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1 Introduction

1.1 Bias-Variance Trade-off Perspective

Consider a small simulation study with n = 50 and p = 30. The entries of the predictor
matrix X ∈ R50×30 were all drawn IID from N(0, 1). The true model is

Yi = Xᵀ
iβ

0 + εi

where εi IID N(0, 1) and the true coefficient vector β0 has 10 large components (between 0.5
and 1) and 20 small components (between 0 and 0.3). For the linear regression estimator

β̂
ols

= (XᵀX)−1XᵀY, we have the expected test error

E{Ynew −Xᵀ
newβ̂

ols}2 = σ2 + σ2p/n,

where the first term is the irreducible error, the second term comes entirely from the variance
of the linear regression estimate and its bias is exactly zero. Thus if we add another predictor
variable into the mix, then it will add the same amount of variance, σ2/n, regardless of
whether its true coefficient is large or small (or zero). So in the example, we were “spending”
variance in trying to fit truly small coefficients—there were 20 of them, out of 30 total.

One might think therefore that we can we do better by shrinking small coefficients
towards zero, which potentially introduces some bias, but also potentially reduces the vari-
ance. In other words, this is trying to ignore some “small details” in order to get a more
stable “big picture”. If done properly, this will actually work.

1.2 Compressive Sensing Perspective

In many practical problems of science and technology, one encounters the task of inferring
quantities of interest from measured information. For instance, in signal and image pro-
cessing, one would like to reconstruct a signal from measured data. When the information
acquisition process is linear, the problem reduces to solving a linear system of equations.
In mathematical terms, the observed data Y ∈ Rn is connected to the signal β0 ∈ Rp of
interest via

Y = Xβ0, (1)
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where the matrix X ∈ Rn×p models the linear measurement process. Then one tries to
recover the vector β0 by solving the above linear system. In compressive sensing setup, the
linear system will be under-determined, i.e. n < p. That is we have too many (infinitely
many) solutions to the system, and we need to pick one out with the property we need.
The property we need is just the additional structure assumption for the truth. And people
found that surprisingly under the sparsity assumption, it is possible to reconstruct signals
in the under-determined situation. And the research area associated with this phenomenon
has become known as compressive sensing or sparse recovery.

Looking closer at the standard compressive sensing problem consisting in the reconstruc-
tion of a sparse vector β0 from under-determined measurements Y = Xβ0 one essentially
identifies two questions:

1. How should one design the linear measurement process? In other words, what matrix
X are suitable? (Note that this is important since we know for sure that for some
design matrix X the reconstruction is impossible.)

2. How can one reconstruct β0 from under-determined measurements Y = Xβ0? In
other words, what are efficient reconstruction algorithms?

Producing adequate design (measurement/information) matrices X is a remarkably in-
triguing endeavor. To data, it is an open problem to construct explicit matrices which are
provably optimal in a conpressive sensing setting. A breakthrough is achieved by resorting
to random matrices—this discovery can be viewed as the birth of compressive sensing. A
key result in compressive sensing states that with high probability on the random draw of
an n × p Gaussian matrix (with IID entries from N(0,1)) X, all s-sparse vector β0 can be
reconstructed from Y = Xβ0 using a variety of algorithms provided

n ≥ Cs log(p/s), (2)

where C > 0 is a universal constant. This bound is in fact optimal.
Foucart and Rauhut (2013) discussed the way to connect the fixed design with the

random design described above. First of all, we introduce one popular algorithm is called
basis pursuit linear program, given by

β̂ ∈ arg min
β∈Rp

‖β‖1, s.t. Xβ = Y. (3)

In this noiseless observation models, the so called restricted nullspace property on the design
matrix X is both necessary and sufficient for the basis pursuit linear program to recover β0

exactly.

Definition 1. For a given subset S ⊆ {1, 2, · · · , p} and constant α ≥ 1, define the set

C (S, α) := {β ∈ Rp : ‖βSc‖1 ≤ α‖βS‖1}.

For a given sparsity index s ≤ p, we say that the matrix X ∈ Rn×p satisfies the restricted
nullspace condition of order s if null(X) ∩ C (S, 1) = {0} for all subsets S of cardinality s.
Note that null(X) = {β ∈ Rp : Xβ = 0}.
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And finally people answered that for the Gaussian matrices, the restricted nullspace
condition holds with high probability. Thus we got the whole picture behind this beautiful
theory:

1. One algorithm: basis pursuit linear programming.

2. One property: restricted null space property.

3. One random matrix theory: for some random matrices, the restricted nullspace con-
dition holds with high probability.

But is statistical and machine learning society, we are in the noise observation world.
Consider a linear regression model:

Y = Xβ0 + ε, (4)

where Y = (Y1, Y2, · · · , Yn)ᵀ ∈ Rn is a response vector, X = ((Xij)) ∈ Rn×p is a design
matrix with columns {Xj}pj=1 and rows {Xi}ni=1, and β0 ∈ Rp is a vector of unknown true

regression coefficients. ε independent with X has mean 0, and variance σ2I.
In the case of noisy observation, exact recovery of β0 is no longer possible. And we

will discuss to control the L2 error under the so called restricted eigenvalue condition for
the design matrix later. And people can also show that for for some random matrices, the
restricted eigenvalue condition holds with high probability.

2 Basic Properties of Lasso

For the liner model (4), the lasso solution is defined as

β̂ := β̂(λ) ∈ arg min
β∈Rp

‖Y−Xβ‖22/(2n) + λ‖β‖1, λ > 0. (5)

Karush-Kuhn-Tucker (KKT) Conditions By optimization theory, we have that the
solution to (5) if and only if the following KKT optimality conditions (i.e. the subgradient
of the objective is 0) are satisfied

Xᵀ(Y−Xβ̂)/n = λsign(β̂) := λγ, (6)

where γ = sign(β̂) = (sign(β̂1), · · · , sign(β̂p))
ᵀ with γj = sign(β̂j) ∈

{
sign(β̂j), if β̂j 6= 0

[−1, 1], if β̂j = 0
,

for j ∈ {1, 2, · · · , p}.
Let

E :=
{
j ∈ {1, 2, · · · , p} : |Xᵀ

j (Y−Xβ̂)|/n = λ
}

=
{
j ∈ {1, 2, · · · , p} : |γj | = 1

}
be the equicorrelation set which contains the variables that have maximal equal absolute
correlation with the residual. And let the equicorrelation signs s as

s := sign(Xᵀ
E(Y−Xβ̂)) = γE .
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Now the lasso solution can be written as

β̂\E = 0, (7)

β̂E : Xᵀ
E(Y− XE β̂E)/n = λs. (8)

By the following theorem about the uniqueness of the lasso solution Osborne et al.
(2000); Tibshirani et al. (2013), we have the nice description of the lasso solution which is
also given in the following theorem

Theorem 1. If the entries of X ∈ Rn×p are drawn from a continuous probability distribution
on Rnp, then for any Y and λ > 0, with probability one, the lasso solution is unique and is
given by

β̂\E = 0,

β̂E = (Xᵀ
EXE)

−1[Xᵀ
EY− nλs].

(9)

And the solution has at most n ∧ p nonzero components.

Remark. From this Proposition, we could see that the lasso solution shrink all of the
coefficients towards 0. For those in E , β̂E = (Xᵀ

EXE)
−1Xᵀ

EY − nλ(Xᵀ
EXE)

−1s shrinking
(Xᵀ
EXE)

−1Xᵀ
EY by nλ(Xᵀ

EXE)
−1s. For those in Ec, they are just shrinked to 0.

3 Algorithm

3.1 Single Linear Regression

With a single predictor (i.e. p = 1), L(β) = ‖Y − Xβ‖22/(2n) + λ|β|, the lasso solution is
very simple, and is a soft-thresholded version of the least squares estimate β̂ols. In fact, by

L′(β̂) = (XᵀXβ̂ − XᵀY)/n+ λsign(β̂) = 0,

we know if β̂ > 0, then (XᵀXβ̂−XᵀY)/n+λ = 0, i.e. β̂ = (XᵀX)−1XᵀY−n(XᵀX)−1λ = β̂ols−
n(XᵀX)−1λ; if β̂ < 0, then (XᵀXβ̂ −XᵀY)/n− λ = 0, i.e. β̂ = (XᵀX)−1XᵀY+ n(XᵀX)−1λ =
β̂ols + n(XᵀX)−1λ; and otherwise β̂ = 0. In summary, we have

β̂(λ) =


β̂ols − n(XᵀX)−1λ, if β̂ols > 0 and λ < n−1XᵀXβ̂ols = n−1XᵀX|β̂ols|
β̂ols + n(XᵀX)−1λ, if β̂ols < 0 and λ < −n−1XᵀXβ̂ols = n−1XᵀX|β̂ols|
0, if β̂ols = 0 or λ ≥ n−1XᵀX|β̂ols|

.

And since β̂ols = 0 is included in λ ≥ n−1XᵀX|β̂ols|, we finally have

β̂(λ) =


β̂ols − n(XᵀX)−1λ, if β̂ols > 0 and |β̂ols| > n(XᵀX)−1λ

β̂ols + n(XᵀX)−1λ, if β̂ols < 0 and |β̂ols| > n(XᵀX)−1λ

0, if |β̂ols| ≤ n(XᵀX)−1λ

(10)

= sign(β̂ols)(|β̂ols| − n(XᵀX)−1λ)+ := S(β̂ols, n(XᵀX)−1λ), (11)

where S(z, λ) := sign(z)(|z| − λ)+ is the soft threshold function.
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3.2 Coordinate Descent Algorithm

The simple optimization theory suggests that for f(x) = g(x) +
∑n

i=1 hi(xi) with g convex,
differentiable and each hi convex, we can use coordinate descent to find a minimizer: start
with some initial guess x(0), and repeat for k = 1, 2, 3, · · ·

x
(k)
1 ∈ arg min

x1
f(x1, x

(k−1)
2 , x

(k−1)
3 , · · · , x(k−1)n )

x
(k)
2 ∈ arg min

x2
f(x

(k)
1 , x2, x

(k−1)
3 , · · · , x(k−1)n )

x
(k)
3 ∈ arg min

x3
f(x

(k)
1 , x

(k)
2 , x3, · · · , x(k−1)n )

...

x(k)n ∈ arg min
xn

f(x
(k)
1 , x

(k)
2 , x

(k)
3 , · · · , xn)

The above “one-at-a-time” updating scheme is critical, and “all-at-once” scheme does not
necessarily converge Tseng (2001).

Now for our lasso problem (5), the objective function ‖Y − Xβ‖22/(2n) + λ‖β‖1 have
the separable non-smooth part ‖β‖1 =

∑p
j=1 |βj |. Thus we can use the above coordinate

descent algorithm.
And the solution expression we obtained for one single predictor is useful for the general

lasso solution since the objective function has the separable non-smooth part. In fact the
coordinate wise solution is given by for j ∈ {1, 2, · · · , p}

β̂j = S((Xᵀ
jXj)

−1Xj(Y− X\jβ̂\j), n(XᵀX)−1λ). (12)

Friedman et al. (2007) explored the “one-at-a-time” coordinate-wise descent algorithms
for some convex optimization problems from statistical analysis, including lasso.

4 Some Consistency Results

4.1 Prediction Consistency and L1 Consistency

Recall the lasso solution

β̂ := β̂(λ) = arg min
β∈Rp

‖Y−Xβ‖22/(2n) + λ‖β‖1, λ > 0.

Assume β0 is the truth. By the minimization property, we have

‖Y−Xβ̂‖22/(2n) + λ‖β̂‖1 ≤ ‖Y−Xβ0‖22/(2n) + λ‖β0‖1,

i.e.

‖Y−Xβ̂‖22/(2n) + λ‖β̂‖1 = ‖Xβ0 + ε−Xβ̂‖22/(2n) + λ‖β̂‖1
= ‖Xβ0 −Xβ̂‖22/(2n) + ‖ε‖22/(2n)− 2εᵀX(β̂ − β0)/(2n) + λ‖β̂‖1
≤ ‖Y−Xβ0‖22/(2n) + λ‖β0‖1 = ‖ε‖22/(2n) + λ‖β0‖1,
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which implies the following basic inequality

‖X(β̂ − β0)‖22/(2n) + λ‖β̂‖1 ≤ εᵀX(β̂ − β0)/n+ λ‖β0‖1. (13)

From (13), we could see that the random part involved there is εᵀX(β̂ − β0)/n, which
can be bounded by

|εᵀX(β̂ − β0)/n| ≤ max
1≤j≤p

{|εᵀXj |/n}‖β̂ − β0‖1. (14)

Now let’s introduce an event (which could be proved to have high probability for this
event to hold)

T :=
{

max
1≤j≤p

{|εᵀXj |/n ≤ λ0
}
. (15)

By working on this event, we can get rid of randomness.
On T , we have |εᵀX(β̂ − β0)/n| ≤ λ0‖β̂ − β0‖1, and hence

‖X(β̂ − β0)‖22/(2n) + λ‖β̂‖1 ≤ λ0‖β̂ − β0‖1 + λ‖β0‖1.

Let S := {j : β0j 6= 0} be the non-zero position set for the truth. By ‖β̂S − β0
S‖1 ≥

‖β0
S‖1 − ‖β̂S‖1, we have

‖β̂‖1 = ‖β̂S‖1 + ‖β̂Sc‖1 ≥ ‖β0
S‖1 − ‖β̂S − β0

S‖1 + ‖β̂Sc‖1.

And then

‖X(β̂ − β0)‖22/(2n) ≤ λ0‖β̂ − β0‖1 + λ‖β0‖1 − λ‖β̂‖1
≤ λ0{‖β̂S − β0

S‖1 + ‖β̂Sc‖1}+ λ{‖β0
S‖1 − ‖β0

S‖1 + ‖β̂S − β0
S‖1 − ‖β̂Sc‖1}

= (λ0 + λ)‖β̂S − β0
S‖1 + (λ0 − λ)‖β̂Sc‖1.

Then if λ0 ≤ λ/2, we have

‖X(β̂ − β0)‖22/(2n) ≤ (λ0 + λ)‖β̂S − β0
S‖1 + (λ0 − λ)‖β̂Sc‖1

≤ (3λ/2)‖β̂S − β0
S‖1 − (λ/2)‖β̂Sc‖1,

that is

‖X(β̂ − β0)‖22/(2n) + (λ/2)‖β̂Sc‖1 ≤ (3λ/2)‖β̂S − β0
S‖1.

Note that this inequality is true on the event T with λ0 ≤ λ/2, and it also implies that

‖β̂Sc‖1 ≤ 3‖β̂S − β0
S‖1,

i.e.
‖(β̂ − β0)Sc‖1 = ‖β̂Sc − β0

Sc‖1 ≤ 3‖β̂S − β0
S‖1 = 3‖(β̂ − β0)S‖1,

that is the error vector β̂ − β0 belongs to a very specific region. Such nice property is
actually from the two facts: the first one is the decomposability of the norm based regularizer
R(·) = ‖ · ‖1, and the other is the choice of the regularization penalty λ.

We now define the following version of compatibility condition:
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Definition 2. (Compatibility Condition) We say that the compatibility condition is met
for the set S, if for some φ0 > 0, and for all β ∈ C (S, 3) := {β ∈ Rp : ‖βSc‖1 ≤ 3‖βS‖1},
it holds that

‖βS‖21 ≤ s(βᵀΣ̂β)/φ20,

where Σ̂ = XᵀX/n. And we denote φ2(Σ̂, S) := minβ∈C (S,3)
sβᵀΣ̂β
‖βS‖21

.

Since we have already obtained that on the event T with λ0 ≤ λ/2,

‖X(β̂ − β0)‖22/(2n) + (λ/2)‖β̂Sc‖1 ≤ (3λ/2)‖β̂S − β0
S‖1,

we have

‖X(β̂ − β0)‖22/(2n) + (λ/2)‖β̂ − β0‖1 = ‖X(β̂ − β0)‖22/(2n) + (λ/2)‖β̂Sc‖1 + (λ/2)‖β̂S − β0
S‖1

≤ (3λ/2)‖β̂S − β0
S‖1 + (λ/2)‖β̂S − β0

S‖1
= 2λ‖β̂S − β0

S‖1.

Since we know that on the event T with λ0 ≤ λ/2, the error vector β̂ − β0 satisfies
‖(β̂ − β0)Sc‖1 ≤ 3‖(β̂ − β0)S‖1, by compatibility condition, we have

‖X(β̂ − β0)‖22/(2n) + (λ/2)‖β̂ − β0‖1 ≤ 2λ‖β̂S − β0
S‖1 ≤ 2λ

√
s([β̂ − β0]ᵀΣ̂[β̂ − β0])/φ20

= 2λ
√
s‖X(β̂ − β0)‖2/(

√
nφ0)

≤ ‖X(β̂ − β0)‖22/(4n) + 4λ2s/φ20,

which implies that

‖X(β̂ − β0)‖22/(2n) + λ‖β̂ − β0‖1 ≤ 8λ2s/φ20.

We summarize the above analysis as the following theorem.

Theorem 2. Suppose the compatibility holds for S. Then on the event T with λ0 ≤ λ/2,
we have

‖X(β̂ − β0)‖22/(2n) + λ‖β̂ − β0‖1 ≤ 8λ2s/φ20. (16)

The only thing left is when the event T with λ0 ≤ λ/2 holds? This is answered by the
following lemma.

Theorem 3. Suppose that σ̂j = Σ̂j,j = 1 where Σ̂ = XᵀX/n for all j. Then we have for

all t > 0, and for λ0 = σ
√

t2+2 log p
n ,

P(T ) ≥ 1− 2 exp{−t2/2}.

Proof. Recall that T =
{

max1≤j≤p{|εᵀXj |/n ≤ λ0
}

. We have

1− P(T ) = P
{

max
1≤j≤p

|εᵀXj |/n > λ0

}
= P

{
max
1≤j≤p

|εᵀXj |/
√
nσ2 >

√
t2 + 2 log p

}
≤ pP

{
|εᵀXj |/

√
nσ2 >

√
t2 + 2 log p

}
= 2pP

{
εᵀXj/

√
nσ2 >

√
t2 + 2 log p

}
≤ 2p exp{− t

2 + 2 log p

2
} = 2 exp{−t2/2}.
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4.2 L2 Consistency

First, we introduce a stronger condition than compatibility condition, the restricted eigen-
value conditions.

Definition 3. We say that the p × p sample covariance matrix Σ̂ = XᵀX/n satisfies the
restricted eigenvalue condition over S with parameters φ0 ∈ (0,∞) if

βᵀΣβ = ‖Xβ‖22/n ≥ φ20‖β‖22,∀β ∈ C (S, 3),

where C (S, 3) as defined in compatibility condition. If this condition holds uniformly for
all subsets S with cardinality s, we say that Σ̂ satisfies a restricted eigenvalue condition
of order s with parameters φ0. On occasion, we will say also that a deterministic p × p
covariance matrix Σ satisfies a restricted eigenvalue condition, by which we mean that
‖Σ1/2β‖2 ≥ φ0‖β‖2 for all β ∈ C (S, 3).

Now the question is in the setting of linear regression with random design, for what
ensembles of design matrices do the restricted eigenvalue condition hold with high proba-
bility. Raskutti et al. (2010) discussed the correlated Gaussian designs since in reality it’s
not reasonable to assume that different covariates are IID (except in compressive sensing
setting).

Theorem 4. For any Gaussian random design X ∈ Rn×p with IID N(0,Σ) rows, there are
universal positive constants C1, C2 such that

‖Xβ‖2/
√
n ≥ ‖Σ1/2β‖2/4− 9

√
max

j∈{1,2,··· ,p}
Σj,j

√
log p/n‖β‖1,∀β ∈ Rp (17)

with probability at least 1− C1 exp(−C2n).

Remark. For this probability inequality, we are not going to prove it here (Raskutti et al.
(2010)). And the constants 1/4 and 9 are not meant to be sharp.

Theorem 5. Suppose that Σ satisfies the restricted eigenvalue condition of order s with
parameter φ0. Then for universal positive constants C1, C2, C3, if the sample size satisfies

n > C3

16 maxj∈{1,2,··· ,p}Σj,j

φ20
s log p,

then the matrix Σ̂ = XᵀX/n satisfies the restricted eigenvalue condition with parameters
φ0/8 with probability at least 1− C1 exp(−C2n).

Proof. Let S be an arbitrary subset of cardinality s, and suppose β ∈ C (S, 3). By definition
and Cauchy-Schwarts inequality, we have

‖β‖1 = ‖βS‖1 + ‖βSc‖1 ≤ 4‖βS‖1 ≤ 4
√
s‖βS‖2 ≤ 4

√
s‖β‖2.

By assumption that Σ satisfies the restricted eigenvalue condition of order s with parameter
φ0, we have

‖Σ1/2β‖2 ≥ φ0‖β‖2,∀β ∈ C (S, 3).
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By substituting these two into the bound in (17), we have

‖Xβ‖2/
√
n ≥ φ0‖β‖2/4− 36

√
max

j∈{1,2,··· ,p}
Σj,j

√
s log p/n‖β‖2

=
{
φ0/4− 36

√
max

j∈{1,2,··· ,p}
Σj,j

√
s log p/n

}
‖β‖2.

Now by n > C3
16maxj∈{1,2,··· ,p}Σj,j

φ20
s log p, we have

36
√

max
j∈{1,2,··· ,p}

Σj,j

√
s log p/n

≤36
√

max
j∈{1,2,··· ,p}

Σj,j

√
s log p/

(
C3

16 maxj∈{1,2,··· ,p}Σj,j

φ20
s log p

)
=9φ0/

√
C3.

Thus,

‖Xβ‖2/
√
n ≥ {1/4− 9/

√
C3}φ0‖β‖2.

By taking C3 = 722, we have 1/4− 9/
√
C3 = 1/8 and we finished the proof.

(A2) The rows of X are IID realizations from a Gaussian distribution whose p−dimensional
covariance matrix Σ has strictly positive smallest eigenvalue Λ2

min satisfying 1/Λ2
min = O(1).

Furthermore, maxj∈{1,2,··· ,p}Σj,j = O(1).
We now ready to get the general L2 bounds with random design by the following theo-

rem.

Theorem 6. Under (A2), s = o(n/ log p) and λ �
√

log p/n, we have

‖β̂ − β0‖2 = Op(
√
s log p/n).

Proof. In fact, by Theorem 4, there are universal positive constants C1, C2 such that

‖X(β̂ − β0)‖2/
√
n ≥ ‖Σ1/2(β̂ − β0)‖2/4− 9

√
max

j∈{1,2,··· ,p}
Σj,j

√
log p/n‖(β̂ − β0)‖1 (18)

with probability at least 1− C1 exp (−C2n). That is with probability tending to one, for a
suitably chosen C, we have

‖Σ1/2(β̂ − β0)‖2 ≤ C‖X(β̂ − β0)‖2/
√
n+ C

√
log p/n‖(β̂ − β0)‖1.

By (A2) and s = o(n/ log p), by the first fact, with probability tending to one we have
the compatibility condition holds. So we can appeal to the Theorem 2 together with the
Lemma 3, and then we have

‖X(β̂ − β0)‖22/n = Op(sλ
2), ‖β̂ − β0‖1 = Op(sλ).
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So together with
√
sλ = o(1), we have

‖Σ1/2(β̂−β0)‖2 ≤ C‖X(β̂−β0)‖2/
√
n+C

√
log p/n‖(β̂−β0)‖1 = Op(

√
sλ)+Op((

√
sλ)2) = Op(

√
sλ).

Thus by (A2) with
‖Σ1/2(β̂−β0)‖22
‖β̂−β0‖22

≥ Λ2
min, we have

‖β̂ − β0‖2 = Op(
√
s log p/n).

5 Statistical Inference

I found an interesting post from the blog ”Empirical Filtration”, talking about the difference
between statistics and statistical engineering. It is common that many people in statistical
engineering try to find the bounds on convergence rate, which we have done so far for lots
of consistency results. The bounds are like their destination; they usually not go further
for the distribution. In contrast, people in statistics will not stop at the rate; statisticians
are targeting at the asymptotic distributions.

The reason why statisticians care about asymptotic distribution may be related to the
statistical inference. The statistical inference such as confidence intervals, hypothesis tests,
requires knowledge about the distribution of a certain statistics. Knowing the bounds is
not sufficient for carrying out the inference. Both confidence intervals (or more general,
confidence sets) and hypothesis test require the distributions.

This might also be the reason why courses in ML emphasizes more on the Hoeffding’s
inequality, Bernstein’s inequality while in statistics, the courses focus more on the central
limit theory and chi-square approximation.

Although we statistician should not limit ourselves to those methods that are capable
of statistical inference, since many methods though have no asymptotic distribution, are
still very useful in prediction, especially those with guarantees from probability bounds, we
need to consider statistical inference now for our lasso solution.

5.1 Knight & Fu

We discuss the paper Knight and Fu (2000), which derived the asymptotic distribution for
lasso type estimators in low dimension case.

Let’s define the random function

Ln(β) := ‖Y−Xβ‖22/(2n) + λn‖β‖1, λn > 0, (19)

which is minimized at β̂. We assume that the dimension p and the truth β0 are fixed,
independent of n. We also assume the following two regularity conditions

Σ̂→ Σ, n→∞, (20)

1

n
max
1≤i≤n

Xᵀ
iXi → 0, n→∞, (21)
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which makes the asymptotic normality of the ordinary least square estimator

√
n(β̂

ols − β0)
d→ N(0, σ2Σ−1).

For simplicity, we also assume Σ̂ and Σ are non singular.
First note that we want to study the asymptotics of the minimizer of a convex random

process. And actually the asymptotics of convex optimization has been studied by several
authors (see Kato (2009)). They developed the convexity arguments: let gn(x) and g∞(x)
be random convex functions taking minimum values at xn and x∞ respectively. If all
finite dimensional distributions of gn converge weakly to those of g∞ and x∞ is the unique
minimum point of g∞ with probability one, then xn converges weakly to x∞.

Theorem 7. Given the above regularity conditions (20), (21) and assuming Σ̂ and Σ

nonsingular, with λn → λ0 ≥ 0, we have β̂
p→ arg minL0(β) where L0(β) = (β−β0)ᵀΣ(β−

β0) + λ0‖β‖1. Thus if λn → 0, arg minL0 = β0, and so β̂ is consistent.

Proof. This just follows from the above convexity arguments since Ln(β)
a.s.→ L0(β) + σ2

pointwisely and both are convex.

Theorem 8. Given the above regularity conditions (20), (21) and assuming Σ̂ and Σ
nonsingular, with

√
nλn → λ0 ≥ 0, then we have

√
n(β̂ − β0)

d→ arg minV(β),

where V(β) = −2βᵀu+βᵀΣβ+ 2λ0
∑p

j=1{βjsign(β0j )1(β0j 6= 0) + |βj |1(β0j = 0)} and u has

a N(0, σ2Σ) distribution.

Proof. First observe that

Ln(β) = ‖Y−Xβ‖22/(2n) + λn‖β‖1
= ‖Xβ0 + ε−Xβ‖22/(2n) + λn‖β‖1
= ‖ε−X

√
n(β − β0)/

√
n‖22/(2n) + λn‖

√
n(β − β0)/

√
n+ β0‖1.

Now define

Vn(α) = ‖ε−Xα/
√
n‖22 − ‖ε‖22 + 2nλn‖α/

√
n+ β0‖1 − 2nλn‖β0‖. (22)

Then we have α̂ := arg minVn(α) =
√
n(β̂ − β0). And since ‖ε − Xα/

√
n‖22 − ‖ε‖22 =

−2εᵀXα/
√
n+ αᵀXᵀXα/n

d→ −2αᵀu + αᵀΣα. And it’s easy to check out that

2nλn‖α/
√
n+ β0‖1 − 2nλn‖β0‖ → 2λ0

p∑
j=1

{αjsign(β0j )1(β0j 6= 0) + |αj |1(β0j = 0)}.

Thus we have proved that Vn(α)
d→ V(α) with the finite-dimensional convergence. And

since Vn is convex and V has a unique minimum, by the convexity argument, we have

arg minVn =
√
n(β̂ − β0)

d→ arg minV.

Note that when λ0 = 0, arg minV = Σ−1u ∼ N(0, σ2Σ−1).

11



Remark. 1. Theorem 8 shows that nonzero parameters are estimated with some asymp-
totic bias if λ0 > 0 due the the term 2λ0

∑p
j=1{βjsign(β0j )1(β0j 6= 0) + |βj |1(β0j = 0)}

in V(β), and shrinking the estimates of zero regression parameters to 0 with positive
probability: Suppose β0

Sc = 0 and β0
S are nonzero. In this case, we have

V(α) = −2αᵀu + αᵀΣα + 2λ0
∑
j∈S

αjsign(β0j ) + 2λ0
∑
j∈Sc

|αj |.

And by the uniqueness of the solution to minV(α), we have αSc = 0 if and only if
|Σ2,1(S)(Σ1,1(S))−1[uS −λ0sign(β0

S)]−uSc | ≤ λ0 (element wise) since KKT holds by
taking αS = (Σ1,1(S))−1[uS−λ0sign(β0

S)]. Thus we have P(αSc = 0) = P
{
|Σ2,1(S)(Σ1,1(S))−1[uS−

λ0sign(β0
S)]− uSc | ≤ λ0

}
> 0.

2. Except for some very special cases, no closed form formula for either the limiting
random vector or the limiting distribution is available. As a result, the use of the
asymptotic distribution of the lasso estimator for constructing confidence intervals or
for conducting large sample tests is not very appealing in practice.—Bootstrapping!
Now we refer to the following two papers, Chatterjee and Lahiri (2010, 2011) for the
discussing of bootstrapping for lasso estimator.

5.2 van de Geer & Bühlmann & Ritov & Dezeure

We are going to discuss essentially the same estimator as in Zhang and Zhang (2014) from
van de Geer et al. (2014).

Consider a linear regression model:

Y = Xβ0 + ε, (23)

where Y = (Y1, Y2, · · · , Yn)ᵀ ∈ Rn is a response vector, X = ((Xij)) ∈ Rn×p is a design
matrix with columns {Xj}pj=1 and rows {Xi}ni=1, and β0 ∈ Rp is a vector of unknown true

regression coefficients. ε independent with X has normal mean 0, and variance σ2I, i.e.
ε ∼ N(0, σ2I).

Recall the lasso solution

β̂ := β̂(λ) = arg min
β∈Rp

‖Y−Xβ‖22/(2n) + λ‖β‖1, λ > 0,

and the Karush-Kuhn-Tucker (KKT) Condition

Xᵀ(Y−Xβ̂)/n = λsign(β̂) := λκ̂,

where κ̂ = sign(β̂) = (sign(β̂1), · · · , sign(β̂p))
ᵀ with κj = sign(β̂j) ∈

{
sign(β̂j), if β̂j 6= 0

[−1, 1], if β̂j = 0
,

for j ∈ {1, 2, · · · , p}.
We re-write KKT as

Σ̂(β̂ − β0) + λκ̂ = Xᵀε/n.

12



The idea is now to use a “relaxed form” of an inverse of Σ̂ (which is similar to the idea
of the “relaxed projection” in Zhang and Zhang (2014)). Suppose that Θ̂ is a reasonable
approximation for such an inverse, then

(β̂ − β0) + (Θ̂Σ− I)(β̂ − β0) + Θ̂λκ̂ = Θ̂Xᵀε/n,

i.e.

(β̂ − β0) + Θ̂λκ̂ = Θ̂Xᵀε/n−∆/
√
n, (24)

where ∆ =
√
n(Θ̂Σ− I)(β̂ − β0). Thus suggests the following estimator

b̂ := β̂ + Θ̂λκ̂ = β̂ + Θ̂Xᵀ(Y−Xβ̂)/n. (25)

Look at the estimator closely, you will see the following aspect of interpretation. Based
on the construction of the Lasso estimator, we observed that the Lasso solution is biased
towards smaller L1 norm. And Xᵀ(Y −Xβ̂)/(nλ) is a subgradient of the L1 norm at the
lasso solution β̂. By adding a term which is a linear transformation (rotation and scaling)
of this subgradient, our procedure compensates the bias introduced by the L1 penalty in
the Lasso (Javanmard and Montanari, 2013).

Now we are going to construct the approximate inverse Θ̂ by the lasso for the nodewise
regression on the design X. For each j ∈ {1, 2, · · · , p}, recall

γ̂j := γ̂j(λj) = arg min
b∈Rp−1

{
‖Xj − X\jb‖22/(2n) + λj‖b‖1

}
, (26)

Zj := Zj(λj) = Xj − X\jγ̂j(λj), (27)

where γ̂j = {γ̂j,k : k = 1, 2, · · · , p, k 6= j}. By denoting

Γ̂ :=


1 −γ̂1,2 · · · −γ̂1,p
−γ̂2,1 1 · · · γ̂2,p

...
...

. . .
...

−γ̂p,1 −γ̂p,2 · · · 1

 , and Ξ̂
2

:= diag(ξ̂21 , · · · , ξ̂2p)

where ξ̂2j = ‖Xj − X\jγ̂j‖22/n + λj‖γ̂j‖1 = Xᵀ
j (Xj − X\jγ̂j)/n − γ̂ᵀ

jX
ᵀ
\j(Xj − X\jγ̂j)/n +

λj‖γ̂j‖1 = Xᵀ
jZj/n− γ̂ᵀ

jλjsign(γ̂j)+λj‖γ̂j‖1 = Xᵀ
jZj/n by the KKT condition for the j−th

node regression, we define

Θ̂ =


Θ̂

ᵀ
1

Θ̂
ᵀ
2

...

Θ̂
ᵀ
p

 := Ξ̂
−2

Γ̂ =


Γ̂
ᵀ
1/ξ̂

2
1

Γ̂
ᵀ
2/ξ̂

2
2

...

Γ̂
ᵀ
p/ξ̂

2
p

 . (28)

Then we can further have our estimator

b̂j = β̂j + Θ̂
ᵀ
jX

ᵀ(Y−Xβ̂)/n = β̂j + ξ̂−2j Γ̂
ᵀ
jX

ᵀ(Y−Xβ̂)/n

= β̂j + ξ̂−2j (XΓ̂j)
ᵀ(Y−Xβ̂)/n = β̂j + ξ̂−2j (Xj − X\jγ̂j)ᵀ(Y−Xβ̂)/n

= β̂j + ξ̂−2j Zᵀ
j (Y−Xβ̂)/n = β̂j + (Xᵀ

jZj/n)−1Zᵀ
j (Y−Xβ̂)/n

= β̂j + (Xᵀ
jZj)

−1Zᵀ
j (Y−Xβ̂) = β̂j +

Zᵀ
j (Y−Xβ̂)

Xᵀ
jZj

,

(29)
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which is exactly the same as the LDPE obtained in Zhang and Zhang (2014). From here,
we could see another aspect of this estimator. Taking j = 1 as an example, we first regress
X1 against X\1, and also regress Y against X\1, we got the linear regression estimator

β̂
(lin)
1 =

(Q\1X1)
ᵀQ\1Y

(Q\1X1)ᵀQ\1X1
=

(Q\1X1)
ᵀY

(Q\1X1)ᵀX1
=

(X⊥1 )ᵀY
(X⊥1 )ᵀX1

=
Zᵀ
1Y

Zᵀ
1X1

,

where the projection relaxed by using lasso, i.e. X⊥1 = Z1 due to high dimensionality. But

instead of using β̂
(lin)
1 directly, we used b̂1 =

Zᵀ
1Y

Zᵀ
1X1
−
∑

k 6=1
Zᵀ
1Xkβ̂

(init)
k

Zᵀ
1X1

since we need to do

the bias correction. Note that the reason why we need to do the relaxed projection is that
the corresponding regression is still high dimensional. Thus in general we need to have a
projection onto a low dimensional covariates, a small subset S of the covariates which are
more strongly correlated with target:

β̂
(lin)
1 =

(QSX1)
ᵀ(QSY)

(QSX1)ᵀQSX1
.

And actually since for the relaxed projection, we used lasso procedure, the projection is
just onto the selected variables by lasso. That is we used nodewise lasso to select the low
dimensional covariates to project on.

Note that from the KKT conditions for the nodewise lasso, we have

Xᵀ
jXΘ̂j/n = Xᵀ

j ξ̂
−2
j (XΓ̂j)/n = ξ̂−2j Xᵀ

jZj/n = ξ̂−2j ξ̂2j = 1,

‖Xᵀ
\jXΘ̂j/n‖∞ = ‖Xᵀ

\j ξ̂
−2
j (XΓ̂j)/n‖∞ = ‖ξ̂−2j Xᵀ

\j(Xj − X\jγ̂j)/n‖∞ ≤ λj ξ̂−2j ,

which lead to the following so called extended KKT condition

‖Σ̂Θ̂j − ej‖∞ ≤ λj ξ̂−2j , (30)

where ej is the j-th unit column vector.
Recall the compatibility condition in Definition (2) defined in the prediction consistency

section, and we make the following assumption:
(A1) The compatibility condition (2) holds for Σ̂ with compatibility constant φ20. Fur-

thermore, maxj Σ̂j,j ≤ M2 for some 0 < M < ∞ (Note that sometimes for simplicity we

assume it’s normalized such that Σ̂j,j = 1).

Theorem 9. Consider the linear model (4) with Gaussian error ε ∼ N(0, σ2I), and as-
sume (A1). Let t > 0 be arbitrary. When using the lasso estimator β̂(λ) with λ ≥
2Mσ

√
2(t2+log p)

n , we have

√
n(b̂− β0) = W + ∆,

W := Θ̂Xᵀε/
√
n ∼ N(0, σ2Ω̂), Ω̂ := Θ̂Σ̂Θ̂

ᵀ
,

P
{
‖∆‖∞ ≥ 8

√
n
(

max
j

λj

ξ̂2j

)λs
φ20

}
≤ 2 exp(−t2).

14



Proof. Note that the only thing we need to prove here is the last probability control. First
of all

‖∆‖∞ = ‖
√
n(Θ̂Σ̂− I)(β̂ − β0)‖∞ ≤

√
n‖Θ̂Σ̂− I‖∞‖β̂ − β0‖1.

By the extended KKT condition (30), we have

‖∆‖∞ ≤
√
n‖Θ̂Σ̂− I‖∞‖β̂ − β0‖1 ≤

√
n‖β̂ − β0‖1 max

j

λj

ξ̂2j
.

By the Theorem 2 together with the Lemma 3 (which are true under (A1)), with λ ≥
2Mσ

√
2(t2+log p)

n , we have with probability at least 1− 2 exp(−t2)

‖β̂ − β0‖1 ≤ 8λ
s

φ20
.

Thus with λ ≥ 2Mσ

√
2(t2+log p)

n , we have

P
{
‖∆‖∞ ≤

√
n8λ

s

φ20
max
j

λj

ξ̂2j

}
≥ 1− 2 exp(−t2)

.

By the above theorem, we can construct the confidence intervals and do the hypothesis
testing accordingly.

5.3 Question

In the classical statistics situation, for assessing significance, we usually do testing in terms
of fixed parameters. But nowadays, it’s common to be in the situation that one selecting
procedure designed somehow according to certain importance level has selected a certain
amount of variables, and we want to know when to stop. In other words, we want to do
the following test: conditional on what we have selected has already containing all of the
signals, what is the chance for us to observe the next data? This is a meaningful conditional
test. Refer to Lockhart et al. (2014).
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