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a b s t r a c t

Phenotypes measured in counts are commonly observed in nature. Statistical methods for mapping

quantitative trait loci (QTL) underlying count traits are documented in the literature. The majority of

them assume that the count phenotype follows a Poisson distribution with appropriate techniques

being applied to handle data dispersion. When a count trait has a genetic basis, ‘‘naturally occurring’’

zero status also reflects the underlying gene effects. Simply ignoring or miss-handling the zero data may

lead to wrong QTL inference. In this article, we propose an interval mapping approach for mapping QTL

underlying count phenotypes containing many zeros. The effects of QTLs on the zero-inflated count trait

are modelled through the zero-inflated generalized Poisson regression mixture model, which can

handle the zero inflation and Poisson dispersion in the same distribution. We implement the approach

using the EM algorithm with the Newton–Raphson algorithm embedded in the M-step, and provide a

genome-wide scan for testing and estimating the QTL effects. The performance of the proposed method

is evaluated through extensive simulation studies. Extensions to composite and multiple interval

mapping are discussed. The utility of the developed approach is illustrated through a mouse F2

intercross data set. Significant QTLs are detected to control mouse cholesterol gallstone formation.

Published by Elsevier Ltd.
1. Introduction

Quantitative trait loci (QTL) mapping has been proven to be a
powerful approach for elucidating the genetic architecture of a
quantitative trait (Mackay, 2001). In the past decades, statistical
methods for QTL mapping have been flourished in the literature
developed under different frameworks (Lander and Botstein,
1989; Haley and Knott, 1992; Kruglyak and Lander, 1995; Sen
and Churchill, 2001; Wu et al., 2004). Along the line, successful
examples from QTL mapping have been well documented in the
literature (e.g., Frary et al., 2000; Li et al., 2006). With the
development of biotechnology and advanced statistical methods,
QTL mapping would still serve as a powerful tool for targeting
genetic regions harboring potential genes underlying phenotypic
variations.

In nature, phenotypic variation can be displayed in a
continuous or discrete scale. For example, the measurement
of body weight/height displays in a continuous scale, while
measurements such as the number of flowers or the number of
new roots generated display in a countable discrete scale. Most
statistical methods developed for QTL mapping assume normal
Ltd.

+15174321405.
distribution for continuous phenotypes which is valid in most
cases. For discrete phenotypes such as count data, normal
assumption fails in most cases. QTL mapping assuming Poisson
regression models provide a standard procedure for the analysis of
count data (Shepel et al., 1998; Rebaı̈, 1997; Sen and Churchill,
2001). In practice, count data are often over- or under-dispersed
relative to the Poisson distribution. To take account of data
dispersion issue risen naturally from count data, a generalized
estimating equation (GEE) approach was applied in QTL mapping
count trait (Lange and Whittaker, 2001; Thomson, 2003). More
recently Cui et al. (2006) developed a new approach based on the
generalized Poisson (GP) regression mixture model to deal with
over- or under-dispersion issue. This approach shows relative
merits over the GEE type approach in QTL mapping dispersed
count data.

Another type of over-dispersion relative to Poisson distribution
is that often the number of zero counts are much greater than
expected for the Poisson distribution. There are many examples in
nature showing this type of variation. For example, in counting
tumor lesions on chicken exposed to Merek’s disease virus, a chick
may have no tumor developed either because it is resistant to the
virus, or simply because no disease virus has touched the chick.
Consequently, there are two sets of zeros produced. One set of
zeros reflects the nature of true zero status and is called structural

zeros. These zeros indicate that a chick may carry certain genes
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whose function makes a chick less susceptible to the disease.
Other zeros may occur by chance and do not reflect the underlying
gene function, and are called sampling zeros. When excess zeros
exist, regular approaches for modelling count data cannot be
applied directly. Statistical approaches for modelling count data
with excess zeros than expected have been widely studied.
Lambert (1992) derived the zero-inflated Poisson (ZIP) regression
model. Mullahy (1986) described the Poisson hurdle model which
is also termed a two-part model by Heilbron (1994). The hurdle

model is a reparameterization of the ZIP model, but they differ in a
regression context. Famoye and Singh (2006) proposed a zero-
inflated generalized Poisson (ZIGP) regression model in which
zero inflation and Poisson dispersion can be handled in one
distribution. However, none of these approaches have been
applied in QTL mapping study.

In this article, we propose a rigorous extension of the interval
mapping approach to count trait with excess zeros. The effects of
QTL on the zero-inflated count trait are modelled through the
ZIGP regression mixture model, which subsumes the ZIP model
and can handle zero inflation as well as over- or under-dispersion
in one distribution setup. We implement the approach using the
EM algorithm with the Newton–Raphson procedure embedded in
the M-step, and provide a genome-wide scan for testing and
estimating the QTL effects. The performance of the proposed
method is evaluated through extensive simulation studies. The
utility of the developed approach is illustrated through a mouse F2

intercross data set with the number of cholesterol gallstones as
phenotype.
2. Methods

2.1. ZIGP regression model

Let yi; i ¼ 1; . . . ;n be the response variables measured in count.
The probability density function of yi assuming a GP distribution
is given by

pðyi; li;fÞ ¼
li

1þfli

� �yi ð1þfyiÞ
yi�1

yi!
exp

�lið1þfyiÞ

1þ fli

� �
yi ¼ 0;1; . . . (1)

where li is the mean of the GP function and can be expressed as a
function of genetic and non-genetic factors, i.e., li ¼ liðxiÞ ¼

expðx0ibÞ, where xi is a p-dimensional vector of covariates including
genetic and non-genetic factors, b is a p-dimensional vector
of regression parameters, and f is a dispersion parameter.
The mean of the GP distribution is given by Eðyijli;fÞ ¼ li

and the variance is given by Varðyijli;fÞ ¼ lið1þ fliÞ
2. When

f ¼ 0, the GP model reduces to the Poisson model and positive
or negative value of f corresponds to over- or under-dispersion of
data (Famoye, 1993; Cui et al., 2006).

When there are many zero observations than expected, the
generalized Poisson regression (GPR) model will not provide good
fit in general. The sampling zeros can be fitted into the GPR model,
but not the structural zeros. A good alternative to fit zero-inflated
count data would be a ZIGP regression model. The ZIGP model is
defined as

f ðyi; li;fÞ ¼
oi þ ð1�oiÞpðyi ¼ 0; li;fÞ if yi ¼ 0

ð1�oiÞpðyi; li;fÞ if yi40

(
(2)

where pðyi; li;fÞ is the GP density function given in model
(1); 0ooi ¼ Pðyi ¼ 0Þo1 specifies the probability of zero status
including both sampling and structural zeros; li and f are defined
similarly as in model (1); oi specifies the probability of structural

zero status and can be modelled using a logit link function in
which logitðoiÞ ¼ logoi=ð1�oiÞ ¼ z0ig, where zi is the ith row
vector of the covariate matrix and g is the parameter vector. In
general, the covariates of X and Z may or may not coincide. When
they do coincide, a more parsimonious model can be fitted by
supposing that the two linear predictors are related in a certain
way. For example, if the same covariates affect oi and li, we can
write oi as a function of li (Lambert, 1992), i.e., logoi=ð1�oiÞ ¼

�tx0ib which leads to oi ¼ 1=ð1þ lti Þ.
For the ZIGP model given in model (2), its mean and variance

can be expressed as

Eðyijli;f; tÞ ¼ ð1�oiÞli

Varðyijli;f; tÞ ¼ ð1�oiÞ½l
2
i þ lið1þfliÞ

2
� � ð1�oiÞ

2l2
i

¼ Eðyijli;f; tÞ½ð1þ fliÞ
2
þoili�

The ZIGP regression model with logit link for o is denoted as
ZIGPðtÞ (Famoye and Singh, 2006). In addition to modeling zero
inflation by parameter t, the parameter f also provides a measure
of Poisson dispersion. Thus, the ZIGPðtÞ model can take zero
inflation and Poisson dispersion into account in the expression
of one distribution. When f ¼ 0, the ZIGPðtÞmodel reduces to the
ZIPðtÞ model defined by Lambert (1992). Therefore, the ZIGPðtÞ
model is also a generalization of the ZIPðtÞ model. Large negative
or positive value of t indicates that the zero state becomes more
or less likely.
2.2. The finite ZIGPðtÞ mixture model

We have described the ZIGPðtÞ model in general. In the
following we will describe how it can be fitted into a QTL
mapping framework to map QTLs underlying count trait with
many zeros. Statistical methods for QTL mapping dates back to
Lander and Botstein’s (1989) seminal work in interval mapping.
For simplicity, we start with an interval mapping method for zero-
inflated count traits assuming an experimental F2 cross design.
The model can be easily extended to other genetic designs, such
as backcross or RIL population. An extension of the model to
composite interval mapping (CIM) (Zeng, 1994) and multiple
interval mapping (MIM) (Kao et al., 1999) is discussed in the
following section. Consider an F2 intercross, initiated with two
contrasting homozygous inbred lines with distinct phenotypes.
The genetic information inherited by F2 individuals represents
random perturbations of the parental lines. Significant difference
of the genotypic means of the three genotypes carried by F2

individuals at a particular genomic position implies that there is a
QTL underlying the quantitative variation of the studied trait at
that position, and a QTL can be claimed at that position.

In general, a genetic linkage map can be constructed with
molecular markers based on an F2 segregation population.
Assume that a sample of size n is randomly collected from this
F2 population. The observed molecular markers are normally
neutral markers which do not show linkage with the studied trait.
The real QTL linked with the trait could be located anywhere on
the genome and may not be observed. Suppose there is a putative
segregating QTL, with alleles Q and q, that show linkage with a
zero-inflated count trait. The purpose of a QTL mapping study is to
infer the QTL effects as well as their locations on chromosomes.
The actual QTL genotypes and positions are unobservable, but
can be inferred through the observed molecular markers.
The statistical foundation of QTL mapping lies in a mixture model
in which each observation y is assumed to have arisen from
one of a known or unknown number of components (Lander
and Botstein, 1989). Assuming that there are J QTL genotypes
contributing to the variation of a count trait, the mixture model is
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expressed as

y�f ðy;uÞ ¼ p1f 1ðy;j1Þ þ � � � þ pJ f ðy;jJÞ (3)

where p ¼ ðp1; . . . ;pJÞ
0 are the mixture proportions (i.e., QTL

genotype frequencies) which are constrained to be non-negative
and

PJ
j¼1 pj ¼ 1; u ¼ ðj1; . . . ;jJÞ

0 are component specific para-
meters, with jj being specific to component j. For an F2 cross,
there are three possible genotypes in offsprings. Therefore, the
distribution of yi for each individual i is modelled through three
mixture components. Each mixture proportion represents the
conditional probability of the corresponding QTL genotype given
on the flanking marker genotype. In our current setting with an F2

design, the conditional probability of QTL genotype j for individual
i given on the observed flanking marker Mi, defined as pij, can
be easily derived as shown in general QTL mapping literature
(Wu et al., 2007), where j takes value 2, 1 or 0 depending on
whether the QTL genotype is QQ , Qq or qq. The mixture model,
therefore, has the form

f ðyi; li;f; tÞ ¼ pi2f 2ðyi; l2;f; tÞ þ pi1f 1ðyi; l1;f; tÞ þ pi0f 0ðyi; l0;f; tÞ
(4)

From the above mixture distribution, we can easily compute the
unconditional mean and variance of yi which are expressed as

mi ¼ EðyiÞ ¼ E½Eðyijli;f; tÞ� ¼
X2

j¼0

pijð1�oiÞlij

and

VarðyiÞ ¼ EðVarðyijli;f; tÞÞ þ VarðEðyijli;f; tÞÞ

¼
X2

j¼0

ð1�oiÞ½l
2
ij þ lijð1þflijÞ

2
� � ½EðyiÞ�

2

Let xi ¼ ð1; xi1; xi2Þ
0 be a vector for the ith individual, where

xi1 ¼

þ1 for QQ

0 for Qq

�1 for qq

8><>:
and

xi2 ¼
1 for Qq

0 for QQ or qq

(
Then the mean of the ZIGP model for each mixture component,
conditional on the QTL genotype Gi, can be expressed as lijGi ¼

expðx0ibÞ which leads to

lijGi ¼

l2 ¼ expðmþ aÞ for QQ

l1 ¼ expðmþ dÞ for Qq

l0 ¼ expðm� aÞ for qq

8><>: (5)

where b ¼ ðm; a; dÞ0 in which m is the overall genetic effect, a is
the additive genetic effect and d is the dominant genetic effect
(Lynch and Walsh, 1998).

2.3. Parameter estimation

Assuming independent observations, the log-likelihood func-
tion given the phenotype y and marker data M can be expressed as

‘nðb;f; tjy;MÞ ¼
Xn

i¼1

logfpi2f 2ðyi; lij2;f; tÞ þ pi1f 1ðyi; lij1;f; tÞ

þ pi0f 0ðyi;lij0;f; tÞg (6)

Define O ¼ ðb;f; tÞ0 ¼ ðm; a; d;f; tÞ0 which contains the quanti-
tative genetic parameters, the dispersion parameter and the zero-
inflation parameter. The maximum-likelihood estimate (MLE) Ô
for O can be calculated by solving the partial-derivative equation
corresponding to the rth parameter contained in O: q‘nðXÞ=qXr ¼

0. In the application of estimation, the positions of QTL y are
treated as known parameters instead of unknown, although we
can also obtain their MLEs through iterative steps. Then a grid
search approach can be used to estimate the QTL positions. By
assuming there is a putative QTL every 1 or 2 cM at marker
intervals, we can get the profile of log-likelihood test statistics
throughout the entire genome. The positions with respect to the
peak of the profile across a linkage group are the MLEs of the QTL
positions.

The computational algorithm is in general described as: for any
fixed QTL position, we can use the EM algorithm (Dempster et al.,
1977) to find the restricted MLE Ô. In the M-step, the New-
ton–Raphson algorithm is applied to get the maximum likeli-
hood estimation for each putative QTL position every 1 or 2 cM
distance. The details of the algorithm derivation are given in
Appendix A. From the by-product of the Newton–Raphson
algorithm in the M-step of the EM algorithm, we can easily get
the approximate standard errors of the parameter estimates. The
consistency of the MLEs contained in O under the ZIGP mixture
model can be shown by using Czado et al.’s (2007) consistency
argument and applying the results in Chen and Chen (2005).
Consistency of the QTL position estimate y can be established if
there exists a QTL in a testing interval.

2.4. Testing QTL existence

Once the parameters are estimated at each testing position by
the grid search algorithm, our main interest would be to test if
there exists a QTL at certain interval which is responsible for the
variation of the count phenotype with many zeros. The hypothesis
for such a test can be formulated as

H0 : a ¼ d ¼ 0

H1 : at least one parameter is not zero

(
(7)

The null hypothesis states that there is no genetic effect, i.e., there
is no expression difference for the three genotypes in an F2

population. The likelihood ratio (LR) test has been the standard
test in testing the QTL effect. The test statistic is calculated as the
log of the LR test statistic of the full model (H1) over the reduced
model (H0):

LR ¼ �2 log½LðeOÞ � LðbOÞ� (8)

where eO and bO denote the MLEs of the unknown parameters
under H0 and H1, respectively. In the mixture model content, the
test statistic LR may not follow an asymptotic w2 distribution
because of the violation of regularity conditions. The distribution
of LR at each test position can be assessed through either
parametric bootstrap or permutation test. To assess the genome-
wide significance, we use the permutation test proposed by
Churchill and Doerge (1994).

2.5. Testing zero inflation

In real application, any observed zeros could be from sampling

zeros or structural zeros, or from both. Structural zeros reflect the
nature of true zero status and hence are related to the underlying
gene function while sampling zeros are merely due to sampling
chance. The two sets of zeros are generally non-distinguishable by
visualizing data. Statistical tests have been developed to assess
the degree of zero inflation. van den Broek (1995) first proposed a
simple score test to test zero inflation with a ZIP model setup.
Extending van den Broek’s work, Jansakul and Hinde (2002) later
developed a score test considering covariates in the ZIP model.
However, the authors mentioned that the score test cannot be
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applied when the link function for zero probability o is non-linear
(e.g., logit link in the current setting). A composite score test
should be applied instead which is essentially equivalent to an
AIC type of model selection (Jansakul and Hinde, 2002). Jansakul
and Hinde (2002) suggested a score information criterion (SIC)
initially proposed by Hart (1999), which is an analogy of AIC
(Akaike, 1974) based on the score test statistics. Note that we put a
special structure on the link function where the Poisson mean and
the zero probability are linked by zero inflation parameter t. The
model parameterization is different from the one proposed by
Jansakul and Hinde (2002). Thus, the SIC criterion cannot be
applied directly because the score function is not well defined
under the null of no zero inflation. For this reason, we apply an AIC
type of test to check which model, ZIGP or GPR, fits data better.
Since the GPR model assumes no zero inflation, the selection
process is equivalent to test if there is zero inflation. A model that
favors ZIGP against GPR indicates zero inflation.
2.6. Testing data dispersion

In addition to the advantage of assessing zero inflation, the
proposed ZIGP model can also take care of data dispersion. When
there are potential under- or over-dispersion, the GPR model
outperforms the regular Poisson regression model in QTL mapping
as revealed by our previous investigation (Cui et al., 2006). The
same conclusion applies when comparing the ZIGP and ZIP model.
When the dispersion parameter f ¼ 0, the ZIGP model reduces
to the ZIP model indicating no data dispersion. To assess the
adequacy of the ZIGP model over the ZIP model, and to determine
whether the data are over- or under-dispersed with respect to the
GPR model, a test for the dispersion parameter can be formulated
by testing H0 : f ¼ 0. When the lower bound for f̂ is not reached,
a Wald type test can be conducted in which f̂=sðf̂Þ may
asymptotically follow a standard normal distribution. Given the
mixture distribution, further theoretical study is needed to
investigate the validity of the Wald test. Alternatively a LR test
can also be applied. The sign of the significant test statistics
suggests over- or under-dispersion, where negative estimates
indicate under-dispersion and positive estimates indicate over-
dispersion. We can also apply an AIC-type model selection
procedure to choose which model, ZIP or ZIGP, fits the data better.
Table 1
The mean MLEs with their square root mean square errors (RMSEs) (in parentheses) of t

different zero-inflation patterns

Heavy inflation

n p ¼ 48 cM t ¼ �0:5 f ¼ 0:01 m

100 46.42 (14.119) �0.504 (0.111) �0.001 (0.023) 2

200 47.48 (8.960) 0.512 (0.084) 0.005 (0.015) 2

400 48.08 (4.321) 0.508 (0.053) 0.006 (0.011) 2

Mild inflation t ¼ 0

100 47.95 (8.437) �0.006 (0.083) 0.006 (0.014) 1

200 48.20 (4.119) �0.004 (0.071) 0.007 (0.008) 1

400 48.32 (2.395) �0.004 (0.052) 0.008 (0.006) 2

Light inflation t ¼ 0:5

100 48.16 (5.101) 0.501 (0.112) 0.006 (0.011) 1

200 48.72 (3.481) 0.514 (0.086) 0.008 (0.007) 2

400 48.10 (1.896) 0.501 (0.055) 0.009 (0.005) 2

P1 and P2 denote power calculated by using the LOD 3 and the simulated thresholds, r
3. Simulation

Monte Carlo simulations are conducted to evaluate the
performance of the proposed ZIGP mixture model for mapping
QTL underlying count trait with many zeros by mimicking
practical situations. Consider an F2 population initiated with
two inbred lines with which a 80 cM long linkage group composed
of five equidistant markers is constructed. Phenotype count data
are simulated assuming there is a putative QTL located at 48 cM
from the first marker on the linkage group using the derived ZIGP
mixture model. The Haldane map function is used to convert the
map distance into the recombination fraction. Data are simulated
under different scenarios, namely different sample sizes (n ¼ 100,
200, and 400), and different patterns of zero inflation (light, mild,
heavy) using the proposed ZIGP mixture model. The root mean
squared errors (RMSEs) and the power of detecting QTL are
reported.

For each simulation case, 100 replicates are performed.
Simulation results are tabulated in Table 1. Since the asymptotic
distribution of the LR test statistic for testing the existence of QTL
in the current framework is unknown and the permutation test is
very time consuming, we can use the empirical LOD score of 3 as
the threshold to determine the significance of the LR test in
simulation. We can also determine the power by simulation
studies. The null distribution for the LR statistic can be simulated
assuming no genetic effects, i.e., a ¼ d ¼ 0. The powers calculated
by using LOD 3 threshold and by simulation studies are indicated
as P1 and P2 in Table 1, respectively. In real analysis, a permutation
test should be applied instead. Without loss of generality, we fix
the data dispersion parameter and vary the inflation parameter.
The MLE of the parameters and their RMSEs listed in the
parenthesis are reported. In general, the ZIGP model can provide
accurate parameter estimates with reasonable precision as
indicated by the mean and RMSE values under different sample
sizes and different zero-inflation conditions. The effect of sample
size to the parameter estimation and testing power is remarkable.
As we expected, large samples always improve the precision of the
parameter estimates and power. For example, the RMSE of QTL
position estimation is increased from 14.119 to 4.321 when
sample size is increased from 100 to 400 under heavy zero-
inflation condition. Similar pattern is also observed for other
parameter estimates. Meantime, the power is increased from 71%
he parameters and QTL testing power obtained from 100 simulation replicates with

¼ 2 a ¼ 0:5 d ¼ 0:3 P1 P2

.01 (0.18) 0.506 (0.151) 0.278 (0.242) 71 90

.01 (0.09) 0.488 (0.092) 0.267 (0.140) 91 100

.00 (0.06) 0.493 (0.069) 0.292 (0.079) 100 100

.99 (0.10) 0.491 (0.103) 0.309 (0.116) 92 99

.99 (0.06) 0.502 (0.065) 0.312 (0.099) 96 100

.00 (0.05) 0.498 (0.057) 0.297 (0.065) 100 100

.99 (0.08) 0.507 (0.083) 0.307 (0.103) 95 100

.22 (0.06) 0.494 (0.056) 0.299 (0.076) 99 100

.00 (0.04) 0.496 (0.039) 0.296 (0.051) 100 100

espectively.
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Fig. 1. The LR profile plots averaged over 100 simulation replicates under different

sample sizes (100 and 400) assuming different zero-inflation conditions. The

arrow sign indicates the simulated QTL position (48 cM).
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to 100%. We also observe the same trend under other zero-
inflation conditions.

The effect of zero inflation on parameter estimation as well as
testing power is also significant. We know that the structural zero
stage is determined by parameter t as well as the effect size of li

from equation oi ¼ 1=ð1þ lti Þ. Even though the zero probability
varies from individual to individual depending on an individual’s
genotype, parameter t plays a major role in controlling the zero
stage probability for given genetic effects. For example, with the
given genetic effects listed in Table 1 and t ¼ 0:5, the zero
probability (o) is 0.22, 0.24 and 0.32 for individual carrying QTL
genotype QQ, Qq and qq, respectively. When t decreases to �0:5,
the zero probability increases to 0.78, 0.76 and 0.68 for the three
QTL genotypes, respectively. When t ¼ 0, the zero probability
becomes 0.5 regardless of the underlying QTL genotypes. There-
fore, t ¼ �0:5 indicates heavy zero inflation and large value of t
indicates light zero inflation in the current parameter setup.
The effect of zero inflation on the genetic parameter estimation as
well as testing power can be clearly seen in Table 1. In general,
the increase of zero proportion can reduce the testing power
and parameter estimation precision. For example, for fixed sample
size (say 200), the RMSE for the additive genetic parameter
a increases from 0.056 to 0.092 when t decreases from 0.5
(light inflation) to �0:5 (heavy inflation), a 39% reduction in
precision. For a sample of size 100, the testing power is increased
from 71% to 95% when the zero condition is changed from heavy
to light (P1 in Table 1). As sample size increases to 400, this
difference is invisible.

When simulated cutoffs are used, the power is increased under
the three zero-inflation conditions due to small thresholds used.
For example, the power is increased from 71% to 90% when data
are heavily zero-inflated under n ¼ 100. With the simulated
cutoffs, no significant power difference is observed for data
showing mild and light inflation. To further show the impact of
zero status on testing power, we compared the LR test statistic
across the simulated linkage group under the three simulated
zero-inflation conditions. Fig. 1 clearly shows the difference of the
LR values for different t values under different sample sizes. For
example, when n ¼ 100, large LR values are consistently observed
across the linkage group with light zero inflation (t ¼ 0:5). As the
proportion of zeros increases, the LR values are significantly
decreased. The same trend can be observed under large samples
(n ¼ 400).

A boxplot of the QTL position estimates comparing the
performance of the ZIGP and GPR is given in Fig. 2 which displays
the inter-quantile and the range of the estimated QTL position.
Outliers are indicated in stars. The notch indicates a robust
estimate of the uncertainty about the median. The dotted vertical
line represents the true QTL location which is simulated at 48 cM.
In all simulation, we fix the dispersion and the genetic parameters
and vary the sample size and the inflation parameter. The figure
indicates that the ZIGP model gives more precise estimates of the
QTL position than the GPR model under different sample sizes
and zero-inflation status. Also as we expected, the increase
of sample size can dramatically improve the precision of QTL
position estimation. The effect of zero inflation on the position
estimation can also be clearly seen from the figure in which
smaller variation for position estimation is observed under the
light inflation condition compared to other status.
4. Case study

To show the utility of the developed approach, we apply the
ZIGPðtÞmixture model to a real data set in mapping QTL underlying
cholesterol gallstone formation. Cholesterol gallstones are abnormal
masses of a solid mixture of cholesterol crystals. As one of the most
common digestive disorders and yet very expensive to treat,
gallstone disease has affected people for centuries (Portincasa
et al., 2006). Several studies have shown that cholesterol gallstone
formation is a complex genetic trait with unique genetic basis (e.g.,
Lyons et al., 2002, 2003, 2005; Wittenburg et al., 2003). A number
of QTLs in determining an individual predisposition to develop
cholesterol gallstones have been mapped using inbred mouse
strains (Lyons et al., 2002, 2003, 2005; Wittenburg et al., 2003).
In these literature, a gallstone scoring approach was applied to
calculate an overall phenotypic index measure of gallstone for-
mation in which gallstone number is considered as one of the
components (Lyons et al., 2002; Wittenburg et al., 2003). The scores
were then used as phenotypes assuming normal distribution for
QTL mapping. No study has been reported for QTL mapping focusing
on count trait with many zeros.

To apply the data to our ZIGP model, we use the gallstone
number as the phenotype for the mapping purpose. The data
contain an intercross population generated from two inbred
mouse strains PERA/Ei and I/LnJ. Total 279 F2 mice were collected
and genotyped. A genetic linkage map was constructed using
107 genetic markers, with a total length of 1382.3 cM, represent-
ing a good coverage of 19 mouse autosomal chromosomes
(Wittenburg et al., 2003). The interested count phenotype is the
number of formation of cholesterol monohydrate crystals,
translucent ‘‘sandy’’ gallstones and opaque ‘‘solid’’ gallstones.
Fig. 3 shows the histogram of the cholesterol gallstone counts
collected from the 279 F2 individuals. The large proportion
of zeros (�57%) indicates that a ZIGP model considering zero
inflation might be more appropriate than a regular GPR model.
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Fig. 3. Histogram of the cholesterol gallstone counts measured in 279 F2

individuals.
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parameters listed in Table 1, and are analyzed using the GPR and ZIGP models. The true QTL position is simulated at 48 cM away from the first marker indicated by the

vertical dotted line.
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Three types of statistical models, GPR, ZIP and the newly
proposed ZIGP are applied to analyze the data. In all three
analysis, only genetic factors described in Eq. (5) are considered.
A genome-wide linkage scan are conducted and the three models
lead to different LR profile throughout the genome. The AIC values
are reported at every scan position. Among the three models,
smaller AIC values indicate goodness-of-fit of the underlying
model to the data. Fig. 4 plots the differences of the AIC values
obtained by fitting the model using the ZIP and GPR against the
one fitted with the ZIGP model. As indicated by the figure, the ZIP
model gives the largest AIC values among the three models across
the genome. The GPR and the ZIGP models provide better fits than
the ZIP model. Comparing the GPR and the ZIGP models, the later
gives consistently smaller AIC values across most testing positions
than the ones fitted by the GPR model. Thus, only the results
obtained by the ZIGP model are focused in this section. In reality,
different genotypes may have different functions, leading to
different levels of reaction for an individual when exposed to
environmental stimuli, and thus to different levels of gallstone
zero status. Models (e.g., ZIGP) that can take care of different zeros
status displayed in both structural and sampling forms should
therefore be more meaningful and powerful. The real data
analysis indicates that the ZIGP model fits the data better than
the other models and is more powerful.

By genome-wide scanning for QTLs at every 2 cM within each
marker interval across the 19 mouse chromosomes, eight QTLs
that trigger effects on mouse gallstone formation are detected.
The genome-wide log-LR profile plot is shown in Fig. 5. The
dashed horizontal line indicates the 5% genome-wide significance
level and the dotted line indicates the 5% chromosome-wide
significance level. The figure clearly indicates that there are eight
QTLs are detected by the ZIGP model. Only one QTL located on
chromosome 10 is significant at the genome-wide significance
level. This QTL is located right on the maker position (D10Mit102)
indicating that this marker is a potential candidate for gallstone
formation. All the other QTLs are only significant at the
chromosome-wide level and hence are suggestive QTLs. Table 2
tabulates the estimated genetic effects with the asymptotic
standard errors given in the parenthesis. The QTLs detected on
chromosomes 4, 10, and 15 are consistent with the results
obtained by Wittenburg et al. (2003). In addition, we detect three
new QTLs located on chromosomes 8, 16 and 19 which are not
reported before. Given the close location of the three QTLs
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detected on chromosome 10, a multiple QTL model might be
needed to test if they are all real.
5. Model extension

The interval mapping approach has certain drawbacks by only
considering one QTL at a time (Jansen, 1993; Zeng, 1994). QTLs
located not in the testing interval may have interfering effect on
the tested QTL and the mapping results might not be conclusive.
Moreover, the mapping precision might be reduced as well (Zeng,
1994). A number of approaches have been developed to overcome
the problems. Among those, two approaches are most popularly
applied, namely the CIM (Zeng, 1994) and the MIM (Kao et al.,
1999) methods. Here we extend the developed single-QTL model
to multiple QTL analysis based on these two popular approaches.
5.1. Composite interval mapping

The proposed model can be easily extended to fit into the CIM
framework. The idea of CIM is to incorporate multiple regression
analysis into interval mapping by considering markers outside a
testing interval to control background genetic effect in order to
improve the precision and power of QTL detection. To extend the
proposed model to CIM framework in an F2 population, we
consider the following mean function at a testing interval with
flanking markers j and jþ 1:

lijGi ¼ exp mþ xiaþ ð1� jxijÞdþ
X

‘aj;jþ1

ðx‘a‘ þ ð1� jx‘jÞd‘Þ

8<:
9=;

where m is the overall mean; xi represents the QTL genotype
taking values 1, 0, and �1 corresponding to QTL genotype QQ, Qq

and qq, respectively; x‘ is the indicator variable for the back-
ground marker genotype taking values 1, 0 and �1 corresponding
to marker genotype MM, Mm and mm, respectively. Background
marker selection can be done by applying standard methods
developed for regular CIM. The EM algorithm derived for interval
mapping can be applied to estimate parameters.
5.2. Multiple interval mapping

As shown in literatures, when multiple QTLs are located in the
same linkage group, considering one QTL at a time could bias QTL
identification and estimation (Jansen, 1993; Zeng, 1994). The
problem can be solved by applying a multiple QTL mapping
model. One popular approach is the MIM approach (Kao et al.,
1999) which uses multiple marker intervals simultaneously to
map multiple QTL of epistatic interactions throughout a linkage
map. The proposed model can also be extended to fit into the MIM
framework. Suppose there are K QTLs, Q1; . . . ;QK , located on the
genome. The mean function for an individual i who carries
genotype Gi can be expressed as

lijGi ¼ exp mþ
XK

k¼1

xikak þ
XK

k¼1

zikdk þ
XK

jak

ðxikxijÞiakaj

8<:
þ
XK

jak

ðxikzijÞiakdj
þ
XK

jak

ðzikxijÞidkaj
þ
XK

jak

ðzikzijÞidkdj

9=;
where xik and xij are coded as 1 or �1 corresponding to the QTL
genotype QQ and qq, respectively; zik and zij are coded as 1 if the
QTL genotype is Qq and 0 otherwise; ak and dk are the additive and
dominant effect for QTL Q k; iakaj

; iakdj
; idkaj

and idkdj
are the pairwise

interaction effects between QTL Q k and Q j. Stepwise or chunkwise
selection procedure can be implemented to identify and separate
linked QTL (Kao et al., 1999).
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Table 2
Estimated genetic effects and their asymptotic standard errors (in the parenthesis) of the detected QTLs

Ch Marker interval t f m a d LR/LOD

4 D4Mit204 0.8545 0.3954 0.8848 0.3054 �0.4225 13.48/2.93a

(0.013) (0.051) (0.044) (0.031) (0.031)

8 D8Mit147–Mit271 �0.0665 0.1038 1.5315 0.8429 �0.3190 12.51/2.71a

(0.076) (0.283) (0.097) (0.066) (0.071)

10 D10Mit148–Mit22 0.3961 0.3058 1.0356 0.3249 �0.55526 12.21/2.65a

(0.018) (0.060) (0.041) (0.029) (0.029)

10 D10Mit66–Mit12 0.3320 0.2873 1.0657 0.3269 �0.6202 16.3/3.54a

(0.020) (0.063) (0.041) (0.030) (0.028)

10 D10Mit102 0.9495 0.4053 0.8512 0.3262 �0.4457 16.49/3.58b

(0.012) (0.051) (0.046) (0.034) (0.031)

15 D15Mit174–Mit184 1.1922 0.4165 0.8629 �0.2146 �0.5256 10.49/2.28a

(0.010) (0.050) (0.048) (0.033) (0.035)

16 D16Mit122 1.0876 0.4394 0.8338 �0.2359 �0.4409 12.91/2.8a

(0.012) (0.049) (0.047) (0.034) (0.032)

19 D19Mit32–Mit40 0.31956 0.2302 0.8650 0.3508 0.7613 9.42/2.04a

(0.056) (0.164) (0.081) (0.058) (0.058)

Note: The significance is at level 5% through 200 permutation tests.
a Refers to chromosome-wide significance.
b Refers to genome-wide significance.
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6. Discussion

Count traits are often observed in nature. Due to its discrete
nature, often many zeros may be occurred. While Poisson regression
or other approaches such as the one using the generalized
estimating equation can be applied to analyze count data, such
approaches often fail when there are many zeros. In this article, we
have developed an efficient method in QTL mapping for count data
with many zeros. Since zero status may be due to sampling zero or
structural zero, a model that can distinguish these two types of zeros
should be more appropriate. The proposed zero-inflated generalized
Poisson regression mixture model can take care of both zero
inflation and data dispersion and hence should be more appropriate
in dissecting the genetic effect of an underlying QTL on a count trait.
Computer simulations demonstrate that the model has high power
in mapping QTL for zero-inflated count data with reasonable sample
size and is quite robust in various situations.

The results in Table 1 show that the mapping power is affected
by the degree of zero inflation, especially when sample size is
small. High power is obtained when data show light inflation if
threshold LOD 3 is used (indicated by P1). When simulated cutoffs
are used, all powers are increased due to small thresholds used
(indicated by P2). The LR cutoffs by simulations under different
sample sizes and zero-inflation conditions are ranged from 9.5 to
10.5 which are less than the LOD 3 threshold. The small simulated
cutoffs may be due to small linkage group size (80 cM). Real data
analysis using permutations indicates that the genome-wide
threshold is close to the LOD 3 threshold. The LR profile plots
(Fig. 1) clearly show the impact of zero status on LR values and
hence on the testing power. Also, the QTL location is more
precisely estimated when data show light inflation compared to
mild or heavy inflation. The results also indicate that zero inflation
does affect QTL parameter estimation. This information suggest us
that in real data analysis, one has to be cautious in drawing a
conclusion when the proportion of zeros are large, especially with
small sample size. The effects of data dispersion on parameter
estimate and testing power are also studied. Similar results as
reported in Cui et al. (2006) are observed and hence are omitted.

The proposed ZIGP mixture model is a generalization of both
the ZIP and GPR mixture models. When the dispersion parameter
f is zero, the ZIGP model reduces to the ZIP model. When the zero
probability o approaches zero, the model is reduced to the GPR
model. In reality, which model is more appropriate to fit the data
can be decided through a model selection procedure. As demon-
strated by the real data analysis, the information criterion such as
AIC always favors the ZIGP model. More QTL are detected by the
ZIGP model than the other models.

Noted that the ZIGP mapping model is derived under the
maximum likelihood framework. Hence the likelihood-based
inference procedures can be easily applied under the current
framework such as the goodness-of-fit test and the residual
analysis as described in Cui et al. (2006). The inclusion of potential
outliers or influential points may affect QTL effect estimation and
inference. They can be easily identified by using these model
diagnostic procedures. In this article, we have developed our
method in the context of an F2 population. The model can be
easily modified to fit into a more general mapping framework
such as CIM or MIM. Extension to other populations such as
backcross, RIL or combined crosses are straightforward. A
computer program written in R is available upon request.
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Appendix A

The EM algorithm with the F2 population is derived as follows.
Define ci ¼ 2, 1 or 0 if the QTL genotype is QQ, Qq or qq,
respectively, with its distribution function.

f ðciÞ ¼
Y2

j¼0

pcijj

ij

where pij ¼ Pðcijj ¼ jÞ. Thus,

f ðyijciÞ ¼
Y2

j¼0

½pjðyijlijj;f; tÞ�cijj
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and

f ðy; cÞ ¼
Yn

i¼1

f ðyi; ciÞ ¼
Yn

i¼1

f ðyijlijjÞf ðciÞ

¼
Yn

i¼1

Y2

j¼0

½pjðyijlij;f; tÞ�cijjpcijj

ij

8<:
9=;

Then the complete log-likelihood function is given by

‘c ¼
Xn

i¼1

X2

j¼0

cijj log pjðyijlijj;f; tÞ þ
Xn

i¼1

X2

j¼0

cijj logpij

Since

f ðcijjjyiÞ ¼
f ðyi; cijjÞ

f ðyiÞ
¼

f ðyijcijjÞf ðcijjÞP2
s¼0 pispsðyijls;f; tÞ

¼
ðpijpjðyijlijj;f; tÞÞcijj ðpisaijpsajðyijlsaj;f; tÞÞ1�cijjP2

s¼0 pispsðyijls;f; tÞ

Thus, in the E-step, we calculate
Q

ijj at the (t)th iteration,
which is

YðtÞ
ijj

¼ E½cijjjyi;p; lijj;f; t� ¼
pijpjðyijlijj;f; tÞP2
s¼0 pispsðyijls;f; tÞ

(A.1)

And then replace the missing value cijj by
Q

ijj in the log-likelihood
function with the complete data. In the M-step, we calculate the
MLE of the parameters by using the Newton–Raphson algorithm
iteratively by maximizing the complete data likelihood function,

Q ðtÞ ¼
Xn

i¼1

X2

j¼0

YðtÞ
ijj

log pjðyijlijj;f; tÞ þ
Xn

i¼1

X2

j¼0

YðtÞ
ijj

logpij

By the Newton–Raphson iteration method, we need to calculate
the first and second partial derivatives. In the rest of the
derivation, we shall use xij ¼ lijð1þflijÞ

�1, Zij ¼ ltij expð�xijÞ,
which are used in the first and the second partial derivatives
given below:

q
qs

log ‘ðOÞðtÞ ¼
Xn

i¼1

X2

j¼0

YðtÞ
ij

log lij

1þ ltij
�

loglij

1þ Zij

Iðyi ¼ 0Þ

( )

q
q/

log ‘ðXÞðtÞ ¼
Xn

i¼1

X2

j¼0

YðtÞ
ij

x2
ijZij

1þ Zij

Iðyi ¼ 0Þ

(

þ �xijyi þ
ðyi � 1Þyi

1þ fyi

�
lijðyi � lijÞ

ð1þflijÞ
2

" #
Iðyi40Þ

)

q
qbr

log ‘ðXÞðtÞ ¼
Xn

i¼1

X2

j¼0

YðtÞ
ij

txij

1þ ltij
�

tþ
x2

ijZij

lij

 !
xij

1þ Zij

Iðyi ¼ 0Þ

8>>>><>>>>:

þ
ðyi � lijÞxij

ð1þ flijÞ
2

Iðyi40Þ

9>>>>=>>>>;
q2

qs2
log ‘ðXÞðtÞ ¼

Xn

i¼1

X2

j¼0

YðtÞ
ij

Zij

log lij

1þ Zij

 !2

Iðyi ¼ 0Þ

8<:
� ltij

log lij

1þ ltij

 !2
9=;
q2

q/2
log ‘ðXÞðtÞ ¼

Xn

j¼1

X2

j¼0

YðtÞ
ij

Zijx
3
ijðxij � 2� 2ZijÞ

ð1þ ZijÞ
2

Iðyi ¼ 0Þ

(

þ yix
2
ij þ

2l2
ijðyi � lijÞ

ð1þ flijÞ
3
�
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The Hessian matrix at the (t)th iteration is given by
HðtÞ ¼ q2Q ðtÞ=qOsOj,which leads to the updated parameters O at
the (t+1)th iteration,

Oðtþ1Þ
¼ OðtÞ � ½HðtÞ��1u0 (A.2)

where u is a vector of the first derivative of Q ðtÞ with respect to Qr .
The EM algorithm is repeated between Eqs. (A.1) and (A.2) until
certain convergence criteria are satisfied.
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