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Geometric Brownian Motion Model

Geometric Brownian motion (GBM) or Black-Scholes model
for risky asset:

Pt = P0e
{µt+σB(t)}, t > 0

where µ ∈ R, σ > 0, and B is Brownian motion.
Log returns: Xt = log Pt − log Pt−1, and in GBM

Xt = µ + σ(B(t) − B(t − 1)), t ≥ 1.

According to this model, the log returns Xt, t = 1, 2, 3, . . . are
i.i.d. Gaussian
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‘Stylized features’

Features of log returns observed in practice (Granger
2005):

Log returns are reasonably approximated by
uncorrelated identically distributed random variables
(independent in the Gaussian case)

Squared and absolute log returns are dependent
through time, with autocorrelation functions decreasing
very slowly, remaining substantial after 50 to 100 lags

Log returns have distributions that are heavier-tailed
and higher-peaked than Gaussian distributions
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Empirical evidence against GBM model

Found in the literature (e.g. Heyde and Liu (2001),
Seneta (2004))

We present data of exchange rates between DM
(N=6333), FF (N=6428), GBP (N=4510), JY (N=4510),
CD (N=1700), NTD(N=1200), and the US dollar, for
every working day over various periods of time 1971
and 2001
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Price (exchange rate) for DM
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Price (exchange rate) for JY
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Log returns for DM
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Log returns for JY
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Empirical autocorrelations

Based on the data set Xt, t = 1, 2, . . . , N − k using

r̂N (k) =
1

N

N−k
∑

t=1

(Xt − X̄N )(Xt+k − X̄N )

where k is the lag and X̄N = 1
N

N
∑

t=1

Xt, and the sample

autocorrelations are appropriately normalized

ρ̂N (k) =
r̂N (k)

r̂N (0)
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Autocorrelations for JY
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Autocorrelations for GBP
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Autocorrelations for DM
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Some alternatives to GBM

Use Lévy processes (independent increments, cadlag
sample paths, continuous in probability, homogeneous
if stationary increments) instead of Brownian motion in
GBM model (Eberlein and Raible (1999))

Mandelbrot (1997) proposed to model X(t) = BH(θ(t)),
where BH is fractional Brownian motion, that is zero
mean Gaussian process with covariance
1

2
[|t|2H + |s|2H − |t − s|2H ], and θ is a positive stochastic

process independent of BH
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Alternatives to GBM - Cont’d

Fractal activity time GBM (FATGBM, Heyde (1999)):

log Pt = log P0 + µt + θTt + σB(Tt),

where µ ∈ R, σ > 0, and θ ∈ R.
The process {Tt} is positive, nondecreasing, and has
stationary (but not independent) increments
τt = Tt − Tt−1, and T0 = 0.

Use Lévy processes to model the activity time Tt

(Madan, Carr, and Chang (1998))

Use Tt =
∫ t
0 k(t, s)dL(s), where L is a strictly increasing

Lévy process, and k is a deterministic Volterra type
kernel (k(t, s) = 0 when s > t ≥ 0) (Bender and
Marquardt (2009)
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Fractal activity time

The process {Tt} has an attractive interpretation of
information flow or trading volume (Howison and
Lamper (2001))

The more information is released to the market, or the
more ’frenzied’ trading becomes, the faster the activity
time flows

If Tt = t, then FATGBM becomes classical
Black-Scholes model, and log Pt is normal for any t ≥ 0
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Moments of log returns

Xt = log Pt − log Pt−1 =D µ + θτt + σ
√

τtB(1),

where =D denotes equality in distribution. This gives

EXt = µ + θM1, E(Xt − EXt)
2 = σ2M1 + θ2M2,

E(Xt − EXt)
3 = 3θσ2M2 + θ3M3,

E(Xt−EXt)
4 = 3σ4(M2+(Eτt)

2)+6σ2θ2(EτtM2+M3)+θ4M4,

where M1 = Eτt, Mi = E(τt − Eτt)
i, i = 2, 3, 4.
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Skewness and excess kurtosis

Skewness:

γ1 =
3θσ2M2 + θ3M3

(σ2M1 + θ2M2)3/2
.

Excess kurtosis:

γ2 =
3σ4M2 + 6θ2σ2M3 + θ4(M4 − M2

2 )

(σ2M1 + θ2M2)2
.

The case of symmetric log returns corresponds to when
θ = 0, while when θ 6= 0, the returns are skewed.
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Covariances

Covariance of log returns:

cov(Xt, Xt+k) = θ2cov(τt, τt+k),

Covariance of squared returns:

cov(X2
t , X2

t+k) = (σ4+4θ2µ2+4θµσ2)cov(τt, τt+k)+θ4cov(τ2
t , τ2

t+k)+

(θ2σ2 + 2θ3µ)(cov(τ2
t , τt+k) + cov(τt, τ

2
t+k)).

In the symmetric case,

cov(Xt, Xt+k) = 0,

cov(X2
t , X2

t+k) = σ4cov(τt, τt+k)

.
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Covariance of absolute returns

For µ = θ = 0 we also have

cov(|Xt|, |Xt+k|) =
2

π
σ2cov(

√
τ t,

√
τt+k).
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Conditional heteroscedasticity

The log return process {Xt} has time dependent
conditional variance. Define the σ-algebra of information
available up to time t:

Ft = σ({B(u), u ≤ Tt}, {Tu, u ≤ t}).

Then

V ar(Xt|Ft−1) = E(X2
t |Ft−1) − E(Xt|Ft−1)

2 =

θ2V ar(τt|Ft−1) + σ2E(τt|Ft−1).

In the symmetric case, V ar(Xt|Ft−1) = σ2E(τt|Ft−1).
It is natural to interpret σ

√
τt as the volatility at time t, and

{σ√τt} as stochastic volatility process.
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Distribution theory

Since Xt =D µ + θτt + σ
√

τtB(1), the conditional
distribution of Xt given τt = V is normal with mean
µ + θV and variance σ2V .

The conditional distributions of Xt given τt = V are
normal mixed or generalized hyperbolic distributions
(Barndorff-Nielsen, Kent, and Sørensen (1982))
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Gamma distribution of τt

If τt is distributed as Γ(α, β), where α, β > 0, its density is

fΓ(x) =
βα

Γ(α)
xα−1e−βx, x > 0.

The characteristic function of τt is

φΓ(u) =
(

1 − iu

β

)−α

.
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VG distribution of Xt

When τt has Gamma distribution, the distribution of Xt is
Variance Gamma with density

fV G(x) =

√

2

π

βαe
(x−µ)θ

σ2

σΓ(α)

( |x − µ|
√

θ2 + 2βσ2

)α− 1
2×

Kα− 1
2

( |x − µ|
√

θ2 + 2βσ2

σ2

)

,

where

Kη(ω) =
1

2

∫ ∞

0
zη−1e−ω/2(z+1/z)dz, ω > 0

is modified Bessel function of the third kind, or McDonalds
function.
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VG distribution of Xt - Cont’d

The characteristic function of Xt in the VG model is

φV G(u) = eiµu
(

1 − iθu

β
+

1

2β
σ2u2

)−α

.

We will use the notation V G(µ, θ, σ2, α, β) for the VG model.
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Inverse Gamma distribution of τt

Consider τt with inverse Gamma RΓ(δ, ǫ), δ, ǫ > 0 marginal
distribution (also called reciprocal Gamma).
The density is

fRΓ(x) =
ǫδ

Γ(δ)
x−δ−1e−ǫ/x, x > 0.

Moments of order k exist when δ > k. For example, when
δ ≤ 2, V ar(τt) = ∞.
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Student’s t distribution of Xt

When τt has inverse Gamma distribution, the distribution of
Xt is Student’s t with density

fSt(x) =

√

2

π

(δ − 1)δe
(x−µ)θ

σ2

σΓ(δ)

( θ2

2ǫσ2 + (x − µ)2

)

δ+1/2
2 ×

Kδ+1/2

( |θ|
√

2ǫσ2 + (x − µ)2

σ2

)

.

The above expressions of densities were given by
Sørensen and Bibby (2003).
The characteristic function is

φSt(u) =
21−δ/2eiµu

Γ(δ)
(ǫ(σ2u2 − 2iθu))δ/2Kδ(

√

2ǫ(σ2u2 − 2iθu)).

Variance Gamma and Normal Inverse Gaussian Risky Asset Models with Dependence through Fractal Activity Time – p. 27/68



Inverse Gaussian distribution ofτt

Consider τt that has an inverse Gaussian distribution
IG(δ, γ) with the density

fIG(x) =
δeδγ

√
2πx3

e−
1
2
(δ2/x+γ2x), x > 0, δ > 0, γ ≥ 0.

The characteristic function of τt is

φIG(x) = exp
{ δ

γ

(

1 −
√

1 − 2iu

γ2

)}

.
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NIG distribution of Xt

When τt has IG(δ, γ) marginal distribution, then Xt has
normal inverse Gaussian (NIG(α, β, µ, σ, δ)) distribution,

where β = θ/σ2, and α =

√
θ2+σ2γ2

σ2 . The density of Xt is

fNIG(x) =

√

θ2 + γ2σ2

σ2π
exp{δγ +

θ2

σ
(x − µ)}×

σδ
√

σ2δ2 + (x − µ)2
K1

(

√

(θ2 + γ2σ2)(σ2δ2 + (x − µ)2)

σ2

)

.
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Tail behavior

If Xt has VG distribution, then as x → ∞

P (|Xt| > x) ∼ const(α, β, σ)xα−1e−x
√

2β/σ2

If Xt has NIG distribution, then as x → ∞

P (|Xt| > x) ∼ const(α, δ, σ)x−3/2e−αx

When Xt has Student distribution and µ = θ = 0 then

P (|Xt| > x) ∼ const(ǫ, δ, σ)x−2δ

Here f(x) ∼ g(x) means that limx→∞f(x)/g(x) = 1.
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GIG distribution of τt

The density of generalized inverse Gaussian (GIG)
distribution GIG(α, β, γ) distribution is given by

fGIG(x) =
(γ
β )α/2

2Kα(
√

βγ)
xα−1e−

1
2
(β

x
+γx), x > 0

The distributions considered for τt, Gamma, inverse
Gamma, and inverse Gaussian, belong to GIG class (some
as a limiting case when GIG parameter values are set to be
0)
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GH distribution of Xt

When τt has GIG distribution, the distribution of Xt belongs
to the class of generalized hyperbolic (GH) distributions.
The density is

fGH(x) =
(γ

β

)α/2(βα2 + (x − µ)2

γσ2 + θ2

)α/2−1/4

×

K1−α/2

(

√

(

γ +
θ2

σ2

)(

β +
(x − µ)2

σ2

)) e
(x−µ)θ

σ2

√
2πσ2Kα(

√
γβ)

The characteristic function is

φGH(u) =
Kα(

√

β(γ − 2iθu + σ2u2))

Kα(γβ)

( γ

γ − 2iθu + σ2u2

)α/2

eiµu.
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Other constructions of activity time

Heyde and Leonenko (2005) introduced the following
construction:
Let η1(t), . . . , ην(t), ν ≥ 1 be independent copies of
stationary Gaussian process η(t) with Eη(t) = 0, Eη2(t) = 1
and monotone correlation function Eη(t)η(t + s) = ρη(s),
t, s ≥ 0.
Consider the chi-square process

χ2
ν(t) =

1

2
(η2

1(t) + . . . + η2
ν(t)).
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Gamma process via chi-square

Take τt =
2

ν
χ2

ν(t) so the distribution of τt is Γ(α, α) for

α = ν/2. For t = 1, 2, . . . the activity time

Tt =
t

∑

i=1

τi =
2

ν

t
∑

i=1

χ2
ν(i).

This construction is considered by Finlay and Seneta
(2006).

Drawback: α is an integer multiplier of 1/2.

Advantage: flexible correlation structure
corr(χ2

ν(t), χ
2
ν(t + s)) = ρ2

η(s).
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Inverse Gamma process via chi-square

Consider τt = [
2

ν
χ2

ν(t)]−1 with marginal distribution

RΓ(ν/2, ν/2) (Heyde and Leonenko (2005)). The covariance
structure:

cov(τt, τt+s) =
∞

∑

k=1

C2
k(ν)ρ2k

η (s), ν > 4,

where Ck are coefficients from the expansion of G(x) = ν
2x

using Laguerre polynomials.
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Expansion using Laguerre polynomials

The density of χ2
ν is fΓ(ν/2, 1). Consider

L2((0,∞), fΓ(ν/2, 1)).
Complete orthogonal system of functions is

ek(u) = L
ν/2−1
k (u)

{

k!
Γ(ν/2)

Γ(ν/2 + k)

}1/2

,

where

Lβ
k(u) =

1

k!
u−βeu dk

duk
{uβ+ke−u}

are generalized Laguerre polynomials of index β, k ≥ 0.
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Expansion - Cont’d

Note that τt = G(χ2
ν(t)) with

G(x) = ν
2x ∈ L2((0,∞), fΓ(ν/2, 1)). This function can be

expanded

G(x) =
∞

∑

k=1

Ck(ν)ek(x),

where

Ck(ν) =
ν

2

∫ ∞

0

fΓ(ν/2, 1)(x)ek(x)dx

x
.

Variance Gamma and Normal Inverse Gaussian Risky Asset Models with Dependence through Fractal Activity Time – p. 37/68



Chi-square construction for RΓ

Flexible correlation structure: long- or short- range
dependence possible with different choices of ρη

The distribution of τt is RΓ(ν/2, ν/2), where ν is an
integer

Correlation structure is defined when ν > 4
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Key ingredients for the construction

We consider the construction of τt with Gamma or IG
marginals using Ornstein-Uhlenbeck (OU) processes

Gamma and IG distributions are self-decomposable: for
any c ∈ (0, 1) there exits r.v. Xc independent of X such
that X =D cX + Xc

Gamma and IG distributions have additivity property in
one of the parameters

The variances of Gamma and IG distributions are
proportional to the parameter in which the additivity
property holds
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Why not other distributions

Inverse Gamma distribution (leading to Student’s t
distribution of the returns), does not have these
properties

For inverse Gamma distribution of τt, construction via
chi-square processes is available

Construction via chi-square processes also works for
Gamma distribution of τt

In construction using OU processes, we do not need
any of the parameters to be integers
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Construction using OU processes

Idea is due to Barndorff-Nielsen (1998), further
developed in Barndorff-Nielsen and Shephard (2001)
for continuous time stochastic volatility models

Superpositions investigated by Barndorff-Nielsen
(2001), Barndorff-Nielsen and Leonenko (2005),
Leonenko and Tauffer (2005)

OU process is stationary solution of the stochastic
differential equation

dy(t) = −λy(t) + dZ(λt), t ≥ 0,(1)

where Z(t), t ≥ 0 is a non-decreasing Lévy process, and
λ > 0
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OU processes

Theorem 1. There exists a stationary process y(t), t ≥ 0,
which has marginal Γ(α, β) or IG(δ, γ) distribution and
satisfies equation (1). The process y has all moments, and
the correlation function of y is given by
ry(h) = corr(y(t), y(t + h)) = e−λh, h ≥ 0.

This theorem is a special case of a more general result
(Sato (1999)). The unique strong stationary solution of
equation (1) exists if

∫ ∞
2 log xρ(dx) < ∞, where ρ(·) is Lévy

measure of Z(1).
The solution is given by

y(t) = e−λty(0) +

∫ t

0
e−λ(t−s)dZ(λs).
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OU processes Cont’d

The law of Z is determined uniquely by that of y

Lévy-Khinchin representation:

κy(u) = log Eeiuy = iua −
∫ ∞

0
(eiux − 1)Q(dx), u ∈ R,

where
∫ ∞
0 (1 ∧ x)Q(dx) < ∞, and Q(−∞, 0) = 0

When y is self-decomposable Q(dx) = q(x)
x dx, with

canonical function q decreasing on (0,∞)

The cumulant function of Z(1) is related to that of y:

κZ(1)(u) = log EeiuZ(1) = u
∂

∂u
κy(t)(u).
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Gamma OU process

When y has Γ(α, β) marginal distribution,

qΓ(x) = αe−βx1{x>0},

and Lévy process Z(t) is a compound Poisson process

Z(t) =

N(t)
∑

n=1

Zn,

where N(t) is a Poisson process with intensity α, and Zn are
independent identically distributed Γ(1, β) random variables.
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IG OU process

In the IG case, the canonical function is

qIG(x) =
δx−1/2

√
2π

e−γ2x/21{x>0}.

Z(t) = Z1(t) + Z2(t), where Z1 and Z2 are independent.
Z1 is a Lévy process with inverse Gaussian marginals,
Z2 is a compound Poisson process

Z2(t) =
1

γ2

N(t)
∑

k=1

W 2
n ,

where N(t) is Poisson process with intensity δγ/2, and
W1,W2, . . . are independent N(0,1).
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Distributions of OU processes

It is important to specify the distribution of Tt =
∑t

i=1 τi,
when τ is OU type process

Distribution of Tt can be obtained from distribution of τ1

and transition probability P (t, B; x) from x to B in time t:

P
(

t
∑

i=1

τi ≤ x
)

=

∫

x1+x2+...+xt≤x
f(x1)dx1P (1, dx2; x1)

P (1, dx3; x2) . . . P (1, dxt; xt−1),

where f(·) is either Γ(α, β) or IG (δ, γ) density for VG
and NIG models respectively
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Transition probability for Gamma process

It was shown in Zhang, Zhang and Sun (2006) that
temporally homogeneous transition function P (t, y; x, λ, α, β)
from x to y(·) ≤ y after time interval t is
P (t, y; x, λ, α, β) = 0, if y < e−λtx,

P (t, y; x, λ, α, β) = e−λαt, if y = e−λtx,

P (t, y; x, λ, α, β) = e−λαt +
∞

∑

n=1

(λαt)ne−λαt

n!

∫ y−e−λtx

0
fn(u)du,

if y > e−λtx.
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Transition probability Cont’d

The sequence of functions in the transition probability
formula is defined by

f(w) =
e−βw − e−βweλt

λtw
,w > 0,

and f(w) = 0, w ≤ 0.

f1(x) = f(x)

fn(x) =

∫ ∞

0
f(y)fn−1(x − y)dy, n ≥ 2.
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Transition probability for IG process

Using representation of Z and results from Zhang and
Zhang (2008), the transition probability of inverse Gaussian
OU process can be expressed as follows:
P (t, y; x, λ, γ, δ) =

∞
∑

n=1

exp{−δγt(1 − e−1/2λt)}(δγt(1 − e−1/2λt))n

n!

∫ y−e−λtx

0
fn(u)du,

for y > e−λtx,
P (t, x; y, λ, γ, δ) = 0, if y ≤ e−λtx.
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Transition probability Cont’d

Function f1 is the inverse Gaussian density with parameters
(δ(1 − e−1/2λt), γ), and

fn(u) =

∫ ∞

0
fn−1(u − x)f(x)dx, n ≥ 2,

where

f(u) =
e−1/2γ2u − e−1/2γ2ueλt

√
2πu3γ(e1/2λt − 1)

, u > 0.
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Sup-OU processes

We use discrete version of superposition introduced by
Barndorff-Nielsen (1998)

Let τ (k)(t), k ≥ 1 be the sequence of independent
processes such that each τ (k)(t) is solution of the
equation

dτ (k)(t) = −λ(k)τ (k)(t) + dZ(k)(λ(k)t), t ≥ 0,

in which Lévy processes Z(k) are independent and are
such that the distribution of τ (k) is either Γ(αk, β) or
IG(δk, γ)

Finite superposition: τm
t =

m
∑

k=1

τ (k)(t)
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Infinite superpositions

Infinite superposition: τ∞t =
∞

∑

k=1

τ (k)(t)

Well-defined in the sense of mean-square or
almost-sure convergence provided that

∑∞
k=1 αk < ∞ in

case of the VG model, and
∑∞

k=1 δk < ∞ in case of NIG
model

For VG model, the marginal distribution of τ∞t is
Γ(

∑∞
k=1 αk, β) and for NIG model, the marginal

distribution of τ∞t is IG(
∑∞

k=1 δk, γ)

For finite superpositions, sums go to m instead of ∞
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Covariance functions

Finite superposition:

Rτm(t) = cov(τm
s , τm

t+s) =
m

∑

k=1

V ar(τ (k)(t))e−λ(k)t

For the VG model, V ar(τ (k)) = αk/β
2, and for NIG

model V ar(τ (k)) = δk/γ
3

Infinite superposition: summation to ∞ instead of m

Infinite superposition: let 0 < H < 1, choose
αk = k−(1+2(1−H)) in case of VG model, and choose
δk = k−(1+2(1−H)) in case of NIG model

Choose λ(k) = 1/k
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Covariances for infinite superposition

With chosen parameters

Rτ∞(t) = c

∞
∑

k=1

1

k1+2(1−H)
e−t/k.

The constant c equals 1
β2 in VG model, and 1

γ3 in NIG model.

Lemma. For infinite superposition, the covariance function of
τ∞ can be written as Rτ∞(t) = L(t)

t2(1−H) ,

where L is a slowly varying at infinity function, bounded on
every bounded interval.

Remark. If 1/2 < H < 1, the process τ∞t has long range
dependence.
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Asymptotic self-similarity

Finite superposition notation Tm
t =

∑t
i=1 τm

i

Infinite superposition notation T∞
t =

∑t
i=1 τ∞i

Empirical evidence in support of approximate
self-similarity (Heyde (1999), Heyde and Liu (2001))

Exact self-similarity for increasing T is not possible
(Heyde and Leonenko (2005))
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Self-similarity

Exact self-similarity: Tct − ETct =D cH(Tt − ETt), 0 < H < 1.
Note that ETt = tEτ1.

If this were true, then for all t > 0, c > 0, and ∆ > 0
Tt+∆ − Tt − ∆Eτ1 =D T∆ − ∆Eτ1 =D ∆H(T1 − Eτ1).

And therefore
P (Tt+∆ −Tt < 0) = P (T1 < Eτ1 −∆1−H) > 0 if ∆ < (Eτ1)

H−1.
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Asymptotic self-similarity of Tt

Let D[0, 1] be Skorokhod space, and for t ∈ [0, 1] consider
random functions Tm

[Nt] and T∞
[Nt].

Theorem 2. For a fixed m < ∞ (finite superposition)

1

cmN1/2

(

Tm
[Nt] − ETm

[Nt]

)

→ B(t), t ∈ [0, 1],

as N → ∞ in the sense of weak convergence in D[0, 1]. The
process B(t) is Brownian motion, and the norming constant
cm is given by

cm =
(

m
∑

k=1

V ar(τ (k))
1 − e−λ(k)

1 + e−λ(k)

)1/2

, where V ar(τ (k)) = αk/β
2

for the VG model, and V ar(τ (k)) = δk/γ
3 for the NIG model.
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Ingredients of proof of Theorem 2

Each OU process in the finite superposition is β-mixing
(absolutely regular) under the condition of existence of
unique strong stationary solution of (1)
∫ ∞
2 log xρ(dx) < ∞ (Jongbloed et al. (2005))

Masuda (2004) showed β-mixing with exponential rate
under a stronger condition of existence of the absolute
moment of order p > 0 of the marginal distribution: there
exists a > 0 such that the mixing coefficient
βy(t) = O(e−at)

Finite sum of β-mixing processes is also β-mixing

β-mixing ensures that conditions of Theorem 20.1
Billingsley (1968) are satisfied
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β-mixing

β-mixing (absolute regularity) is present when

β(n) = sup
j≥0

β(F j
0 ,F∞

j+n) → 0, n → ∞,

where σ-algebra F j
i is generated by {y(t), i ≤ t ≤ j} for

j ≥ 0, j ≥ 0, and for two σ-algebras A and B

β(A,B) = sup
1

2

I
∑

i=1

J
∑

j=1

|P (Ai ∩ Bj) − P (Ai)P (Bj)|

where the supremum is taken over all pairs of finite
partitions {A1, . . . AI} and {B1, . . . BJ} of Ω such that
Ai ∈ A,and Bj ∈ B, i = 1, . . . , I, j = 1, . . . J (Bradley (2005)).
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β-mixing - Cont’d

Since OU process y is stationary Markov, it was shown in
Davydov (1973) that β-mixing condition becomes

βy(t) =

∫ ∞

0
π(dx)||Pt(x, ·) − π(·)||TV → 0, t → ∞,

where π(·) is the initial distribution, and || · ||TV is total
variation norm.
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Asymptotic self-similarity

Theorem 3. For infinite superposition and 1/2 < H < 1

1

c∞NHL(N)1/2

(

T∞
[Nt] − ET∞

[Nt]

)

→ BH(t), t ∈ [0, 1],

as N → ∞ in the sense of weak convergence in D[0, 1]. The
process BH is fractional Brownian motion.
The constant c∞ = α(H)

H(2H−1)β2 for the VG model, and

c∞ = α(H)
H(2H−1)γ3 for the NIG model, where

α(H) =
∞

∑

k=1

1

k1+2(1−H)
is Riemann zeta-function.
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Proof ingredients

Follows from a more general results in
Barndorff-Nielsen and Leonenko (2005) and Leonenko
and Tauffer (2005)

Proof is based on a linear process type representation
of sup-OU process τ∞t =

∑∞
j=0 ajǫn−j, where ǫj are

independent with the same variance but not identically
distributed

Proof follows from Davydov (1970)
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Empirical evidence - Skewness

n γ̂1

√

n
6 |γ̂1| γ1 = 0

DM 6333 -0.035213296 1.144025741 < 1.96 Retain
FF 6428 0.320116571 10.477808702 > 1.96 Reject

GBP 4510 -0.001525777 0.041831526 < 1.96 Retain
JY 4510 -0.414678054 11.369037463 > 1.96 Reject
CD 1700 -0.093129341 1.567600399 < 1.96 Retain

NTD 1200 -0.265079853 3.748795232 > 1.96 Reject

Table 1: Testing the hypothesis γ1 = 0 for DM, FF,

GBP, JY, CD, and NTD

Variance Gamma and Normal Inverse Gaussian Risky Asset Models with Dependence through Fractal Activity Time – p. 63/68



Empirical evidence -kurtosis

n γ̂2

√

n
24 |γ̂2| γ2 = 0

DM 6333 5.289831117 85.929231975 > 1.96 Reject
FF 6428 11.08034788 181.336700363 > 1.96 Reject

GBP 4510 2.720264185 37.290115946 > 1.96 Reject
JY 4510 2.611152007 35.794376749 > 1.96 Reject
CD 1700 2.651642996 22.316901277 > 1.96 Reject

NTD 1200 2.106045092 14.891987660 > 1.96 Reject

Table 2: Testing the hypothesis γ2 = 0 for DM, FF,

GBP, JY, CD, and NTD
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Densities for DM data
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Log densities for DM data
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Densities for JY data
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Log densities for JY data
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