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Abstract

Spatially fractional order diffusion equations are generalizations of classical diffusion equations which are used in mod-
eling practical superdiffusive problems in fluid flow, finance and others. In this paper, we present an accurate and efficient
numerical method to solve a fractional superdiffusive differential equation. This numerical method combines the alternat-
ing directions implicit (ADI) approach with a Crank–Nicolson discretization and a Richardson extrapolation to obtain an
unconditionally stable second-order accurate finite difference method. The stability and the consistency of the method are
established. Numerical solutions for an example super-diffusion equation with a known analytic solution are obtained and
the behavior of the errors are analyzed to demonstrate the order of convergence of the method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Fractional diffusion equations are used to model problems in physics (see a comprehensive review by Met-
zler and Klafter [25]), finance [10,16,28,31,30], and hydrology [2,4,5,32,33]. Fractional space derivatives may
be used to formulate anomalous dispersion models, where a particle plume spreads at a rate that is different
than the classical Brownian motion model. When a fractional derivative of order 1 < a < 2 replaces the second
derivative in a diffusion or dispersion model, it leads to a superdiffusive flow model. Analytic closed-form solu-
tions for these initial-boundary value problems are elusive. This paper presents a practical second-order accu-
rate numerical method for solving two-dimensional superdiffusion problems on a rectangular region with
variable diffusion coefficients, using a variation on the classical alternating-directions implicit (ADI)
Crank–Nicolson method which is followed by a Richardson extrapolation. The finite difference methods
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obtained from the classical Grünwald sums have first-order truncation errors but are unstable. Therefore, we
use a shifted version of the usual Grünwald finite difference approximation, and we show that this leads to
unconditional stability. To improve the first-order accuracy of the solutions that are obtained in this way,
we apply a spatial Richardson extrapolation to obtain a solution that is second-order accurate in both the spa-
tial and temporal grid sizes. Similar to the treatment of the classical multi-dimensional diffusion problems, a
number of ADI splitting options are possible, but a careful selection of the splitting method is required to
maintain consistency and to properly handle the source/sink term in the differential equation. In this paper,
we establish the consistency and the unconditional stability (and therefore convergence) of the proposed
hybrid method for a superdiffusion equation with variable diffusion coefficients and Dirichlet boundary con-
ditions. We also prove second-order convergence in both time and space, and finally we demonstrate the order
of convergence with a numerical example for which the fractional diffusion equation has an exact analytical
solution.

Consider a two-dimensional fractional diffusion equation
ouðx; y; tÞ
ot

¼ dðx; yÞ o
auðx; y; tÞ

oxa
þ eðx; yÞ o

buðx; y; tÞ
oyb

þ qðx; y; tÞ ð1Þ
on a finite rectangular domain xL < x < xH and yL < y < yH, with fractional orders 1 < a 6 2 and 1 < b 6 2,
where the diffusion coefficients d(x,y) > 0 and e(x,y) > 0. The ‘forcing’ function q(x,y, t) can be used to rep-
resent sources and sinks. We will assume that this fractional diffusion equation has a unique and sufficiently
smooth solution under the following initial and boundary conditions (some results on existence and unique-
ness are developed in [9]). Assume the initial condition u(x,y, t = 0) = f(x,y) for xL < x < xH,yL < y < yH, and
Dirichlet boundary conditions u(x,y, t) = B(x,y, t) on the boundary (perimeter) of the rectangular region
xL 6 x 6 xH,yL 6 y 6 yH, with the additional restriction that B(xL,y, t) = B(x,yL, t) = 0. For example, in dis-
persion of solutes in ground water aquifers, this means that the left/lower boundary is set far enough away
from an evolving plume that no significant concentrations reach that boundary. The classical dispersion equa-
tion in two dimensions is given by a = b = 2. The values of 1 < a < 2, or 1 < b < 2 model a super-diffusive pro-
cess in that coordinate.

Eq. (1) uses a (left) Riemann fractional derivative of order a, defined by
daf ðxÞ
dxa

¼ 1

Cðn� aÞ
dn

dxn

Z x

L

f ðnÞ
ðx� nÞaþ1�n dn ð2Þ
where n is an integer such that n � 1 < a 6 n. Other definitions of the fractional derivative exist. The case
L = 0 is generally called the Riemann–Liouville form, and the case L = �1 is the Liouville definition for
the fractional derivative. Similar definitions for right fractional derivatives exist. We note that the right
and the left fractional derivatives at a point are generally not equal. Fractional derivatives are non-local
operators of convolution type [1,6,20]. The value of the left Riemann–Liouville fractional derivative at a
point x depends on the function values at all the points in the interval [L,x]. With our boundary condi-
tions (and zero-extending the solution functions for x < xL or y < yL) the Riemann and Liouville fractional
derivatives become equivalent. For more details on fractional derivative concepts and definitions, see
[26,27,34].

An extrapolated Crank–Nicolson method for a one-dimensional fractional diffusion equation is discussed
in [35]. To our knowledge, this is the only published finite difference method to obtain an unconditionally con-
vergent numerical solution that is second-order accurate in temporal and spatial grid sizes for such 1-D prob-
lems. A 2-D ADI method for the implicit Euler method is discussed in [24], where we prove that this method
yields an unconditionally stable and convergent solution that is first-order accurate in both the temporal and
spatial grid sizes. Similar to the numerical schemes for the classical dispersion/diffusion equations, the splitting
methods for the fractional diffusion equation have the potential to significantly reduce the computational
work in obtaining a numerical solution, while maintaining the underlying convergence order of the numerical
method. Additional Refs. [12,13,15,21] treat explicit or implicit finite difference methods for space fractional
diffusion equations, and [9,29] examine finite element methods for such problems. Refs. [7,36] address finite
differences for time fractional differential equations.
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Eq. (1) is a special case of a two-sided fractional diffusion equation
ouðx; y; tÞ
ot

¼ dðx; yÞ ð1� p1Þ
oauðx; y; tÞ

oð�xÞa þ p1

oauðx; y; tÞ
oxa

� �
þ eðx; yÞ ð1� p2Þ

obuðx; y; tÞ
oð�yÞb

þ p2

obuðx; y; tÞ
oyb

" #
þ qðx; y; tÞ ð3Þ
where oau/o(�x)a and obu/o(�y)b are negative (right) fractional derivatives, and the weights p1,p2 2 [0,1]. The
homogeneous equation (3) with constant coefficients governs the transition densities of an operator stable
Lévy process with independent stable components of order a, b and skewness determined by the weights p1

and p2. The operator Lévy process is a stochastic model for anomalous diffusion [17,18], the accumulation
of independent random jumps in each coordinate. In this model, the probability of a jump larger than
r > 0 in the xy direction falls off like r�a and r�b, respectively. The weights p1 and p2 are the probabilities
of a jump in the positive x,y direction, and hence 1 � p1 and 1 � p2 are the probabilities of a jump in the neg-
ative x,y direction, respectively. To simplify notation, in this paper we restrict our attention to the one-sided
version (1), but the extension to the more general form (3) is straightforward. See [23] for the one-dimensional
case. The fractional derivatives in (3) decouple because the x and y jumps are assumed independent. A more
complicated form that mixes the two orders a and b of fractional differentiation pertains if the diffusing par-
ticle makes x and y jumps that are not statistically independent [3,18,19]. See [22] for one possible approach to
developing numerical schemes in this more complicated setting. An alternative method based on particle
tracking is presented in [38].
2. Numerical preliminaries and notations

For a finite difference approximation to the Riemann–Liouville fractional derivative, we employ a right-
shifted Grünwald approximation, since the standard (i.e., unshifted) Grünwald formula generally leads to
unstable finite difference approximations regardless of whether the methods are explicit or implicit [21].
We will show that the shifted Grünwald estimate leads to an unconditionally convergent alternating-direc-
tions-implicit ADI method in a Crank–Nicolson type discretization of the two-dimensional superdiffusion
equation.

The right-shifted Grünwald formula for 1 < a 6 2 is [21]
o
auðx; y; tÞ

oxa
¼ 1

Cð�aÞ lim
Nx!1

1

ha

XNx

k¼0

Cðk � aÞ
Cðk þ 1Þ u½x� ðk � 1Þh; y; t� ð4Þ
where Nx is a positive integer, h = (x � xL)/Nx and C(Æ) is the gamma function. We also define the ‘normalized’
Grünwald weights by
ga;k ¼
Cðk � aÞ

Cð�aÞCðk þ 1Þ ¼ ð�1Þk akð Þ ð5Þ
and remark that these normalized weights only depend on the order a and the index k.
For the numerical approximation scheme, define tn = nDt to be the integration time 0 6 tn 6 T,

Dx = (xH � xL)/Nx = hx > 0 is the grid size in x-direction, with xi = xL + iDx for i = 0, . . .,Nx; Dy =
(yH � yL)/Ny = hy > 0 is the grid size in y-direction, with yj = yL + jDy for j = 0, . . .,Ny. Define un

i;j as the numer-
ical approximation to u(xi,yj, tn). Similarly, define di, j = d(xi,yj), ei, j = e(xi,yj), and qn

i;j ¼ qðxi; yj; tnÞ. The initial
conditions are set by u0

i;j ¼ fi;j ¼ f ðxi; yjÞ. The Dirichlet boundary condition on the boundary of this rectangular
region are at x = xL, un

0;j ¼ Bn
0;j ¼ BðxL; yj; tnÞ ¼ 0; at x = xH, un

Nx;j
¼ Bn

Nx;j
¼ BðxH ; yj; tnÞ; at y = yL,

un
i;0 ¼ Bn

i;0 ¼ Bðxi; yL; tnÞ ¼ 0; and at y = yH, un
i;Ny
¼ Bn

i;Ny
¼ Bðxi; yH ; tnÞ.

The following results on the asymptotic expansion of the error terms assume that the solution function
u(x,y, t) is sufficiently smooth and vanishes on the left (x = xL) and the lower (y = yL) boundaries of the rect-
angular region {(x,y)jxL < x < xH, yL < y < yH}. For details on these conditions and the results see Proposi-
tion 3.1 in [35]. Define the following (shifted a-fractional) finite difference operator
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da;xun
i;j ¼

di;j

ðDxÞa
Xiþ1

k¼0

ga;kun
i�kþ1;j
which gives an O(Dx) estimate to the corresponding ath fractional partial derivative with an asymptotic trun-
cation error expansion of the form C1Dx + C2(Dx)2 + O[(D x)3] where the coefficients Ci do not depend on the
grid size Dx. Similarly, the (shifted b fractional) finite difference operator
db;yun
i;j ¼

ei;j

ðDyÞb
Xjþ1

k¼0

gb;kun
i;j�kþ1
is an O(Dy) approximation to the bth fractional partial derivative term with an asymptotic error expansion of
the form D1Dy + D2(Dy)2 + O[(Dy)3], where the coefficients Di do not depend on the grid size Dy.
3. Numerical scheme

A Crank–Nicolson type finite difference equation for the two-dimensional superdiffusion equation (1) may
be obtained by substituting the shifted Grünwald estimates into the differential equation centered at time
tnþ1=2 ¼ 1

2
ðtnþ1 þ tnÞ to obtain
unþ1
i;j � un

i;j

Dt
¼
½da;xunþ1

i;j þ da;xun
i;j þ db;yunþ1

i;j þ db;yun
i;j�

2
þ qnþ1=2

i;j ð6Þ
Note that the centering in time implies that Eq. (6) has a truncation error with an O[(Dt)2] temporal error com-
ponent, but a spatial error component which is O(Dx) + O(Dy), since the Grünwald estimates are only first-
order accurate.

Eq. (6) may be re-arranged and written in the operator notation
1� Dt
2

da;x �
Dt
2

db;y

� �
unþ1

i;j ¼ 1þ Dt
2

da;x þ
Dt
2

db;y

� �
un

i;j þ qnþ1=2
i;j Dt ð7Þ
The alternating directions implicit (ADI), locally one-dimensional (LOD), and splitting methods are similar
schemes that are used to significantly reduce the computational work in solving classical multi-dimensional
diffusion equations [14]. These methods use some ‘perturbation’ of Eq. (7) to derive schemes that require only
implicitness of the numerical solution in a single spatial direction, which are then iterated for each spatial
direction with a proportionally reduced time step. For our problem, the relevant perturbation of Eq. (7) is
1� Dt
2

da;x

� �
1� Dt

2
db;y

� �
unþ1

i;j ¼ 1þ Dt
2

da;x

� �
1þ Dt

2
db;y

� �
un

i;j þ qnþ1=2
i;j Dt ð8Þ
The system of equations defined by (8) can now be solved by the following (Peaceman–Rachford type) set of
matrix equations defining the ADI method:
1� Dt
2

da;x

� �
u�i;j ¼ 1þ Dt

2
db;y

� �
un

i;j þ
Dt
2

qnþ1=2
i;j ð9Þ

1� Dt
2

db;y

� �
unþ1

i;j ¼ 1þ Dt
2

da;x

� �
u�i;j þ

Dt
2

qnþ1=2
i;j ð10Þ
To see this, multiply (9) by the operator 1þ Dt
2
da;x

� �
on both sides, multiply (10) by 1� Dt

2
da;x

� �
on both sides,

and add the resulting equations to obtain (8).
Eqs. (9) and (10) define an intermediate solution u�i;j in order to advance the numerical solution un

i;j at time tn

to the numerical solution unþ1
i;j at time tn+1. The corresponding algorithm is implemented as follows:

(1) First solve on each fixed horizontal slice y = yk (k = 1, . . .,Ny � 1), a set of Nx � 1 equations at the
points xi, i = 1, . . .,Nx � 1 defined by (9) to obtain the intermediate solution slice u�i;k.

(2) Next, change/alternate the spatial direction, and on each fixed vertical slice x = xk (k = 1, . . .,Nx � 1) solve
a set of Ny � 1 equations at the points yj, j = 1, . . .,Ny � 1 defined by (10) to obtain the solution slice unþ1

k;j .



C. Tadjeran, M.M. Meerschaert / Journal of Computational Physics 220 (2007) 813–823 817
More specifically, a ‘sweep’ along the horizontal line y = yk according to the first step (9) gives a system of
(Nx � 1) linear equations, where the ith equation, which results from the discretization at the point (xi,yk), is
of the form
Xiþ1

m¼0

Ai;mu�m;k ¼
Xkþ1

m¼0

Bi;mun
i;m þ

Dt
2

qnþ1=2
i;k for i ¼ 1; . . . ;Nx � 1 ð11Þ
where for each yk, the coefficients Ai,m for i = 1, . . .,Nx � 1 and m = 0, . . ., i + 1 are defined by:
Ai;m ¼
�Di;kga;i�mþ1 for m 6 i� 1

1� Di;kga;1 for m ¼ i

�Di;kga;0 for m ¼ iþ 1

8><>:

and the coefficients Bi,m for i = 1, . . .,Nx � 1 and m = 0, . . .,k + 1 are defined by:
Bi;m ¼
Ei;kgb;k�mþ1 for m 6 k � 1

1þ Ei;kgb;1 for m ¼ k

Ei;kgb;0 for m ¼ k þ 1

8><>:

with
Di;k ¼
di;kDt

2ðDxÞa ð12Þ

Ei;k ¼
ei;kDt

2ðDyÞb
ð13Þ
For example, at y2 (that is, k = 2) and for i = 1 the equation becomes
� D1;2ga;2u�0;2 þ ð1� D1;2ga;1Þu�1;2 � D1;2ga;0u�2;2

¼ E1;2gb;3un
1;0 þ E1;2gb;2un

1;1 þ ð1þ E1;2gb;1Þun
1;2 þ E1;2gb;0un

1;3 þ
Dt
2

qnþ1
1;2
and at y2 for i = 2 we have
�D2;2ga;3u�0;2 � D2;2ga;2u�1;2 þ ð1� D2;2ga;1Þu�2;2 � D2;2ga;0u�3;2

¼ E2;2gb;3un
2;0 þ E2;2gb;2un

2;1 þ ð1þ E2;2gb;1Þun
2;2 þ E2;2gb;0un

2;3 þ
Dt
2

qnþ1
2;2
and at y2 for i = Nx � 1 we get
�DNx�1;2ga;Nx
u�0;2 � DNx�1;2ga;Nx�1u�1;2 þ � � � þ ð1� DNx�1;2ga;1Þu

�
Nx�1;2 � DNx�1;2ga;0u�Nx;2

¼ ENx�1;2gb;3un
Nx�1;0 þ ENx�1;2gb;2un

Nx�1;1 þ ð1þ ENx�1;2gb;1Þun
Nx�1;2 þ ENx�1;2gb;0un

Nx�1;3 þ
Dt
2

qnþ1
Nx�1;2
In an analogous manner, when the direction of the sweep is alternated, the equations obtained from the
second step (10) on each vertical line x = xk (that is, i = k) lead to a system of (Ny � 1) linear equations, where
the jth equation resulting from the discretization at the point (xk,yj) is of the form
Xjþ1

m¼0

bBj;munþ1
k;m ¼

Xkþ1

m¼0

bAj;mu�m;j þ
Dt
2

qnþ1=2
k;j j ¼ 1; . . . ;N y � 1 ð14Þ
where at each xk, the coefficients bAj;m for j = 1, . . .,Ny � 1 and m = 0, . . .,k + 1 are defined by:
bAj;m ¼
Dk;jga;j�mþ1 for m 6 j� 1

1þ Dk;jga;1 for m ¼ j

Dk;jga;0 for m ¼ jþ 1

8><>:
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and the coefficients bBj;m for j = 1, . . .,Ny � 1 and m = 0, . . ., j + 1 are defined by:
bBj;m ¼
�Ek;jgb;j�mþ1 for m 6 k � 1

1� Ek;jgb;1 for m ¼ k

�Ek;jgb;0 for m ¼ k þ 1

8><>:

To maintain the consistency of the set of equations defined by (9) and (10) with (8), the intermediate solu-

tion u�i;j should be defined carefully on the boundary, prior to solving the system of equations defined by (11)
and (14). Otherwise, the first-order spatial accuracy of the two-step ADI method outlined above will be
impacted. This is accomplished by subtracting Eq. (10) from (9) to get the following equation to define u�i;j
2u�i;j ¼ 1� Dt
2

db;y

� �
unþ1

i;j þ 1þ Dt
2

db;y

� �
un

i;j ð15Þ
Thus, the boundary conditions for u�i;j (i.e., i = 0 or i = Nx for j = 1, . . .,Ny � 1) needed to solve each set of
equations in (9) are set from
u�0;j ¼
1

2
1� Dt

2
db;y

� �
unþ1

0;j þ 1þ Dt
2

db;y

� �
un

0;j

� �
¼ 0

u�Nx;j
¼ 1

2
1� Dt

2
db;y

� �
unþ1

Nx;j
þ 1þ Dt

2
db;y

� �
un

Nx ;j

� �
¼ 1

2
1� Dt

2
db;y

� �
Bnþ1

Nx;j
þ 1þ Dt

2
db;y

� �
Bn

Nx ;j

� � ð16Þ
In the following section, we establish the consistency and unconditional stability of this method. We
emphasize that the method outlined above will only be O[(Dt)2] + O(Dx) + O(Dy) accurate. An additional
extrapolation step, as discussed later in this paper, is needed to achieve O[(Dt)2] + O[(Dx)2] + O[(Dy)2]
accuracy.

4. Consistency and stability of the fractional ADI-CN method

In this section, we demonstrate that the ADI applied to the Crank–Nicolson discretization for the frac-
tional initial-boundary value problem (1) is both consistent and unconditionally stable. Together, these results
imply (according to Lax’s equivalence theorem) that the method is convergent. Proposition 4.1 below shows
that if the exact solution of the superdiffusion equation is sufficiently smooth, then the ADI-CN numerical
method is consistent and its truncation error has a Taylor’s expansion in powers of the spatial grid size
(i.e., Dx and Dy).

Proposition 4.1. Assume that the solution u(t,x,y) to the fractional differential equation (1) is unique, and that its

temporal (i.e., t) partial derivatives up to order 2 and spatial (i.e., x and y) partial derivatives up to order r are in

L1ðR3Þ, and its spatial partial derivatives up to order r � 1 vanish at infinity, where r > a + b + 3. Then ADI-CN

discretization for (1) defined by (8) is consistent, with a truncation error of the order O[(Dt)2] + O(Dx) + O(Dy).

Moreover, this truncation error is of the form O[(Dt)2] + KDx + O[(Dx)2] + MDy + O[(Dy)2], where the

coefficients K and M do not depend on the grid sizes Dx or Dy.

Proof. First note that, as in the classical Crank–Nicolson method, the centered divided difference
[u(tn + 1,xi,yj) � u(tn,xi,yj)]/Dt provides an O[(Dt)2] accurate estimate for the ou(tn + 1/2,xi,yj)/ot.

Next as r > 5 for the factor values a > 1 and b > 1, we may apply Proposition 3.1 in Ref. [35] to write
da;xun
i;j ¼ di;j

oauðxi; yj; tnÞ
oxa

þ KDxþO½ðDxÞ2�

db;yun
i;j ¼ ei;j

o
buðxi; yj; tnÞ

oyb
þMDy þO½ðDyÞ2�
where the coefficients K and M do not depend on the grid sizes Dx or Dy.
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Therefore, the centered Crank–Nicolson finite difference equations (6), or equivalently (7) provide an
O[(Dt)2] + KDx + O[(Dx)2] + MDy + O[(Dy)2] estimate for the superdiffusion equation (1).

Next, we invoke Theorem 3.1 in Ref. [24] to conclude that the mixed fractional derivative term
½da;xdb;y �un
i;j
is O(Dx) + O(Dy) uniformly for ðx; yÞ 2 R2. The ADI-CN finite difference equations (8) differs from (7) by a
perturbation equal to
ðDtÞ2

4
da;xdb;y ½unþ1

i;j � un
i;j� ð17Þ
which can be deduced by distributing the operator products in (8). Since the term ðunþ1
i;j � un

i;jÞ is an O(Dt) term,
it follows that this perturbation contributes an O[(Dt)2] error component to the truncation error of the frac-
tional Crank–Nicolson finite difference method (6).

Therefore, the ADI-CN finite difference equations defined by (8) have a truncation error also of the form
KDx + O[(Dx)2] + MDy + O[(Dy)2] + O[(Dt)2], where the coefficients K and M do not depend on the grid sizes
Dx or Dy. h

Next, we investigate the stability of the ADI-CN method. Eq. (8) can be written in the matrix form
ðI � SÞðI � T ÞUnþ1 ¼ ðI þ SÞðI þ T ÞUn þ Rnþ1 ð18Þ

where the matrices S and T represent the operators Dt

2
da;x and Dt

2
db;y , and
Un ¼ ½un
1;1; u

n
2;1; . . . ; un

Nx�1;1; u
n
1;2; u

n
2;2; . . . ; un

Nx�1;2; . . . ; un
1;N y�1; u

n
2;Ny�1; . . . ; un

Nx�1;Ny�1�
T

and the vector Rn + 1 absorbs the forcing terms qnþ1=2
i;j and the Dirichlet boundary conditions at time t = tn + 1 in

the discretized equation. The matrices S and T are (large) matrices of size (Nx � 1)(Ny � 1) · (Nx � 1)
(Ny � 1).

Under a commutativity assumption for the operators 1� Dt
2
da;x

� �
and ð1� Dt

2
db;yÞ in (8), the ADI-CN

method will be shown to be unconditionally stable. The commutativity assumption for these two operators
is a common practice in establishing stability of the classical ADI methods (i.e., a = b = 2) for the diffusion
equation (see for example [8]). The commutativity of these operators implies that the matrices S and T com-
mute. For example, if the diffusion coefficients are of the form d = d(x) and e = e(y), then these operators
commute.

Proposition 4.2. The ADI-CN method, defined by (8), is unconditionally stable for 1 < a < 2, 1 < b < 2 if the

matrices S and T commute.

Proof. The matrix S is a (Ny � 1) · (Ny � 1) block diagonal matrix whose blocks are the square (Nx � 1) ·
(Nx � 1) super-triangular Ak matrices resulting from Eq. (9), and so one may write S ¼ diagðA1; . . . ;
A2;ANy�1Þ. This is easy to see if we write the ADI system of Eq. (18) as the following equivalent form
ðI � SÞU � ¼ ðI þ T ÞUn þ 1

2
Rnþ1

ðI � T ÞU nþ1 ¼ ðI þ SÞU � þ 1

2
Rnþ1
with
U � ¼ ½u�1;1; u�2;1; . . . ; u�Nx�1;1; u
�
1;2; u

�
2;2; . . . ; u�Nx�1;2; . . . ; u�1;N y�1; u

�
2;Ny�1; . . . ; u�Nx�1;Ny�1�

T

We observe that the matrix S is a diagonally dominant matrix. At row i, i = 1,2, . . ., (Nx � 1)(Ny � 1), the
diagonal entry Si, i = Dga,1 = �Da, where D = Dm,k with k ¼ ½ i�1

Nx�1
� þ 1 and m = i � (k � 1)(Nx � 1), and Dm,k

is defined in (12). The sum of the absolute value of the off-diagonal entries on this row i of matrix S is given by
Xm

j¼0;j 6¼1

Dga;j < Da
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This is because ga,1 = �a, and for 1 < a < 2 and j 6¼ 1 we have ga,j > 0, as well as
P1

j¼0ga;j ¼ 0, see [35]. There-
fore, according to Greschgorin theorem, the eigenvalues of the matrix S have negative real parts. Next, note
that k is an eigenvalue of S if and only if (1 � k) is an eigenvalue of the matrix (I � S), if and only if (1 + k)/
(1 � k) is an eigenvalue of the matrix (I � S)�1(I + S). We observe that the first part of this statement implies
that all the eigenvalues of the matrix (I � S) have a magnitude larger than 1, and thus this matrix is invertible.
This implies that every eigenvalue of the matrix (I � S)�1(I + S) has a modulus less than 1. Therefore, the
spectral radius of the matrix (I � S)�1(I + S) is less than 1.

Similarly, the matrix T is a diagonally-dominant block super-triangular matrix of (Ny � 1) · (Ny � 1)
blocks whose non-zero blocks are the square (Nx � 1) · (Nx � 1) diagonal matrices resulting from Eq. (10). At
row i, the diagonal entry Ti,i = Egb,1 = �Eb, where E = Em,k with m and k as defined above for the matrix S,
and Em,k defined by (13). For this row i, the sum of the absolute value of the off-diagonal entries is bounded as
before
Xm

j¼0;j 6¼1

Egb;j < Eb
Again, the Greschgorin theorem is invoked to conclude that and the matrix (I � T) is invertible, and the spec-
tral radius of the matrix (I � T)�1(I + T) is less than 1.

Note that the linear system of equations imply that an error �0 in U0 results in an error �n at time tn in Un

given by
�n ¼ ½ðI � T Þ�1ðI � SÞ�1ðI þ SÞðI þ T Þ�n�0
As the matrices S and T commute, we may re-write the above as:
�n ¼ ½ðI � SÞ�1ðI þ SÞ�n½ðI � T Þ�1ðI þ T Þ�n�0
Since the spectral radius of each matrix [(I � S)�1(I + S)] and [(I � T)�1(I + T)] is less than one, it follows that
[(I � S)�1 (I + S)]n! 0 and [(I � T)�1(I + T)]n! 0 as n!1, where 0 is the zero (or null) matrix (see The-
orem 1.4 in [37]). Therefore, the ADI-CN method is stable. h

The proper application of the ADI-CN method as discussed above, yields a numerical solution that is only
O[(Dt)2] + O(Dx) + O(Dy) accurate. Furthermore, the second-order convergence in Dt will usually be masked
in actual computations by the first-order spatial errors.

The asymptotic expansion of the truncation errors, in the form O[(Dt)2] + KDx + O[(Dx)2] + MDy +
O[(Dy)2] suggests the application of a Richardson extrapolation step to gain second-order accuracy in the spa-
tial directions.

To improve spatial convergence order for non-integer values of 1 < a < 2 and 1 < b < 2, we employ an
extrapolation method only at the timestep, where the numerical solution is desired in the spatial directions.
If the Crank–Nicolson method is applied on a (coarse) grid, with spatial grids of hx = Dx, hy = Dy, and then
again on a (fine) grid with hx/2 and hy/2, the Richardson extrapolation method (see, e.g., [11]) may be used to
get a solution with local truncation error O[(Dt)2] + O[(Dx)2] + O[(Dy)2]. The refinement of the grid is only in
the spatial direction, with the time grid remaining unchanged. In this way, the extrapolated solution is com-
puted from U tn;x ¼ 2U tn;x;hx=2;y;hy=2 � U tn;x;hx ;y;hy , where (x,y) is a common grid point on both the coarse and the
fine meshes, and Utn;x;hx;y;hy ;Utn;x;hx=2;y;hy=2 denote the Crank–Nicolson solutions at the grid point (x,y) on the
coarse grid (hx, hy) and the fine grid (hx/2, hy/2), respectively. In other words, x = xi and y = yj on the coarse
grid, while x = x2i and y = y2J on the fine grid.

We emphasize that the boundary conditions for the intermediate solution u* should be set according to Eq.
(16). Otherwise, the numerical solution will fail to be linearly convergent, and the extrapolation step will not
produce a second-order accurate numerical estimate.

Finally, we remark that a similar approach can also be useful for the more general fractional diffusion equa-
tion (3), replacing the operators da,x and db,y by their two-sided analogues. See [23] for details on the extension
to two-sided fractional derivatives in the one-dimensional case. For the full two-sided Eq. (3) in two dimen-
sions with 0 < p1,p2 < 1 we require zero Dirichlet boundary conditions on all four sides of the rectangular
domain in order to truncate the Grünwald approximation formula for the negative and positive fractional
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derivatives. Extensions to non-zero boundary conditions and more general (mixing) fractional derivatives [18]
remain as interesting open problems.

5. A numerical example

The fractional differential equation
Table
Maxim
second

Dt = D

1/5
1/10
1/20
1/40
ouðx; y; tÞ
ot

¼ dðx; yÞ o
1:8uðx; y; tÞ

ox1:8
þ eðx; yÞ o

1:6uðx; y; tÞ
oy1:6

þ qðx; y; tÞ
was considered on a finite rectangular domain 0 < x < 1, 0 < y < 1, for 0 6 t 6 Tend. The diffusion coefficients
are
dðx; yÞ ¼ Cð2:2Þx2:8y=6
and
eðx; yÞ ¼ 2xy2:6=Cð4:6Þ

and the forcing function is
qðx; y; tÞ ¼ �ð1þ 2xyÞe�tx3y3:6
with the initial conditions
uðx; y; 0Þ ¼ x3y3:6
and Dirichlet boundary conditions on the rectangle in the form u(0,y,t) = u(x,0,t) = 0, u(1,y, t) = e�ty3.6, and
u(x,1,t) = e�tx3 for all t P 0. The exact solution to this two-dimensional fractional diffusion equation is given
by
uðx; y; tÞ ¼ e�tx3y3:6
which may be verified by direct differentiation and substitution in the fractional differential equation, using the
formula
oa

oxa
½xp� ¼ Cðp þ 1Þ

Cðp þ 1� aÞ x
p�a
for this Riemann–Liouville fractional derivative (2) with L = 0.
Table 1 shows the magnitude of the largest numerical error, at time t = 1.0, between the exact analytical

solution and the numerical solution obtained by applying the ADI-CN method discussed in this paper for
the non-extrapolated solution and the extrapolated solution. The algorithm was implemented using the Intel
Fortran compiler on a Dell Pentium PC. All computations were performed in single precision. The second
column shows the maximum error for the un-extrapolated Crank–Nicolson method. As the gridsize is halved,
the maximum error in the un-extrapolated Crank–Nicolson numerical solution is also halved (first-order con-
vergence). The third column shows the maximum error for the extrapolated Crank–Nicolson method. The
extrapolated solution is obtained by first computing a second numerical solution on a finer spatial grid
obtained by keeping the same timestep (Dt) but halving the spatial gridsizes. This fine grid solution is then
used to obtain an extrapolated solution on the coarse grid as discussed earlier. The last column in the table
1
um error behavior for the example problem at time Tend = 1, contrasting the first-order convergence of the original method with the
-order convergence of the extrapolated method

x = Dy Max error before extrapolation Max error after extrapolation

3.98493E � 3 1.05564E � 3
2.02702E � 3 2.61694E � 4
1.02996E � 3 6.57067E � 5
5.14504E � 4 1.55866E � 5
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shows that the maximum error in the extrapolated Crank–Nicolson method decreases by (approximately) a
factor of 4 as the gridsize is halved.

This problem was previously considered for a first-order ADI-implicit Euler method, see [24]. A compar-
ison of the results in Table 1 in this paper with the corresponding Table 1 in [24] shows that the extrapolated
ADI-CN provides significant improvement in the accuracy of the numerical solution.

We also remark that this example problem does not meet the requirement for the commutativity of the
operators in (8) which was used to establish the stability of the ADI-CN method. The quadratic order of con-
vergence for the numerical solution for this example suggests that the stability results may be extended beyond
the requirement for commutativity.
6. Conclusions

Although second-order finite difference estimates for fractional derivatives have been elusive, higher order
accuracy convergent methods for superdiffusion equation are achievable through the application of extrapo-
lation schemes applied to the basic lower order ADI-CN method obtained by the use of shifted Grünwald esti-
mates. We emphasize again that the standard (i.e., non-shifted) Grünwald formula generally leads to unstable
methods. Additionally, to maintain proper convergence order, and to successfully apply the Richardson
extrapolation to achieve higher order accuracy in the ADI-CN method, the Dirichlet boundary conditions
for the intermediate solution should be treated carefully.
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