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[1] A new stochastic model is proposed for fracture counts and transmissivities in a
borehole interval. This new model incorporates several empirical observations, including:
(i) Clustering of fractures; (ii) Exponential fracture spacings; (iii) Transmissivities
extending over several orders of magnitude; (iv) Power law probability tail for
transmissivities at finer scales; (v) Log-normal transmissivities at larger scales; and (vi)
Dependence between fracture counts and transmissivities. Several example applications
are provided using borehole data from Sweden.
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1. Introduction

[2] Many applications, such as modeling of groundwater
flow and solute transport in fractured rock [Dershowitz et
al., 1998] or designing rock grouting [Fransson, 2001],
require information on fractures and their transmissivities
[Gustafson and Fransson, 2005]. Fractures in rock typically
come in clusters [Gillespie et al., 1993], with spacings
following the exponential law [Priest and Hudson, 1976,
1981]. The transmissivities (denoted by the symbol T in the
sequel) of certain intervals of a borehole can typically
stretch over several orders of magnitude [Gustafson and
Fransson, 2005]. Although approximate methods of obtain-
ing the distribution of T from hydraulic packer tests are
available [Osnes et al., 1988;Axelsson et al., 1990;Fransson,
2002], these are quite complicated. Therefore, simple, robust
models based on few parameters that reproduce patterns of
test data are strongly needed [Gustafson and Fransson,
2005].
[3] We propose a new stochastic model that accounts for

fracture count across each borehole section and the value of
T corresponding to that section. This simple model is in
agreement with the above empirical findings, has only a few
parameters that are straightforward to estimate, and was
found to fit one typical borehole data set quite well.

2. Borehole Data

[4] We consider the cored borehole KLX01 between 106
and 691 m depth, discussed in Gustafson and Fransson
[2005]. KLX01 is a deep subvertical borehole through
granitic bedrock in Sweden. The data consists of fracture
counts N and the corresponding transmissivities T for 3 m
borehole sections, and the same data for 30 m sections.
Since the 30 m measurements consist of relatively few data

points, we first focus on the 3 m data, consisting of 195
pairs of values. The first variable N is discrete, and
measures the number of fractures in successive 3 m intervals
along the borehole. The second variable measures the
corresponding transmissivity for that borehole section.
[5] Figure 1 shows that the fracture count data is highly

skewed with a long right tail. The data have a sample mean
of 8.5 and a sample variance of 36.3. This over-dispersion is
not accounted for by the Poisson distribution, often used to
model fracture counts, since the mean and the variance of
the Poisson distribution are always equal. Instead we will
employ the negative binomial distribution, a simple model
that accommodates over-dispersion.
[6] A histogram of log(T) measured in 3 m intervals

appears in Figure 2. The long right tail of the distribution is
noticeable, and the normal density gives a poor fit. Hence,
in this case, it is not reasonable to model T as log-normal.
The probability plot gives further evidence that log(T) is not
normally distributed. For data following a normal distribu-
tion, the points would scatter around the center line and
95% would lie between the error bars.
[7] The fracture count N and the log(T) data also exhibit

significant statistical dependence. The sample correlation of
r = 0.21 between N and log(T) is small but statistically
significant (the chance of a correlation this large, if N and
log(T) were independent, is given by the p-value of .003). For
the KLX02 borehole reported in Gustafson and Fransson
[2005] the same analysis yields an even larger correlation r =
0.48 (p = .001). We conclude that a coupled model of fracture
count and log(T) is worth investigating.

3. Negative Binomial Model for Fracture Count

[8] We investigate a negative binomial (NB) model for
the number N of fractures in each interval along a borehole.
The NB model is a two parameter family with probability
mass function (PMF)

f kð Þ ¼ P N ¼ kð Þ ¼ G t þ kð Þ
G tð Þk! pt 1� pð Þk ; k ¼ 0; 1; 2; . . . ; ð1Þ

where G(�) is the standard gamma function and the range of
the parameters is t > 0 and 0 < p < 1 [see, e.g., Johnson et
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al., 1993]. When t is an integer, the negative binomial
variable represents a waiting time: It is the number of
failures before the tth success in a sequence of independent
random trials with success probability p. The mean and the
variance of this distribution are E(N) = t(1 � p)/p and
Var(N) = t(1 � p)/p2, so that the variance is always greater
than the mean. The NB process {N(t), t � 0} with PMF (1)
counts the number of fractures in a borehole section whose
length is proportional to t. The increments of the NB
process Ni = N(it) � N((i � 1)t), i = 1, 2, 3, . . ., form a
sequence of independent and identically distributed (IID)
NB random variables representing the number of fractures
in each borehole section. The parameter t is proportional to
the length the borehole section, and we will use this fact to
validate the model. This spatial NB model counts the
number of fractures in any size interval, so that up-scaling is
a simple matter.
[9] We fit the NB distribution (1) to the fracture count

data along the borehole KLX 01 (3 m intervals with n = 195
data points). The standard statistical method of maximum
likelihood estimation (MLE) is used to estimate the param-
eters in (1) (see Appendix for details). Finding the MLE for
t involves maximizing the likelihood function g(t) given by
equation (A4) in the Appendix. Numerical optimization

produces t = 3.1, which we round to 3 (the fact that t is
approximately the length of the borehole interval in meters is
a coincidence). A graph of the likelihood function (Figure 3),
to validate the results of the optimization code, shows that
the maximum value is indeed attained at this point. Substi-
tuting into p = t/(t + N ), we obtain p = 0.263. Figure 4
shows the empirical distribution function for this fracture
count data along with fitted NB distribution function. A
visual inspection indicates that the fit is quite good.
[10] To further check how well the fracture count data fits

the NB model, we employ a standard chi-square test (with
m = 7 cells chosen to make the cell probabilities approx-
imately equal, see Appendix). The observed and expected
cell frequencies under the NB model with t = 3 and p = 0.263
are shown in Table 1. The test statistic is c2 =S(O� E)2/E =
4.91. Since we are estimating d = 2 parameters, the 95th
percentile of the chi-square distribution (with m � 1 � d = 4
degrees of freedom) is found from standard tables to be
9.488. Since the computed value of 4.91 is less than 9.488,
there is no statistically significant evidence against the NB
fit (the p-value is 0.3). We conclude that the fracture count
data at 3 m intervals fits a NB distribution reasonably well.
[11] Next we fit the NB distribution to the 30 m sections

along the same borehole, to validate the up-scaling proper-
ties of the model. For p = 0.263 (under the NB model,
sections of any length must have the same value of p), the
MLE of t becomes (see formula (A3) in the Appendix) t =
(84.150) (0.263)/(1 � 0.263) = 30.0291, which we round to
30. Note that this t is 10 times the value for the 3 m
intervals, in agreement with the NB process model, since in
that model, the length of the borehole section is proportional
to the parameter t. This calculation validates the NB model,
since it shows we can up-scale to longer sections (the sum
of ten independent NB random variables with t = 3 is NB
with t = 30).
[12] Although with n = 20 values, our data set here is

rather small, we nevertheless apply a standard chi-square
test to check the fit. This time we use m = 5 cells chosen to
make the cell probabilities approximately equal (to 0.2).
The observed and expected cell frequencies are shown in
Table 2 below. These lead to the value 3.834 of the test
statistic, with the corresponding p-value of 0.15 (based on a
chi-square distribution with 2 degrees of freedom). Hence

Figure 1. Fracture counts at 3 m intervals in the KLX 01
borehole.

Figure 2. Fracture log(T) at 3 m intervals from the KLX 01 borehole, with the best fitting normal
density (left). A probability plot (right) gives further evidence of a poor fit, showing that T is not log-
normal at this scale.
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we conclude that the fracture count data at 30 m intervals
also fits a NB distribution reasonably well. The NB model is
further validated by the fact that the scaling parameter t
grows proportional to the borehole section length. In con-
clusion, we model the number of fractures in a borehole
section of length t meters by a NB random variable N(t)
whose PMF (1) has parameters t and p = 0.263. The
numbers of fractures in adjoining borehole sections are
assumed independent.
[13] To investigate the general applicability of the NB

model for fracture counts, we also fit the model to six
additional borehole sections. Figure 5 illustrates the results
of this exercise. KLX02 is another deep subvertical bore-
hole through granitic bedrock, 3 m sections. KA3376B01 is
another subhorizontal investigation borehole in the Äspö
Hard Rock Laboratory. The Nygårds Tunnel dataset consists
of stacked data from 4 boreholes collected in order to get a
characteristic description of the fracturing of the rock.
BHMSV01 is from the Hallandsås tunnel, is a railway
tunnel under construction in Southwest Sweden. The project
has been notorious because of the very fractured bedrock

and high permeability of the rock. The KFM02A borehole is
a subvertical investigation borehole of the site investigations
for a future nuclear waste repository. It is situated in the
Forsmark area close to the Baltic about 200 km north of
Stockholm. The studied section is a bit extreme because of
the high fracturing and high permeability. The studied
section comprises a couple of very conductive fracture
zones. KB971 is a cored subhorizontal investigation bore-
hole for the Törnskogstunneln, a motorway tunnel recently
built about 2 km North of Stockholm. The rock is typical
Stockholm granite, and the section length is 3 m. We
consider the NB fit satisfactory in all cases, except the
KFM02A. In all cases, the Poisson model gives a poor fit
due to over-dispersion. We conclude that the NB model is
generally useful for characterizing fracture counts.
[14] We note that the NB process is a cluster Poisson

process (see Appendix), with multiple events (i.e. fractures)
occurring at each Poissonian arrival. Such clustering is one
of the characteristics of spatial distributions of fractures
[Gillespie et al., 1993]. Moreover, the fracture spacings of
this process are exponential, which is another characteristic
of discontinuity spacings in rock often reported in the
literature [Priest and Hudson, 1976, 1981]. A more com-
plete physical argument for the NB model is included in the
Appendix.

4. A New Stochastic Model for the
Transmissivity T

[15] Since fracture number N and transmissivity T are
statistically dependent, it is reasonable to investigate models

Figure 3. The objective function g(t) (see (A4) in Appendix) used to find the maximum likelihood of
the parameter t of the NB model (1).

Table 1. Contingency Table for Chi-Square Goodness of Fit Testa

Cells 0–2 3–4 5–6 7–8 9–10 11–13 14+

Cell probabilities 0.118 0.153 0.165 0.148 0.121 0.128 0.167
Observed

frequencies (O)
19 34 41 28 20 25 28

Expected
frequencies (E)

23.01 29.84 32.18 28.86 23.60 24.96 32.57

aNB model for 3 m fracture count data from the KLX 01 borehole.

Figure 4. Empirical (squares) and fitted NB (line)
cumulative distribution function F(k) = P(N � k) corre-
sponding to KLX 01 borehole fracture counts at 3 m
intervals.
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that capture this dependence. We begin by examining the
way in which the (conditional) distribution of T varies with
N. Hence, we group the log(T) data points according to the
number of fractures N in each borehole section. Figure 6
shows normal probability plots of log(T) for several differ-
ent values of N. While the normal fit is not perfect,
especially for N between 4 and 7, the fit is much better
than Figure 2. This shows that grouping the log(T) data

Figure 5. Empirical (squares) and fitted NB (line) cumulative distribution function F(k) = P(N � k)
corresponding to a variety of Swedish borehole fracture counts.

Table 2. Contingency Table for Chi-Square Goodness of Fit Testa

Cells 0–69 70–79 80–89 90–99 100+

Cell probabilities 0.213 0.209 0.219 0.171 0.189
Observed frequencies 7 3 2 3 5
Expected frequencies 4.26 4.18 4.38 3.42 3.78

aNB model for 30 m fracture count data from the KLX 01 borehole.
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Figure 6. Probability plots illustrating the distribution of log(T) for different numbers N of fractures per
3 m borehole section in the KLX01 data set.
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values according to fracture count N gives a much better fit
to the log-normal distribution. Then it is reasonable to
consider a coupled model where T is (approximately) log-
normal with a variance that depends on N.
[16] Next we examine the way that the variance of log(T)

changes with the fracture count N. A simple linear regres-
sion reveals variance = �0.917 + 0.261 N with R-squared =
57.7% indicating a reasonable level of predictive power.
The R-squared value measures the extent to which the
variance can be predicted from the fracture count
N. Since the intercept is not significantly different from
zero (p = 0.190) we re-ran the regression with a zero
intercept to obtain the final model variance = 0.205 N.
Hence we can model log(T) as normal with mean zero and
variance 0.205N depending on the fracture count N. Since N
is negative binomial, at some lag (borehole interval length)
the random variable N will be geometric, a discrete ana-
logue to the exponential distribution which is also a special
case of the NB. Hence the distribution of log(T) will closely
resemble a normal mixture with an exponential variance. (A
normal mixture is a normal random variable whose variance
is replaced by another non-negative random variable, result-
ing in a new random variable whose distribution is not
normal.) This normal mixture turns out to be the Laplace (or
double exponential) distribution, which was previously
applied in Meerschaert et al. [2004] to model log-hydraulic
conductivity in heterogeneous groundwater aquifers. The
NB normal mixture model is completely consistent with the
observation in Gustafson and Fransson [2005] that T has
power-law (Pareto) probability tails, since taking logs con-
verts the power law into an exponential.
[17] This NB normal mixture model for log(T) also

explains the transition from non-normal to normal distribu-
tion as the scale increases, or in other words, the empirical
fact that transmissivities for a long borehole section are
often observed to fit a log-normal distribution. Figure 7
shows a histogram and probability plot of the KLX01 log(T)
for the 30 m borehole sections. We note that the normal
distribution fit is quite good, in marked contrast with the
same analysis for the 3 m sections shown in Figure 2. When

the scale (length of a borehole section) increases, the mean
of the NB random variance is also increasing. Then it is not
hard to show (using Slutsky’s Theorem) that the NB normal
mixture converges to a normal distribution as the scale t
increases. Hence the NB normal mixture model explains
both the power-law tails of T at finer scales, and the log-
normal distribution of T at larger scales.
[18] The NB normal mixture model also allows us to

impute the log(T) distribution for individual fractures from
the data for borehole sections. This is accomplished by
separating out the effect of the fracture count N for a
borehole section. For the KLX01 data, we model log(T)
for a single fracture as normal with mean zero and variance
0.205, obtained by setting N = 1 fracture in our variance
model. Hence the distribution of log(T) for a single fracture
is normal (i.e. T for a single fracture is log-normal). We
conclude that the heavy power-law tail in the T distribution
for a borehole section noted by Gustafson and Fransson
[2005] is completely due to the random number of fractures
in a section. Since a borehole section has a random number
N of fractures, this randomizes the variance of log(T) in the
section, and gives it a distribution with an exponential tail.
Then reversing the log transform (exponentiating) yields a
power law tail. Finally we note that the NB normal mixture
model is just one of a large family of normal mixture
models that share the same properties. Any model in which
log(T) has a fixed distribution, conditional on the random
fracture count N with a variance proportional to N will
converge to a Gaussian (log-normal distribution for T) at
larger scales, and if the conditional distribution of log(T) has
exponential probability tails, then the T distribution will
have power-law tails, in agreement with empirical observa-
tions. The NB model for fracture counts, in this framework,
is merely the simplest descriptive model in agreement with
observations.

5. Summary

[19] This paper presents a new model for fracture count N
and transmissivity T in borehole sections in fractured rock.

Figure 7. Fracture log(T) at 30 m intervals from the KLX 01 borehole, with the best fitting normal
density (left). A probability plot (right) gives further evidence that the normal distribution provides a
good fit, showing that T is log-normal at this scale.
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The fracture counts follow a negative binomial model which
can easily be fit to field data. To demonstrate the effective-
ness of the model, we fit fracture count data from Gustafson
and Fransson [2005] at 3 meter intervals, and show that the
model correctly predicts the up-scaled fracture number
distribution at 30 meter intervals. The model for log(T) is
an NB normal mixture, based on the NB fracture count in
each section, and hence provides a statistical link between
fracture count and T, as well as a method for imputing the T
distribution for individual fractures from that of borehole
sections.

Appendix A

[20] For the convenience of the reader, we collect here
some facts about negative binomial distributions and the
corresponding Lévy process.

A1. Basic Properties

[21] The characteristic function (Fourier transform) of the
negative binomial distribution (1) is

fNB uð Þ ¼ EeiuN ¼ p

1� 1� pð Þeiu

� �t

;�1 < u < 1: ðA1Þ

This defines a continuous time stochastic process {N(t),
t � 0} with independent and homogenous increments
(Lévy process), whose marginal distributions N(t) are given
by (A1). This is a pure jump process with both mean and
variance linear in t, that is E(N(t)) = t(1� p)/p and Var(N(t)) =
t(1 � p)/p2, so that the variance is always greater than the
mean (over-dispersion). This is actually a cluster Poisson
process. The inter-arrival times are IID exponential variables
with parameter l = �log p. The Poissonian arrivals come in
clusters of size Xi, where the Xi ’s are IID integer valued
variables with logarithmic distribution, P(Xi = k) =�(1� p)k/
(k log p), k = 1, 2, 3 . . .. We thus have the following
representation of a NB process, N(t) = X1 + ��� + XL(t), where
L(t) is a Poisson process with intensity l above, independent
of the Xi ’s. The NB process is also known as the gamma-
Poisson process, since it can be defined as a Poisson process
{L(t), t � 0} with intensity l = (1 � p)/p, subordinated to a
gamma process {W(t), t � 0}, N(t) = L(W(t)). The gamma
process is another continuous time stochastic process with
independent and homogenous increments, whose one
dimensional distributions W(t) are gamma distributions with
shape parameter t and scale 1 (so that the mean of W(t) is t).
One can view this process as a random time deformation.
More information on the NB process can be found in
Kozubowski and Podgórski [2005, 2007].

A2. Estimation and Model Validation

[22] We now review the method of maximum likelihood
estimation (MLE) for estimating the parameters t and p of
the NB distribution. Suppose that N1, N2,. . .,Nn is a random
sample of size n with PMF (1). First we compute the
likelihood function by evaluating the right-hand side of
(1) at each data point Ni = k, and taking the product of these
n terms. The MLE is of the parameters t and p is the point (t,

p) that maximizes the likelihood function or, equivalently,
its logarithm. The log-likelihood function is

Q t; pð Þ ¼ n
1

n

Xn
j¼1

log
G t þ Nj

� �
G 1þ Nj

� �� logG tð Þ þ t log p

 

þ N log 1� pð Þ
!
; ðA2Þ

where N is the sample mean. Fixing t > 0 and maximizing
the function Q in (A2) with respect to p results in

p ¼ p tð Þ ¼ t

t þ N
or; equivalently t ¼ pN

1� p
: ðA3Þ

When we now substitute p = p(t) above back into (A2), we
obtain the quantity Q(t, p(t)), which reduces the MLE
calculation to the problem of maximizing

g tð Þ ¼ 1

n

Xn
j¼1

logG t þ Nj

� �
� logG tð Þ

þ t log t � t þ N
� �

log t þ N
� �

: ðA4Þ

This optimization can be performed numerically using
standard codes. The optimum location yields the maximum
likelihood estimator (MLE) of t, and the corresponding
MLE of p is obtained by substituting back into (A3). Model
validation to assess how well the data fits the NB model can
include graphical evidence (e.g., comparing the PMF to a
histogram of the data) or a more formal chi-square test for
goodness of fit (see for example D’Agostino and Stephens
[1986]). In the chi-square test, the possible values of the NB
variable are subdivided into k intervals of roughly equal
probability. Then the number O of data points in each of
those intervals is compared to the expected number E under
the NB model. The probability distribution of the resulting
test statistic c2 = S(O � E)2/E is available in standard
tables. If the computed value is less than the 95th percentile
of that distribution, then the model fit is judged adequate.
The p-value, if also computed, measures the probability that a
simulated NB random sample the same size as the data would
produce an equally large chi-square statistic. The model is
judged adequate on this basis if the p-value exceeds 0.05.
Generally, the proper application of the chi-square test
requires a minimum of five data points per interval.

A3. Derivation of the Negative Binomial Model

[23] Here we provide a constructive derivation of the
negative binomial model for fracture numbers. We adapt an
argument in Hald [1952], pp. 732–734. Let Px(l) denote the
probability that there are exactly x fractures in the ith
interval, which we define as (0, l). Now we consider how
this probability varies with x and l. In order that there are x
fractures in the interval (0, l + Dl), where Dl is an
infinitesimal distance, we assume that there are either:
[24] 1. x fractures in (0, l) and none in (l, l + Dl); or
[25] 2. x � 1 fractures in (0, l) and one in (l, l + Dl).
[26] We assume that the probability of more than one

fracture in (l, l + Dl) is negligible, or more precisely, that
this probability is o(Dl). Let px(l) denote the infinitesimal
fracture intensity in the interval (l, l +Dl) given that there are
x fractures in the interval (0, l). In other words, we assume
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that the probability of having a fracture in (l, l +Dl) is px(l)Dl.
The probability of having x fractures in (l, l +Dl) will then be

Px l þDlð Þ ¼ Px lð Þ � 1� px lð ÞDlð Þ þ Px�1 lð Þ � px�1 lð ÞDl

þ o Dlð Þ; ðA5Þ

where o(Dl)/Dl converges to zero as Dl converges to zero.
This leads to the differential equations:

dPx lð Þ
dl

¼ Px l þDlð Þ � Px lð Þ
Dl

¼ Px�1 lð Þpx�1 lð Þ � Px lð Þpx lð Þ and :

dP0 lð Þ
dl

¼ �P0 lð Þp0 lð Þ P0 0ð Þ ¼ 1 Px 0ð Þ ¼ 0 for x � 1

ðA6Þ

We assume that the infinitesimal fracture intensity

px lð Þ ¼ r þ x

b þ l
ðA7Þ

where r is the mean number of fractures in an interval of
length b. Note that the infinitesimal intensity increases with
the number x of fractures in the interval (0, l) and decreases
with the length of that interval. Next we define x = r/b
[fractures/m] the overall (or average) fracture intensity,
normally named P10 in discrete fracture network modeling.
Substituting and simplifying yields

px lð Þ ¼ r þ x

r þ xl
x ðA8Þ

Following Hald [1952], substituting the infinitesimal
fracture intensity and solving the differential equation
system gives:

Px lð Þ ¼ r

r þ xl

� �r G xþ rð Þ
G rð Þx!

� �
xl

r þ xl

� �x

for x ¼ 0; 1; 2; 3; . . .

ðA9Þ

The mean or average number of fractures in the interval (0,
l) is xl which agrees with the fact that x is the fracture
intensity. The probabilities Px(l) form a NB-distribution (1)
with parameters

t ¼ r and p ¼ r

r þ xl
ðA10Þ

The probabilities Px(l) were originally derived for the Pólya
process, a (fundamentally different) Poisson process with a
random, Gamma distributed rate parameter.
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