_{1}^{2} \boldsymbol{\beta}(\theta)\right\} \rightarrow_{D} \mathcal{N}_{p}(0, \widetilde{\Sigma}), \\
\widetilde{\Sigma} & =(1+2 / \lambda) \operatorname{Cov}\left(E\left(\phi_{2} \mid Z_{1}, \zeta_{1}\right)\right)+(2+\lambda) \operatorname{Cov}\left(E\left(\phi_{2} \mid \widetilde{X}_{1}\right)\right)+4(2+\lambda) \operatorname{Cov}\left(E\left(\phi_{2} \mid \widetilde{U}_{1}\right)\right) \\
& =(2+\lambda) \operatorname{Cov}\left(R_{\theta}\left(\widetilde{X}_{1}\right) \boldsymbol{\alpha}\right)+4(2+\lambda) \operatorname{Cov}\left(S_{\theta}\left(\widetilde{U}_{1}\right) \boldsymbol{\alpha}\right) \\
& =4(2+\lambda)\left[\operatorname{Var}\left(R_{\theta}(\widetilde{X})\right)+\operatorname{Var} S_{\theta}(\widetilde{U})\right] \boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} .
\end{aligned}
$$

Therefore, under (3.15), we have

$$
\begin{equation*}
S_{n 1}-2 n^{1 / 2} w_{1}^{2} \boldsymbol{\beta}(\theta) \rightarrow_{D} \mathcal{N}_{p}\left(0,4 \lambda \Sigma_{\theta}\right) \tag{4.31}
\end{equation*}
$$

Next, we analyze $S_{n 2}, S_{n 3}$ and $S_{n 4}$. Similar to Lemma 6.4 in Geng and Koul (2017), tedious calculation shows that $E\left\|S_{n 2}\right\|^{2}=O\left(n N^{-2}\right)=E\left\|S_{n 3}\right\|^{2}, E\left\|S_{n 2}\right\|^{2}=O\left(n N^{-4}\right)$. Therefore, under (3.15), $S_{n 2}+S_{n 3}+S_{n 4}=o_{p}(1)$. Combine this with (4.31) to obtain that

$$
\begin{equation*}
\widehat{T}_{n 2}-2 n^{1 / 2} w_{1}^{2} \boldsymbol{\beta}(\theta) \rightarrow_{D} \mathcal{N}_{p}\left(0,4 \lambda \Sigma_{\theta}\right) \tag{4.32}
\end{equation*}
$$

Finally, (4.30), (4.32) and the independence among the three samples imply that, under (3.15), $\widehat{T}_{n}-2 n^{1 / 2} w_{1}^{2} \boldsymbol{\beta}(\theta) \rightarrow_{D} \mathcal{N}_{p}\left(0, \Sigma_{0}+4 \lambda \Sigma_{\theta}\right)$. This fact, together with (4.28) and (4.29), completes the proof of Theorem 3.1.
Proof of Theorem 3.2. With $\widehat{V}(x, t)$ and $\widehat{M}(t)$ as in (3.3), let

$$
\widehat{\mathcal{V}}(x, t)=n^{-1 / 2} N^{1 / 2} \widehat{V}(x, t), \quad \widehat{\mathcal{M}}(t)=n^{-1} N \widehat{M}(t)
$$

Note that $\widehat{\theta}=\operatorname{argmin}_{t \in \mathbb{R}^{p}} \widehat{\mathcal{M}}(t)$. The proof is similar to the proof of Theorem 3.1 with $\widehat{M}(\theta)$ replaced by $\widehat{\mathcal{M}}(\theta)$.

First, we show that $\widehat{\mathcal{M}}(\theta)=O_{p}(1)$. In fact, from the proof of Theorem 3.1, we obtain that $\widehat{M}(\theta)=O_{p}\left(D_{n}\right)$. Therefore, it suffices to show that $N n^{-1} D_{n}=O_{p}(1)$ for $\lambda=\infty$. In view of (4.27), under (3.16),

$$
\begin{aligned}
E\left(N n^{-1} D_{n}\right) & =N n^{-1} \times O\left(n N^{-1}\left[L_{1}(\theta)+L_{2}(\theta)\right]+n w_{1}^{4} L_{3}(\theta)\right) \\
& =O\left(L_{1}(\theta)+L_{2}(\theta)+C_{2} L_{3}(\theta)\right)<\infty .
\end{aligned}
$$

Let $\check{c}_{N i}=N^{-1 / 2} \widehat{h}\left(Z_{i}\right)$, define

$$
\begin{align*}
& \widetilde{W}(x, s):=\frac{N^{1 / 2}}{n} \sum_{i=1}^{n} I_{\mathcal{C}}\left(Z_{i}\right) \widehat{h}\left(Z_{i}\right)\left[I\left(\zeta_{i} \leq x+\delta_{i}+s^{\prime} \check{c}_{N i}\right)-K_{Z_{i}}\left(x+\delta_{i}+s^{\prime} \check{c}_{N i}\right)\right], \tag{4.33}\\
& \widetilde{T}_{n}:=\int \widehat{\Gamma}(x)^{\prime}[\widetilde{W}(x, 0)+\widetilde{W}(-x, 0)] d G(x), \\
& \widetilde{\mathcal{M}}(s):=\widehat{\mathcal{M}}(\theta)+4 \widetilde{T}_{n}^{\prime} s+4 s^{\prime} \widehat{\mathcal{G}} s, \quad \check{s}:=\operatorname{argmin}_{s} \widetilde{\mathcal{M}}(s)=-\frac{1}{2} \widehat{\mathcal{G}}^{-1} \widetilde{T}_{n},
\end{align*}
$$

Argue as in the proof of Theorem 2.1 to obtain that

$$
\begin{equation*}
\sup _{\|s\| \leq b}\left|\widehat{\mathcal{M}}\left(\theta+N^{-1 / 2} s\right)-\widetilde{\mathcal{M}}(s)\right| \rightarrow_{p} 0, \forall 0<b<\infty, \quad\left\|N^{1 / 2}(\widehat{\theta}-\theta)-\check{s}\right\| \rightarrow_{p} 0 . \tag{4.34}
\end{equation*}
$$

Finally, we derive the asymptotic distribution of \widetilde{T}_{n}. With \widehat{T}_{n} as in (4.28), rewrite $\widetilde{T}_{n}=$ $n^{-1 / 2} N^{1 / 2} \widehat{T}_{n}=n^{-1 / 2} N^{1 / 2}\left(\widehat{T}_{n 1}+\widehat{T}_{n 2}\right)+o_{p}(1)$. Argue as in the proof of Lemma 6.4 of Geng and Koul (2017) to obtain that $E\left\|\widehat{T}_{n 1}\right\|^{2}=O(1)$. Since $n / N \rightarrow \lambda=\infty$, we have $\sqrt{N / n} \widehat{T}_{n 1}=$ $o_{p}(1)$. Furthermore, Theorem 6.1.4 in Lehmann (1999) yields that, under (3.16), $\sqrt{N / n} \widehat{T}_{n 2}-$ $2 N^{1 / 2} w_{1}^{2} \boldsymbol{\beta}(\theta) \rightarrow_{D} \mathcal{N}_{p}\left(0,4 \Sigma_{\theta}\right)$. Therefore, $\widetilde{T}_{n}-2 N^{1 / 2} w_{1}^{2} \boldsymbol{\beta}(\theta) \rightarrow_{D} \mathcal{N}_{p}\left(0,4 \Sigma_{\theta}\right)$. Eventually, these facts, (4.33) and (4.34) complete the proof.

References

Al-Sharadqah, A. (2018). A comparative study for two newly developed estimators for the slope in the functional EIV linear model. Theory of Probability and Mathematical Statistics, 97, 211-236.
Bierens, H. J. (1983). Uniform consistency of kernel estimators of a regression function under generalized conditions. Journal of the American Statistical Association, 78(383), 699-707.
Buonaccorsi, J. P. (2010). Measurement error: models, methods, and applications. CRC press.
Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.P. (2006). Measurement Error in Nonlinear Models: A Modern Perspective. Second Edition. Chapman \& Hall/CRC.
Cheng, C.L. and Van Ness, J.W. (1999). Statistical Regression with Measurement Error. Wiley, New York.
Cook, J. R., and Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric measurement error models. J. Amer. Statist. Assoc., 89(428), 1314-1328.
Donoho, D.L. and Liu, R.C. (1988a). Pathologies of some minimum distance estimators. Ann. Statist., 16, 587-608.
Donoho, D.L. and Liu, R.C. (1988b). The "automatic" robustness of minimum distance functionals. Ann. Statist., 16, 552-586.
Fuller, W.A. (1987). Measurement Error Models. Wiley, New York.
Geng, P., Koul, H. L. (2017). Model checking in Tobit regression with measurement errors using validation data. J. Statist. Planning \& Inference, 190, 15-31.
Giné, E., and Guillou, A. (2002). Rates of strong uniform consistency for multivariate kernel density estimators. In Annales de l'Institut Henri Poincare (B) Probability and Statistics, 38(6), 907921.

Hodges, J.L., Jr. and Lehmann, E.L. (1963). Estimates of location based on rank tests. Ann. Math. Statist., 34, 598-611.
Koul, Hira L. (1979). Weighted empirical processes and the regression model. J. Indian Statist. Assoc., 17, 83-91.
Koul, Hira L. (1985). Minimum distance estimation in linear regression with unknown errors. Statist. § Prob. Letters, 3, 1-8.
Koul, Hira L. (1996). Asymptotics of some estimators and sequential residual empiricals in nonlinear time series. Ann. Statist., 24, 380-404.
Koul, Hira L. (2002). Weighted Empirical Processes in Dynamic Nonlinear Models. 2nd Edition. Lecture Notes Series in Statistics, 166, Springer, New York, N.Y., USA.
Lehmann, E.L. (1999). Elements of Large-Sample Theory, Springer, New York, N.Y., USA.
Silverman, B. W. (1986). Density estimation for statistics and data analysis, Chapman and Hall, New York.
Stefanski, L. A. (1985). The effects of measurement error on parameter estimation. Biometrika, 72(3), 583-592.
Wand, M.P. and Jones, M.C. (1994). Multivariate plug-in bandwidth selection. Computational Statistics, 9, 97-116.

[^0]: *Corresponding author
 Email addresses: pgeng@ilstu.edu (Pei Geng), koul@stt.msu.edu (Hira L. Koul)

