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Abstract Technological platforms have advanced to
a stage where many biological entities, e.g., genes, tran-
scripts, and proteins, can be measured on the whole
genome scale, yielding massive high-throughput ’omics
data, such as genetic, genomic, epigenetic, protemic, and
metabolomic data. The ’omics era provides and unprece-
dented promise of understanding common complex dis-
eases, developing strategies for disease risk assessment,
early detection, and prevention and intervention, and
personalized therapies. In genetical genomics studies,
it is important to jointly analyze gene expression data
and genetic variants in exploring their associations with
complex traits. This is for the discussion of the paper
(Huang et al., 2014).
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1 Preliminary

1.1 Variance component test in GLM

In this section, we will recall some useful results for the variance component testing in
generalized linear model with mixed effects (Lin, 1997).

Consider the following generalized linear mixed model

E(Y |b) = µb,Var(Y |b) = diag{φa−1i v(µbi)};
g(µb) = ηb = Xα + Zb,

b ∼ F (0,D(θ)),

(1)

where g(·) is a monotonic differentiable link function, and the covariance matrix of the
random effects has the property that θ = 0 implies D(θ) = 0.

1. First of all by GLM theory we have the conditional log-quasilikelihood of α given
b

li(α; b) ∝
∫ µbi

yi

ai(Yi − u)

φv(u)
du. (2)

Note that for the logistic mixed model, we have the conditional log-likelihood, so
we could just use it here.

2. Then we have the marginal (integrated) quasilikelihood of (α,θ)

L(α,θ) =

∫ ∏
i

exp(li(α; b))dF (b;θ) =

∫
exp(

n∑
i=1

li(α; b))dF (b;θ). (3)

3. Approximate the above likelihood (3) by using Laplace method since its hard to
calculate the integral:

exp(

n∑
i=1

li(α; b)) ≈ exp
{ n∑
i=1

li(α; 0)
}{

1 +

n∑
i=1

∂li(α; 0)

∂ηi
Zᵀ
ib

+
1

2
bᵀ[{ n∑

i=1

∂li(α; 0)

∂ηi
Zi}{

n∑
i=1

∂li(α; 0)

∂ηi
Zᵀ
i }+

n∑
i=1

∂2li(α; 0)

∂η2i
ZiZ

ᵀ
i

]
b
}
,

L(α,θ) =Eb

{
exp(

n∑
i=1

li(α; b))
}
≈ exp

{ n∑
i=1

li(α; 0)
}

{
1 +

1

2
tr
([
{
n∑
i=1

∂li(α; 0)

∂ηi
Zi}{

n∑
i=1

∂li(α; 0)

∂ηi
Zᵀ
i }+

n∑
i=1

∂2li(α; 0)

∂η2i
ZiZ

ᵀ
i

]
D(θ)

)}
,

l(α,θ) = logL(α,θ) ≈
n∑
i=1

li(α; 0)

+
1

2
tr
([
{
n∑
i=1

∂li(α; 0)

∂ηi
Zi}{

n∑
i=1

∂li(α; 0)

∂ηi
Zᵀ
i }+

n∑
i=1

∂2li(α; 0)

∂η2i
ZiZ

ᵀ
i

]
D(θ)

)
.

(4)

Omics Data Integration • Honglang Wang page 2 of 19



4. A global score statistic for testing H0 : θ = 0 is constructed as follows:

χ2
G := Uθ(α̂)ᵀĨ(α̂)−1Uθ(α̂) (5)

where α̂ is the MLE estimator under the null hypothesis (which is the usual gen-
eralized linear model), Uθ(α) is the gradient vector ∂l(α,θ)/∂θ, and Ĩ is the
information matrix of θ under the null, which takes the form

Ĩ = Iθθ − IᵀαθI
−1
ααIαθ,

with Iαθ = E( ∂l∂α
∂l
∂θᵀ ), Iθθ = E( ∂l∂θ

∂l
∂θᵀ ) and Iαα = E( ∂l∂α

∂l
∂αᵀ ).

1.2 Mediation Analysis

Mediation analysis (VanderWeele and Vansteelandt, 2010) is just one type of causal
inference in statistics (Rubin, 1990).

Figure 1: Example of mediation with exposure A, mediator M, outcome Y, and covariates C.

We will let A denote an exposure of interest, Y a dichotomous outcome, and M
a potential mediator. We let C denote a set of baseline covariates not affected by
the exposure. The relations among these variables are depicted in Figure (1). For
example, A may denote genetic variants such as SNP, M m-RNA expression level, and
Y cardiovascular disease. A question of interest may then be the extent to which the
effect of genetic variants A on cardiovascular disease Y is mediated through m-RNA
expression level M and the extent to which it is through other ways.

Let Y (a,m) be the potential outcome that would have been observed if A = a and
M = m, and M(a) be the potential outcome of M had the A been set to a.

The direct effect of SNPs is the effect of the SNPs on the disease outcome that is
not through gene expression, whereas the indirect effect is the effect of the SNPs on the
disease outcome that is through the gene expression. We can define the direct effect
(DE), the indirect effect (IE) and the total effect (TE) of the SNPs, respectively, on the
log odds ratio (OR) scale as:

1. the total effect (TE), conditional on C = c, comparing exposure level a with a∗, is
defined by

logORTEa,a∗|c = logit(P(Y (a,M(a)) = 1))− logit(P(Y (a∗,M(a∗)) = 1)).
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2. the direct effect (DE), conditional on C = c and M = M(a), comparing exposure
level a with a∗, is defined by

logORDEa,a∗|c(a) = logit(P(Y (a,M(a)) = 1))− logit(P(Y (a∗,M(a)) = 1)).

3. the indirect effect (IE), conditional on C = c and A = a, comparing exposure level
a with a∗, is defined by

logORIEa,a∗|c(a) = logit(P(Y (a,M(a)) = 1))− logit(P(Y (a,M(a∗)) = 1)).

Thus we have that

logORTEa,a∗|c = logORDEa,a∗|c(a) + logORIEa,a∗|c(a
∗).

2 Summary of the paper

2.1 Methodology

In this paper, the authors proposed to jointly model a set of SNPs within a gene, a gene
expression, and disease status, where a logistic model is used to model the dependence
of disease status on the SNP set and the gene expression, and a linear model is used for
the dependence of the gene expression on the SNP-set, both adjusting for covariates. We
are primarily interested in testing whether a gene, whose effects are captured by SNPs
and/or gene expression, is associated with a disease phenotype.

A SNP-set and gene expression pair can be defined in multiple ways. For example,
the SNP-set is the SNPs in a gene and the expression of the gene. Alternatively, one
can choose the SNP-set as the eQTLs of the corresponding gene expression.

Consider the following model:

logit{P(Yi = 1|Si, Gi,Xi;βS,γ)} = Xᵀ
iα + Sᵀ

iβS +GiβG + Cᵀ
i γ, i = 1, 2, · · · , n (6)

where α ∈ Rq,βS ∈ Rp,γ ∈ Rp, βG ∈ R, Xi is the q−dim vector of covariates, Si is the
p−dim vector of SNPs, Gi ∈ R is the expression level, Ci = GiSi is the interaction, and
Yi is the dichotomous response. And since the SNPs in a gene might be large and some

might be highly correlated (due to linkage disequilibrium), we assume βS,j
IID∼ (0, τS)

and γj
IID∼ (0, τI). We are interested in the following global test problem

H0 : τS = τI = βG = 0. (7)

Remark. How to understand our hypothesis testing in terms of the mediation analysis?
In order to do this, we have to introduce the model which states the relationship between
Gi and (Xi,Si):

Gi = Xᵀ
iφ + Sᵀ

i δ + εi, (8)
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where εi ∼ N(0, σ2G). Now we are ready to calculate the TE, DE and IE by the following
formula

logORTEs,s∗|x =(s− s∗)ᵀ
{
βS + βGδ + γ(xᵀφ + s∗ᵀδ + βGσ

2
G) + δsᵀγ

}
+

1

2
σ2G(s + s∗)ᵀγ(s− s∗)ᵀγ,

logORDEs,s∗|x(s) =(s− s∗)ᵀ
{
βS + γ(xᵀφ + s∗ᵀδ + βGσ

2
G)
}

+
1

2
σ2G(s + s∗)ᵀγ(s− s∗)ᵀγ,

logORIEs,s∗|x(s∗) =(s− s∗)ᵀ
{
βS + δsᵀγ

}
.

(9)

Then we have the following explanation:

1. If δ 6= 0, i.e. the gene expression is associated with the SNPs, then H0 : βS =
0, βG = 0,γ = 0 ⇔ H0 : DE = 0, IE = 0. The test for the joint effects of SNPs
in a SNP set and a gene expression on disease, i.e. the total effect of a gene, is
equivalent to a test for the total SNP effect on the disease.

2. If δ = 0, i.e. the gene expression is not associated with the SNPs, then H0 : βS =
0, βG = 0,γ = 0 simply ties to evaluate the joint effect of SNP-set, gene expression
and the interaction on disease.

By the above general methodology for the variance component testing, we have the
following score statistics for τS , τI , βG

US = (Y − µ̂0)
ᵀSSᵀ(Y − µ̂0), UI = (Y − µ̂0)

ᵀCCᵀ(Y − µ̂0), UG = (Y − µ̂0)
ᵀGGᵀ(Y − µ̂0),

(10)

where µ̂0 is the MEL of the mean of Y under the null hypothesis H0 by using the
standard method in GLM.

The authors proposed the following weighted sum of three scores as the test statistic
for the null hypothesis:

Q =
1

n

{
w1US + w2UG + w3UI

}
, (11)

where the weights w1, w2, w3 are chosen to be the inverse of the standard deviation of
the US , UG, UI , which can be calculated explicitly (Lin, 1997) as follows

1/w2
1 = 1ᵀ(SSᵀ ·K · SSᵀ)1, 1/w2

2 = 1ᵀ(GGᵀ ·K ·GGᵀ)1, 1/w2
3 = 1ᵀ(CCᵀ ·K ·CCᵀ)1,

(12)

where K = ((Kij)) with Kii = −4µ̂40i + 8µ̂30i − 5µ̂20i + µ̂0i and for i 6= j, Kij = 2[µ̂0i(1−
µ̂0i)][µ̂0j(1− µ̂0j)]. Here A ·B denotes the component-wise multiplication.
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Now the asymptotic distribution of our test statistic Q under the null hypothesis can
be derived as follows.

Q =
1

n

{
w1US + w2UG + w3UI

}
=

1

n
(Y − µ̂0)

ᵀ{w1SSᵀ + w2GGᵀ + w3CCᵀ}(Y − µ̂0)

=
1

n
(Y − µ̂0)

ᵀ(√w1S,
√
w2G,

√
w3C

)(√
w1S,

√
w2G,

√
w3C

)ᵀ
(Y − µ̂0)

=
1

n
(Y − µ̂0)

ᵀVVᵀ(Y − µ̂0) = ‖ 1√
n

Vᵀ(Y − µ̂0)‖22 = ‖ 1√
n

n∑
i=1

Vi(Yi − µ̂0i)‖22

where Vi = (
√
w1S

ᵀ
i ,
√
w2Gi,

√
w3C

ᵀ
i )

ᵀ ∈ R2p+1.
Note that for SU (θ) := 1√

n

∑n
i=1 Ui(Yi − µi) with Ui = (Xᵀ

i ,V
ᵀ
i ) ∈ Rq+2p+1, where

θ = (αᵀ,βᵀ
S, βG,γ

ᵀ)ᵀ with θ0 = (α0ᵀ,0ᵀ, 0,0ᵀ)ᵀ, from the GLM theory, we have that
(not rigorous)

SU (θ0)
d→ N(0,D) (13)

where D =

(
DXX DXV

DV X DV V

)
= n−1UᵀWU with W = diag{µi(1− µi)}.

By Taylor expansion, we have

1√
n

n∑
i=1

Vi(Yi − µ̂0i) ≈ ASU (θ0)

where A = (−Dᵀ
XV D−1XX , I2p+1), and then

1√
n

n∑
i=1

Vi(Yi − µ̂0i)
d|H0→ N(0,ADAᵀ), (14)

which implies the following mixture of χ2 asymptotic distribution

Q = ‖ 1√
n

n∑
i=1

Vi(Yi − µ̂0i)‖22
d|H0→

2p+1∑
l=1

(Aᵀ
l ε)2 := Q0 (15)

where Al is the l−th row of A and ε ∼ N(0,D).
And people use a scaled χ2 distribution by matching the first two moments to approx-

imate the mixture of χ2 distribution, i.e. Q0 ≈ κχ2
ν , with κ = Var(Q0)/(2E(Q0)) and

ν = 2[E(Q0)]
2/Var(Q0).

The paper want to demonstrate the following points:

1. For eQTL SNPs, i.e. δ 6= 0, the null hypothesis is equivalent to no total genetic
effect, which is defined above.

2. For non eQTL SNPs, i.e. δ = 0, then there is no such equivalence.
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3. For traditional SNP only genetic analysis, we use the following model

logit{P(Yi = 1|Si,Xi)} = Xᵀ
iα
∗ + Sᵀ

iβ
∗
S, i = 1, 2, · · · , n, (16)

for testing H0 : β∗S = 0. If our integrative model is true without interaction, then
we have the following random intercept true model

logit{P(Yi = 1|Si,Xi, εi)} = Xᵀ
i (α + βGφ) + Sᵀ

i (βS + βGδ) + βGεi, i = 1, 2, · · · , n,

which leads to by integrating the random intercept out

logit{P(Yi = 1|Si,Xi)} ≈ c
{

Xᵀ
i (α + βGφ) + Sᵀ

i (βS + βGδ)
}
, i = 1, 2, · · · , n.

Thus testing H0 : β∗S = 0 is approximately equivalent to testing for no total effect
of the SNPs.

And if with interaction, it can be shown that the difference is that traditional
approach will lose power.

2.2 Implementation

In order to raise the power for different alternatives such as only SNPs, (SNPs,gene
expression), and (SNPs, gene expression, interaction), which correspond to the following
three test statistics

QSGC =
1

n
(Y − µ̂0)

ᵀ{w1SSᵀ + w2GGᵀ + w3CCᵀ}(Y − µ̂0),

QSG =
1

n
(Y − µ̂0)

ᵀ{w1SSᵀ + w2GGᵀ}(Y − µ̂0),

QS =
1

n
(Y − µ̂0)

ᵀ{w1SSᵀ}(Y − µ̂0),

(17)

the authors proposed to use the minimum of the three p-values as the new test statistic.
But the null distribution of the minimum p-values is hard to derive. So we resort to the
score-based wild bootstrapping (Kline and Santos, 2012).

1. Generate the bootstrapped score:

ε∗b =
1√
n

n∑
i=1

Ui(Yi − µ̂0i)Ni, b = 1, 2, · · · , B,

where Ni
IID∼ N(0, 1).

2. Produce three p-values: first notice that the three different Q0,SGC , Q0,SG, Q0,S

correspond to the three different matrix A with different Vi = (
√
w1S

ᵀ
i ,
√
w2Gi,
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√
w3C

ᵀ
i )

ᵀ, (
√
w1S

ᵀ
i ,
√
w2Gi)

ᵀ and
√
w1Si respectively. And we denote these three

different A by ASGC ,ASG,AS . Then we have

Q∗b0,SGC = ‖ASGCε
∗b‖22,

Q∗b0,SG = ‖ASGε
∗b‖22,

Q∗b0,S = ‖ASε
∗b‖22,

(18)

which leads to the three different p-values

P̂SGC = P∗(Q∗0,SGC > QSGC), P̂SG = P∗(Q∗0,SG > QSG), P̂S = P∗(Q∗0,S > QS),

(19)

which can be estimated by
∑B

b=1 1(Q∗b0,SGC > QSGC)/B,
∑B

b=1 1(Q∗b0,SG > QSG)/B,
∑B

b=1 1(Q∗b0,S >
QS)/B.

3. The minimum p-value statistic is now P̂min = min{P̂SGC , P̂SG, P̂S}, whose null
distribution can be approximated by the empirical distribution of

{P̂ bmin = min{P∗(Q∗0,SGC > Q∗b0,SGC),P∗(Q∗0,SG > Q∗b0,SG),P∗(Q∗0,S > Q∗b0,S)}}Bb=1,

where the items such as P∗(Q∗0,SGC > Q∗b0,SGC) can be approximated by
∑B

b′=1 1(Q∗b
′

0,SGC >

Q∗b0,SGC)/B.

4. The p-value for the minimum p-value statistic can be calculated via

B∑
b=1

1(P̂min < P̂ bmin)/B.

3 Simulation

3.1 Linkage Disequilibrium

There are four types of Haplotype for two loci in Table 1. And the data structure is
usually given by the Table 2.

B b Total
A pAB pAb pA
a paB pab pa

Total pB pb 1

Table 1: Haplotype Frequencies. For two loci, locus A and locus B, there are four
haplotypes: AB, Ab, aB, ab.
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BB(PBB) Bb(PBb) bb(Pbb)
AA(PAA) n22(p

2
AB) n21(2pABpAb) n20(p

2
Ab)

Aa(PAa) n12(2pABpaB) n11(2pABpab + 2pAbpaB) n10(2pAbpab)
aa(Paa) n02(p

2
aB) n01(2paBpab) n00(p

2
ab)

Table 2: Data Structure and expected genotype frequencies (assuming a ran-
dom mating). For two loci, locus A and locus B, there are four haplotypes:
AB, Ab, aB, ab. n =

∑
i,j=0,1,2 nij .

Linkage Equilibrium (Expected for Distant Loci) means two loci A and B are inde-
pendent, which is equivalent to the follows from the contingency table

pAB = pApB,

which implies the following three

pAb = pApb, paB = papB, pab = papb.

Then Linkage Disequilibrium (Expected for Nearby Loci) means

pAB 6= pApB.

And we have the coefficient of linkage disequilibrium (LD) between the two loci in the
population,

D = pAB − pApB (20)

which reflects the degree of LD. The larger D, the stronger LD.
Since D corresponds to the covariance between the loci, we have the following stan-

dardized version

r = D/
√
pA(1− pA)pB(1− pB). (21)

In summary, if we are given pA, pB and r, then we can calculate D, and then the
haplotype frequencies such as pAB. Then we will have the genotype frequencies such as
pAaBB. And then by the conditional arguments, we can simulate the data such as

P (Bb|aa) =
P (aaBb)

P (aa)
=

2paBpab
paa

.

3.2 Simulation Results

We tried the simulation for the following date generation:
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We have q=1, i.e. with X only the intercept and p=10 SNPs

p=10;n=c(100,200,500)

pAs=c(0.1,0.15,0.1,0.2,0.25,0.1,0.2,0.05,0.4,0.3)#MAF

rs=c(0.1,0.8,0.5,0.4,-0.3,-0.2,0.2,0.15,0.4)#r

k0=4#the fourth one is the only causal SNP

delta=c(0, 0.5, 1)

beta_S=c(0, 0.1, 0.2, 0.3, 0.4, 0.5))

beta_G=c(0, 0.2, 0.5)

gamma=c(0, 0.2, 0.5)

generate SNP-set with LD structure

FSNP=sample(2:0,n,replace=TRUE,c(pAs[1]^2,2*pAs[1]*(1-pAs[1]),(1-pAs[1])^2))

SNP_data=FSNP

for(j in 2:p)

NSNP=genSNP(FSNP, rs[j-1], pAs[j-1],pAs[j]) FSNP=NSNP SNP_data=cbind(SNP_data,FSNP)

generate m-RNA expression data by the linear model without covariates

G=matrix(delta*SNP_data[,k0]+rnorm(n),ncol=1)

generate the response

eta=-0.2+beta_S*SNP_data[,k0]+beta_G*G+gamma*SNP_data[,k0]*G

p_response=apply(matrix(eta,ncol=1),1,function(x) exp(x)/(1+exp(x)))

Y=apply(matrix(p_response,ncol=1),1,function(x) rbinom(1,1,x))
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Figure 2: Empirical Size and Power. We used the score-based bootstrapping here.
N=500, B=500.
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(b) δ = 0, βG = 0.2, γ = 0.5
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(c) δ = 0, βG = 0.5, γ = 0
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(d) δ = 0, βG = 0.5, γ = 0.2

Figure 3: Empirical Size and Power. We used the score-based bootstrapping here.
N=500, B=500.
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(a) δ = 0, βG = 0.5, γ = 0.5
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(b) δ = 0.5, βG = 0, γ = 0
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(c) δ = 0.5, βG = 0, γ = 0.2
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(d) δ = 0.5, βG = 0, γ = 0.5

Figure 4: Empirical Size and Power. We used the score-based bootstrapping here.
N=500, B=500.

Omics Data Integration • Honglang Wang page 13 of 19



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.05

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5

βS

po
w

er

(a) δ = 0.5, βG = 0.2, γ = 0
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(b) δ = 0.5, βG = 0.2, γ = 0.2
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(c) δ = 0.5, βG = 0.2, γ = 0.5
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(d) δ = 0.5, βG = 0.5, γ = 0

Figure 5: Empirical Size and Power. We used the score-based bootstrapping here.
N=500, B=500.
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(a) δ = 0.5, βG = 0.5, γ = 0.2
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(b) δ = 0.5, βG = 0.5, γ = 0.5
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(c) δ = 1, βG = 0, γ = 0
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(d) δ = 1, βG = 0, γ = 0.2

Figure 6: Empirical Size and Power. We used the score-based bootstrapping here.
N=500, B=500.
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(a) δ = 1, βG = 0, γ = 0.5
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(b) δ = 1, βG = 0.2, γ = 0
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(c) δ = 1, βG = 0.2, γ = 0.2
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(d) δ = 1, βG = 0.2, γ = 0.5

Figure 7: Empirical Size and Power. We used the score-based bootstrapping here.
N=500, B=500.
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(a) δ = 1, βG = 0.5, γ = 0
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(b) δ = 1, βG = 0.5, γ = 0.2
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(c) δ = 1, βG = 0.5, γ = 0.5

Figure 8: Empirical Size and Power. We used the score-based bootstrapping here.
N=500, B=500.
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From the simulation results, we could see that

1. For δ = 0 case, in general, the model which is closest to the true model has the
highest power.

2. For δ 6= 0 case, it will have more power to detect some particular alternative
hypothesis that the genetic effect is indirectly through expression level. Look at
Figure 5 and compare the Plot (5a) and Plot (5d).

4 Discussion

4.1 Another way

For simplicity, we consider (note that our goal is testing the association between the
outcome and a set of SNPs)

Yi = Gᵀ
iβG + ε1i, (22)

Gᵀ
iβG = Sᵀ

iαS + ε2i (23)

and thus we have

Yi = Sᵀ
i γS + εi, (24)

where γS = αS , εi = ε1i + ε2i ∼ N(0, σ21 + σ22). The null hypothesis:

H0 : αS = 0, i.e. γS = 0 (25)

which is equivalent to no genetic effect. And this true model is reflecting our primary
interest of alternative that Si is associated with Yi through regulation of the expression
of Gi (Zhao et al., 2014).

If our integrative model is true, and the null hypothesis of no association between Si
and Yi is equivalent to αS = 0 in the integrative model and γS = 0 in the usual linear
model. Now the question is which one is more powerful.

1. Usual linear model: γ̂S = (SᵀS)−1SᵀY with Var(γ̂S) = Σ−1SS(σ21 + σ22)/n where
ΣSS = E(SiS

ᵀ
i ).

2. Integrative model: we first have β̂G = (GᵀG)−1GᵀY and then we have α̂S =
(SᵀS)−1SᵀGβ̂G. So Var(α̂S) = Var(α̂S − αS) = Var((SᵀS)−1SᵀGβ̂G − αS) =
Var((SᵀS)−1SᵀGβ̂G−(SᵀS)−1SᵀSαS) = Var((SᵀS)−1SᵀGβ̂G−(SᵀS)−1SᵀGβG+
(SᵀS)−1SᵀGβG − (SᵀS)−1SᵀSαS) = Var((SᵀS)−1SᵀGβ̂G − (SᵀS)−1SᵀGβG) +
Var((SᵀS)−1SᵀGβG− (SᵀS)−1SᵀSαS) = Σ−1SSΣSGΣ−1GGΣGSΣ−1SSσ

2
1/n+ Σ−1SSσ

2
2/n.

3. Now for Si ∈ Rp, we take p = 1 for illustration. So if Σ−1SSΣSGΣ−1GGΣGS < 1
we will have Var(α̂S) < Var(γ̂S). If Gene expression are independent, then it’s
equivalent to ‖Corr(Si,Gi)‖22 < 1. In other words, we gain the most power if the
Gi are weakly correlated with Si. This is sensible, because otherwise the expression
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data would add little additional information. In the extreme case where they are
perfectly correlated, our integrative analysis would be no different from a standard
analysis. On the other hand, while the integrative approach has more relative
power for weak correlations, its absolute power can be low if the correlations are
two low, as in the extreme case where the correlation is zero we have αS = 0, i.e.
null hypothesis holds. In the ideal setting, the correlations are weak but αS is still
large, which only possible when Gi is highly associated with Yi so that βG is large.

4.2 Research Direction

1. How to generalize it to the nonlinear interaction situation?

2. Recently Haris et al. (2014) proposed how to fit the following interaction model

logit{P(Yi = 1} = Sᵀ
iβS + Gᵀ

iβG + Sᵀ
iBGi, i = 1, 2, · · · , n (26)

under the strong heredity condition that if an interaction term is included in the
model then both of the corresponding main effects must be present or weak hered-
ity that if an interaction term is included in the model then at least one of the
corresponding main effects must be present. That is variable selection with the
constraints.
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