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Abstract

For analysis and design of water resource systems, it is sometimes useful to generate high-
resolution (e.g., weekly) synthetic river flows. Periodic autoregressive moving average (PARMA)
time series models provide a powerful tool for generating synthetic flows. Periodically stationary
models are indicated when the basic statistics (mean, variance, and autocorrelation) of the time
series exhibit significant seasonal variations. Parameter estimation for high-resolution PARMA
models involves numerous parameters, which can lead to over-fitting. Thus, this paper develops
a parsimonious method of parameter fitting for high-resolution PARMA models, using discrete
Fourier transforms to represent the set of periodic autoregressive and moving average model
coefficients. Model parameters are computed via the innovations algorithm, and the asymptotic
distributions of the discrete Fourier transform coefficients are obtained. Those asymptotic results
are useful to determine the statistically significant Fourier coefficients to include in the model.
Effectiveness of the technique is shown using simulated data from different PARMA models.
Discharge measurements from the Fraser River in British Columbia are then modelled, firstly as
a monthly series and secondly as a weekly series. Diagnostic checks are used to ensure adequacy
of the models. Finally, a careful statistical analysis of the PARMA model residuals, including a
novel truncated Pareto model for the extreme tails, is combined with the Fourier-PARMA time
series model to generate realistic synthetic flows. A key finding is that the Fourier-PARMA
method produces superior results as compared to a conventional PARMA model, despite using
far fewer parameters.

Key words and phrases: Discrete Fourier transform, parsimonious PARMA model, parameter
estimation, innovations algorithm, asymptotic distribution, Fourier analysis, model identification,
simulation study, synthetic river flows.

1 Introduction

Modeling and simulation of river flow time series is an important step in the planning and opera-
tional analysis of water resources systems. Generation of synthetic river flow series may be useful
for determining the dimensions of hydraulic works, for risk assessment in urban water supply and
irrigation, for optimal operation of reservoir systems, for determining the risk of failure of depend-
able capacities of hydroelectric systems, for planning capacity expansion of water supply systems,
and others (see Salas, 1993). A natural river flow process has significant periodic behavior in the
mean, standard deviation, skewness and serial dependence structure (see, for example, Moss and
Bryson, 1974). In the area of stochastic hydrology, standardizing or filtering is used to transform
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periodic time series to stationary series before fitting stationary stochastic models (Salas, Delleur,
Yevjevich, and Lane 1980; Thompstone, Hipel, and McLeod 1985; Vecchia, 1985a,1985b; Salas,
1993; Chen and Rao, 2002). However, standardizing or filtering of most river flow series will not
yield stationary residuals due to periodic autocorrelations. In these cases, the resulting model
is misspecified (Tiao and Grupe, 1980). To model such periodicity in autocorrelations, periodic
ARMA (PARMA) models can be employed. Several researchers have dealt with periodic time series
models (see: Jones and Brelsford, 1967; Pagano, 1978; Troutman, 1979; Tjøstheim and Paulsen,
1982; Salas, Obeysekera, and Smith 1981; Salas, Boes, and Smith, 1982; Salas, Tabios III, and
Bartolini, 1985; Vecchia, 1985a,1985b; Vecchia and Ballerini, 1991; Anderson and Vecchia, 1993;
Ula, 1990,1993; Ula and Smadi, 1997,2003; Adams and Goodwin, 1995; Anderson and Meerschaert,
1997,1998; Lund and Basawa, 1999,2000; Shao and Lund, 2004; and Tesfaye, Meerschaert, and An-
derson, 2006). In most cases, PARMA models have been applied to time series at a time scale of a
month or more. However, when the number of periods is large (e.g., weekly data), PARMA models
require estimation of an exorbitant number of parameters, heretofore making PARMA modeling
virtually impractical. The methods proposed in this paper adhere to the principle of statistical
parsimony. Model parsimony is achieved by expressing the periodic model parameters in terms
of their discrete Fourier transforms. The practicality of our methodolgy is illustrated in several
examples given in Sections 4 and 5.

In most water resources systems design and operation studies, the periodic phenomena have
been represented by Fourier functions. Quimpo (1967) has applied Fourier analysis to daily river
flow sequences in order to detect significant harmonic components embedded within the sequence
considered. Since then Fourier analysis has become a standard tool in any hydrologic study con-
cerning periodicity. Salas, Delleur, Yevjevich, and Lane (1980) proposed a Fourier series approach
for reducing the number of parameters in PAR or PARMA models. Vecchia (1985a) also adopted
the same approach but used Akaike’s information criterion (AIC) for the selection of significant
harmonics. Experience in using Fourier analysis for estimating periodic parameters of hydrologic
time series shows that for small time interval series, such as daily and weekly series, only the first
few harmonics are necessary for a good Fourier series fit in the periodic estimate of model parame-
ters (Salas, Delleur, Yevjevich, and Lane, 1980). This practical criteria should be supplemented by
more precise analysis and tests. For instance, Anderson and Vecchia (1993) use asymptotic proper-
ties of the discrete Fourier transform of the estimated periodic autocovariance and autocorrelation
function for selecting the harmonics in the PARMA model parameters.

This paper presents a comprehensive time series analysis for high resolution periodic processes.
In section 2 of the paper, initial parameter estimates are obtained with the innovations algorithm
and their statistical properties are discussed. In section 3, we develop the asymptotic distributions of
the discrete Fourier transform coefficients of the parameter estimates with the intent of obtaining
a parsimonious model for the series. A specific PARMA model, useful in describing river flow
series, is discussed in detail. In section 4, we use simulated data to discuss model identification and
the efficacy of our estimation techniques. Section 5 gives the practitioner a general approach for
modeling river flows, including model validation, and then implements this step-by-step approach
by analyzing a river flow series for the Fraser River near Hope, British Columbia. We analyze
this data firstly as a monthly series, and secondly as a weekly series. Model validation includes
diagnostic checking of the estimated noise series, to verify that no significant serial dependence
remains.

2 Parameter Estimation for PARMA Model

A stochastic process X̃t is (weakly) periodically stationary if µt = EX̃t and γt (h) =Cov(Xt, Xt+h)
for h = 0,±1,±2, ... are periodic functions of time t with the same period ν (that is, for some
integer ν, for i = 0, 1, ..., ν−1, and for all integers k and h, µi = µi+kν and γi (h) = γi+kν (h)). The
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periodic ARMA process {X̃t} with period ν (denoted by PARMAν (p, q)) has representation

Xt −
p∑

j=1

ϕt(j)Xt−j = εt −
q∑

j=1

θt(j)εt−j (1)

where Xt = X̃t − µt and {εt} is a sequence of random variables with mean zero and scale σt such
that {δt = σ−1

t εt} is independent and identically distributed (iid). The notation in (1) is consistent
with that of Box and Jenkins (1976). The autoregressive parameters ϕt(j), the moving average
parameters θt(j), and the residual standard deviations σt are all periodic functions of t with the
same period ν ≥ 1. The residual standard deviations parameters σt are assumed strictly positive.
We also assume the model admits a causal representation

Xt =
∞∑
j=0

ψt(j)εt−j (2)

where ψt(0) = 1,
∑∞

j=0 |ψt(j)| < ∞ for all t, and ψt(j) = ψt+kν(j) for all j. An additional
invertibility condition εt =

∑∞
j=0 πt(j)Xt−j is also assumed for technical reasons.

The innovations algorithm, developed for PARMA models by Anderson, Meerschaert and Vec-
chia (1999), is a useful method for parameter estimation. Compute:

v0,i = γi(0)

θ
(i)
k,k−ℓ = (vℓ,i)

−1
[
γi+ℓ(k − ℓ)−

∑ℓ−1
j=0 θ

(i)
ℓ,ℓ−jθ

(i)
k,k−jvj,i

]
vk,i = γi+k(0)−

∑k−1
j=0

(
θ
(i)
k,k−j

)2
vj,i

(3)

where (3) is solved recursively in the order v0,i, θ
(i)
1,1, v1,i, θ

(i)
2,2, θ

(i)
2,1, v2,i, θ

(i)
3,3, θ

(i)
3,2, θ

(i)
3,1, v3,i, . . . and

so forth. These parameter estimates converge to the model parameters in equation (2) as follows:

θ
(⟨i−k⟩)
k,j →ψi(j) and vk,⟨i−k⟩ → σ2i as k → ∞ (4)

for all i, j where ⟨t⟩ is the season corresponding to index t, so that ⟨jν + i⟩ = i. If we replace the
autocovariances in (3) with the corresponding sample autocovariances, we obtain the innovations

estimates θ̂
(i)
k,l and v̂k,i based on the time series data. Theoretical results in Anderson, Meerschaert

and Vecchia (1999) show that these quantities converge (in probability) to give a consistent esti-
mate of the moving average model parameters from data. A simulation study in Tesfaye (2005)
indicates that k = 10 to 15 iterations of the algorithm is generally adequate to obtain convergence.
Furthermore, Anderson and Meerschaert (2005) show that

N1/2
y (θ̂

(⟨i−k⟩)
k,u − ψi(u)) ⇒ N

(
0,

u−1∑
n=0

σ2i−n

σ2i−u

ψ2
i (n)

)
. (5)

Formula (5) can be used to determine which model parameters in the moving average (2) are
statistically significantly different from zero, see Tesfaye, Meerschaert, and Anderson (2006) for
details. This is useful for model selection (how many non-zero coefficients are needed in (2) for an
adequate model). Estimates of the moving average parameters in (2) can also be used to fit the
PARMAν(p, q) model parameters in (1). Substitute (2) into (1) and equate the coefficients of εt on
both sides to get

ψt(0) = 1
ψt(1)− ϕt(1)ψt−1(0) = −θt(1)

ψt(2)− ϕt(1)ψt−1(1)− ϕt(2)ψt−2(0) = −θt(2)
ψt(3)− ϕt(1)ψt−1(2)− ϕt(2)ψt−2(1)− ϕt(3)ψt−3(0) = −θt(3)

...

(6)
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where we take ϕt(ℓ) = 0 for ℓ > p and θt(ℓ) = 0 for ℓ > q. For example, in the special case of a
PARMAν(1, 1) model

Xt = ϕtXt−1 + εt − θtεt−1 (7)

the system of equations (6) reduces to

ψt(1)− ϕt = −θt and ψt(2)− ϕtψt−1(1) = 0 (8)

which can be solved to obtain estimates for θt and ϕt. Then a continuous mapping argument shows
that the resulting estimates are consistent and asymptotically normal, in particular

N1/2
y

(
ϕ̂i − ϕi

)
⇒ N

(
0, w2

ϕi

)
and N1/2

y

(
θ̂i − θi

)
⇒ N (0, w2

θi) (9)

where

w2
ϕi

= ψ−4
i−1(1)

{
ψ2
i (2)σ

−2
i−2σ

2
i−1

(
1− 2ψi(1)ψi−1(1)

ψi(2)

)
+ ψ2

i−1(1)σ
−2
i−2

1∑
n=0

σ2i−nψ
2
i (n)

}

w2
θi

= ψ−4
i−1(1)

ψ2
i (2)σ

−2
i−2σ

2
i−1

(
1− 2ψi(1)ψi−1(1)

ψi(2)

)
+

2∑
j=1

ψ
4/j
i−1(1)σ

−2
i−j

j−1∑
n=0

σ2i−nψ
2
i (n)

 .

Complete mathematical details will be included in a forthcoming paper (Tesfaye, Meerschaert and
Anderson, 2006a). The α-level confidence intervals for ϕi and θi are

(ϕ̂i − zα/2N
−1/2
y wϕi, ϕ̂i + zα/2N

−1/2
y wϕi)

(θ̂i − zα/2N
−1/2
y wθi, θ̂i + zα/2N

−1/2
y wθi)

where zα/2 is the tail quantile of a standard normal distribution (zα/2 = 1.960 for α = 0.05).
Parameters whose confidence interval contains zero can be excluded, to obtain a more parsimonious
time series model, see Tesfaye, Meerschaert, and Anderson (2006) for an illustration. For low-
resolution (e.g., monthly or quarterly) time series, this method can be effective for model selection
and parameter fitting. For high-resolution models (e.g., weekly) the number of nonzero parameters
becomes unwieldy, and alternative methods are desirable. In the next section, we discuss discrete
Fourier transform methods that are appropriate in such cases.

3 Discrete Fourier Transform Methods

The PARMAν(p, q) model (1) has (p+ q + 1)ν total parameters. For example, for a weekly series
(ν = 52) where p = q = 1, there are 156 parameters. It is not advisable to fit this many parameters,
since they are typically highly correlated, and therefore individually meaningless. An alternative
is to replace the periodic sequences of parameters with their discrete Fourier transforms. When
the period ν is large, the model parameters should vary smoothly with respect to time and can
therefore be explained by only a few Fourier coefficients. Experience in using Fourier analysis for
estimating periodic parameters of hydrologic time series shows that for high-resolution series, such
daily and weekly series, only the first few harmonics are necessary for a good Fourier fit of the model
parameters θt(j), θt(j) and σt (Salas, Delleur, Yevjevich, and Lane, 1980). In some cases, a larger
period ν may actually result in smoother parameter functions, and hence (ironically) fewer Fourier
coefficients may be required. In this section, we outline practical statistical tests to determine
which Fourier coefficients are needed in the model. These results are useful for model selection.
Each test is predicated on the following theorem.
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Theorem 3.1 Let Xt = X̃t − µt, where Xt is the periodic moving average (2) and µt is a periodic
mean function with period ν. Then, under mild regularity conditions (see Theorem 2 in Anderson

and Meerschaert (2005)) and letting θ̂
(⟨i−k⟩)
k,ℓ = ψ̂i(ℓ), we have for any nonnegative integers j and

h with j ̸= h,

N1/2
y

(
ψ̂(j)− ψ(j)
ψ̂(h)− ψ(h)

)
⇒ N

(
0,

(
Vjj Vjh
Vhj Vhh

))
(10)

and for x = Min(h, j)

Vjh =

x−1∑
n=0

{
Fj−1−nΠ

(ν−1)(j−1−n)Bn+1

(
Fh−1−nΠ

(ν−1)(h−1−n)
)T

}
(11)

where
Fn = diag{ψ0(n), ψ1(n), . . . , ψν−1(n)}
Bn = diag{σ20σ

−2
0−n, σ

2
1σ

−2
1−n, . . . , σ

2
ν−1σ

−2
ν−1−n}

(12)

and Π an orthogonal ν × ν cyclic permutation matrix,

Π =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
1 0 0 0 · · · 0

 . (13)

PROOF. This result follows from a rearrangement of rows and columns of the matrix V in
Equation (19) from Theorem 2 in Anderson and Meerschaert (2005). This covers the case where
the noise sequence has finite fourth moments. A more comprehensive treatment in Anderson,
Kavalieris and Meerschaert (2006) shows that the same result holds assuming only finite second
moments.

We begin with the moving average model (2), and we define the discrete Fourier transforms

ψt(j) = c0(j) +

k∑
r=1

{
cr(j) cos

(
2πrt

ν

)
+ sr(j) sin

(
2πrt

ν

)}
(14)

where cr(j) and sr(j) are the Fourier coefficients, r is the harmonic and k is the total number of
harmonics, which is equal to ν/2 or (ν − 1)/2 depending on whether ν is even or odd, respectively.
For instance, for monthly series where ν = 12, we have k = 6; for weekly series with ν = 52, k = 26
and for daily series with ν = 365, k = 182. In practice, a small number of harmonics k∗ < k can
be used to approximate the periodic function. The Fourier coefficients can be computed by way of
the inverse transform

cr(j) = ν−1
ν−1∑
m=0

cos

(
2πrm

ν

)
ψm(j) (r = 0 or ν/2)

cr(j) = 2ν−1
ν−1∑
m=0

cos

(
2πrm

ν

)
ψm(j) (r = 1, 2, . . . , [(ν − 1)/2])

sr(j) = 2ν−1
ν−1∑
m=0

sin

(
2πrm

ν

)
ψm(j) (r = 1, 2, . . . , [(ν − 1)/2])

(15)

and similarly, we can write the Fourier coefficients of the estimated model parameters ψ̂m(j) in terms
of their discrete Fourier coefficients ĉr(j) and ŝr(j). Using Theorem 3.1 and continuous mapping
arguments, it follows that these estimates are consistent and asymptotically normal. Complete
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mathematical details can be found in a forthcoming paper (Tesfaye, Meerschaert and Anderson,
2006a). These results can also be used to develop a simple test to show which Fourier coefficients
need to be included in the time series model. Under the null hypothesis that the mean-standardized
process (2) is stationary with ψt(j) = ψ(j) and σt = σ, the estimated Fourier coefficients ĉr(j) and
ŝr(j) are asymptotically independent with

N
1/2
y {ĉm(h)− µm(h)} ⇒ N (0, ν−1ηV (h)) (m = 0 or ν/2)

N
1/2
y {ĉm(h)− µm(h)} ⇒ N (0, 2ν−1ηV (h)) (m = 1, 2, . . . , [(ν − 1)/2])

N
1/2
y {ŝm(h)− µm(h)} ⇒ N (0, 2ν−1ηV (h)) (m = 1, 2, . . . , [(ν − 1)/2])

(16)

for all h ≥ 1, where

µm(h) =

{
ψ(h) (m = 0)
0 (m > 0)

and ηV (h) =

h−1∑
n=0

ψ2(n). (17)

For example, if ν is odd then {ĉ1(j), ŝ1(h), . . . , ĉ(ν−1)/2(h), ŝ(ν−1)/2(h)} form ν − 1 asymptotically

independent normal random variables with mean zero and standard error (2ν−1η̂V (h)/Ny)
1/2. The

Bonferroni α-level test statistic rejects the null hypothesis that cm(h) and sm(h) are zero for all
m ≥ 1 if |Zc| > zα′/2 and |Zs| > zα′/2, respectively, and

Zc =
ĉm(h)

(λη̂V (h)/Ny)1/2
, Zs =

ŝm(h)

(λη̂V (h)/Ny)1/2
(18)

where

λ =

 ν−1 (m = ν/2)

2ν−1 (m = 1, 2, . . . , [(ν − 1)/2])
and η̂V (h) =

h−1∑
n=0

ψ̂2(n) (19)

and α′ = α/(ν − 1) . When α = 5% and ν = 12, α′ = 0.05/11 = 0.0045, zα′/2 = z0.0023 = 2.84, and
the null hypothesis is rejected when any |Zc,s| > 2.84. Hence we should include the corresponding
Fourier coefficients in our monthly model if the corresponding test statistic (18) exceeds 2.84 in
absolute value. The remaining Fourier coefficients are statistically insignificant, and may be set to
zero in our model. As another example, a 99% Bonferroni test for weekly data uses α = 1% and
ν = 52, so that α′ = 0.01/51 = 0.000196 and zα′/2 = z0.000098 = 3.72, so we would include the
corresponding Fourier coefficients in our weekly model (with 99% certainty) if the absolute value of
the corresponding test statistic (18) exceeds 3.72. This procedure can be useful to determine how
many nonzero coefficients are needed in a moving average model.

For more complicated PARMAν(p, q) models, a similar procedure can be developed. The Fourier
series representation of the parameters ϕt(ℓ), θt(ℓ) and σt in (1) are

θt(ℓ) = ca0(ℓ) +
k∑

r=1

{
car(ℓ)cos

(
2πrt

ν

)
+ sar(ℓ)sin

(
2πrt

ν

)}
ϕt(ℓ) = cb0(ℓ) +

k∑
r=1

{
cbr(ℓ)cos

(
2πrt

ν

)
+ sbr(ℓ)sin

(
2πrt

ν

)}
σt = cd0 +

k∑
r=1

{
cdrcos

(
2πrt

ν

)
+ sdrsin

(
2πrt

ν

)} (20)

and k is the total number of harmonics as in (14). The estimated model parameters θ̂t(ℓ), ϕ̂t(ℓ),
and σ̂t can be written in terms of their Fourier coefficients, ĉar(ℓ) and ŝar(ℓ) and so forth, in a
similar manner. The asymptotic behavior of these parameter estimates can be obtained by writing
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the Fourier coefficients in terms of the ψt(j) weights using (6) and the inverse Fourier transform,
and applying continuous mapping arguments, see Tesfaye, Meerschaert and Anderson (2006a). In
general, these computations are difficult because the system of equations (6) leads to complex
nonlinear relations. In this paper we consider the special case of a PARMAν(1, 1) model, which has
been proven useful in previous studies of natural river flows (see, e.g., Anderson and Meerschaert
(1998)).

Under the null hypothesis that the mean-standardized PARMAν(1, 1) model (7) is stationary
with ϕt = ϕ, θt = θ and σt = σ, the Fourier coefficients are asymptotically independent with

N
1/2
y {ĉam − µam} ⇒ N (0, ν−1ηS) (m = 0 or ν/2)

N
1/2
y {ĉam − µam} ⇒ N (0, 2ν−1ηS) (m = 1, 2, . . . , [(ν − 1)/2])

N
1/2
y {ŝam − µam} ⇒ N (0, 2ν−1ηS) (m = 1, 2, . . . , [(ν − 1)/2])

(21)

where

µam =

{
θ (m = 0)
0 (m > 0)

(22)

ηS = ψ−4(1)

ψ2(2)

(
1− 2ψ2(1)

ψ(2)

)
+

2∑
j=1

ψ4/j(1)

j−1∑
n=0

ψ2(n)

 (23)

while
N

1/2
y {ĉbm − µbm} ⇒ N (0, ν−1ηQ) (m = 0 or ν/2)

N
1/2
y {ĉbm − µbm} ⇒ N (0, 2ν−1ηQ) (m = 1, 2, . . . , [(ν − 1)/2])

N
1/2
y {ŝbm − µbm} ⇒ N (0, 2ν−1ηQ) (m = 1, 2, . . . , [(ν − 1)/2])

(24)

where

µbm =

{
ϕ (m = 0)
0 (m > 0)

(25)

ηQ = ψ−4(1)

{
ψ2(2)

(
1− 2ψ2(1)

ψ(2)

)
+ ψ2(1)

1∑
n=0

ψ2(n)

}
(26)

and ψ(1) = ϕ − θ, and ψ(2) = ϕψ(1) throughout, see Tesfaye, Meerschaert and Anderson (2006a)
for complete mathematical details. These asymptotic formulae can be used to construct tests to
determine which Fourier coefficients should be included in the time series model. The Bonferroni
α-level test statistic rejects the null hypothesis that cam and sam are zero for allm ≥ 1 if |Zc| > zα′/2

and |Zs| > zα′/2, respectively, where α
′ = α/(ν − 1),

Zc =
ĉam(h)

(λη̂S/Ny)1/2
, Zs =

ŝam(h)

(λη̂S/Ny)1/2
(27)

and λ is from (19). Similarly, the test for cbm and sbm follows the same procedure using the test
statistics

Zc =
ĉbm(h)

(λη̂Q/Ny)1/2
, Zs =

ŝbm(h)

(λη̂Q/Ny)1/2
. (28)

4 Simulation Study

A detailed simulation study was conducted to demonstrate the methods of the previous section
using simulated data from different PARMAν(p, q) models. For each model, individual realizations
of Ny = 50, 100, 300, and 500 years of data (i.e., sample size of N = Nyν) were simulated and the
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innovations algorithm was used to obtain parameter estimates for each realization. In each case,
estimates were obtained for k = 15 iterations. A sensitivity analysis on k indicated that increasing
the number of iterations did not significantly improve the results. Then discrete Fourier transformed
innovation estimates and model parameters were obtained, and test statistics were computed using
(18), (28) and (27) to identify those that were statistically significant. A FORTRAN program was
used to simulate the PARMA samples as well as to make all the necessary calculations.

As an example, we summarize here the results of two particular cases of a PARMA12(p, q)
model. We first simulated a PARMA12(0, 1) monthly moving average model

Xkν+i = εkν+i + θiεkν+i−1 (29)

where we assumed the periodic model parameters

θi = ca0 +

2∑
r=1

{
carcos

(
2πki

12

)
+ sarsin

(
2πri

12

)}
σi = 2.00 + 0.15 cos 2πi

12 + 0.90 sin 2πi
12

(30)

with ca0 = 0.45, ca1 = 0.25, sa1 = 0.75, ca2 = 0.80 and sa2 = 0.50, and the innovations were
simulated by setting εkν+i = σiδkν+i where {δt} was generated as an independent and identically
distributed sequence of normal random variables with mean zero and standard deviation one. A
single realization with Ny = 500 years of data (sample size of N = 6000) was generated.

Table 1 shows the results after k = 15 iterations of the innovations algorithm. Fourier coefficients
with test statistics z > 3.32 (Bonferroni test for ν = 12 and α = 1%) are considered to be significant,
indicated by a * in Table 1. The first thing to note is that most Fourier coefficients are insignificant
after lag 1, which reflects the order q = 1 of the moving average model. Next, note that the only
a few of Fourier coefficients at lag 1 are significant, in particular those with harmonic m = 1, 2.
This correctly identifies these Fourier coefficients as the ones to include in our time series model.
Finally, note that the estimated standard deviation (σ̂i ≈ 1.92 + 0.15cos2πi12 + 0.88sin2πi

12 ) is close
to the true values. In a real data analysis, the next step would be to analyze the residuals to
determine the adequacy of the model. For this moving average model, the standardized residuals
can be computed from the theoretical formula

δt =
Xt +

∑∞
j=1(−1)jθtθt−1...θt−j+1Xt−j

σt
(31)

Residuals obtained by substituting the estimated parameter values into this formula appear in-
dependent and normally distributed with mean zero and variance one, providing further evidence
that the model fit is adequate. In this case, considering the discrete Fourier transform reduces the
model of the moving average component from 12 to 5 parameters without any real loss in accuracy.

Next we consider a mixed autoregressive moving average PARMA12(1, 1) model (7) with periodic
parameters given by (20) with coefficients ca0 = 0.35, ca1 = 0.15, sa1 = 0.40, ca2 = 0.25, sa2 = 0.35,
and cb0 = 0.35, cb1 = 0.25, sb1 = 0.35, cb2 = 0.45, sb2 = −0.15 (two harmonics), and a constant
innovation variance σ2i = 1 for all i. From the above model, a single realization with Ny = 500
years of monthly data (sample size of N = 6000) was generated. After k = 15 iterations of the
innovations algorithm, the discrete Fourier transform of ψ̂i weights (not shown) do not generally cut-
off to statistically zero at a certain lag. In this case, it is not advisable to adopt a low-order moving
average model, and model selection must consider various autoregressive or mixed autoregressive
moving average models. Fitting an autoregressive model of order one lead to residuals that appeared
correlated (not shown), so we next fit a mixed PARMA12(1, 1) model.

The Fourier coefficients of the model parameter estimates are summarized in Table 2. It it clear
that the estimated model parameters (θ̂t , ϕ̂t) of the PARMA12(1, 1) model are dominated by the
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Table 1: Discrete Fourier transform of moving average parameter estimates ψ̂i(ℓ) at season i and
lag ℓ = 1, . . . , 4, and standard errors (SE), after k = 15 iterations of the innovations algorithm
applied to Ny = 500 years of simulated PARMA12(0, 1) monthly moving average data. Values in
(· · ·) are the corresponding test statistics from (18).

harmonic m

lag Coefficient 0 1 2 3 4 5 6

1 ĉm(1) 0.463 0.282* 0.806* -0.013 -0.008 -0.000 0.029
(15.434) (44.143) (-0.700) (-0.436) (-0.016) (2.230)

ŝm(1) 0.725* 0.519* 0.005 -0.028 -0.013
(39.711) (28.441) (0.288) (-1.544) (-0.719)

SE 0.018 0.018 0.018 0.018 0.018 0.013

2 ĉm(2) 0.015 0.053 0.027 0.049 0.001 -0.011 -0.015
(2.678) (1.354) (2.466) (0.054) (-0.536) (-1.073)

ŝm(2) 0.001 -0.004 -0.037 -0.008 0.006
(0.058) (-0.210) (-1.887) (-0.456) (0.299)

SE 0.020 0.020 0.020 0.020 0.020 0.014

3 ĉm(3) 0.010 0.035 0.091* 0.049 0.038 0.006 0.017
(1.750) (4.604) (2.495) (1.939) (0.319) (1.219)

ŝm(3) -0.024 -0.004 0.031 -0.015 -0.007
(-1.211) (-0.220) (1.579) (-0.741) (-0.370)

SE 0.020 0.020 0.020 0.020 0.020 0.014

4 ĉm(4) 0.007 0.027 0.045 -0.007 -0.008 -0.018 -0.021
(1.349) (2.270) (-0.352) (-0.408) (-0.917) (-1.490)

ŝm(4) 0.016 0.067* 0.022 0.036 0.010
(0.798) (3.421) (1.091) (1.815) (0.523)

SE 0.020 0.020 0.020 0.020 0.020 0.014
: : : : : : : : :

*Fourier coefficients with test statistic ≥ 3.32

first two harmonics, and so we can set the remaining Fourier coefficients equal to zero in our model.
Residual analysis based on the formula

σ̂tδ̂t = Xt −
(
ϕ̂t + θ̂t

)
Xt−1 +

∞∑
j=2

(−1)j
(
ϕ̂t−j+1 + θ̂t−j+1

)
θ̂tθ̂t−1...θ̂t−j+2Xt−j (32)

indicated that the model residuals are approximately independent and identically distributed, fur-
ther evidence of an adequate fit. In this case, using discrete Fourier transforms reduces the monthly
moving average and autoregressive components of the model from 24 to 10 parameters. For higher
resolution models (weekly or daily) we expect that the improvement in efficiency would be even
greater. In the next section, we explore this idea using some actual river flow data.

5 Stochastic Modeling of River Flows

In this section, we outline a step-by-step procedure for finding a parsimonious model for a river
flow time series. The authors have found from experience that it is prudent to initially fit a
PARMAν(1, 1) model to the data. Note that this includes the PARν(1) and the PMAν(1) model.
Thus, we start by fitting a PARMAν(1, 1) model to the data using (27) and (28) to determine which
Fourier coefficients should be included in describing the estimated autoregressive parameters, ϕ̂t,
and the estimated moving average parameters, θ̂t. We next use equation (32) to compute resid-
uals. The validation of a time series model is tantamount to the application of diagnostic checks
to the model residuals to see if they resemble white noise. We use the Ljung-Box test to test the
white-noise null hypothesis (see Brockwell and Davis, 1991). If the null hypothesis of white-noise
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Table 2: Discrete Fourier transform of model parameters estimates and standard errors (SE) for
simulated PARMA12(1, 1) data. Values in (· · ·) are the test statistics (28) and (27).

harmonic m

Parameter Statistic 0 1 2 3 4 5 6

θ̂t ĉam 0.361 0.181* 0.228* -0.023 -0.048 0.009 -0.020
(5.711) (7.204) (-0.715) (-1.529) (0.289) (-0.895)

ŝam 0.418* 0.314* 0.021 -0.021 -0.047
(13.234) (9.916) (0.668) (-0.652) (-1.473)

SE 0.032 0.032 0.032 0.032 0.032 0.022

ϕ̂t ĉbm 0.336 0.229* 0.455* -0.015 0.028 0.009 0.019
(6.280) (12.471) (-0.406) (0.760) (0.244) (0.733)

ŝbm 0.343* -0.133* -0.006 -0.004 0.034
(9.404) (-3.652) (-0.162) (-0.104) (0.943)

SE 0.022 0.022 0.022 0.022 0.022 0.015

*Fourier coefficients with test statistic ≥ 3.32

residuals is not rejected, and if the autocorrelation and partial autocorrelation functions of the
residuals show no evidence of serial correlation, then we judge the model to be adequate. Fitting a
suitable distribution to the residuals allows for a faithful simulation based on this model. To obtain
additional parsimony, it is also permissible to consider simpler models where some statistically sig-
nificant model parameters (e.g., high-frequency Fourier coefficients) are set to zero. If the resulting
model residuals pass the same diagnostic tests, then the simplified model is also deemed adequate.
Finally, if we reject the null hypothesis that the PARMAν(1, 1) model residuals resemble iid noise,
we would abandon that model and fit a PMAν(q) model to the data, q ≥ 2. Using Theorem 3.1
and the test statistics given in (18), we would identify the order, q, of the pure moving average and
then parsimoniously estimate the moving average parameters that we deem to be nonzero, using
(18) to determine the statistically significant model parameters. However, in our experience, the
PARMAν(1, 1) model is generally adequate to model most river flow time series.

Now we illustrate the general approach with a typical data set. The Fraser River is the longest
river in BC, travelling almost 1400 km and sustained by a drainage area covering 220,000 km2.
It rises in the Rocky Mts., at Yellowhead Pass, near the British Columbia-Alta. line and flows
northwest through the Rocky Mt. Trench to Prince George, thence south and west to the Strait
of Georgia at Vancouver. Its main tributaries are the Nechako, Quesnel, Chilcotin, and Thompson
rivers. To begin, we model a monthly river flow time series from the Fraser River at Hope, British
Columbia. The data are obtained from discharge measurements in cubic meter per second, averaged
over each of the respective months. The resulting series contains 72 years of data from October
1912 to September 1984. In the following analysis, ν = 0 corresponds to October and ν = 11
corresponds to September, corresponding to the usual “water year” designed to minimize serial
correlation between years.

A previous study in Tesfaye, Meerschaert, and Anderson (2006) found that a PARMA12(1, 1)
model gave a reasonable fit for this monthly series. A statistical analysis of the seasonal mean and
covariance functions indicated that a stationary model was not appropriate, due to statistically
significant differences in the seasonal mean, and the seasonal lag 1 and lag 2 autocorrelations. Figure
1 shows the autoregressive and moving average parameter functions along with the 95% confidence
intervals computed from (9). The monthly variations are fairly smooth, indicating that the Fourier
transforms may be dominated by a few terms. Following the same procedure as in the previous
section, we calculated the Fourier transformed values of the model parameters, the standard errors
and the test statistics. Fourier coefficients with test statistics z > 3.32 (ca0 = 0.304, sa1 = −0.426,
ca3 = 0.665, cb0 = 0.337, sb1 = 0.466, cb2 = 0.408, sb2 = 0.355 and cb3 = −0.649) were considered
to be significant, and the remaining coefficients were set to zero to achieve model parsimony. The
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resulting reduced Fourier approximations are plotted against the original parameter curves in Figure
1. We see from the figure that a parsimonious fit is reasonably achieved using 3 harmonics to govern
the periodic coefficients. To validate the reduced model, the standardized residuals were computed
using equation (32). The autocorrelation function and partial autocorrelation function (ACF and
PACF, not shown) of the residuals show no serial dependence. The p-value from the Ljung-Box test
was 0.27 indicating that we do not reject the null hypothesis that the residuals resemble iid white
noise. It is interesting to note that in the Fourier-transformed model, the residuals are ’whiter’
than in the untransformed case considered in Tesfaye, Meerschaert, and Anderson (2006), where
the p-value from the Ljung-Box test was 0.08. Thus, this is a case where the parsimonious Fourier
transform model produces a better fit in all facets of the analysis. The application of discrete Fourier
transforms in this case reduced the number of autoregressive and moving average parameters in
the model from 24 to 8, so that superior results are obtained using fewer parameters, as a result of
the discrete Fourier transform.

Next we modeled the same river flow (Fraser River at Hope, British Columbia) at a higher
resolution. The weekly river flow series were obtained by averaging daily measurements over 7 days
(the last week containing 8 or 9 days depending on leap year) starting from 1 October of each year.
The resulting series contained 72 years of data from 1 October 1912 to 30 September 1984. In this
analysis, ν = 0 corresponds to the first 7 days of October and ν = 51 corresponds to the last 8 or 9
days of September. The weekly statistics such as the mean, standard deviation, and lag 1 and lag
2 serial correlations are displayed in Figure 2. All of these statistics exhibit statistically significant
seasonal variations, so that a stationary time series model is not adequate.

The innovations algorithm (k = 15 iterations) was use to estimate parameters for the moving
average model (2). A statistical analysis based on the asymptotic formula (5) showed that the ψt(j)-
weights do not die off quickly to (statistically) zero as j increases, so that an autoregressive or mixed
autoregressive moving average model is indicated. Based on our experience with the monthly data,
we fit a mixed PARMA52(1, 1) model to the weekly data. The parameter estimates for this model,
obtained using equations (7) and the estimates of the ψt(j)-weights, are shown in Figure 3. The
95% confidence bands for these parameter functions were computed from (9). When interpreting
these graphs, it is important to take the confidence intervals into account, as fluctuations within
these bands are irrelevant to the time series model. Next we applied the inverse Fourier transform
to compute the coefficients in (20). Then the statistical test of (27) and (28) was performed to
determine which of these Fourier coefficients were most important to the time series model. For
the autoregressive parameters, only the zero harmonic was statistically significant, indicating that
a model with a constant non-seasonal autoregressive parameter should be adequate. The results
of this procedure for the moving average parameters θ̂t are summarized in Table 3. The first two
cosine harmonics are highly significant, as are the fifteenth and twentieth cosine harmonics and the
third sine harmonic. To preserve parsimony, we chose to include only the first two cosine harmonics
in the model, leading to the parameter equations

θ̂i = 0.255− 0.197cos
(
πi
26

)
+ 0.121cos

(
2πi
26

)
ϕ̂i = 0.732

(33)

for our weekly time series model (7). We note here that from the Ljung-Box test there was virtually
no difference in the parsimonious model fitted above and the model that included the other nonzero
harmonics. The p-value of the test actually decreases with the larger set of parameters. Overfitting,
we think, tends to model the noise and not the signal. Hence, for the reduced model, the resulting
reduced Fourier approximations are plotted against the original parameter curves in Figure 3.
Note that all but a few of the approximations are within the 95% confidence bands, indicating a
reasonable fit. See Table 4 for remaining model parameters, σ̂t and µ̂t. To validate the reduced
model, the standardized residuals were computed using equation (32). The ACF and PACF (not
shown) of the residuals indicate no serial dependence, further evidence that the fit is adequate. The
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application of discrete Fourier transforms in this weekly model reduced the number of autoregressive
and moving average parameters in the model from 104 to 4. It is interesting to note that the
(approximate) weekly parameter functions are actually smoother than their monthly counterparts.
This is sensible when one considers that a higher-resolution times series model should naturally
give rise to more smoothly varying coordinates. For example, the average weekly flow should vary
more smoothly than the average monthly flow. Further steps towards parsimony could no doubt
be achieved by Fourier transforming the mean and standard deviation parameters.

Table 3: Discrete Fourier transform of moving average parameter estimate, θ̂t (with standard error,
SE = 0.017 for m = 26 and SE = 0.024 for m ̸= 26) for PARMA52(1, 1) model of average weekly
flow series for Fraser River at Hope, BC. Note that the value in (.) is the test statistic (27).

harmonics m
0 1 2 3 4 5 6 7 8

ĉam 0.255 -0.197* 0.121* -0.040 0.081 -0.022 -0.031 -0.013 -0.078
(-8.25) (5.062) (-1.670) (3.388) (-0.941) (-1.300) (-0.531) (-3.283)

ŝam -0.0198 0.081 -0.117* 0.015 -0.044 -0.041 -0.020 -0.016
(-0.828) (3.392) (-4.89) (0.633) (-1.823) (-1.731) (-0.832) (-0.680)

9 10 11 12 13 14 15 16 17
ĉam 0.044 0.052 0.023 -0.071 0.009 0.021 0.139* -0.053 0.017

(1.833) (2.169) (0.957) (-2.996) (0.392) (0.880) (5.836) (-2.240) (0.696)
ŝam 0.018 0.027 -0.059 -0.034 -0.051 -0.071 0.041 0.073 -0.009

(0.753) (1.118) (-2.471) (-1.436) (-2.154) (-2.993) (1.714) (3.078) (-0.396)
18 19 20 21 22 23 24 25 26

ĉam 0.031 -0.007 0.113* 0.019 0.075 -0.016 0.018 -0.065 0.019
(1.335) (-0.280) (4.71) (0.795) (3.151) (-0.660) (0.769) (-2.741) (1.110)

ŝam -0.014 -0.040 -0.076 -0.018 -0.091 -0.041 -0.016 0.008
(-0.569) (-1.696) (-3.177) (-0.748) (-3.829) (-1.716) (-0.669) (0.351)

*Fourier coefficients with test statistic ≥ 3.72

Finally we applied the weekly time series model (7) with parameters (33) to see how well we could
simulate synthetic river flows. The success of this endeavor depends heavily on a suitably accurate
distributional model for the standardized residuals. In this case, we found through exploratory
data analysis that a mixture of a lognormal (scale = 0.094, location = 2.561 and threshold =
−13.01) with truncated Pareto tails gave an adequate fit. For details of this procedure, see Tesfaye,
Meerschaert, and Anderson (2006) where a similar distributional model was fit to the residuals
from a monthly model. The truncated Pareto distribution function is

FX(x) = P (X ≤ x) =
1− (γ/x)α

1− (γ/β)α
(34)

with 0 < γ ≤ x ≤ β < ∞ and γ < β. In this case, the parameter values for the upper tail
distribution (β̂ = 8.374, γ̂ = 0.547, α̂ = 2.068) were found by maximum likelihood estimation based
on the 215 largest positive residuals, following the procedure in Aban, Meerschaert, and Panorska
(2005). Similarly, the values for the lower tail distribution (β̂ = 8.386, γ̂ = 0.667, α̂ = 3.459) were
based on the 207 largest negative residuals, after a change of sign. Note that a different time scale
yields a different residual distribution, compare the monthly flow model in Tesfaye, Meerschaert
and Anderson (2006). Substituting the simulated innovations into the model (7) generates Ny

years of simulated river flow. It is advantageous to simulate several extra years of river flows
and throw out the initial years (we threw out the first 100 years in this case), to ensure that
the simulated series is periodically stationary. Figure 2 shows the main statistical characteristics
(mean, standard deviation and autocorrelations) for one typical realization of the synthetic river
flow time series obtained by this method, against the same statistical measures for the observed time
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Table 4: Other parameter estimates for PARMA52(1, 1) model of average weekly flow series for the
Fraser River at Hope, BC.

Season ν

Parameter 0 1 2 3 4 5 6 7

σ̂t 11341.4 9365.7 10674.6 11173.0 11442.3 10321.3 7949.6 9161.4
µ̂t 73139.4 69715.0 69133.0 68332.7 66348.2 60664.8 54528.4 51692.9

8 9 10 11 12 13 14 15

σ̂t 8064.8 6196.3 8288.3 7374.0 4567.7 5751.0 3381.8 4368.1
µ̂t 49291.5 44493.0 40590.5 38387.8 36543.0 35021.9 33342.0 32970.1

16 17 18 19 20 21 22 23

σ̂t 4699.0 3014.5 4614.0 3065.2 2229.2 3958.7 2543.7 2073.1
µ̂t 32180.6 31958.4 32220.3 30982.1 29701.5 29361.2 28435.7 28440.0

24 25 26 27 28 29 30 31

σ̂t 3805.1 4267.0 5566.1 7582.3 11230.3 17216.4 19467.5 23820.6
µ̂t 29564.3 32309.3 36677.3 45680.3 61496.0 80419.7 107893.3 136771.3

32 33 34 35 36 37 38 39

σ̂t 28120.6 29511.4 35410.9 29142.7 26127.0 29320.7 18830.2 20127.7
µ̂t 172356.4 205165.0 227797.0 245244.2 255747.8 256049.1 242545.2 228583.8

40 41 42 43 44 45 46 47

σ̂t 15124.9 14232.0 11492.2 9000.8 10763.7 10741.4 8428.7 11202.4
µ̂t 211048.4 198195.4 178312.8 155861.5 139551.5 127168.7 117237.5 108533.9

48 49 50 51

σ̂t 8588.8 10147.6 9350.6 9845.6
µ̂t 98497.6 90001.4 81269.0 76323.0

series. It is apparent that the Fourier-PARMA52(1, 1) model closely reproduces the main statistical
characteristics, indicating that the model is trustworthy to produce faithful reproductions of the
actual river flows. Finally, Figure 4 shows a side-by-side comparison of the synthetic and actual
river flow time series, and it is evident that the two series are statistically similar. This kind of
synthetic river flow can be useful for drought and flood modeling, and operational analysis of water
projects such as reservoirs, and treatment plants for water supply.

6 Conclusion

For analysis and design of water resource systems, it is sometimes useful to model and simulate river
flows with high resolution (e.g., weekly values). Periodic autoregressive moving average (PARMA)
time series models can be useful for modeling and simulating these river flows. PARMA models are
indicated when the basic descriptive statistics (mean, variance, and autocorrelations) of the river
flow exhibit significant seasonal variations. The innovations algorithm can be used to estimate the
model parameters. Conventional PARMA models can be used at any time scale, but for high-
resolution time series, the model depends on numerous parameters, since the number of parameters
grows proportional to the number of seasons (days or weeks) in a year. This proliferation of
parameters can lead to over-fitting, or “modeling the noise.” To remedy this situation, this paper
uses discrete Fourier transforms to efficiently represent the periodic model parameters in terms of
just a few Fourier coefficients. Asymptotic statistical tests and confidence intervals are developed
to identify the essential Fourier coefficients to include in the model. Since the parameters in a
high-resolution model can be expected to vary smoothly over the course of the year, only a few
Fourier coefficients are generally required. This results in a parsimonious time series model that
captures the essential features of the flow, including seasonal variations in the correlation structure.
A simulation study demonstrates the effective application of this procedure. A further practical
application shows how the method can be fruitfully applied to generate high-resolution synthetic
flows, that faithfully reproduce a weekly series. By combining the Fourier-PARMA modeling with
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an accurate representation of the model residuals, we generate synthetic flows that reproduce all
the statistical features of the data, for an example series representing average weekly flows on
the Fraser River at Hope, British Columbia, Canada. Fourier-PARMA models are applicable to
any river flow time series, since they accommodate a flexible dependence structure and residual
distribution. The results of this research should be useful to practitioners wishing to generate
high-resolution synthetic river flows for water resource systems planning and operations analysis,
as well as flood and drought modeling.
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(a)   Moving Average Coefficient 
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(b)   Autoregressive coefficient
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Figure 1: Plot of PARMA12(1, 1) model parameters (with their Fourier fit) of average monthly flow
series for the Fraser River at Hope, BC.
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(a)  Sample Mean
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(c)   Autocorrelations: Lag 1
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(d)   Autocorrelations: Lag 2
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Figure 2: Comparison of mean, standard deviation, and autocorrelations for simulated vs. observed
weekly river flow data for the Fraser River at Hope, BC.
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(a)   Moving Average Coefficient
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(b)   Autoregressive Coefficient
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Figure 3: Plot of PARMA52(1, 1) model parameters (with their Fourier fit) of average weekly flow
series for the Fraser River at Hope, BC.
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(a)   Observed flows 
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(b)   Simulated flows
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Figure 4: Plot of (a) observed and (b) simulated weekly river flows for the Fraser River at Hope,
BC, indicating similarity.
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