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Most common diseases are caused by a 
combination of genes and environment

Myocardial Infarction

Stroke

Inflammatory Bowel Disease

Diabetes

Breast cancer

Manic-depression

Obesity
High Cholesterol

Hypertension

Schizophrenia



Where are those genes?



QUANTITATIVE TRAITS and COMPLEX TRAITS

Complex  traits are controlled by multiple loci, some with 
minor gene effects, and genetic variation at any one locus 
does not completely determine the trait.

Examples: diabetes, coronary artery disorder, schizophrenia.

Such traits are usually binary in nature.

Heritable quantitative characters, possibly correlated, 
generally are precursors of complex traits.

Example: Blood pressure and total cholesterol are precursors 
of coronary artery disease.



WHY  STUDY  QUANTITATIVE  TRAITS?

To study a complex trait.

Often genetic studies of a binary trait (e.g., hypertension) use
dichotomization of a correlated quantitative variable (e.g., s.b.p)
based on some pre-determined threshold(s) [e.g., s.b.p > 140].

This leads to loss of information on trait variability and 
statistical power.

For genetic analysis of a binary complex trait, it may be more
powerful to consider a quantitative trait correlated with the
end-point trait.

Genes found to control the quantitative trait may also be 
involved in the pathogenesis of the complex trait.



THE TWO PARADIGMS OF GENE-MAPPING

1. LINKAGE
measured in terms of RECOMBINATION  FRACTION (θ),
the probability of a crossover between two loci.

From biological considerations,  0 ≤ θ ≤ 0.5. θ=0.5 implies
that two loci are unlinked, θ=0 implies complete linkage.
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2.  ASSOCIATION
measured in terms of LINKAGE  DISEQUILIBRIUM (δ),
the deviation of probability of joint occurrence of alleles at 
two-locus from random occurrence of the alleles.

δ= P(AB)-P(A)P(B)



LINKAGE  ANALYSIS OF QUANTITATIVE TRAITS

AIM: make inferences about the recombination fraction 
between a hypothetical QTL and a marker locus.

Is the QTL “physically close” to the marker locus?

For a sib-pair, the QTL paradigm is that if the quantitative
trait values of the sibs are close to each other, the sibs have
“similar” allelic composition at the QTL. If their trait
values  differ significantly, the allelic compositions at the 
QTL are different.

If the marker locus is LINKED (physically close) to the QTL,
this property will also be exhibited by the marker locus.  If
the marker locus is UNLINKED, there will NOT be any 
relation between the trait values and allelic compositions.



A quantitative trait Y is controlled by an autosomal, biallelic
QTL with  alleles (A,a).

E(Y|AA)= α Var(Y|AA)= σ2

E(Y|Aa)=  β Var(Y|Aa)= σ2

E(Y|aa)= -α Var(Y|aa)= σ2

If  β = 0, we say that Y has no dominance effect at the QTL.

THE  BASIC  QTL  MODEL

πt is the i.b.d. (identity-by-descent) score at the QTL 
(unobservable).
πm is the i.b.d. score at the marker (sometimes can be exactly 
computed, often necessary to be estimated as Pm).

AIM: to find relationship between “suitable” functions of Y 
and Pm for relative-pairs.



POPULAR  QTL   MAPPING  METHODS

1.  VARIANCE COMPONENTS METHODS
(Amos et al. 1990, Almasy and Blangero 1998)

Random Effects Model: Y = ΣGi +  E ; i=1,2,…,k
where Gi is the genotypic effect of the ith QTL assumed to have

a normal distribution;
E is the environmental effect with a normal distribution.

Data: Quantitative traits and marker genotypes of pedigrees.

Quantitative traits within a pedigree are assumed to follow a 
MULTIVARIATE  NORMAL DISTRIBUTION.

Test for linkage at the ith QTL is a likelihood-ratio test for the 
variance of Gi = 0 versus being positive.



2. HASEMAN-ELSTON  APPROACH  AND  EXTENSIONS
(Haseman and Elston 1972, 
Extensions: Amos et al. 1989, Wijsman and Olson 1993, 
Olson 1995, Tiwari and Elston 1997, Elston et al. 2000……)

Data: quantitative trait values and marker genotypes of 
independent sib-pairs (and preferably marker genotypes
of both parents).

The regression equation:
E(Z|Pm) = a + b Pm

where Z = sib-pair squared difference in trait values
β = 0 (no dominance at the QTL)
b=0 ⇔ θ = 0.5 (unlinked) and b < 0 ⇔ θ < 0.5 (linked)

Testing for b=0 versus b < 0: distribution-free approach 



A  NON-PARAMETRIC  ALTERNATIVE

(Ghosh and Majumder 2000, Ghosh et al. 2003)

Non-parametric regression instead of Haseman-Elston
linear regression: 

Z =  Ψ(Pm) + e
where Ψ  is a real-valued function.

Ψ is estimated using kernel smoothing :
Ψ(xj)= [Σ i κ({xi-xj}/h)yi]/ Σ i κ({xi-xj}/h)

The kernel function used:
κ(x) = 0.75 (1-x2) I |x|<1

Optimal h selected using leave-out-one cross validation.



The test statistic:

Δ = 1 - (residual sum of squares in regression / total variation in Z)

Analogous to R2 in linear regression.

Test for linkage is equivalent to Δ=0 versus Δ > 0 .

Difficult to obtain asymptotic distribution of Δ .

Use permutations to obtain empirical p-value of  observed Δ .

CAVEAT: Δ does not take into account direction of relationship
between Z and Pm. Under null, random positive relationship
will inflate rate of false positives.  Test additionally for 
correlation between Z and Pm whenever Δ significant.



(200 sib-pairs, α=3, σ=1, p=0.5, ρ=0.5, θ=0.01)

POWER
Model                β HE (sq diff)        HE (cr pr)         KS 

Normal               0                 0.899              0.912 0.878
1                 0.825              0.838               0.852
2                 0.685             0.702               0.769  

Chi-sq                 0                 0.890              0.902   0.876
1                 0.817              0.823               0.849
2                 0.651             0.657               0.766

Poisson               0                 0.872              0.881 0.875
1                 0.805              0.802               0.850
2                 0.613             0.604               0.764



EXTENSION OF  HE  TO  SIBSHIP DATA

(Ghosh and Reich 2002)

Data: Quantitative traits Y= (y1,y2,…) on sibships of size ≥2

Contrast function: Σ ciyi (=c′Y) where Σ ci (=c′1) = 0

Quadratic function of marker i.b.d. scores: c′ Πmc
where Πm is the matrix of i.b.d. scores with (i,j)th element
the i.b.d. score of the ith and jth sibs (i ≠j) and diagonals 0.

NOTE:
i.b.d. scores of all possible sib-pairs in a sibship are not 
independent. Given a sibship of size n, there exists an 
independent set of (n-1) pairwise i.b.d. scores. For example,
{π12,π13,…,π1n} is an independent set of i.b.d. scores. Given
this set, all other pairwise i.b.d. scores are dependent.



Why choose the contrast function?

1.  The classical HE can be viewed as a special case of a
contrast function for n=2 with c = (1 -1).

2.  The contrast function corresponds to the second 
principal  component of quantitative trait values.

The corresponding reqression equation:
E{(c′Y)2|c′ Πm c} = a + b c′ Πm c

where there is no dominance at the QTL,
b=0 ⇔ θ =0.5 and b > 0 ⇔ θ <  0.5 

Choice of c : {1,-1/(n-1),…,-1/(n-1)}

Consistent with HE.  
Higher coefficient associated with the independent set of i.b.d.
scores {π12,π13,…,π1n} and lower coefficient with other pairs.



COMBINING  CONTRAST AND  MEAN FUNCTIONS

Mean value of quantitative values correspond to first PC.

E(⎯y 2|1′ Πm 1) =  a + b (1′ Πm 1)/n2

where b is same as in the contrast function equation.

Mean function and contrast function are uncorrelated. 

Combined least squares minimization:
Σj{uj-β0-β1xj}2 + Σj{vj-β2-β1zj}2

uj, vj: sq contrast and mean functions;  xj,yj: i.b.d. regressors

Test for linkage based on least squares estimate of β1.

Alternative: Combined non-parametric regressions of 
uj on xj and yj on zj using kernel smoothing.



(200 sibships with 4 sibs each, α=3, σ=1, p=0.5, ρ=0.5, θ=0.01)

POWER
Model                β KS              HE (cr pr)         CM

Normal               0                 0.912              0.918 0.931
1                 0.875              0.860               0.868
2                 0.798             0.742               0.749  

Chi-sq                 0                 0.903              0.909   0.915
1                 0.856              0.832               0.836
2                 0.754             0.717               0.711

Poisson               0                 0.880              0.887 0.893
1                 0.826              0.811               0.813
2                 0.735             0.661               0.651



MULTIVARIATE PHENOTYPES

Complex traits are characterized by correlated quantitative 
variables constituting a multivariate phenotype. 

The end-point trait is usually binary in nature. Since quantitative 
traits carry more information on variation within genotypes, it 
may be more prudent to use a vector of correlated phenotypes 
for linkage analysis of the complex trait.

Analyzing individual components of a multivariate phenotype
vector separately leads to the statistical problem of multiple 
comparisons. 

Analyzing a “genetically relevant” phenotype is more powerful 
than a blind multivariate analysis with all the components (Ott
and Raboniwitz 1999).



Existing Methods For Mapping Multivariate Phenotypes

Variance Components Methods (e.g., Amos et al. 1990): 

• Require modeling of covariance structure of the components of 
the multivariate phenotype vector. 

• Generally, multivariate normality assumed: problems with 
robustness, difficulty to verify assumptions in high dimensions.

Data Reduction Techniques (e.g., Elston et al. 2000): 

• Principal components analysis: a linear combination of the 
components is defined as the “new” phenotype.

• Model-free methods (e.g., Haseman-Elston) possible, but linkage
results difficult to interpret.



Quantitative and Qualitative Phenotypes
in a Multivariate Phenotype vector

Example: EEG (quantitative),
ERP (quantitative),
depression (qualitative)

may comprise a multivariate phenotype vector for studying 
the genetic risk of alcoholism.

Variance components methods (assuming multivariate
normality) are incompatible even if only one of the 
components of the vector is binary/qualitative. 

Principal components  obtained by decomposing the 
correlation matrix comprising both quantitative and
qualitative phenotypes are unreliable.



The Proposed Method

Constructing the multivariate phenotype vector
(Y1, Y2, …, Yk) is a multivariate vector of quantitative traits,
Z is the binary end-point trait.

A logistic regression of Z on (Y1, Y2, …, Yk) will identify those
traits significantly correlated with Z. The multivariate 
phenotype comprise only these traits.

The regression
G1, G2, …, Gm  are genotypes at m marker loci.

Most linkage methods model the dependence of (Y1, Y2, …, Yk)
on G1, G2, …, Gm .  Since the response variable is some function 
of  Yis , inferences are sensitive to the distribution of Yis .



Alternative formulation: Reverse the response and explanatory 
variables (e.g., single trait version of Sham et al. 2002 ) in a
linear regression set-up.

The regression model: 
Πi = Σj βj d ij + ei

where, Πi is the estimated i.b.d.  score  at a marker locus, dij is 
the squared difference of trait values corresponding to the ith

sib-pair and the jth trait component of the multivariate 
phenotype vector, and ei is a random component.

Linkage for the complex trait can be tested in terms of βj :
H0: βj=0 for all j versus H1: ∪ βj < 0

The test is performed by a log-likelihood-ratio statistic. Since H1 
is constrained,  the asymptotic distribution is difficult to obtain 
and is determined empirically using permutation principles.



Advantages :

• does not require modeling of covariance structure of 
component phenotypes. Robust with respect to violations
in distributional  assumptions.

• Linkage results are easier to interpret than analyses based 
on phenotypes defined by data reduction techniques.

• can incorporate both quantitative and qualitative traits.

• using i.b.d. scores as the response variable allows for (n-1) 
independent observations for a sibship of size n [not true if 
functions of quantitative traits are response variables].  



SIMULATIONS
Example 1: (X,Y,Z) ~ N3 (μ,Σ)
Example 2: (X,Y,Z) such that (X,Y) ~ N2 (μ,Σ) and Z~ chi-square

and correlated with (X,Y)
Example 3: (X,Y,Z) such that X is normal, Y is chi-square and Z

is Poisson; pairwise correlated

U is a binary trait defined by  Φ3(X,Y,Z) standardized.
In each case, there is a common QTL.

Example 4: (X,Y,Z) ~ N3 (μ,Σ) such that (X,Y) is controlled by
a common QTL, Z is not. U is defined as Φ2(X,Y)

Logistic regression gave significance “correctly”. 

200 sibships (60 of size 2, 80 of  3, 60 of  4), major gene-effect for 
each trait =3, allele frequencies at trait locus=(0.7,0.3). 
Power at θ=0.01 based on 1000 replications.



Model      β HE           RR           RR           HE          RR
(dom)     (PC)        (PC)         (Mult)      (Bin)       (Bin)

1            0        .802           .854          .899      .721         .735  
1.5        .751           .778          .815      .643         .670

2           0         .766           .817         .845       .718         .723
1.5         .714           .751         .779       .626         .621

3           0         .683           .702        .770        .608         .628
1.5         .624           .665        .713        .577         .582

4           0         .695          .699         .731        .438         .457 
(all 3)   1.5         .617          .632         .690          .375         .361

4           0         .754          .784        .816         .609          .624 
(first 2) 1.5        .700          .728        .776          .543          .558



COLLABORATIVE STUDY ON THE GENETICS 
OF ALCOHOLISM (COGA)

Multicenter project to detect and map susceptibility genes
for alcoholic dependence (SUNY, Wash U, IUPUI, U Iowa,
UCONN, Howard U, Rutgers U, SFBR)

262 families, COGA proband and having at least 
three full sibs and both parents/larger sibships. 

405 markers with average inter-marker distance 10.9 cM

Qualitative and Ordinal Traits:
COGA (DSM-III-R + Feighner)
DSM -IV
ICD-10



LINKAGE ANALYSES ON  COGA  DATA

No promising linkage finding with binary clinical phenotypes 
like COGA, DSM-IV and ICD-10.

Alternative strategy was to analyze quantitative precursors.

Quantitative Traits:
Maximum number of drinks in a 24 hour period (a measure
to grade non-alcoholic individuals)

# externalizing symptoms (symptom count associated with
alcoholism) 

Electroencephalogram (EEG) Waves (data collected at 
31 bipolar electrode positions)



MULTIVARIATE  PHENOTYPES   IN  COGA

Univariate studies have provided linkage evidence on 
Chromosome 4 (near the ADH gene cluster) for:

# Max-drinks in a 24 hour period [Saccone et al. 2000]
Beta 2 EEG [Porjesz et al. 2002, Ghosh et al. 2003]
# Externalizing Symptoms [Ghosh et al. 2008]

Binary trait: COGA diagnosis

Logistic regression: All 3 quantitative traits significantly 
correlated (p-value < 0.001)

Scan on Chromosome 4 using reverse regression:

Peak at 118 cM (p-value < 0.0001)



CLOSING REMARKS 

• A single quantitative phenotype correlated with a binary 
end-point trait may not be a sufficiently good surrogate for the 
end-point trait.  Rather, a multivariate phenotype comprising 
both quantitative and binary phenotypes may be more optimal.

• Using i.b.d. scores as the response variable and components of a
multivariate phenotype as explanatory variables in a regression 
set-up has both analytical and interpretational advantages.

No single gene-finding method is sufficient or complete.
Multiple roads should lead to Rome.



Our Human Genetics Unit Team
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