Example 1.1

```
Graph > Stem-and-Leaf
Stem-and-leaf of fundrais N = 60
Leaf Unit = 1.0
19 0 0111112222333333344
(17) 0 55556666666778888
24 1 0001222244
14 1 55666789
6 2 01
4 2 6
3 3 4
2
4}
5
1 6
1 6
1 7
7
```

Fundraising expenses (\% of total expenses) for organized charities have a unimodal distribution, skewed to the right (+) with two unusual observations at 48 and 83 percent.

Graph > Histogram

Example 1.16

Stat > Basic Statistics > Display Descriptive Statistics (select C1 \% Copper)
Results for: exp01-16.mtw
Descriptive Statistics: \% Copper

Variable	N	N^{*}	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
\% Copper	26	0	3.654	0.303	1.547	2.000	2.700	3.350	3.875	10.100

Conclusion: The average (or mean) copper content is 3.65 \%. Half of the Bidri samples had copper content of less than 3.35% and half had a greater copper content.

Example 1.18 (p. 41)

Stat > Basic Statistics > Display Descriptive Statistics (select C1)
Results for: exp1-18.mtw
Descriptive Statistics: C1

Variable	N	N^{*}	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
C1	19	0	86.32	5.35	23.32	40.00	70.00	90.00	98.00	125.00

Conclusion: A typical pit depth is 86 thousandths of an inch, with a typical spread of 23 thousandths of an inch either way.

Graph > Boxplot (Simple, select C1)

Conclusion: The distribution of pit depths is positively skewed with no apparent outliers.

Example 3.32

Calc $>$ Probability Distributions $>$ Binomial ($n=15, p=0.2, C D F, x=8$)
Cumulative Distribution Function
Binomial with $\mathrm{n}=15$ and $\mathrm{p}=0.2$
$x \quad P(x<=x)$
80.999215

Conclusion: Probability that at most 8 fail the test is .9992
Calc $>$ Probability Distributions $>$ Binomial ($n=15, p=0.2, p m f, x=8$)

Probability Density Function

Binomial with $\mathrm{n}=15$ and $\mathrm{p}=0.2$
$x \quad P(X=x)$
80.0034548

Conclusion: Probability that exactly 8 fail the test is .003

Calc $>$ Probability Distributions $>$ Binomial $(n=15, p=0.2$, inverse pmf, prob=.5)

Inverse Cumulative Distribution Function
Binomial with $\mathrm{n}=15$ and $\mathrm{p}=0.2$

```
x P( X <= x ) X P( X <= x )
2 0.398023 3 0.648162
```

Conclusion: Median is 3 . There is at least a 50% chance that $<=3$ fail the test, and there is at least a 50% chance that $>=3$ fail the test.

Example 3.40

Calc > Probability Distributions > Poisson (Probability, mean=2, input constant 1)

Probability Density Function

```
Poisson with mean = 2
x P( X = x )
10.270671
```

Conclusion: Probability that exactly one error is found would be 27%
Calc > Probability Distributions > Poisson (Cumulative probability, mean=2, input constant 3)

Cumulative Distribution Function

```
Poisson with mean = 2
x P( X <= x )
3 0.857123
```

Conclusion: Probability that at most three errors are found would be 85.7%

Calc > Probability Distributions > Poisson (Inverse cumulative probability, mean=2, input constant 0.75)

Inverse Cumulative Distribution Function

```
Poisson with mean = 2
x P( X <= x ) X P( X <= x )
2 0.676676 3 0.857123
```

Conclusion: Third quantile Q3 is equal to 3 . There is at least a 75% chance that <=3 errors are found, and there is at least a 25% chance that $>=3$ errors are found.

Example 4.16

Calc > Probability Distributions > Normal (Cumulative probability, mean 1.25, standard deviation 0.46 , input constant 1.00)

Cumulative Distribution Function

```
Normal with mean = 1.25 and standard deviation = 0.46
```

$x \quad P(X<=x)$
10.293400

Calc > Probability Distributions > Normal (Cumulative probability, mean 1.25, standard deviation 0.46 , input constant 1.75)

Cumulative Distribution Function

Normal with mean $=1.25$ and standard deviation $=0.46$

```
    P( X <= x )
1.75 0.861472
```

Conclusion: Then $\mathrm{P}(1.00<\mathrm{X}<1.75)=.861-.293=.568$ so the probability that reaction time is between 1.00 and 1.75 seconds is 56.8%

Calc > Probability Distributions > Normal (Cumulative probability, mean 1.25, standard deviation 0.46, input constant 2.00)

Cumulative Distribution Function

Normal with mean $=1.25$ and standard deviation $=0.46$

```
X P( X <= X )
```

20.948495

Conclusion: Then $\mathrm{P}(\mathrm{X}>2)=1-.948=.052$ so the probability that reaction time exceeds 2.0 seconds is 5.2%

Calc > Probability Distributions > Normal (Inverse cumulative probability, mean 1.25 , standard deviation 0.46 , input constant 0.99)

Inverse Cumulative Distribution Function

Normal with mean $=1.25$ and standard deviation $=0.46$
$\begin{array}{rrr}P(X<= & X \\ 0.99 & 2.32012\end{array}$

Conclusion: $99^{\text {th }}$ percentile is 2.32 . There is a 99% chance that reaction time is less than 2.32 seconds

Example 4.24

Calc > Probability Distributions > Gamma (Cumulative probability, shape=8, scale $=15$, input constant 60)

Cumulative Distribution Function

Gamma with shape $=8$ and scale $=15$

```
x P( X <= x )
```

Calc > Probability Distributions > Gamma (Cumulative probability, shape=8, scale $=15$, input constant 120)

Cumulative Distribution Function

Gamma with shape $=8$ and scale $=15$

```
    x P( X <= x )
120 0.547039
```

Conclusion: Then $\mathrm{P}(60<\mathrm{X}<120)=.547-.051=.496$ so the probability that a mouse survives between 60 and 120 weeks is 49.6%

Calc > Probability Distributions > Gamma (Cumulative probability, shape=8, scale $=15$, input constant 30)

Cumulative Distribution Function

```
Gamma with shape = 8 and scale = 15
```

```
X P( X < X X )
```

Conclusion: Then $\mathrm{P}(\mathrm{X}>30)=1-.001=.999$ so the probability that a mouse survives at least 30 weeks is 99.9%

Calc > Probability Distributions > Gamma (Inverse cumulative probability, shape $=8$, scale $=15$, input constant 0.25)

Inverse Cumulative Distribution Function

Gamma with shape $=8$ and scale $=15$

Conclusion: First quantile Q1 is equal to 89.3. There is a 25% chance that a mouse will survive less that 89.3 weeks.

Example 4.25

Calc > Probability Distributions > Weibull (Cumulative probability, shape=2, scale=10, input constant 10)

Cumulative Distribution Function

Weibull with shape $=2$ and scale $=10$

```
x P( X <= x )
10 0.632121
```

Conclusion: There is a 63% chance that nitrous oxide emissions are less than 10 .
Calc > Probability Distributions > Weibull (Cumulative probability, shape=2, scale=10, input constant 25)

Cumulative Distribution Function

```
Weibull with shape = 2 and scale = 10
    x P( X <= x )
25 0.998070
```

Conclusion: There is a 99.8% chance that nitrous oxide emissions are less than 25.
Calc > Probability Distributions > Weibull (Inverse cumulative probability, shape=2, scale=10, input constant 0.95)

Inverse Cumulative Distribution Function

```
Weibull with shape = 2 and scale = 10
P( X <= x ) x
    0.95 17.3082
```

Conclusion: 95% of NOx emissions are less than 17.3.

Example 4.30

Graph > Probability Plot (Single, select data)

Results for: $\exp 4-30 . \mathrm{mtw}$

Probability Plot of $\mathrm{X}(\mathbf{1})$:

Conclusion: The distribution of dialectric breakdown voltage data appears to fit a normal distribution with mean 27.79 and standard deviation 1.462.

Example 7.11

Stat > Basic Statistics > One sample-t (select column C1)

Results for: EXP07-11.MTW

One-Sample T: rupture

Variable	N	Mean	StDev	SE Mean	$95 \% \mathrm{CI}$
rupture	30	7203.2	543.5	99.2	$(7000.2, ~ 7406.2)$

Conclusion: 95% sure that average strength is between 7000 and 7406 psi.
Graph > Probability Plot (Single, select data)

Conclusion: OK, data appears normal, t-test procedure is valid.

Example 8.9

Stat > Basic Statistics > One sample-t > Options (Alternative: not equal)
One-Sample T: conc

```
Test of mu = 4 vs not = 4
```

| Variable | N | Mean | StDev | SE Mean | 95% CI | T | P |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| conc | 5 | 3.814 | 0.718 | 0.321 | $(2.922,4.706)$ | -0.58 | 0.594 |

Calculation: Reject H_{0} at the 95% level if $\mathrm{T}>\mathrm{t}_{.025,4}=2.776$. Since $\mathrm{T}=-0.58$, do not reject. [Or, do not reject because the P -value is $\mathrm{P}=0.594>.05$.]

Conclusion: Insufficient evidence to be 95% sure that average concentration differs from $4 \mathrm{mg} / \mathrm{mL}$.

Graph > Probability Plot (Single, select data)

Conclusion: OK, data appears normal, t-test procedure is valid.

Example 8.11

Stat > Basic Statistics > 1 Proportion > (Number of events: 16, Number of trials: 91, Perform hypothesis test, Hypothesized proportion: 0.15, Options: Confidence level: 90, Alternative: greater than, Use test and interval based on normal distribution)

Test and Cl for One Proportion

Test of $p=0.15$ vs $p>0.15$

			90% Lower				
Sample	X	N	Sample p	Bound	Z-Value	P-Value	
1	16	91	0.175824	0.124684	0.69	0.245	

Using the normal approximation.
Since the test statistic $\mathrm{z}=0.69$ is less than the 90% cut off value of 1.282 , we do not reject the null hypothesis.

Conclusion: Insufficient evidence to be 90% sure that more than 15% of corks are bad.

Example 8.18

Stat > Basic Statistics > One sample-t > Options (Alternative: not equal)
One-Sample T: conc

```
Test of mu = 4 vs not = 4
```

Variable	N	Mean	StDev	SE Mean	95% CI	T	P
conc	5	3.814	0.718	0.321	$(2.922,4.706)$	-0.58	0.594

Conclusion: We are 41.6% sure that average concentration differs from $4 \mathrm{mg} / \mathrm{mL}$. [There is insufficient evidence to conclude that average concentration differs from 4 $\mathrm{mg} / \mathrm{mL}$.]

Graph > Probability Plot (Single, select data)

Conclusion: OK, data appears normal, t-test procedure is valid.

Example 9.9

Stat > Basic Statistics > One sample-t > Options (level, alternative)
One-Sample T: Differen
Test of mu $=0$ vs not $=0$

Variable	N	Mean	StDev	SE Mean	95% CI	T	P
Differen	16	6.75000	8.23408	2.05852	$(2.36237,11.13763)$	3.28	0.005

Conclusion: We are 99.5\% sure that the average proportion of time at which arm angle is less than 30 degrees has changed after work conditions were changed (since $\mathrm{p}=.005$).
Also, we are 95% sure that the average proportion of time at which arm angle is less than 30 degrees, after the change in working conditions, is between 2% and 11% less than it was before (based on the 95\% CI).

Graph > Probability Plot (Single, select data)

Conclusion: OK, data appears normal, t-test procedure is valid.

Alternative procedure based on two-sample t-test

Stat > Basic Statistics > 2 sample-t > Options (level, alternative)

Two-Sample T-Test and CI: Before:, After:

Two-sample T for Before: vs After:

Conclusion: We are 92.4% sure that the average proportion of time at which arm angle is less than 30 degrees has changed after work conditions were changed (since $p=.076$). Also, we are 95% sure that the average amount of this change is between -0.7% and $+14.3 \%$ (based on the $95 \% \mathrm{CI}$). Note that the paired t-test gives more definitive results!

Graph > Probability Plot (Single, select data)

Conclusion: OK, each data set appears normal, 2-sample t-test procedure is valid.

Example 9.11

Stat > Basic Statistics > 2 Proportions (Options: Alternative: greater than, Use pooled estimate for p test)

Test and CI for Two Proportions

```
\begin{tabular}{lrrr} 
Sample & X & \(N\) & Sample p \\
1 & 81 & 549 & 0.147541 \\
2 & 141 & 730 & 0.193151
\end{tabular}
Difference = p (1) - p (2)
Estimate for difference: -0.0456097
95% upper bound for difference: -0.0110060
Test for difference = 0 (vs < 0): Z = -2.13 P-Value = 0.017
Fisher's exact test: P-Value = 0.019
```

Since p-value is 0.017 we reject the null hypothesis at level 0.01 , but not at level 0.01 .
Conclusion: We are 98.3% sure that aspirin use increases the 15 year survival rate for colorectal cancer victims.

Examples 12.1 and 12.2

Graph > Scatterplot

Conclusion: There appears to be a strong positive linear relation between $y=$ OSA and $\mathrm{x}=$ palprebal fissure width.

Conclusion: There appears to be a weak negative linear relation between $\mathrm{y}=$ mean crown dieback and $\mathrm{x}=\mathrm{pH}$.

Example 12.4

Stat > Regression > Regression (Storage: Residuals)
Results for: EXP12-04.MTW
Regression Analysis: y versus x

Predictor	Coef	SE Coef	T	P	
Constant 7	75.212	2.984	25.21	0.000	
$x \quad-0$.	-0.20939	0.03109	-6.73	0.000	
$S=2.56450$	$\mathrm{R}-\mathrm{Sq}=79.1 \%$		$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=77.3 \%$		
Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	1	298.25	298.25	45.35	0.000
Residual Error	rror 12	78.92	6.58		
Total	13	377.17			

Conclusion: The true mean cetane number y for diesel fuel with iodine value x is estimated to be $y=75.2-0.209 x$, with a typical spread of 2.6. This regression model explains 77.3% of the variations in cetane number in terms of variations in iodine value.

Stat > Regression > Fitted Line Plot

Conclusion: The regression line provides a reasonably good fit to the data, indicating that $\mathrm{x}=$ iodine value can give a useful model to predict $\mathrm{y}=$ cetane number.

Conclusion: Probability plot (left) indicates that the residuals fit a normal distribution. Scatterplot (right) indicates the residual seem to be independent and identically distributed. Hence the basic assumptions of the regression model are satisfied.

Example 12.11

Stat > Regression > Regression (Storage: Residuals)
Results for: exp12-11.mtw
Regression Analysis: y: versus x:

```
The regression equation is
y: = 126 - 0.918 x:
\begin{tabular}{lrrrr} 
Predictor & Coef & SE Coef & T & P \\
Constant & 126.249 & 2.254 & 56.00 & 0.000 \\
x: & -0.9176 & 0.1460 & -6.29 & 0.000
\end{tabular}
S = 2.94100 R-Sq = 75.2% R-Sq(adj) = 73.3%
Analysis of Variance
\begin{tabular}{lrrrrr} 
Source & DF & SS & MS & F & P \\
Regression & 1 & 341.73 & 341.73 & 39.51 & 0.000 \\
Residual Error & 13 & 112.44 & 8.65 & & \\
Total & 14 & 454.17 & & &
\end{tabular}
```

Unusual Observations

Obs	x:	y :	Fit	SE Fit	Residual	St	Resid
4	10.0	124.000	117.073	1.008	6.927		2.51 R
R d	tes	n obse	on wi	a la	standa		resid

Conclusion: The true mean density for mortar with an air content of $\mathrm{x} \%$ is estimated to be $\mu=126-0.918 \mathrm{x} \mathrm{lb} / \mathrm{cu}-\mathrm{ft}$, with a typical spread of $3 \mathrm{lb} / \mathrm{cu}-\mathrm{ft}$. This regression model explains 75.2% of the variations in density in terms of variations in air content.

The t statistic is -6.29 with a p-value of 0.000 , so we are virtually certain that the regression model provides a useful predictor of mortar density in terms of air content.

Stat > Regression > Fitted Line Plot

Conclusion: The regression line provides a reasonably good fit to the data, indicating that $\mathrm{x}=$ air content can give a useful model to predict $y=d e n s i t y$.

Conclusion: Probability plot (left) indicates that the residuals fit a normal distribution. Scatterplot (right) indicates the residual seem to be independent and identically distributed. Hence the basic assumptions of the regression model are satisfied. Note: The p-value of 0.275 in the probability plot indicates that there is insufficient evidence to reject the null hypothesis of a normal fit.

Example 12.13

Stat > Regression > Regression (Storage: Residuals, Options: Prediction intervals for new observation: 45)

Results for: exp12-13.mtw

Regression Analysis: y : versus x :

```
The regression equation is
y: = 27.2 - 0.298 x:
\begin{tabular}{lrrrr} 
Predictor & Coef & SE Coef & T & P \\
Constant & 27.183 & 1.651 & 16.46 & 0.000 \\
X: & -0.29756 & 0.04116 & -7.23 & 0.000
\end{tabular}
S = 2.86403 R-Sq = 76.6% R-Sq(adj) = 75.1%
Analysis of Variance
\begin{tabular}{lrrrrr} 
Source & DF & SS & MS & F & P \\
Regression & 1 & 428.62 & 428.62 & 52.25 & 0.000 \\
Residual Error & 16 & 131.24 & 8.20 & & \\
Total & 17 & 559.86 & & &
\end{tabular}
Predicted Values for New Observations
New
Obs Fit SE Fit 95% CI 95% PI
    1 13.793 0.758 (12.185, 15.400) (7.512, 20.073)
Values of Predictors for New Observations
New
Obs x:
    145.0
```

Conclusion: For cement samples with a carbonation depth of 45 mm , we are 95% sure that the average strength is between 12.2 PMa and 15.4 MPa . For one sample of cement with a carbonation depth of 45 mm , we are 95% sure that the strength of this individual sample is between 7.5 PMa and 20.1 MPa.

The regression model y = 27.2-0.298 x gives the estimated average strength y in MPa for concrete samples with a given carbonation depth x in $m m$. The t-value of -7.23 and the corresponding p-value of 0.000 indicates strong evidence that there is a positive linear relation between these two variables.

Stat > Regression > Fitted Line Plot

Conclusion: The regression line provides a reasonably good fit to the data, indicating that $\mathrm{x}=$ carbonation depth content can give a useful model to predict $\mathrm{y}=$ strength with a typical error of 2.86 MPa. 77% of the variations in strength can be attributed to variations in carbonation depth.

Conclusion: Probability plot (left) indicates that the residuals fit a normal distribution. Scatterplot (right) indicates the residuals seem to be independent and identically distributed. Hence the basic assumptions of the regression model are satisfied. Note: The p-value of 0.242 in the probability plot indicates that there is insufficient evidence to reject the null hypothesis of a normal fit.

Example 12.16

Stat > Regression > Regression (Storage: Residuals)

Regression Analysis: y versus \mathbf{x}

```
The regression equation is
y = 1.00 + 93.4 x
\begin{tabular}{lrrrr} 
Predictor & Coef & SE Coef & T & P \\
Constant & 0.998 & 2.703 & 0.37 & 0.717 \\
x & 93.38 & 24.36 & 3.83 & 0.002
\end{tabular}
S = 3.89192 R-Sq = 51.2% R-Sq(adj) = 47.7%
Analysis of Variance
\begin{tabular}{lrrrrr} 
Source & DF & SS & MS & F & P \\
Regression & 1 & 222.48 & 222.48 & 14.69 & 0.002 \\
Residual Error & 14 & 212.06 & 15.15 & & \\
Total & 15 & 434.54 & & &
\end{tabular}
```

Unusual Observations

Obs	x	y	Fit	SE Fit	Residual	St Resid
12	0.074	16.600	7.908	1.210	8.692	$2.35 R$

R denotes an observation with a large standardized residual.
Stat > Basic Statistics > Correlation
Correlations: \mathbf{x}, y
Pearson correlation of x and $y=0.716$
P -Value $=0.002$

Conclusion: The correlation of . 716 indicates a strong positive relation between ozone and carbon concentrations. The $p=$ value of 0.002 indicates we are 99.8% sure there is a linear relation between ozone and carbon concentrations. Note that the p-values for the slope and the correlation are identical, this is always the case!

The regression model $\mathrm{y}=1.00+93.4 \mathrm{x}$ gives the estimated average carbon concentration in $\mu \mathrm{g} / \mathrm{mm}^{3}$ for air samples with a given ozone concentration x ppm. Variations in ozone concentration account for 51% of the variations in carbon concentration.

Stat > Regression > Fitted Line Plot

Conclusion: The regression line provides a reasonably good fit to the data, indicating that $\mathrm{x}=\mathrm{ozone}$ concentration can give a useful model to predict $\mathrm{y}=$ carbon concentration with a typical error of $3.89 \mu \mathrm{~g} / \mathrm{mm}^{3}$.

Conclusion: Probability plot (left) indicates that the residuals fit a normal distribution. Scatterplot (right) indicates the residuals seem to be independent and identically distributed. Hence the basic assumptions of the regression model are satisfied.

