
Step by Step Tutorial to creating
R Packages

Heng Wang

Michigan State University

Introduction

• R is an open source statistical software

• R provides functions to perform statistical
operations

o Classical (regression, logistic regression,
ANOVA, etc)

o Modern (neural networks, bootstrap,
genomic selection, etc)

• Can be easily extended by make new
packages

• To install an R package, use function

 install.packages()

• For example, to fit a mixed model, we could
use function mixed.solve(). It requires
package “rrBLUP”.

Steps to Build an R package

• Step 1. Prepare your functions

• Step 2. Build the structure of the package using
package.skeleton()

• Step 3. Edit DESCRIPTION File

• Step 4. Edit the help File

• Step 5. Preparation for Windows Users (RTools)

• Step 6. Build and install the R package

• Step 7. Check the R package

• Step 8. Add functions and data to a package

Build an R Package
-- Step 1. Prepare your functions

• Before you write your functions, clear the
working space using rm(list=ls()).

• Write your function. Load all the data you
want to include in the package.

• Set working directory to the position
containing the .R file.

Build an R Package
-- Step 2. package.skeleton()

• Run package.skeleton(name, list).

• For example: package.skeleton(name="cum",
list=c("my.cumsumprod", "xvec.example",
"output.example")

• Or, package.skeleton(name=“cum",
code_files="cumsumprod.R")

• A new folder cum is built. If just run
package.skeleton(), then anRpackage will be
built.

Step 2 (Cont.)

• Inside cum / anRpackage you many find
several folders:

o R: contains R code files

o data: contains data files

o man: contains documentation files (.Rd)

o You may also have src folder, if your function
contains C, C++, or FORTRAN source.

o Other files: tests, exec, inst, etc.

Step 2 (Cont.)
• … also some files.
o Read-and-delete-me : contain instructions for following steps.
 * Edit the help file skeletons in 'man', possibly combining help files

for multiple functions.
 * Edit the exports in 'NAMESPACE', and add necessary imports.
 * Put any C/C++/Fortran code in 'src'.
 * If you have compiled code, add a useDynLib() directive to

'NAMESPACE'.
 * Run R CMD build to build the package tarball.
 * Run R CMD check to check the package tarball.
 Read "Writing R Extensions" for more information.

o DESCRIPTION: manual file for the users.

o NAMESPACE

Build an R Package
-- Step 3. Edit DESCRIPTION File

• Package: cum
 -- name of the package
• Type: Package
• Title: What the package does (short line)
 -- contains no more than 65 characters
• Version: 1.0
 -- a sequence of non-negative integers, like: 1.0.2, 1-0-2
• Date: 2013-02-27
 -- Date that the package was created. Today’s date by default
• Author: Who wrote it
 -- all the authors, no limit
• Maintainer: Who to complain to yourfault@somewhere.net
 -- one name and an email address
• Description: More about what it does (maybe more than one line)
 -- Description of the package, no length limit
• License: What license is it under?
 -- Usually GPL-2 (GNU General Public License Version 2), which is good for CRAN

/ Bioconductor. Check “Writing R Extensions” for all license abbreviations.

mailto:yourfault@somewhere.net

Build an R Package
-- Step 4. Edit the help File

• Fill the content in each category

• Delete the comments or instructions. Change
the default content

• Do this for each .Rd file in man folder.

Build an R Package
-- Step 5. Preparation for Windows

Users
• Download and install Rtools. http://cran.r-

project.org/bin/windows/Rtools/

• Attention! Check the checkbox to update the
current PATH.

http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/

Step 5 (Cont.)

• Change the PATH in Control Panel.

• Click System, then Advanced system settings.

• Click the Advanced tap in the prompt window. Then
click the Environment Variables.

• In PATH, click Edit…

• C:\Windows\System64\;c:\Rtools\bin;c:\Rtools\gcc-
4.6.3\bin;C:\Program Files\R\R-
2.15.1\bin\x64;c:\Rtools\perl\bin;c:\Rtools\MinGW\bi
n;c:\R\bin;c:\Rtools\MinGW;c:\Perl\bin;c:\Program
Files\MiKTex 2.6\miktex\bin;C:\Program Files
(x86)\SSH Communications Security\SSH Secure Shell

Build an R Package
-- Step 6. Build and install the R

package
• In search box, type command prompt

• In command prompt, change directory to the
place that contains the R package

• Build R package using R CMD build pkgName.
For example I use R CMD build cum. A tar.gz
file is built under the working directory.

Step 6 (Cont.)

• Install the R package using R CMD INSTALL
pkgName. Here I use R CMD INSTALL
cum_1.0.tar.gz.

• If any error occurs, check the .Rd file. Then re-
run R CMD build, R CMD INSTALL.

Build an R Package
-- Step 7. Check the R package

• Install Miktex / (Mactex) package inconsolata using
mpm --verbose --install inconsolata.

• Check the R package using R CMD check pkgName. I
use R CMD check cum.

• In R environment, type library(pkgName). For
example, library(cum).

• You can type
 ?cum
 ?my.cumsumprod
 ?xvec.example
 ?output.example

Build an R Package
-- Step 8. Add functions and data to a

package
• Change the working directory to the folder that

contains your new functions and/or data.

• Copy the functions into working space.

• Run prompt() to the new function, i.e.,
prompt(cumadd). Now you have a help file for
cumadd.

• Edit the .Rd help file.

• Move the .R file and the .Rd file to the package
folder. Put the .R file in the R folder. Put the .Rd
file in the man folder.

Step 8 (Cont.)

• Read the data file into the working space.

• Save the data as an .rda file.

• Create the help file using prompt() function.

• Edit the .Rd help file.

• Move the .rda file and the .Rd file to the
package folder. The .rda file goes to the data
folder. The .Rd file goes to the man folder.

Step 8 (Cont.)

• Build and install the package again.
o R CMD build cum
o R CMD INSTALL cum_1.0.tar.gz
o R CMD check cum
• In R console, type
 library(cum)
 ?cum
 ?my.cumsumprod
 ?xvec.example
 ?output.example
 ?yvec
 ?cumadd

Questions?

Thank you!

