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Geometric Brownian Motion Model

-

Geometric Brownian motion (GBM) or Black-Scholes modelT
for risky asset:

P, = PyeltttoBM} 4 5

where u € R, o > 0, and B is Brownian motion.
Log returns: X; = log P — log P;_1, and in GBM

Xy =pu+o(Blt)—Bt—1)), t>1.

According to this model, the log returns X;,t =1,2,3,... are
I.I.d. Gaussian

o |
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'Stylized features’

o N

Features of log returns observed in practice (Granger
2005):

# Log returns are reasonably approximated by
uncorrelated identically distributed random variables

(independent in the Gaussian case)

# Squared and absolute log returns are dependent
through time, with autocorrelation functions decreasing
very slowly, remaining substantial after 50 to 100 lags

# Log returns have distributions that are heavier-tailed
and higher-peaked than Gaussian distributions

o |
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Empirical evidence against GBM model

- N

# Found in the literature (e.g. Heyde and Liu (2001),
Seneta (2004))

# We present data of exchange rates between DM
(N=6333), FF (N=6428), GBP (N=4510), JY (N=4510),
CD (N=1700), NTD(N=1200), and the US dollar, for
every working day over various periods of time 1971

and 2001

o |
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Price (exchange rate) for DM

- N
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Empirical autocorrelations

r

ased on the data set X;,t =1,2,..., N — k using

N—k
. 1 _ _
ry (k) = N ; (Xt — Xn)( Xy — Xn)
N
where & is the lag and Xy = % ZXt’ and the sample
t=1
autocorrelations are appropriately normalized
. rn (k)
k) = -

o |

Variance Gamma and Normal Inverse Gaussian Risky Asset Models with Dependence through Fractal Activity Time — p. 10/68



0.35 -

0.3

0.25 -

0.2 1

0.15 A

0.1 A

Autocorrelations for JY

X(t)
X(t)
X(t)| 2
X(t)| 4

upper bound

lower bound

Variance Gamma and Normal Inverse Gaussian Risky Asset Models with Depende

nce through Fractal Activity Time — p. 11/68




Autocorrelations for GBP

0.3 -

X(t)
0.25 - —X(t)
02 | | — IX(t)|A2
0.15 . X(t) 4

V\ ------- upper bound

0.1 -
------- lower bound
0.05 - }

Variance Gamma and Normal Inverse Gaussian Risky Asset Models with Dependence through Fractal Activity Time — p. 12/68



Autocorrelations for DM

0.35 -
X(t)
> — [X(t)|
0.25 - — |X(t)|*2
021 IX(t)]"4
osl VSN upper bound
------- lower bound
0.1
0.05 -
0 - 3
s - R 42 e 18- meeeens 24 30 36 neees 42 48-nmenee Y. R 60
-0.05 ~
-0.1 -

Variance Gamma and Normal Inverse Gaussian Risky Asset Models with Dependence through Fractal Activity Time — p. 13/68



Some alternatives to GBM

- N

#® Use Lévy processes (independent increments, cadlag
sample paths, continuous in probability, homogeneous
If stationary increments) instead of Brownian motion in
GBM model (Eberlein and Raible (1999))

# Mandelbrot (1997) proposed to model X (¢t) = By (0(t)),
where By Is fractional Brownian motion, that is zero
mean Gaussian process with covariance
1 . .. .
5[#\2}[ + |s]* — |t — s|*], and 6 is a positive stochastic

process independent of By

o |
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-

Alternatives to GBM - Cont'd

# Fractal activity time GBM (FATGBM, Heyde (1999)): T

log Py =log Py + ut + 01y + o B('3),

where € R, 0 > 0,and 0 € R.
The process {7;} Is positive, nondecreasing, and has
stationary (but not independent) increments

=Ty — 11, and To = 0.

Use Levy processes to model the activity time T;
(Madan, Carr, and Chang (1998))

Use T} = fo (t,s)dL(s), where L is a strictly increasing

Lévy process, and k |s a deterministic Volterra type
kernel (k(t,s) = 0 when s >t > 0) (Bender and
Marquardt (2009) J
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Fractal activity time

- N

# The process {7;} has an attractive interpretation of
iInformation flow or trading volume (Howison and
Lamper (2001))

# The more information is released to the market, or the
more 'frenzied’ trading becomes, the faster the activity
time flows

o If7; =t¢, then FATGBM becomes classical
Black-Scholes model, and log P; is normal for any ¢ > 0

o |
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Moments of log returns

- N

X, =log P, —log P,_; =P w~+0r + o/ B(1),

where = denotes equality in distribution. This gives
EX; = pu+60M, E(X;— EXy)* = 0°M + 6*Ms,

E(X; — EX;)’ = 300* M,y + 6°Ms,
E(X;—EX)* = 30*(My+ (E7)?)+60°0%(E1 My + M) +6* My,
where M, = Ery, M; = E(1y — E7)%, i = 2,3, 4.

o |
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Skewness and excess kurtosis

-

Skewness:

-

3002 Ms + 03 Ms
(72M1 i 92M2)3/2'

V1=
(
Excess kurtosis:

 30* M + 66%0* M3 + 64 (My — M3)
N (02M1 -+ (92M2)2

V2

The case of symmetric log returns corresponds to when
6 = 0, while when 6 # 0, the returns are skewed.

o |
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Covariances

-

Covariance of log returns:
2
cov( Xy, Xyar) = 02cov(Te, Trar),

Covariance of squared returns:

cov(X7, X7, 1) = (0 +40°1° +40u0° ) cov(Ty, T k) +0 cov (7, 7711 )+

(9202 + 293,u)(cov(7t2, Tiik) + cov(Ty, Tt2_|_k)).

In the symmetric case,

cov( Xy, Xiap) =0,

L cov(XtQ, X752+k) = (7400?1(7157 Ti+k) J
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Covariance of absolute returns

. N

or un =60 =0 we also have

2
cov (| Xy|, | Xiqx|) = ;UQCOU(\/_t,\/TH ).



Conditional heteroscedasticity

-

The log return process { X;} has time dependent
conditional variance. Define the o-algebra of information
available up to time ¢:

-

Fi = o({B(u),u < Ti}, {Tu,u < t}).
Then

Var(XyFi—1) = B(X?|Fi_1) — B(X|Fi_1)? =

0*Var(m| Fi_1) + o E(r| Fi1).

In the symmetric case, Var(X;|F;_1) = o*E(r|Fi—1).
It is natural to interpret o,/7; as the volatility at time ¢, and
{o\/7:} as stochastic volatility process.

- |
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Distribution theory
-

»® Since X; =P u+ 0r + o/ B(1), the conditional
distribution of X; given 7 = V' is normal with mean
1+ 0V and variance o2V

# The conditional distributions of X; given » = V are
normal mixed or generalized hyperbolic distributions
(Barndorff-Nielsen, Kent, and Sgrensen (1982))

|
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Gamma distribution of 7

-

If 7, IS distributed as I'(«, ), where «, G > 0, its density IS

— Ba
[(a)

-

2@ e T 2> 0.

Jr(z)

The characteristic function of =1 Is

= (1"

o |
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VG distribution of X,
-

When 1, has Gamma distribution, the distribution of X; Is
Variance Gamma with density

(z—p)b 1
2% z—pl N
fvel®) =\ 2 oT ) (mz n 2502) g
[z — p|\/02 + 2802
KO‘_%< o2 )7

where

1 O
Kp(w) = 5/0 e 2EH2) 0w > 0

IS modified Bessel function of the third kind, or McDonalds

function. J
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VG distribution of X, - Cont'd
-

The characteristic function of X; in the VG model Is

-

. 0 —a
ovolu) = (1= 4 o)

We will use the notation VG (u, 0, 02, a, 3) for the VG model.

o |
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Inverse Gamma distribution of 7;

L N

Consider 7 with inverse Gamma RI'(d,¢), §,¢ > 0 marginal
distribution (also called reciprocal Gamma).
The density Is

5
_ €51 —efn
frr(z) F((S)x e % 1> 0.

Moments of order £ exist when § > k. For example, when
60 <2, Var(n) = .

o |
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Student’s t distribution of X,
-

When 7; has inverse Gamma distribution, the distribution of
X; Is Student’s t with density

(x—p)o 5+1/2
20 —1)% < 0- 2
fsilz) = \/; al'(9) (260'2 + (x — ,LL)Q) 8

b2 5 T =)

o2

-

K5+1/2(

The above expressions of densities were given by
Sgrensen and Bibby (2003).
The characteristic function is

91—06/2 jipu
dst(u) =

. [(o)

(e(0%u? — 2i0u))"*[5(1/ 2e(02u? — 2ifu)).
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Inverse Gaussian distribution of

-

Consider = that has an inverse Gaussian distribution
IG(0,~) with the density

-

557 1 2 2
fra(a) = ———=e 30 /#17%) 450,55 0,7 > 0.

V23

The characteristic function of 7 IS

dra(r) = efbp{%(l — \/1 — 2;—5)}

o |
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NIG distribution of X,
-

When 7, has IG(6,v) marginal distribution, then X; has
normal inverse Gaussian (NIG(a, 3, i1, 0,6)) distribution,

where 5 =0/02, and o = VO +"27 . The density of X; is

-

2
fnia(z) = \/62 gy eXP{M + — ! ( — 1) } X
o) V(02 4+ 7202) (0202 + (z — p)?)
\/0252+(:1:—#)2K1( o )

o |
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Tall behavior

-

# If X; has VG distribution, then as x — oo
P(|X¢| > x) ~ const(a, S, U)xo‘_le_x\/m
#® If X; has NIG distribution, then as z — oo
P(|X:| > z) ~ const(a, 8, o)z 32"
# When X; has Student distribution and ;. = 6 = 0 then
P(|X¢| > ) ~ const(e, 8, o)z

Here f(x) ~ g(x) means that lim, .. f(z)/g(x) = 1.

o |
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GIG distribution of =
-

The density of generalized inverse Gaussian (GIG)
distribution GIG(«, 3,~) distribution is given by

-

(3)*"?

T 2K.(VBY)

The distributions considered for », Gamma, inverse
Gamma, and inverse Gaussian, belong to GIG class (some
as a limiting case when GIG parameter values are set to be
0)

e

farc(x)

o |
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GH distribution of X,
-

When 7 has GIG distribution, the distribution of X; belongs
to the class of generalized hyperbolic (GH) distributions.
The density Is

-

fam(z) = (%)O‘/Q (ﬁoz?;(i ;2#)2)04/21/4

2 T — )2 e o2
freapn(y (7 ) (5 EE)) e —

The characteristic function Is

B Ko(v/B(y — 2i0u + o2u?)) v @/2 .
Por(u) = Ko (v5) (’y — 210w + 02u2) e

o |
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Other constructions of activity time

- N

Heyde and Leonenko (2005) introduced the following
construction:

Let ni(t),...,n.(t), v > 1 be independent copies of
stationary Gaussian process 7(t) with En(t) = 0, En?(t) = 1
and monotone correlation function En(t)n(t + s) = py(s),
t,s > 0.

Consider the chi-square process

1 2

() = S0 E) + .+ (t).

o |
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Gamma process via chi-square

- N

2 . .

Take 7, = =x*(t) so the distribution of 7; is I'(«a, «) for
1%

a=rv/2. Fort=1,2,... the activity time

t t
T,=3 =23 0.
1=1 1=1

This construction is considered by Finlay and Seneta
(2006).

Drawback: « is an integer multiplier of 1/2.

Advantage: flexible correlation structure
corr (X (1), xi.(t + 8)) = p(s).

o |
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Inverse Gamma process via chi-square

- N

Consider , = [2y2(#)]~" with marginal distribution
1%

RI'(v/2,v/2) (Heyde and Leonenko (2005)). The covariance
structure:

©. @)
cov(Ty, Ty+s) g C’ (s), v >4,
k=1

where C}, are coefficients from the expansion of G(z) = 5>
using Laguerre polynomials.

o |
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Expansion using Laguerre polynomials

B

The density of x2 is fr(v/2,1). Consider

LQ((Oa 00)7 fF(V/27 1))
Complete orthogonal system of functions is

e D(v/2) /2
0= )

where

k
Lﬁ(u) — lu_ﬁe“—al {uﬁH{e—“}
k k! duk

are generalized Laguerre polynomials of index 3, k > 0.

o |
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Expansion - Cont'd

-

Note that 7, = G(x2(t)) with
G(x) = 5= € L2((0,00), fr(v/2,1)). This function can be
expanded

G(z) =)  Cp(v)eg(a),
k=1

where

X

Cr() = g/ooo fr(v/2, 1)(w)ek(x)d:€.

o |
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Chi-square construction for RI’

-

Flexible correlation structure: long- or short- range
dependence possible with different choices of p,,

The distribution of 7, Is RI'(v/2,v/2), where v IS an
Integer

Correlation structure Is defined when v > 4

|
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Key ingredients for the construction

-

® We consider the construction of = with Gamma or I1G
marginals using Ornstein-Uhlenbeck (OU) processes

# Gamma and IG distributions are self-decomposable: for
any c € (0,1) there exits r.v. X. independent of X such

that X =P ¢X + X,

# Gamma and IG distributions have additivity property in
one of the parameters

® The variances of Gamma and IG distributions are

proportional to the parameter in which the additivity
property holds

|
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Why not other distributions
-

Inverse Gamma distribution (leading to Student’s t
distribution of the returns), does not have these
properties

For inverse Gamma distribution of 7;, construction via
chi-square processes is available

Construction via chi-square processes also works for
Gamma distribution of

In construction using OU processes, we do not need
any of the parameters to be integers

|
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Construction using OU processes

- N

# l|dea is due to Barndorff-Nielsen (1998), further
developed in Barndorff-Nielsen and Shephard (2001)
for continuous time stochastic volatility models

#® Superpositions investigated by Barndorff-Nielsen
(2001), Barndorff-Nielsen and Leonenko (2005),
Leonenko and Tauffer (2005)

#® OU process is stationary solution of the stochastic
differential equation

(1) dy(t) = —Ay(t) +dZ(\t), t>0,

where Z(t),t > 0 Is a non-decreasing Lévy process, and
A>0

o |
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OU processes

Theorem 1. There exists a stationary process y(t),t > 0,
which has marginal I'(«, 3) or IG(4d, ) distribution and
satisfies equation (1). The process y has all moments, and
the correlation function of y Is given by

ry(h) = corr(y(t),y(t +h)) = e M h > 0.

This theorem is a special case of a more general result
(Sato (1999)). The unique strong stationary solution of

equation (1) exists if [," logzp(dz) < oo, where p(-) is Lévy
measure of Z(1).
The solution is given by

_ e—At te—)\(t—s) ).
y(t) y(0) + /O dZ(\s)

o |
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OU processes Cont'd

-

The law of Z is determined uniquely by that of y
Lévy-Khinchin representation:

ky(u) = log Ee"™ = jua — /0 (e"* — 1)Q(dx), u € R,

where [;7(1 A z)Q(dz) < oo, and Q(—o0,0) = 0
When y Is self-decomposable Q(dz) = %‘%)d:c, with
canonical function ¢ decreasing on (0, co)

The cumulant function of Z(1) is related to that of y:

U a
kzy(u) = log Ee Z(1) = UKyt y () (W)

|
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Gamma OU process

-

When y has I'(«, 3) marginal distribution,

qr (1‘) = ae " 1{a:>0} ;

and Léevy process Z(t) is a compound Poisson process

N(t)
Z(t) =Y Zn,
n=1

where N (t) Is a Poisson process with intensity «, and Z,, are
iIndependent identically distributed I'(1, 5) random variables.

o |
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|G OU process
-

In the |G case, the canonical function Is

qra(z) = T “f “1 450}
Z(t) = Z1(t) + Z2(t), where Z; and Z, are independent.

77 is a Levy process with inverse Gaussian marginals,
Z5 1S a compound Poisson process

O
Zo(t) == » W7,
v k=1

where N(t) is Poisson process with intensity /2, and
LWh Ws, ... are independent N(O,1). J
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Distributions of OU processes
—

# |tis important to specify the distribution of 7; = > . _; 7,
when 7 is OU type process

#® Distribution of 7; can be obtained from distribution of
and transition probability P(t, B; x) from x to B In time ¢:

t
P(Z T S .CU) = / f(xl)dle(l,de;xl)
i—=1 r1+xo+...+x: <z

P(l, dxs; xg) - P(l, dxy; ft—l)a

where f(-) Is either I'(«, 3) or IG (4, ) density for VG
and NIG models respectively

o |
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Transition probability for Gamma process

- . -

It was shown in Zhang, Zhang and Sun (2006) that
temporally homogeneous transition function P(t,y;x, A, ., 3)
from x to y(-) < y after time interval ¢ Is

P(t,y;z, N\ a,3) =0, ify < e Mz,
P(t,y;z, N\ a, 3) = e if y = e Mo,

— At

0 )\ t n —>\CVt y—e “x
P(t,y:z, N\, () =e o 4 Z ? / fn(u)du,
n=1 0

if y > e Ma.

o |
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Transition probability Cont’d
-

The sequence of functions in the transition probability
formula is defined by

—Bw _ —PBwe
& (&
= > ()

fn(f) — /OOO f(y)fn_1(:1: — y)dy, n > 2.
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Transition probability for IG process

-

Using representation of Z and results from Zhang and
Zhang (2008), the transition probability of inverse Gaussian
OU process can be expressed as follows:

P(t,y;z,\,7,0) =

-

§ eap=yt(1l = 7P} byt — VB /Oy_e " fu(u)du,

n!
n=1

for y > e Mz,

P(t,z;y,\,v,6) =0, if y < e M,

o |
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Transition probability Cont’d
-

Function f; is the inverse Gaussian density with parameters
(6(1 — e~ 1/2M) 4), and

-

©.0)

fn(u) = ; fr—1(u—z)f(x)dx,n > 2,

where
6—1/27215 _ 6—1/2’)/2ue>‘t
flu) = , o u > 0.
(v V2rudy(el/2At — 1)

o |
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Sup-OU processes

- N

#® We use discrete version of superposition introduced by
Barndorff-Nielsen (1998)

o Let 7% (¢), k > 1 be the sequence of independent

processes such that each 7(%)(t) is solution of the
equation

dr®) (1) = = XF) 7B @) 4 az®AFy ¢ >0,

in which Lévy processes Z(¥) are independent and are

such that the distribution of 7(*) is either I'(ay, ) or
IG(d, )

» Finite superposition: 77" =) 7 ()
=1

o |
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Infinite superpositions

-

Infinite superposition: ¢ = ~ ¥ (¢)
h=1

Well-defined in the sense of mean-square or
almost-sure convergence provided that >/~ ; o < oo in

case of the VG model, and > ,_, dx < oo in case of NIG
model

For VG model, the marginal distribution of 7, Is
(> -, ax, ) and for NIG model, the marginal
distribution of 7 is IG(>_7- 1 0k, )

For finite superpositions, sums go to m instead of co

|
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°

Covariance functions

Finite superposition:

oA
Rrm(t) = cov(t)", L) Z Var(r

For the VG model, Var(r( ) = ay,/3%, and for NIG
model Var(r¥) = 6, /43

Infinite superposition: summation to oo instead of m

Infinite superposition: let 0 < H < 1, choose
ap = k~1+20-H)) in case of VG model, and choose
O = k—<1+2(1—H>> in case of NIG model

Choose \¥) = 1/k

|
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Covariances for infinite superposition

fWith chosen parameters T
Rom(t) =3 otk
IS = C k1+2(1—H)6 :
k=1

The constant ¢ equals % In VG model, and % In NIG model.
Lemma. For infinite superposition, the covariance function of
7 can be written as Ry« (t) = 2l

(-1 )

where L is a slowly varying at infinity function, bounded on
every bounded interval.

Remark. If 1/2 < H < 1, the process 7° has long range
dependence.

|
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Asymptotic self-similarity

t N

Finite superposition notation 7;" = > ._, 7"

1=1 "1
Infinite superposition notation 7;>° = Zle 70

Empirical evidence in support of approximate
self-similarity (Heyde (1999), Heyde and Liu (2001))

Exact self-similarity for increasing 7' is not possible
(Heyde and Leonenko (2005))

|
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Self-similarity

-

Exact self-similarity: 7., — ET.; =P " (T; — ETy), 0 < H < 1.
Note that £7T; = tETy.

If this were true, thenforall¢t > 0,¢c>0,and A > 0
Tion — T — AET =P Ta — AET =P A" (T} — En).

And therefore
P(Tiun—Ti <0) = P(Ty < Er —AYH) > 0if A < (Br)H 1

o |
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Asymptotic self-similarity of 7;

- N

Let D|0, 1] be Skorokhod space, and for ¢ € |0, 1] consider
random functions TNy and TNy

Theorem 2. For a fixed m < oo (finite superposition)

1
Cle/Q

(T{}@t] _ ET[”]{LM]) = B(t), telo1],

as N — oo In the sense of weak convergence in D[0,1]. The
process B(t) Is Brownian motion, and the norming constant
cm 1S given by

Cm = (i Var(T(k))l —°
k=1

14 e 2™
Lfor the VG model, and Var(r*)) = 5, /~3 for the NIG model. N

—\(k)

1/2
) ,where Var(r®)) = o,/ 52
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Ingredients of proof of Theorem 2

- N

# Each OU process in the finite superposition is -mixing
(absolutely regular) under the condition of existence of
unigue strong stationary solution of (1)

[, log zp(dz) < oo (Jongbloed et al. (2005))

# Masuda (2004) showed 5-mixing with exponential rate
under a stronger condition of existence of the absolute
moment of order p > 0 of the marginal distribution: there
exists a > 0 such that the mixing coefficient

By(t) = O(e™)
# Finite sum of 5-mixing processes Is also 5-mixing

# [-mixing ensures that conditions of Theorem 20.1
Billingsley (1968) are satisfied

o |
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£-mixing

- N

#-mixing (absolute regularity) is present when

B(n) = sggﬁ(fj, tn) — 0, n— oo,
j>

where o-algebra ]—“{ IS generated by {y(t),i <t < j} for
5 >0, 5 >0, and for two o-algebras A and B

I J
BAB) =sup 5 33 IP(4i 0 By) — P(4)P(B))

i=1 j=1

where the supremum is taken over all pairs of finite
partitions {A;,... Ar} and {By, ... By} of Q2 such that
LAi cAand B; e B,i=1,...,1,5=1,...J (Bradley (2005)).J
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#-mixing - Cont’d
-

Since OU process y Is stationary Markov, it was shown in
Davydov (1973) that 5-mixing condition becomes

-

By(t) = /OOO m(dz)||Pi(x,-) — m()|lrv — 0, t — oo,

where 7 (-) Is the initial distribution, and || - ||y IS total
variation norm.

o |

Variance Gamma and Normal Inverse Gaussian Risky Asset Models with Dependence through Fractal Activity Time — p. 60/68



Asymptotic self-similarity

-

Theorem 3. For infinite superposition and 1/2 < H < 1

1
co NEL(N)

1/2 (T[Oﬁtl - ETfﬁtJ) — Bp(t), tel0,1],

as N — oo In the sense of weak convergence in D|0,1]. The
process By Is fractional Brownian motion.

The constant c,, = H(Qogff)l)BQ for the VG model, and
Cop = H(zo}gfl)mg for the NIG model, where

= 1 . .
a(H) = ; ey 1S Riemann zeta-function.

o |
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Proof ingredients

- N

# Follows from a more general results in
Barndorff-Nielsen and Leonenko (2005) and Leonenko

and Tauffer (2005)

#® Proof is based on a linear process type representation
of sup-OU process 77° = > .~ ajen—j, Where ¢; are
Independent with the same variance but not identically
distributed

o Proof follows from Davydov (1970)

o |
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Empirical evidence - Skewness

- B

n gl V] 71 =0

DM | 6333 | -0.035213296 | 1.144025741 | < 1.96 | Retain
FF | 6428 | 0.320116571 | 10.477808702 | > 1.96 | Reject
GBP | 4510 | -0.001525777 | 0.041831526 | < 1.96 | Retain
JY | 4510 | -0.414678054 | 11.369037463 | > 1.96 | Reject
CD | 1700 | -0.093129341 | 1.567600399 | < 1.96 | Retain
NTD | 1200 | -0.265079853 | 3.748795232 | > 1.96 | Reject

Table 1: Testing the hypothesis v, = 0 for DM, FF,
GBP, JY, CD, and NTD

o |
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-

Empirical evidence -kurtosis

n

V2

v 25172]

DM
FF
GBP
JY
CD
NTD

6333
6428
4510
4510
1700
1200

5.289831117
11.08034788
2.7120264185
2.611152007
2.651642996
2.106045092

85.929231975
181.336700363
37.290115946
35.794376749
22.316901277
14.891987660

> 1.96
> 1.96
> 1.96
> 1.96
> 1.96
> 1.96

Table 2: Testing the hypothesis v, = 0 for DM, FF,
GBP, JY, CD, and NTD

o

|
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Densities for DM data

0.35 -

Empirical probability

Gaussian probability
— VG probability

— NIG probability
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Log densities for DM data
-

0.008 0.018 0.028

log(Empirical)

log(Gaussian)
—log(VG)
—log(NIG)

|
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Densities for JY data

Empirical probability

Gaussian probability
— VG probability

— NIG probability

D

-0.035 -0.025 -0.015 -0.005 0.005 0.015 0.025 0.035

|
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Log densities for JY data
-

0.01 0.02 0.03

log(Empirical)

-0.03 -0.02 -0.01

log(Gaussian)

—log(VG)

—log(NIG)

|
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