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Let W H = {W H (t), t ∈ R} be a fractional Brownian motion of Hurst index H ∈ (0,1) with
values in R, and let L = {Lt , t � 0} be the local time process at zero of a strictly stable
Lévy process X = {Xt , t � 0} of index 1 < α � 2 independent of W H . The α-stable local
time fractional Brownian motion Z H = {Z H (t), t � 0} is defined by Z H (t) = W H (Lt). The
process Z H is self-similar with self-similarity index H(1 − 1

α ) and is related to the scaling
limit of a continuous time random walk with heavy-tailed waiting times between jumps
[P. Becker-Kern, M.M. Meerschaert, H.P. Scheffler, Limit theorems for coupled continuous
time random walks, Ann. Probab. 32 (2004) 730–756; M.M. Meerschaert, H.P. Scheffler,
Limit theorems for continuous time random walks with infinite mean waiting times,
J. Appl. Probab. 41 (2004) 623–638]. However, Z H does not have stationary increments
and is non-Gaussian. In this paper we establish large deviation results for the process Z H .
As applications we derive upper bounds for the uniform modulus of continuity and the
laws of the iterated logarithm for Z H .

Published by Elsevier Inc.

1. Introduction

Self-similar processes arise naturally in limit theorems of random walks and other stochastic processes, and they have
been applied to model various phenomena in a wide range of scientific areas including telecommunications, turbulence,
image processing and finance. The most important example of self-similar processes is fractional Brownian motion (fBm)
which is a centered Gaussian process W H = {W H (t), t ∈ R} with W H (0) = 0 and covariance function

E
(
W H (s)W H (t)

) = 1

2

(|s|2H + |t|2H − |s − t|2H)
, (1.1)

where H ∈ (0,1) is a constant. By using (1.1) one can verify that W H is self-similar with index H (i.e., for all constants c > 0,
the processes {W H (ct), t ∈ R} and {cH W H (t), t ∈ R} have the same finite-dimensional distributions) and has stationary
increments. When H = 1/2, W H is a two-sided Brownian motion, which will be written as W .

Many authors have constructed and investigated various classes of non-Gaussian self-similar processes. See, for example,
[39] for information on self-similar stable processes with stationary increments. Burdzy [10,11] introduced the so-called
iterated Brownian motion (IBM) by replacing the time parameter in W by an independent one-dimensional Brownian motion
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B = {Bt , t � 0}. His work inspired many researchers to explore the connections between IBM (or other iterated processes)
and PDEs [1,2,4,35], to establish potential theoretical results [5,19,33,34,36,37] and to study its sample path properties
[12,14–16,24,25,28,41].

In this paper, we consider another class of iterated self-similar processes which is related to continuous-time random
walks considered in [6,31]. Let W H = {W H (t), t ∈ R} be a fractional Brownian motion of Hurst index H ∈ (0,1) with values
in R. Let X = {Xt, t � 0} be a real-valued, strictly stable Lévy process of index 1 < α � 2. We assume that X is independent
of W H . Let L = {Lt , t � 0} be the local time process at zero of X (see Section 2 for its definition). Let Z H = {Z H (t), t � 0}
be a real-valued stochastic process defined by Z H (t) = W H (Lt) for all t � 0. This iterated process will be called an α-stable
local time H-fractional Brownian motion or simply local time fractional Brownian motion.

Since the sample functions of W H and L are a.s. continuous, the local time fractional Brownian motion Z H also has
continuous sample functions. Moreover, by using the facts that W H is self-similar with index H and L is self-similar with
index 1 − 1/α, one can readily verify that Z H is self-similar with index H(1 − 1/α). However, Z H is non-Gaussian, non-
Markovian and does not have stationary increments. When H = 1/2, we will call Z 1/2 the local time Brownian motion and
denote it by Z for convenience.

The local time Brownian motion Z emerges as the scaling limit of a continuous time random walk with heavy-tailed
waiting times between jumps [6,31]. Moreover, local time Brownian motion has a close connection to fractional partial
differential equations. Baeumer and Meerschaert [3] showed that the process Z can be applied to provide a solution to the
fractional Cauchy problem. More precisely, they proved that, if Lt is the local time at 0 of a symmetric stable Lévy process,
then u(t, x) = Ex[ f (W (Lt))] solves the following fractional in time PDE

∂β

∂tβ
u(t, x) = Δxu(t, x), u(0, x) = f (x), (1.2)

where β = 1 − 1/α and ∂β g(t)/∂tβ is the Caputo fractional derivative in time, which can be defined as the inverse Laplace
transform of sβ g̃(s) − sβ−1 g(0), where g̃(s) = ∫ ∞

0 e−st g(t)dt is the usual Laplace transform. Recently Baeumer, Meerschaert
and Nane [4] further established the equivalence of the governing PDEs of W (Lt) and W (|Bt |) when α = 2 and β = 1/2.
Here B = {Bt , t � 0} is another Brownian motion independent of W and X . The process Z has also appeared in the works
of Borodin [8,9], Ikeda and Watanabe [26], Kasahara [27], and Papanicolaou et al. [38]. In [17], Csáki, Földes and Révész
studied the Strassen type law of the iterated logarithm of Z(t) = W (Lt) when Lt is the local time at zero of a symmetric
stable Lévy process.

For all H ∈ (0,1) and α ∈ (1,2], α-stable local time H-fractional Brownian motions form a new class of self-similar
processes. It is natural to expect that they arise as scaling limit of continuous-time correlated random walks with heavy-
tailed waiting times and, as such, they are potentially useful as stochastic models. Hence it is of interest in both theory and
applications to investigate their probabilistic and analytic properties. Due to the non-Gaussian and non-Markovian nature
of local time fractional Brownian motions, the existing theories on Markov and/or Gaussian processes cannot be applied to
them directly and some new tools will have to be developed. The literature on iterated Brownian motion mentioned above
provides an instructive guideline for studying local time fractional Brownian motions.

The objective of the present paper is to establish large deviation results for the local time fractional Brownian motion
Z H and apply them to study regularity properties of the sample paths of Z H . We will consider the interesting problem of
determining the domain of attraction of Z H in a subsequent paper.

The following Theorems 1.1 and 1.2 are our main results.

Theorem 1.1. Let Z H = {Z H (t), t � 0} be an α-stable local time H-fractional Brownian motion with values in R and 2H < α. Then
for every Borel set D ⊆ R,

lim sup
t→∞

t− 2H(α−1)
α−2H log P

{
t− 2H(α−1)

α−2H Z H (t) ∈ D
}

� − inf
x∈D

Λ∗
1(x) (1.3)

and

lim inf
t→∞ t− 2H(α−1)

α−2H log P
{

t− 2H(α−1)
α−2H Z H (t) ∈ D

}
� − inf

x∈D◦ Λ∗
1(x), (1.4)

where D and D◦ denote respectively the closure and interior of D and

Λ∗
1(x) = α + 2H

2α

(
α − 2H

2αB1

) α−2H
α+2H

x
2α

α+2H , ∀x ∈ R. (1.5)

In the above, B1 = B1(H,α,χ,ν) is the positive constant defined by

B1 = α − 2H

2α

(
H Aα

1

(1 − 1
α )α−1

) 2H
α−2H

, (1.6)

where A1 is the constant given by
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A1 = 	(1 − 1
α )	( 1

α )χ1/α cos( 1
α arctan(ν tan( πα

2 )))

πα[1 + (ν tan( πα
2 ))2]1/(2α)

(1.7)

and ν ∈ [−1,1] and χ > 0 are the parameters of the stable Lévy process X defined in (2.1).

In (1.5) and the sequel, for any γ > 0 and x ∈ R, the term x2γ is defined as (x2)γ . Since 2H < α, one can see that the
function Λ∗

1 in (1.5) is even, convex and differentiable on R.

In the terminology of [20], Theorem 1.1 states that the pair (t− 2H(α−1)
α−2H Z H (t), t

2H(α−1)
α−2H ) satisfies a large deviation principle

with good rate function Λ∗
1. When H = 1/2, it yields a large deviation result for the local time Brownian motion and,

moreover, the constants B1 in (1.6) can be simplified.
Letting D = [x,∞), we derive from Theorem 1.1 and the self-similarity of Z H the asymptotic tail probability P{Z H (1) � x}

as x → ∞. The following theorem is more general because it holds for all H ∈ (0,1) and α ∈ (1,2].

Theorem 1.2. Let Z H = {Z H (t), t � 0} be an α-stable local time H-fractional Brownian motion with values in R. Then for any
0 � a � b < ∞,

lim
x→∞

log P{|Z H (b) − Z H (a)| > x}
x

2α
α+2H

= −B2, (1.8)

where B2 = B2(H,α,χ,ν) is the positive constant defined by

B2 = α + 2H

2α

(
H Aα

1

(1 − 1
α )α−1

)− 2H
α+2H

(b − a)−
2H(α−1)
α+2H . (1.9)

In order to prove Theorems 1.1 and 1.2, we first study the analytic properties of the moment generating functions of
Z H (t) and |Z H (b) − Z H (a)|. This is done by calculating the moments of Z H (t) and |Z H (b) − Z H (a)| for 0 � a � b directly
and by using a theorem of Valiron [40]. Then Theorems 1.1 and 1.2 follow respectively from the Gärtner–Ellis theorem
(cf. [20]) and a result of Davies [18].

The rest of the paper is organized as follows. In Section 2, we derive sharp estimates on the moments of the local
time Lt of X , and the moments of Z H (b) − Z H (a). These estimates are applied in Section 3 to study the analyticity of
the moment generating functions of Z H , and to derive large time behavior of the logarithmic moment generating functions
log E[exp(θ Z H (t))] and log E[exp(t|Z H (b)− Z H (a)|β)] for suitably chosen β > 0. In Section 4, we prove Theorems 1.1 and 1.2.
We will also establish similar tail estimates for the maximum maxt∈[a,b]|Z H (t)− Z H (a)|. In Section 5, by combining the large
deviation result with the methods in [13, Theorem 3.1], we establish local and uniform moduli of continuity for Z H . We
also obtain an upper bound in the law of the iterated logarithm for Z H .

2. Moment estimates

A Lévy process X = {Xt, t � 0} with values in R is called strictly stable of index α ∈ (0,2] if its characteristic function is
given by

E
[
exp(iξ Xt)

] = exp

(
−t|ξ |α 1 + iν sgn(ξ) tan( πα

2 )

χ

)
, (2.1)

where −1 � ν � 1 and χ > 0 are constants. In the terminology of [39, Definition 1.1.6], ν and χ−1/α are respectively the
skewness and scale parameters of the stable random variable X1. When α = 2 and χ = 2, X is Brownian motion. In general,
many properties of stable Lévy processes can be characterized by the parameters α,ν and χ . For a systematic account on
Lévy processes we refer to [7].

For any Borel set I ⊆ R, the occupation measure of X on I is defined by

μI (A) = λ1{t ∈ I: Xt ∈ A} (2.2)

for all Borel sets A ⊆ R, where λ1 is the one-dimensional Lebesgue measure. If μI is absolutely continuous with respect
to the Lebesgue measure λ1 on R, we say that X has a local time on I and define its local time L(x, I) to be the Radon–
Nikodým derivative of μI with respect to λ1, i.e.,

L(x, I) = dμI

dλ1
(x), ∀x ∈ R.

In the above, x is the so-called space variable, and I is the time variable of the local time. If I = [0, t], we will write L(x, I) as
L(x, t). Moreover, if x = 0 then we will simply write L(0, t) as Lt .

By using a monotone class argument, one can verify that L(x, I) satisfies the following occupation density formula: For
every measurable function f : R → R+ ,
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I

f
(

X(t)
)

dt =
∫
R

f (x)L(x, I)dx. (2.3)

It is well known (see, e.g. [7]) that a strictly stable Lévy process X has a local time if and only if α ∈ (1,2]. In the later
case, L(x, t) has a version that is continuous in (x, t). Throughout this paper, we tacitly work with such a version so that
the local time process L = {Lt , t � 0} has continuous sample paths.

It follows from (2.3) and the self-similarity of X that L(x, t) has the following scaling property: For every constant c > 0,
c1−1/α L(c−1/αx, c−1t) is a version of L(x, t). In particular, by letting x = 0 we see that Lt is self-similar with index 1 − 1

α .
For the purpose of the present paper, it will be convenient to express the local time L(x, t) as the inverse Fourier

transform of μ̂(u, t) := μ̂[0,t](u), namely

L(x, t) = 1

2π

∫
R

exp(−iux)μ̂(u, t)du = 1

2π

t∫
0

∫
R

exp
(−iux + iu X(s)

)
du ds. (2.4)

This formal expression can be justified rigorously (see [21]). Moreover, it follows from (25.2) and (25.7) in [21] that for all
x ∈ R, I ∈ B(R+) and all integers n � 1, we have

E
[
L(x, I)

]n = (2π)−n
∫
In

∫
Rn

exp

(
−i

n∑
j=1

u j x

)
E exp

(
i

n∑
j=1

u j X(t j)

)
dū dt̄. (2.5)

In the above and in the sequel, dū = du1 · · ·dun and dt̄ = dt1 · · ·dtn .
We start with the following moment estimates for the local time of X .

Lemma 2.1. Let L = {Lt , t � 0} be the local time at zero of a strictly stable Lévy process X = {Xt, t � 0} with values in R and index
1 < α � 2. Then for all 0 < a � b < ∞ and all integers n � 1,(

b − a

b

)1/α An
1n!(b − a)n(1−1/α)

	(1 − 1
α )	(1 + 1

α + n(1 − 1
α ))

� E
[|Lb − La|n

]
�

(
b − a

b

)1/α An
1n!(b − a)n(1−1/α)

	(1 + n(1 − 1
α ))

, (2.6)

where A1 > 0 is the constant defined by (1.7). In the case a = 0, we have the equality

E
[|Lb|n

] = An
1n!

	(1 + n(1 − 1
α ))

bn(1−1/α). (2.7)

Proof. Applying (2.5) with x = 0 and I = (a,b] and making a change of variables s j = t j − a ( j = 1, . . . ,n), we obtain

E
[|Lb − Lb|n

] = (2π)−n
∫

(a,b]n

∫
Rn

E exp

(
i

n∑
j=1

u j X(t j)

)
dū dt̄ = n!

(2π)n

∫
Sn

∫
Rn

E exp

(
i

n∑
j=1

u j X(s j + a)

)
dū ds̄, (2.8)

where

Sn = {
(s1, . . . , sn): 0 � s1 � s2 � · · · � sn � b − a

}
.

Let v j = ∑n
l= j ul ( j = 1, . . . ,n), then the last sum in (2.8) can be written as

n∑
j=1

u j X(s j + a) =
n∑

j=1

v j
(

X(s j + a) − X(s j−1 + a)
)
, (2.9)

where s0 := −a so that s0 + a = 0. Denote

φ(ξ) = |ξ |α 1 + iν sgn(ξ) tan( πα
2 )

χ
.

Since the process X has stationary and independent increments, we have

E exp

(
i

n∑
j=1

v j
(

X(s j + a) − X(s j−1 + a)
)) = exp

(
−

n∑
j=2

(s j − s j−1)φ(v j)

)
exp

(−(s1 + a)φ(v1)
)
. (2.10)

It follows from (2.8)–(2.10) and a change of variables that

E
[|Lb − La|n

] = n!
(2π)n

∫
Sn

∫
Rn

exp

(
−

n∑
j=2

(s j − s j−1)φ(v j)

)
exp

(−(s1 + a)φ(v1)
)

dv̄ ds̄, (2.11)

where dv̄ = dv1 · · ·dvn .
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We know from symmetry that for any s > 0:

∫
R

exp
(−sφ(v)

)
dv = 2

∞∫
0

exp

(
− svα

χ

)
cos

(
− svαν

χ
tan

(
απ

2

))
dv.

By a change of variable z = vα , this equals

2

α

∞∫
0

z1/α−1 exp

(
− sz

χ

)
cos

(
− szν

χ
tan

(
απ

2

))
dz,

which by Eq. 3.944(6) in Gradshteyn and Ryzhik [22] equals

2χ1/α	( 1
α )

αs1/α(1 + [ν tan( απ
2 )]2)1/(2α)

cos

(
1

α
arctan

(
ν tan

(
απ

2

)))
.

Combining the above with (2.11) we obtain

E
[|Lb − La|n

] = n!C(α)n
∫
Sn

(s1 + a)−1/α
n∏

j=2

(s j − s j−1)
−1/α ds̄, (2.12)

where C(α) is the constant given by

C(α) = χ1/α	( 1
α )

πα(1 + [ν tan( απ
2 )]2)1/(2α)

cos

(
1

α
arctan

(
ν tan

(
απ

2

)))
. (2.13)

We denote the multiple integral in (2.12) by Jn . When a = 0, it can be evaluated in terms of the Gamma function. When
a > 0 the same induction method can still be applied. We include a proof for completeness.

First we integrate over sn ∈ [sn−1,b − a] to get

b−a∫
sn−1

(sn − sn−1)
−1/α dsn = (b − a − sn−1)

1−1/α

1 − 1
α

.

Next we integrate over sn−1 ∈ [sn−2,b − a]. By changing variables twice v = sn−1 − sn−2 and t = v/(b − a − sn−2), we obtain

b−a∫
sn−2

(sn−1 − sn−2)
−1/α (b − a − sn−1)

1−1/α

1 − 1
α

dsn−1

= 1

1 − 1
α

b−a−sn−2∫
0

v−1/α(b − a − sn−2 − v)1−1/α dv = (b − a − sn−2)
2(1−1/α)

1 − 1
α

1∫
0

t(1−1/α)−1(1 − t)(2−1/α)−1 dt

= (b − a − sn−2)
2(1−1/α)

1 − 1
α

· 	(1 − 1
α )	(2 − 1

α )

	(1 + 2(1 − 1
α ))

= 	(1 − 1
α )2

	(1 + 2(1 − 1
α ))

(b − a − sn−2)
2(1−1/α).

Iterating this procedure, we derive

Jn = 	(1 − 1
α )n−1

	(1 + (n − 1)(1 − 1
α ))

b−a∫
0

(b − a − s1)
(n−1)(1−1/α)(s1 + a)−1/α ds1

= 	(1 − 1
α )n−1

	(1 + (n − 1)(1 − 1
α ))

bn(1−1/α)

(b−a)/b∫
0

v(n−1)(1−1/α)(1 − v)−1/α dv, (2.14)

where the second equality follows from change of variables.
If a = 0, then the last integral equals Beta(1 − 1

α ,1 + (n − 1)(1 − 1
α )), where Beta denotes the Beta function. This and

(2.14) yield

Jn = 	(1 − 1
α )n

	(1 + n(1 − 1
α ))

bn(1−1/α). (2.15)
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It follows from (2.12) and (2.15) that for a = 0,

E
[|Lb − La|n

] = 	(1 − 1
α )nC(α)nn!

	(1 + n(1 − 1
α ))

bn(1−1/α). (2.16)

By (1.7) and (2.13), we have A1 = 	(1 − 1
α )C(α). Hence the desired result (2.7) follows from (2.16).

If a > 0, then last integral in (2.14) is an incomplete Beta function [22, 8.384(1) and 9.100]. Write

f (n,a,b) =
(b−a)/b∫

0

v(n−1)(1−1/α)(1 − v)−1/α dv =
(

b − a

b

)n(1−1/α)+1/α 1∫
0

v(n−1)(1−1/α)

(
1 − b − a

b
v

)−1/α

dv. (2.17)

Then one can verify that

f (n,a,b) �
(

b − a

b

)n(1−1/α)+1/α 1∫
0

v(n−1)(1−1/α)(1 − v)−1/α dv

=
(

b − a

b

)n(1−1/α)+1/α 	(1 − 1
α )	(1 + (n − 1)(1 − 1

α ))

	(1 + n(1 − 1
α ))

(2.18)

and

f (n,a,b) �
(

b − a

b

)n(1−1/α)+1/α 1∫
0

v(n−1)(1−1/α) dv =
(

b − a

b

)n(1−1/α)+1/α 1

1 + (n − 1)(1 − 1
α )

. (2.19)

It follows from (2.12), (2.14) and (2.18) that

E
[|Lb − La|n

]
�

(
b − a

b

)1/α 	(1 − 1
α )nC(α)nn!

	(1 + n(1 − 1
α ))

(b − a)n(1−1/α). (2.20)

Recalling A1 = 	(1 − 1
α )C(α), we see that (2.20) gives the upper bound in (2.6).

Similarly, we use (2.12), (2.14) and (2.19) to derive

E
[|Lb − La|n

]
�

(
b − a

b

)1/α 	(1 − 1
α )n−1C(α)nn!

	(1 + 1
α + n(1 − 1

α ))
(b − a)n(1−1/α), (2.21)

which yields the lower bound in (2.6). This proves Lemma 2.1. �
Now we consider the moments of the increment Z H (b) − Z H (a). As we will see in Remark 4.1, the following lemma is

sufficient for proving (1.8) in Theorem 1.2.

Lemma 2.2. Let W H = {W H (t), t ∈ R} be a fractional Brownian motion of index H in R, and Lt be the local time at zero of a strictly
stable process X = {Xt, t � 0} of index 1 < α � 2 independent of W H . Then for all 0 < a � b < ∞ and all positive integers n,

C1(n)(b − a)n(1−1/α) � E
(∣∣W H (Lb) − W H (La)

∣∣n/H)
� C2(n)(b − a)n(1−1/α), (2.22)

where

C1(n) = 1√
π	(1 − 1

α )

(
b − a

b

)1/α(
21/(2H) A1

)n n!	( n
2H + 1

2 )

	(1 + 1
α + n(1 − 1

α ))
(2.23)

and

C2(n) = 1√
π

(
b − a

b

)1/α(
21/(2H) A1

)n n!	( n
2H + 1

2 )

	(1 + n(1 − 1
α ))

. (2.24)

In the above A1 > 0 is the constant defined by (1.7). Moreover, when a = 0 we have the equality

E
(∣∣W H (Lb)

∣∣n/H) = 1√
π

(
21/(2H) A1

)n n!	( n
2H + 1

2 )

	(1 + n(1 − 1
α ))

bn(1−1/α). (2.25)
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Proof. Since Lt is a non-decreasing process, W H is H-self-similar with stationary increments, and these two processes are
independent, we use a conditioning argument to derive

E
(∣∣W H (Lb) − W H (La)

∣∣n/H) = E
(∣∣W H (1)

∣∣n/H)
E

(|Lb − La|n
)
. (2.26)

On the other hand, since W H (1) has a standard normal density, one can use a change of variables to verify that

E
(∣∣W H (1)

∣∣n/H) = 1√
π

2n/(2H)	

(
n

2H
+ 1

2

)
. (2.27)

Combining (2.26), (2.27) with (2.6) and (2.7) proves (2.22) and (2.25). �
3. Analytic results: Exponential integrability

In this section we study the exponential integrability of the random variable Z H (t) and some analytic properties of its
logarithmic moment generating function. Our main results of this section are Theorems 3.1 and 3.4, which are the main
ingredients for proving Theorems 1.1 and 1.2.

Theorem 3.1. Let Z H = {Z H (t), t � 0} be an α-stable local time H-fractional Brownian motion with values in R and 2H < α. Then
for every θ ∈ R,

lim
t→∞ t− 2H(α−1)

α−2H log E exp
(
θ Z H (t)

) = Λ1(θ), (3.1)

where Λ1 is the function on R defined by Λ1(θ) = B1θ
2α

α−2H for all θ ∈ R. Recall from (1.6) and (1.7) that the constants B1 =
B1(H,α,χ,ν) and A1 are defined as

B1 = α − 2H

2α

(
H Aα

1

(1 − 1
α )α−1

) 2H
α−2H

(3.2)

and

A1 = 	(1 − 1
α )	( 1

α )χ1/α cos( 1
α arctan(ν tan( πα

2 )))

πα[1 + (ν tan( πα
2 ))2]1/(2α)

, (3.3)

where ν ∈ [−1,1] and χ > 0 are the constants defined in (2.1).

Note that for 2H < α the above function Λ1(·) is even, convex and differentiable on R, and the function Λ∗
1(·) defined

by (1.5) is the Fenchel–Legendre transform of Λ1, that is, Λ∗
1(x) = supθ∈R(θx − Λ1(θ)) for all x ∈ R.

The proof of Theorem 3.1 relies on explicit calculation of the moments of Z H (t) and the following theorem in Valiron
[40, p. 44].

Lemma 3.2. Let f (z) = ∑∞
p=0 cp zp be an entire function such that cp 
= 0 for infinitely many p’s. For any r > 0, let M(r) =

sup|z|=r | f (z)|. Then a necessary and sufficient condition for

lim
r→∞

log M(r)

rρ
= B (3.4)

is that, for all values of ε and all sufficiently large integers p, we have

1

ρe
pcρ/p

p � B + ε, (3.5)

and there exists a sequence of integers pn, such that

lim
n→∞

pn+1

pn
= 1, (3.6)

for which

lim
n→∞

1

ρe
pncρ/pn

pn = B. (3.7)
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Proof of Theorem 3.1. Similar to the proof of Lemma 2.2, we apply a conditioning argument and the formula for the
moment generating function of a Gaussian random variable to derive that for all θ ∈ R,

E exp
(
θ Z H (t)

) = E exp

(
θ2

2
t2H(1−1/α)L2H

1

)
. (3.8)

In order to prove (3.1), we show that, for 2H < α, the function f (z) = E exp(zL2H
1 ) is an entire function and the coefficients

of its Taylor expansion verify the conditions of Lemma 3.2.
Let us first consider the Taylor series

M1(r) =
∞∑

n=0

E(L2Hn
1 )

n! rn. (3.9)

We will make use of the following consequence of Jensen’s inequality: For any constant γ � 1 and nonnegative random
variable Δ,(

E
(
Δ�γ �))γ /�γ � � E

(
Δγ

)
�

(
E

(
Δ�γ �+1))γ /(�γ �+1)

. (3.10)

Here and in the sequel, �γ � denotes the largest integer � γ .
It follows from (3.10) with Δ = L1 and γ = 2Hn, (2.7) in Lemma 2.1 and Stirling’s formula that

E(L2Hn
1 )

n! 
(

A1
(2H)1/α

(1 − 1
α )1−1/α

)2Hn

en(1− 2H
α )n−n(1− 2H

α ), (3.11)

where A1 is the constant in (1.7). In the above, xn  yn means that, for all n large enough, xn/yn is bounded from below
and above by constant multiple of n−η . Here η is a constant depending on H and α only. The omitted factors have no
influence on the limit in (3.12) below.

By (3.11), we see that the Taylor series in (3.9) represents an analytic function on R if and only if 2H < α. In the latter
case, we choose ρ1 = α

α−2H and derive

lim
n→∞

1

ρ1e
n

(
E(L2Hn

1 )

n!
)ρ1/n

= 1

ρ1

(
A1

(2H)1/α

(1 − 1
α )1−1/α

)2Hρ1

. (3.12)

Hence, Lemma 3.2 implies that

lim
r→∞

log M1(r)

rρ1
= 1

ρ1

(
A1

(2H)1/α

(1 − 1
α )1−1/α

)2Hρ1

. (3.13)

It follows from (3.8) that E exp(θ Z H (t)) = M1(
θ2

2 t2H(1−1/α)). Hence (3.1) follows from (3.13) and a simple change of
variables. �

The proof of Theorem 3.1 shows that, if 2H > α, then E(eθ Z H (t)) = ∞ for all θ > 0. Hence we cannot prove a large
deviation principle for Z H (t) by applying the Gärtner–Ellis theorem. However, for studying the tail probability of Z H (b) −
Z H (a), it is sufficient to consider the exponential integrability of |Z H (b) − Z H (a)|β for appropriately chosen β > 0.

Proposition 3.3. Let 0 � a < b < ∞ be given constants. For any β > 0 and t ∈ R, let gβ(t) = E(et|W H (Lb)−W H (La)|β ). The following
statements hold:

(i) If 0 < β < 2α
2H+α , then the function gβ(t) is analytic on R.

(ii) If β = 2α
2H+α , then gβ(t) is analytic in (−∞, δ0) for some δ0 > 0.

(iii) If β > 2α
2H+α , then gβ(t) = ∞ for all t > 0.

Proof. Let us consider the Taylor series

∞∑
n=0

E(|W H (Lb) − W H (La)|βn)

n! tn.

As in the proof of Lemma 2.2, we have

E
(∣∣W H (Lb) − W H (La)

∣∣βn) = E
(∣∣W H (1)

∣∣βn)
E

(|Lb − La|βHn) = 1√
π

2(βn)/2	

(
βn

2
+ 1

2

)
E

(|Lb − La|βHn)
. (3.14)
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Applying (3.10) to Δ = |Lb − La| and γ = βHn and using (3.14), the moment estimates in Lemma 2.1 and Stirling’s
formula, we derive

E(|W H (Lb) − W H (La)|βn)

n!  An
2en(1− β

2 − βH
α )n−n(1− β

2 − βH
α ), (3.15)

where A2 is a constant which can be expressed explicitly in terms of α, β , H , A1 and b − a. It can be verified that (3.15)
implies the conclusions in Proposition 3.3. �

It follows from Proposition 3.3 that, for β > 0, gβ(z) (z ∈ C) is an entire function if and only if β < 2α
2H+α . In this case,

Theorem 3.4 further proves that gβ(z) is of very regular growth in the sense of Valiron [40].

Theorem 3.4. Let W H be a fractional Brownian motion in R, and let Lt be the local time at zero of a strictly stable process Xt of index
1 < α � 2 independent of W H . Then for all 0 < β < 2α

2H+α and 0 � a � b < ∞,

lim
t→∞

log E[exp(t|W H (Lb) − W H (La)|β)]
tρ

= B3, (3.16)

where ρ = 2α
2α−αβ−2Hβ

and B3 = B3(H,α, ν,χ,β) is the constant given by

B3 = 1

ρ
AβHρ

1 (b − a)βHρ(1−1/α)

(
ββ/(2H)(βH)β/α

(1 − 1
α )β(1− 1

α )

)Hρ

, (3.17)

where A1 is the constant given in (1.7).

Note that, when H = 1/2, we can take β = 1. In this case, B3 is reduced to

B3 =
[

	(1 − 1
α )	( 1

α )χ1/α cos( 1
α arctan(ν tan( πα

2 )))

2πα[1 + (ν tan( πα
2 ))2]1/(2α)

] α
α−1

.

Proof of Theorem 3.4. We start with the following elementary fact: Let H ∈ (0,1) be a constant. Then for all x � 0,

1 +
∞∑

n=1

x�n/H�

� n
H �! � ex � e

H

(
1 +

∞∑
n=1

x�n/H�

(�n−1
H � + 1)!

)
. (3.18)

In order to verify (3.18), first note that the first inequality holds for all x � 0 because {� n
H �, n � 0} is a subsequence of N,

and the second inequality holds for all 0 � x � 1. Hence it only remains to show the second inequality holds for all x > 1.

This can be verified by grouping the terms in the expansion ex = 1 + ∑∞
k=1

xk

k! in the blocks k ∈ {�n−1
H � + 1, . . . , � n

H �}, and

noting that the number of integers in each block is at most 1 + 1
H , which is smaller than e

H .
Now let β ∈ (0, 2α

2H+α ) be a constant and let t � 0. By taking x = t|W H (Lb) − W H (La)|β in (3.18), we have

1 +
∞∑

n=1

t�n/H�E(|W H (Lb) − W H (La)|β�n/H�)
� n

H �! � gβ(t) � e

H

(
1 +

∞∑
n=1

t�n/H�E(|W H (Lb) − W H (La)|β�n/H�)
(�n−1

H � + 1)!

)
. (3.19)

Denote the first and last terms in (3.19) by f1(t) and f2(t), respectively. In order to prove (3.16), it suffices to show that for
i = 1,2,

lim
t→∞

log f i(t)

tρ
= B3, (3.20)

where ρ = 2α
2α−αβ−2Hβ

and B3 = B3(H,α, ν,χ,β) is given by (3.17).
This can be done by showing the coefficients of f i satisfy the conditions of Lemma 3.2. Moreover, since the proofs for

i = 1,2 are almost the same, we only prove (3.20) for i = 1.
Note that the coefficients cp (p = 0,1, . . .) of f1(t) are given by

cp = E(|W H (Lb) − W H (La)|β�n/H�)
� n

H �!
if p = � n

H � and cp = 0 otherwise. By Lemma 3.2, it suffices to show

lim
n→∞

1

ρe

⌊
n

H

⌋(
E(|W H (Lb) − W H (La)|β�n/H�)

� n
H �!

)ρ/� n
H �

= B3. (3.21)
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As in the proof of Lemma 2.2, we have

E
(∣∣W H (Lb) − W H (La)

∣∣β�n/H�) = 1√
π

2β�n/H�/2	

(
β�n/H�

2
+ 1

2

)
E

(|Lb − La|βH�n/H�). (3.22)

By (3.10), the moment estimates in Lemma 2.1 and Stirling’s formula, we can verify that

E(|W H (Lb) − W H (La)|β�n/H�)
� n

H �!  A�n/H�
3 en( 1

H − β
2H − β

α )n−n( 1
H − β

2H − β
α ), (3.23)

where A3 is a constant defined by

A3 = AβH
1 (b − a)βH(1− 1

α )

(
β

β
2H + β

α H
1
H − β

2H

(1 − 1
α )β(1− 1

α )

)H

. (3.24)

Since ( 1
H − β

2H − β
α )Hρ = 1, we see that (3.23) implies

lim
n→∞

1

ρe

⌊
n

H

⌋(
E(|W H (Lb) − W H (La)|β�n/H�)

� n
H �!

)ρ/� n
H �

= Aρ
3

ρH
= B3, (3.25)

where B3 is given by (3.17). This proves (3.21) and hence Theorem 3.4. �
4. Large deviations results: Proofs of Theorems 1.1 and 1.2

In this section, we first prove Theorems 1.1 and 1.2. Then we apply a maximal inequality due to Móricz et al. [32] to
derive upper bounds for the tail probabilities of the maxima maxt∈[0,1] Z H (t) and maxt∈[a,b]|Z H (t) − Z H (a)|.

Proof of Theorem 1.1. Note that the function Λ1(θ) = B1θ
2α

α−2H in Theorem 3.1 is essentially smooth and continuous on R.

It follows from the Gärtner–Ellis theorem (cf. [20, Theorem 2.3.6]) that the pair (t− 2H(α−1)
α−2H Z H (t), t

2H(α−1)
α−2H ) satisfies a large

deviation principle with the good rate function

Λ∗
1(x) = sup

θ∈R

(
θx − Λ1(θ)

)
,

which is the Fenchel–Legendre transform of Λ1. It is elementary to verify that Λ∗
1(x) coincides with (1.5). This proves

Theorem 1.1. �
Proof of Theorem 1.2. Let 0 < β < 2α

2H+α be fixed. It follows from (3.16) in Theorem 3.4 and Davies’ Theorem 1 in [18] that

lim
u→∞

log P{|W H (Lb) − W H (La)|β � u}
uρ/(ρ−1)

= −(
1 − ρ−1)(ρB3)

−1/(ρ−1). (4.1)

Here ρ = 2α
2α−αβ−2Hβ

. Letting x = u1/β and simplifying the right-hand side of (4.1), we obtain

lim
x→∞

log P{|W H (Lb) − W H (La)| � x}
x

2α
α+2H

= −α + 2H

2α

(
H Aα

1

(1 − 1
α )α−1

)− 2H
α+2H

(b − a)−
2H(α−1)
α+2H . (4.2)

This finishes the proof of Theorem 1.2. �
Remark 4.1. Theorem 1.2 can also be proved by using Lemma 2.3 in König and Mörters [29] (note that their assumption
p ∈ N can be replaced by p > 0) and the moment results in Lemma 2.2. The proof of Lemma 2.3 in [29] is based on
a change-of-measure technique in large deviations. We remark that Lemma 2.3 in [29] is equivalent to Corollary 2 in
Davies [18], hence it can also be proved by using an analytic method.

Similar to the proof of Theorems 3.1 and 1.1, we obtain the following theorem for the local time Lt at zero of X . They are
in complement to the results of Hawkes [23] and Lacey [30] on the tail asymptotics for the local time Lt and the maximum
local time maxx∈R L(x, t), respectively.
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Theorem 4.2. Let L = {Lt, t � 0} be the local time at zero of a real-valued strictly stable Lévy process X = {Xt, t � 0} of index
1 < α � 2. Then the following two statements hold:

(i) For all 0 � a � b < ∞,

lim
t→∞

log E[exp(t(Lb − La))]
t

α
α−1

= (b − a)C(α,ν,χ), (4.3)

where C(α,ν,χ) is the constant defined by

C(α,ν,χ) =
[

	(1 − 1
α )	( 1

α )χ1/α cos( 1
α arctan(ν tan( πα

2 )))

πα[1 + (ν tan( πα
2 ))2]1/2α

] α
α−1

.

(ii) The pair (t−1/(α−1)(Lb − La), tα/(α−1)) satisfies LDP with good rate function Λ∗
2(x) = xα

α [( α
α−1 )(b −a)C(α,ν,χ)]−(α−1) if x > 0

and Λ∗
2(x) = ∞ if x � 0. That is, for every Borel set F ⊆ R,

lim sup
t→∞

t− α
α−1 log P

{
t− 1

α−1 (Lb − La) ∈ F
}

� − inf
x∈F

Λ∗
2(x) (4.4)

and

lim inf
t→∞ t− α

α−1 log P
{

t− 1
α−1 (Lb − La) ∈ F

}
� − inf

x∈F ◦ Λ∗
2(x). (4.5)

Proof. Similar to the proof of Theorem 3.1, Eq. (4.3) follows from Lemma 3.2 and the moment estimates in Lemma 2.1.
It follows from (i) that for all θ > 0,

lim
t→∞

log E[exp(θt(Lb − La))]
t

α
α−1

= (b − a)C(α,ν,χ)θα/(α−1). (4.6)

Denote

Λ2(θ) =
{

(b − a)C(α,ν,χ)θα/(α−1) if θ > 0,

0 if θ � 0.
(4.7)

Then, in the terminology of [20], Λ2 is an essentially smooth, continuous function on R and its Fenchel–Legendre transform
is given by

Λ∗
2(x) =

{
xα

α [( α
α−1 )(b − a)C(α,ν,χ)]−(α−1) if x > 0,

∞ if x � 0.
(4.8)

Therefore, as in the proof of Theorem 1.1, part (ii) follows from (4.6) and the Gärtner–Ellis theorem. �
Remark 4.3. Let F = [1,∞) in (4.4) and (4.5), we obtain the tail probability

lim
x→∞

log P{Lb − La > x}
xα

= − 1

α

[(
α

α − 1

)
(b − a)C(α,ν,χ)

]−(α−1)

. (4.9)

In case a = 0, the limit in (4.9) is weaker than the best known. By using the connection between Lt and a stable subordinator
of index 1−1/α, one can derive more precise result (i.e., without the logarithm) on limiting behavior of P{Lb > x} as x → ∞.
See Hawkes [23].

Theorem 1.2 is concerned with asymptotic behavior of the tail probability P{|Z H (b) −Z H (a)| > x} as x → ∞. In many
applications, however, it is useful to have sharp bounds on P{|Z H (b) − Z H (a)| > x} and P{maxa�t�b|Z H (t) − Z H (a)| > x}
that hold for all x > 0. In the rest of this section, we consider these questions and in the next section we use them to derive
upper bounds for the local and uniform moduli of continuity for Z H .

Lemma 4.4. There exists a finite constant A4 > 0, depending on H, α, ν and χ only, such that for all 0 � a < b < ∞ and all x > 0,

P
{∣∣Z H (b) − Z H (a)

∣∣ > x
}

� exp

(
−A4

x2α/(α+2H)

(b − a)2H(α−1)/(α+2H)

)
. (4.10)
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Proof. We consider the random variable

Λ = |Z H (b) − Z H (a)|
(b − a)H(α−1)/α

.

As in the proof of Lemma 2.2, we apply a conditioning argument and Lemma 2.1 to show that for all integers n � 1,

E
(
Λn)

� An
5nn(α+2H)/(2α), (4.11)

where A5 > 0 is a constant depending on H , α, ν and χ only.
For any constant A6 > 0, the Markov inequality and (4.11) imply that for all u > 0,

P{Λ > A6u} �
An

5nn(α+2H)/(2α)

An
6un

=
(

A5

A6

)n(
n(α+2H)/(2α)

u

)n

. (4.12)

By taking the constant A6 � e A5 and n = �u2α/(α+2H)�, we obtain

P
{∣∣Z H (b) − Z H (a)

∣∣ > A6(b − a)H(α−1)/αu
}

� exp
(−u2α/(α+2H)

)
. (4.13)

It is clear that (4.10) follows from (4.13) by letting x = A6(b − a)H(α−1)/αu. �
Next we apply Lemma 4.4 and a result of Móricz et al. [32] to prove the following theorem.

Theorem 4.5. There exist positive and finite constants A7 and A8 , depending on H, α, ν and χ only, such that for all 0 � a < b < ∞
and all x > 0,

P

{
max

a�t�b

∣∣Z H (t) − Z H (a)
∣∣ > x

}
� A7 exp

(
−A8

x2α/(α+2H)

(b − a)2H(α−1)/(α+2H)

)
. (4.14)

Proof. For any integer n � 2, we divide the interval [a,b] into n subintervals of length (b − a)/n. Let tn,i = a + i(b−a)
n

(i ∈ {0,1, . . . ,n}) be the end-points of these subintervals. By the sample path continuity of Z H , it suffices to show that

P

{
max

1�i�n

∣∣Z H (tn,i) − Z H (a)
∣∣ > x

}
� A7 exp

(
−A8

x2α/(α+2H)

(b − a)2H(α−1)/(α+2H)

)
(4.15)

for all integers n � 2.
To this end, we define the random variables ξi = Z H (tn,i+1) − Z H (tn,i) for i ∈ {0,1, . . . ,n − 1}. Then for all integers

0 � j < k � n, we have

Z H (tn,k) − Z H (tn, j) =
k−1∑
i= j

ξi := S( j,k). (4.16)

Applying Lemma 4.4, we see that for all integers j < k,

P
{∣∣S( j,k)

∣∣ > x
}

� exp

(
−A4

(
n

(b − a)(k − j)

)2H(α−1)/(α+2H)

x2α/(α+2H)

)
. (4.17)

Using the notation in [32], we denote φ(x) = x2α/(α+2H) and

g( j,k) = A4

(
(b − a)(k − j)

n

)2H(α−1)/(α+2H)

.

For simplicity denote r = 2H(α − 1)/(α + 2H). Since r ∈ (0,1), the concavity of the function t �→ tr implies that for all
integers 1 � i � j < k � n,

g(i, j) + g( j + 1,k) � 21−r g(i,k). (4.18)

Hence the function g satisfies the property of quasi-superadditivity with index Q = 21−r in [32]. Moreover, the functions φ

and g satisfy all the other conditions of Theorem 2.2 in Móricz et al. [32]. Consequently, the latter implies the existence
of positive and finite constants A7 and A8 (depending on H , α, ν and χ only) such that (4.15) holds. This proves Theo-
rem 4.5. �
Remark 4.6. Note that, when H = 1/2, one can apply the reflection principle of Brownian motion and conditioning to prove
Theorem 4.5. Our method is much more general.
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5. Applications

Applying the large deviation results in the previous section, we establish uniform and local moduli of continuity for Z H .

Theorem 5.1. Let Z H = {Z H (t), t � 0} be an α-stable local time H-fractional Brownian motion with values in R. Then there exists a
finite constant A9 > 0 such that for all constants 0 � a < b < ∞, we have

lim sup
h↓0

sup
a�t�b−h

sup
0�s�h

|Z H (t + s) − Z H (t)|
hH(α−1)/α(log 1/h)(α+2H)/(2α)

� A9 a.s. (5.1)

Proof. For every t � 0 and h > 0, it follows from (4.13) that

P
{∣∣Z H (t + h) − Z H (h)

∣∣ > A6hH(α−1)/αu
}

� exp
(−u2α/(α+2H)

)
. (5.2)

Hence Z H = {Z H (t), t � 0} satisfies the conditions of Lemmas 2.1 and 2.2 in [13] with σ(h) = hH(α−1)/α and β = 2α
α+2H .

Consequently (5.1) follows directly from Theorem 3.1 in [13]. �
Csáki, Földes and Révész [17] obtained a Strassen type law of the iterated logarithm (LIL) for Z(t) = W (Lt) when Lt is

the local time at zero of a symmetric stable Lévy process (see Theorem 2.4 in [17]). Part (i) of the following theorem extends
partially their result to Z H and part (ii) describes the local oscillation of Z H in the neighborhood of any fixed point.

Theorem 5.2. Let Z H = {Z H (t), t � 0} be an α-stable local time H-fractional Brownian motion with values in R. The following
statements hold:

(i) Almost surely,

lim sup
t→∞

max0�s�t |Z H (s)|
t H(α−1)/α(log log t)(α+2H)/(2α)

� A−(α+2H)/(2α)

8 . (5.3)

(ii) For every t > 0, almost surely

lim sup
h→0

max|s|�h|Z H (t + s) − Z H (t)|
hH(α−1)/α(log log 1/h)(α+2H)/(2α)

� A−(α+2H)/(2α)

8 . (5.4)

In the above, A8 is the constant in (4.14).

Proof. Since both (5.3) and (5.4) follow from Theorem 4.5 and a standard Borel–Cantelli argument, we only prove (5.3).
Fix two arbitrary constants γ > A−1

8 and ρ > 1. For every integer n � 1, let Tn = ρn and consider the event

En =
{
ω: max

0�t�Tn

∣∣Z H (s)
∣∣ > T H(α−1)/α

n U (Tn)
}
,

where U (t) = (γ log log t)(α+2H)/(2α) . It follows from Theorem 4.5 that

P(En) � A7 exp

(
−A8

(T H(α−1)/α
n U (Tn))2α/(α+2H)

T 2H(α−1)/(α+2H)
n

)
� A10n−A8γ . (5.5)

Since A8γ > 1, we have
∑∞

n=1 P(En) < ∞. The Borel–Cantelli lemma implies that

lim sup
n→∞

max0�s�Tn |Z H (s)|
T H(α−1)/α

n U (Tn)
� 1 a.s. (5.6)

Note that Tn+1/Tn = ρ for every n � 1. We use the monotonicity to derive that for all t ∈ [Tn, Tn+1],
max0�s�t |Z H (s)|

t H(α−1)/αU (t)
� ρH(α−1)/α max0�s�Tn+1 |Z H (s)|

T H(α−1)/α
n+1 U (Tn+1)

U (Tn+1)

U (Tn)
. (5.7)

Eqs. (5.6) and (5.7) imply

lim sup
t→∞

max0�s�t |Z H (s)|
t H(α−1)/α(log log t)(α+2H)/(2α)

� ρH(α−1)/αγ (α+2H)/(2α) a.s. (5.8)

We obtain (5.3) from (5.8) by letting γ ↓ A−1
8 and ρ ↓ 1 along rational numbers. �

Remark 5.3. We believe that, up to a constant factor, both uniform and local moduli of continuity of Z H (t) are sharp.
However, we have not been able to prove this due to the lack of information on the dependence structure of the process Z H .
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