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Abstract: Human diseases developed during pregnancy could be caused by
the direct effects of both maternal and fetal genes, and/or by the indirect ef-
fects caused by genetic conflicts. Genetic conflicts exist when the effects of
fetal genes are opposed by the effects of maternal genes, or when there is a
conflict between the maternal and paternal genes within the fetal genome.
The two types of genetic conflicts involve the functions of different genes in
different genome and are genetically distinct. Differentiating and further dis-
secting the two sets of genetic conflict effects that increase disease risk during
pregnancy present statistical challenges, and have been traditionally pursued
as two separate endeavors. In this article, we develop a unified framework to
model and test the two sets of genetic conflicts via a regularized regression
approach. Our model is developed considering real situations in which the pa-
ternal information is often completely missing; an assumption that fails most
of the current family-based studies. A mixture model-based penalized logistic
regression is proposed for data sampled from a natural population. We develop
a variable selection procedure to select significant genetic features. Simulation
studies show that the model has high power and good false positive control
under reasonable sample sizes and disease allele frequency. A case study of
small for gestational age (SGA) is provided to show the utility of the proposed
approach. Our model provides a powerful tool for dissecting genetic conflicts
that increase disease risk during pregnancy, and offers a testable framework
for the genetic conflict hypothesis previously proposed.
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1 Introduction

The pregnancy process is unique in mammals in which the fetus resides inside
of its mother’s womb and there are significant interactions between the mother
and the fetus through the placenta. A fetus carries one copy of its mother’s
genes, hence there is an underlying harmony of interest between a mother and
her fetus, as most biologists assumed. On the other hand, a fetus also carries
one copy of the genome from its father. The maternal and paternal copies
inherited by a fetus may not be identical and the underlying harmony may
be broken. The paternal copy in the fetus’ genome that favors fetal growth
may not always benefit its mother. Moreover, there are intensive chemical
exchanges, including the fetus obtaining nutrition and disposing of wastes
through its mother’s blood (Haig 2004). What is beneficial to the fetus may not
always be optimal for its mother which thus affects development of both mother
and offspring. For example, the placental hormones may impose a negative
effect on maternal receptors and, consequently complications may develop.
According to the genetic conflict theory proposed by Haig (1993), when the
balance of the mutual benefits is broken — especially under conditions of
extreme conflicts — disease may occur.

Any diseases developed during pregnancy may impose great risks to the
mother or the fetus or to both. For example, mothers could develop diseases
such as preterm delivery or, Pre-eclampsia (PE) with a syndrome of hyperten-
sion and proteinuria. PE is a leading cause of maternal mortality, and affects
at least 5-7% of pregnancies (Kaunitz et al. 1985). On the other hand, the
fetus may be affected by disease and may show growth retardation or over-
growth. Such diseases, developed during pregnancy, have unique genetic bases
and are generally complex due to the different interests of the three sets of
genes: 1) genes in the mother; 2) maternally derived genes in the fetus; and 3)
paternally derived genes in the fetus. At a particular locus, the maternal-fetal
pair contains three distinct alleles: the non-inherited maternal alleles (NIMA)
in the mother’s genome, the maternally derived fetal allele (MDFA) shared
by the mother and the fetus, and the paternally derived fetal alleles (PDFA)
(Haig 2004). Quite often, the NIMAs do not discriminate among offspring,
and are called non-discriminating maternal alleles (Haig 2004). Occasionally,
a subset of discriminating maternal alleles may trigger negative effects in fetal
growth, and in extreme cases could cause the early demise of an embryo (Haig
2004).

During the gestation period, at least two interrelated sources of conflicts
may exist: 1) a conflict between genes expressed in the mother and in the
fetus; and 2) a conflict between the MDFA and the PDFA in the fetus’ genome
(Haig 1993). The first conflict is called either the parent-offspring conflict or



the maternal-fetal (MF) conflict to distinguish it from the second conflict,
which can be termed as fetal-fetal (FF) conflict. The MF conflict is due to
the genetic differences between the maternal and fetal genes, which is also
termed maternal-fetal genotype incompatibility (MFGI). For some disorders,
the maternal genotype influences fetal development through the mediation of
an altered uterine environment, and may increase the risk of birth defects
for the fetus. Meanwhile, the fetus’ genotype may produce chemicals that
are harmful to its mother, or the fetus may demand a great blood supply
more than its mother can provide, resulting in hypertension in the mother
— a common symptom of PE (Odent 2001). In both cases, the MF genetic
conflict can trigger negative effects in either the mother or the fetus. One
well-known example of this is the RhD MFGI which increases susceptibility
to schizophrenia (Palmer et al. 2002). When the mother is Rh negative (d/d)
and the fetus is Rh positive (D/d) at the RhD locus, harmful effects may be
imposed on the fetus due to Rh incompatibility.

The FF genetic conflict can be explained by different investments of the
PDFA and the MDFA in the fetus’ genome, which is also termed genomic
imprinting. When a gene is maternally (or paternally) imprinted, the PDFA
(or MDFA) may partially or completely dominate the expression of the other
allele, resulting in maternal (or paternal) imprinting (Pfeifer 2000). In the
presence of genomic imprinting, the PDFA (or MDFA) may favor greater lev-
els of investment in the fetus than does the MDFA (or PDFA). Examples
of genomic imprinting have been increasingly documented in the literature,
including both the well-studied maternally imprinted IGF2 genes and the pa-
ternally imprinted IGF2R gene.

There have been developed statistical methods for testing MFGI, such
as, the MFG test (Sinshermer et al. 2003), the exact MFG test (Minassian
et al. 2005), and the v-MFG test (Hsieh et al. 2006a, 2006b). The MFG
test is a generalization of the log-linear model developed by Weinberg and her
colleagues (Weinberg et al. 1998). Most of these methods have been developed
for the case-parents design, which requires genotyping trios that consist of a
mother, a father and an affected child. Some of the methods were developed
to allow partial missing parental genetic information (e.g., Hsieh et al. 2006b).
In a genetic association study related to pregnancy, it often happens that no
genetic information is available for the father at all. When this happens, a key
step in their method for the inference of identity-by-state, would fail, hence
the direct application of their method would not apply.

Statistical methods for mapping genomic imprinting have also been de-
veloped. For a quantitative trait, Hanson et al. (2001) proposed a variance
components framework that partitions the additive genetic effects into sex-
specific components. The method requires the estimation of allele-specific



sharing probability among sibpairs in a family, hence, it does not allow for
complete parental information to be missed. Shete and Zhou (2005) recently
proposed a parametric approach that incorporates the information about sex-
specific recombinations. By modifying the transmission/disequilibrium test
(TDT), Hu et al. (2007) proposed a method that allows for testing imprinting
for case-control data. However, the TDT approach requires genotyping both
affected individuals and their parents, and is greatly limited when paternal
genotype information is missing. Moreover, for large family-based association
studies, the method is practically unfeasible, due to the costs associated with
genotyping parental genomes.

So far, the dissection of the two aforementioned genetic conflicts that in-
crease disease risk has been largely pursued as two separate endeavors. Cordell
et al. (2004) proposed a method for modelling the parent-of-origin effect and
the maternal-fetal interaction effect simultaneously. But the authors did not
consider the genetic conflict effect between the maternal and fetal genome.
No study has been proposed to date to model the two sets of genetic conflict
effects simultaneously, in a unified framework. Moreover, most of the current
approaches assume a case-parent-trio design in which the parental genotype in-
formation is allowed for partially missing, but not completely missing. Their
applications are limited in practice when the paternal data are completely
missing. According to the genetic conflict theory proposed by Haig (2004),
both types of conflicts could trigger great negative effects resulting in great
risk to either the mother or the fetus or both during pregnancy. Methods that
address the conflict effects separately are greatly limited.

Addressing the limitations of the current methods, we propose a unified
framework to model the two sets of genetic conflicts that increase disease risk
during pregnancy after adjusting for the maternal and fetal main genetic effects
and the effects of clinical risk factors. The identified conflict effects can help
scientists explain phenomenon that can not be interpreted with traditional
approaches. The results can also be incorporated into a predictive genetic test
model to predict future disease risk (e.g., Lu and Elston 2008). Our main
objective in this paper is to search for genetic factors conferring disease risk
during pregnancy, which does not rule out the possibility of large effects from
environmental factors, such as maternal diet. Thus, environmental effects
are adjusted when searching for genetic factors. We assume a case-control,
population-based study design with paired mother-fetus genotype data. As-
suming a quadratic penalty function, a mixture model-based penalized logistic
regression is developed to account for the missing information for double het-
erozygote maternal-fetal paired data when inferring genomic imprinting. A
detailed estimation procedure in an expectation-maximization (EM) frame-
work is developed. Details about tuning parameter selection using generalized



cross validation and variable selection are presented. Extensive simulations
are conducted to evaluate the performance of the proposed method. To show
the model’s utility, we apply the method to a real data set, which is generated
for the purpose of understanding the disease etiology of small for gestational
age (SGA) during pregnancy. Genes that function in different conflict forms
are detected in association with SGA.

2 Statistical methods

2.1 The genetic model

Consider a sample of n mother-fetus pairs collected from a population. By n
mother-fetus pairs we mean there are total n mothers and n fetus with one
to one relationship. A number of candidate genes are selected, based on prior
knowledge of the disease, and a number of SNPs are then genotyped for each
candidate gene. Genetic conflicts can cause disease to either the mother or the
fetus. We first consider the case in which fetuses are the affected individuals,
due to a genetic conflict. We further assume no paternal genotype information
is available. Let yi = 1 if the ith child has the disease, yi = 0 otherwise. Note
that the paired mother-fetus data only produce one binary response variable,
and we assume a child is the affected one. The model can be extended to the
case whereby a mother is the affected one. Let y represent an n × 1 vector
for the observed disease status. Assume that there are two alleles, B and b,
at a marker locus with a population frequency of q and 1 − q, respectively.
Without loss of generality, we assume B is the minor disease allele. Let us
denote the maternal genotype by GM and the offspring genotype by GO. We
use the subscript letters M and F to denote the maternal and paternal origins
of an offspring allele, respectively. For example, an offspring’s genotype BMbF

means that allele B is inherited from the mother and allele b is inherited from
the father. For convenience, we denote the marker genotypes BB,Bb and bb
by the numbers 2, 1 and 0 (i.e. the number of copies of the marker allele
B carried by an individual). Table 1 lists all of the possible combinations of
mother-fetus genotypes.

Note that the parental origin of an offspring allele can be explicitly iden-
tified in most cases, except for a case in which both the mother and the fetus
carry heterozygote genotype Bb. Column 4 in Table 1 denotes the relative
frequencies of all possible linkage phases in offspring, when considering the
allelic parental origin. When the parent-of-origin linkage phase is explicit, the
relative frequency is 1, as it is in most cases. For the double heterozygous
maternal-fetal genotype pair, the chance that an offspring inherits the B allele
from the mother is denoted by π1 and, similarly, π2(= 1− π1) for an offspring



Table 1: The maternal-fetal genotype pairs and their mean genotypic values
GM GO GMO Frequency Mean genotypic values

BB
BMBF

BMbF

(2, 2)

(2, 1)

1

1

µ + am + ao

µ + am + do + ic
BMBF (1,2) 1 µ + dm + ao + ic

Bb

{

BMbF

bMBF

{

(1, 1)

(1, 1)

{

π1

π2

{

µ + dm + do

µ + dm + do + im
bMbF (1,0) 1 µ + dm − ao + ic

bb
bMBF

bMbM

(0, 1)

(0, 0)

1

1

µ − am + do + im + ic
µ − am − ao

inheriting the b allele from the mother. The probability of π1 is generally
unknown and needs to be estimated from the observed data.

Due to the unique environment that exists during pregnancy, the three sets
of genes may have different levels of investments in fetal growth and fitness.
The effect of the maternal genotype on its fetus, termed maternal effect, rep-
resents one contributing source. Following the traditional quantitative genetic
theory (Lynch and Walsh 1998), the maternal effect is modelled by two genetic
parameters, the additive effect (am) and the dominance effect (dm). Similarly,
the main effect of an offspring genotype on its own risk is also modelled by the
additive effect (ao) and the dominance effect (do). When a gene in the fetus’
genome is imprinted due to different levels of self-interest from the maternal
and paternal genes, the expressions for the two reciprocal genotypes BMbF

and bMBF will be different depending on the underlying imprinting mecha-
nism. Following Shete and Amos (2002), the genetic conflict effect caused by
imprinting is modelled by the imprinting parameter im, which distinguishes
the expression of two reciprocal heterozygotes BMbF and bMBF. When im = 0,
the expressions for the two reciprocal genotypes are the same and there is no
imprinting.

Depending on the underlying mechanism of incompatibility, three sets of
incompatible effects could exist due to: 1) an extra copy of a disease allele
presented in the mother genome; 2) an extra copy of a disease allele presented
in the fetus genome; or 3) combination of the two cases. For example, when a
fetus is homozygous and its mother carries an allele that codes for an antigen,
the fetus may produce an allogeneic response to the mother’s antigen that is
detrimental to the mother. The mother may experience a preterm premature
rupture of membranes. In general, the first two sets of incompatibility effect are
due to an extra allele copy in either the mother or the fetus’ genome, and can



thus be termed as the allelic incompatibility effect. The third incompatibility
occurs when any mismatch between the maternal and fetal genotype exists;
this can be termed as the genotype incompatibility. Parimi et al. (2008)
divided the MF conflict into six categories, and compared the performance
of the different incompatibility models. They found that an incompatibility
model similar to the aforementioned third model is the most powerful one.
Following Parimi et al. (2008), we model the MF conflict attributable to
the MFGI by the parameter ic. An MFGI effect exists whenever there is a
mismatch between the mother and the fetus’s genotype, following the third
incompatibility model in Parimi et al. (2008). A detailed list of the genotypic
means for all possible maternal-fetal pairs is given in the last column in Table
1, with the overall mean denoted by µ.

2.2 Logistic regression and its limitations

Assuming unrelated case-control data sampled from a population, the logistic
regression model is a natural choice for fitting the binary data with the form
given by

log
pi

1 − pi

= µ + X∗
i1am + X∗

i2dm + X∗
i3ao + X∗

i4do + X∗
i5im + X∗

i6ic + U ′
iγ

= X∗′
i β + U ′

iγ = X ′
iθ

(1)

where pi = Pr(yi = 1|X∗
i , Ui); Ui is a p × 1 vector of covariates, including

clinical risk factors such as mother’s age or smoking status; γ is a p× 1 vector
of the covariates effect; X∗

i = (1, X∗
i1, X

∗
i2, X

∗
i3, X

∗
i4, X

∗
i5, X

∗
i6)

′ is a 7× 1 dummy
vector; β = (µ, am, dm, ao, do, im, ic)

′ is the coefficients vector; and θ = (β,γ).
Here we use the symbol ′ to denote the matrix transpose. Specifically, the
indicator variables X∗

i1 and X∗
i2 define the mother genotype status with

X∗
i1 =











+1 for BB

0 for Bb

−1 for bb

and

X∗
i2 =

{

1 for Bb
0 for BB or bb

X∗
i3 and X∗

i4 are defined in a similar way for the fetus’ genotype, and

X∗
i5 =

{

1 for bMBF

0 otherwise



X∗
i6 =

{

1 for BB − BMbF, Bb − BMBF/bMbF or bb − bMBF pair

0 otherwise

Assuming independence and a known parent-specific linkage phase for the
double heterozygous maternal-fetal genotype pair, the log-likelihood function
for the joint maternal-fetal pairs can be expressed as

ℓ(θ) =
n
∑

i=1

log fi(yi|Xi) =
n
∑

i=1

{yi log pi + (1 − yi) log(1 − pi)} (2)

where fi(yi|Xi) =
exp(X′

i
θyi)

1+exp(−X′

i
θ)

; pi = Pr(yi = 1|Xi) = [1 + exp(−X ′
iθ)]−1. The

logistic regression coefficients preserve typical nice MLE properties when all
the predictors are independent. The Wald or the likelihood ratio test can be
applied to test the significance of an individual variable or sets of variables.

However, there are certain issues that arise when fitting the regular logis-
tic regression in the current setting: 1) When the Hardy-Weinberg equilibrium
(HWE) holds, the genotype frequency remains constant at each generation.
For a polymorphic locus, we expect that the number of individuals from each
generation who carry certain genotype will be proportional to that genotype
frequency. This is true with large samples. With a finite sample size, however,
certain genotype(s) may often dominate the other genotype(s) resulting in ex-
tremely unbalanced distributions among the three genotypes at a given marker
locus. This may also happen when HWE does not hold for a tested polymor-
phic locus. When this does happen, multicollinearity may appear among the
predictors, due to the dummy coding scheme of the variables. Consequently,
the ordinary maximum likelihood method may lead to estimates with highly
inflated variances, which make the ordinary inference procedure fails; and 2)
In certain cases, a column of the design matrix X could contain many zeros
or even all zeros, due to the dummy coding scheme (see Park and Hastie 2008
for a similar situation in modelling SNP interactions). For example, when
few BMbF genotypes are observed in the offspring, the column coding for the
imprinting effect contains many zeros, resulting in an unreliable imprinting es-
timate im. This actually happens quite often in real data with a finite sample
size so the regular logistic regression model may not fit well.

To avoid these problems, we introduce a penalized logistic regression
(PLR), with L2 regularization to penalize the regression coefficients. The L2

regularization on the sum of the squares of the regression coefficients is known
as ridge regression (Hoerl and Kennard 1970), and has been applied to logistic
regression analysis (le Cessie and Houwelingen 1992). In the next section, we
will introduce the PLR and estimation procedures.



2.3 Penalized logistic regression

Instead of maximizing the log-likelihood function in (2) directly, the PLR
maximizes the log-likelihood function subject to a L2-norm penalty on the
regression coefficients (excluding the intercept) (le Cessie and Houwelingen
1992; Lee et al. 1988). This is equivalent to maximizing the following penalized
log-likelihood function

ℓ(θ, λ) = ℓ(θ) −
λ

2

p+6
∑

j=1

θ2
j (3)

where ℓ(θ) denotes the unrestricted log-likelihood function given by (2); θj

(j = 1, · · · , p + 6) are the regression coefficients, excluding the intercept µ;
and λ is the tuning parameter, which is determined based on the data. When
λ → 0, (3) yields to the unrestricted maximum likelihood estimator, whereas
if λ → ∞, θj (j = 1, · · · , p + 6) shrinks toward zeros. The logistic regression
with L2 regularization can handle multicollinearity problems efficiently and
has attractive properties, as discussed in Park and Hastie (2008).

The estimation of the parameters can be done in an iterative way by mod-
ifying the Newton-Raphson algorithm. Following the iteratively re-weighted
ridge regressions (IRRR) algorithm proposed by Park and Hastie (2008), at
the (t + 1)th step, we update the parameters θ by

θ(t+1) = θ(t) − (
∂2ℓ(θ)

∂θ∂θ′
)−1∂ℓ(θ)

∂θ

= (X′WX + Λ)−1X′W
{

Xθ(t) + W−1(y − p)
}

= (X′WX + Λ)−1X′Wz.

(4)

Where X is the n× (p + 7) matrix of the predictors; p is the vector of proba-
bility estimates with pi = [1 + exp(−X ′

iθ)]−1; W is the diagonal matrix with
the diagonal elements pi(1 − pi); Λ is the diagonal matrix with the diagonal
elements (0, λ, · · · , λ); and z = Xθ(t) +W−1(y−p) is the “working” response
in the IRRR algorithm (Park and Hastie 2008).

2.4 Penalized logistic regression with missing data

As shown in Table 1, when double heterozygous maternal-fetal pairs present,
the allelic parental origin for fetus genotype can not be explicitly distin-
guished. The parental origin linkage phase in the fetus is missing. Consider
the maternal-fetal genotype pair (Bb,Bb). A fetus can inherit a B allele from
its mother or father with probability π1 or π2 (= 1 − π1), respectively. The
missing probability can be estimated from the observed data. In this section,



we give details on how to fit the PLR model with missing data and derive an
estimation procedure using the EM algorithm.

Let Gi be the observed genotype information for the ith maternal-fetal
pair, and gi be the genotype information with a known allelic parental origin
in the fetus genotype corresponding to Gi. Considering the fetus’ allelic parent-
of-origin information, the likelihood function can be written as

L(θ) =
n
∏

i=1

∑

gi∈Gi

Pr(gi|Gi)fi(yi|Xi) (5)

where Pr(gi|Gi) is the probability of a fetus carrying an allelic specific parent-of-
origin genotype gi that corresponds to the observed genotype Gi, and fi(yi|Xi)
is the logistic regression function. As shown in Table 1, in most cases, gi

and Gi are one-to-one correspondence, hence, Pr(gi|Gi) = 1. For the double
heterozygous maternal-fetal pair (Bb,Bb), the fetus parent-of-origin genotype
phase is missing, with Pr(gi|Gi) = π1 if a fetus carries genotype BMbF and π2

if bMBF.
Rewriting the likelihood function in (5), we obtain the observed likelihood

function

L(θ) =

n1
∏

i=1

fi(yi|Xi)
n
∏

i=n1+1

(

2
∑

k=1

πkfik(yi|Xi)

)

(6)

where n1 is the number of total cell counts with a known parent-of-origin
genotype phase in the fetus, and n − n1 is the number of observed double
heterozygous maternal-fetal pairs. Let Z = (Zn1+1, Zn1+2, · · · , Zn) be a vector
of random classification variables, with Zi = 1 if the inherited B allele for the
ith fetus is from mother and Zi = 2 otherwise. Then, the complete likelihood
can be written as

Lc(θ) =

n1
∏

i=1

fi(yi|Xi)
n
∏

i=n1+1

2
∏

k=1

π
I(Zi=k)
k fik(yi|Xi)

I(Zi=k)

and

Lc(θ)

L(θ)
=

∏n

i=n1+1

∏2
k=1 π

I(Zi=k)
k fik(yi|Xi)

I(Zi=k)

∏n

i=n1+1(
∑2

k=1 πkfik(yi|Xi))

=
n
∏

i=n1+1

2
∏

k=1

(
πkfik(yi|Xi)

∑2
k=1 πkfik(yi|Xi)

)I(Zi=k)

This leads to the posterior distribution of Zi as

Πik = Pr(Zi = k|y,θ) =
πkfik(yi|Xi)

∑2
k=1 πkfik(yi|Xi)

, i = n1 + 1, n1 + 2, · · · , n; k = 1, 2.

(7)



We can then get the expectation of the complete log-likelihood function with
respect to the posterior distribution of Z as

Q(θ|θ) = E(Z|θ) [log Lc(θ)]

= E(Z|θ)

[

n1
∑

i=1

log fi(yi|Xi) +
n
∑

i=n1+1

2
∑

k=1

I(Zi = k) (log πk + log fik(yi|Xi))

]

=

n1
∑

i=1

yiX
′
iθ − log(1 + eX′

i
θ) +

n
∑

i=n1+1

2
∑

k=1

Πik(log πk + yiX
′
ikθ − log(1 + eX′

ik
θ))]

(8)

In the M-step, we maximize function (8) under the L2 constraint for the coef-
ficients, except the intercept µ. That is

max
θ

Q(θ|θ(t)), s.t.

p+6
∑

j=1

θ2
j ≤ t.

which is equivalent to maximizing

ℓ∗(θ) = Q(θ|θt) −
λ

2

p+6
∑

j=1

θ2
j (9)

By a simple mathematical calculation, the first and second derivative of
function ℓ∗(θ) with respect to θ can be derived

∂ℓ∗(θ)

∂θ
=

n1
∑

i=1

(yi − pi)X
′
i +

n
∑

i=n1+1

2
∑

k=1

Πik(yi − pik)X
′
ik − λθ

= X′V(y − p) − λθ

and

∂2ℓ∗(θ)

∂θ∂θ′
= −

n1
∑

i=1

pi(1 − pi)X
′
iXi −

n
∑

i=n1+1

2
∑

k=1

Πikpik(1 − pik)X
′
ikXik − λI

= −(X′VWX + Λ)

where V is an N × N (N = n1 + 2(n − n1)) diagonal matrix with diago-
nal elements {11×n1 ,Π1×(n−n1),1,Π1×(n−n1),2} where Πik = P (Zi = k|y,θ),
λθ = {0, λθ1, · · · , λθp+6} and λI = diag{0, λ, · · · , λ}. Applying the Newton-
Raphson algorithm at the M-step, the iteration formula for θ at the (t+1)th



step can be updated as

θ(t+1) = θ(t) + (X′VWX + Λ)−1(X′V(y − p) − Λθ
(t)

)

= θ(t) + (X′VWX + Λ)−1X′VW[Xθ
(t)

+ W−1(y − p)]

= θ(t) + (X′VWX + Λ)−1X′VWz

(10)

where X is an N×(p+7) matrix, and y = (y1, . . . , yn1 , yn1+1, . . . , yn, yn1+1, . . . , yn)
is an N × 1 vector. W is an N × N diagonal matrix with diagonal elements
{p1(1 − p1), . . . , pn1(1 − pn1), pn1+1,1(1 − pn1+1,1), . . . , pn,1(1 − pn,1), pn1+1,2(1 −
pn1+1,2), . . . , pn,2(1− pn,2)}. And Λ is a (p + 7)× (p + 7) diagonal matrix with
the diagonal elements {0, λ, . . . , λ}.

The EM algorithm with PLR is summarized as follows:
E-step: For given values of the initial parameters θ and π

(0)
1 = 0.5, and

the tuning parameter λ, we calculate Πik given in (7).

M-step: At step t + 1, we calculate π
(t+1)
k =

P
n

i=n1+1 Π
(t+1)
ikP

n

i=n1+1

P2
k=1 Π

(t+1)
ik

, V(t+1),

W(t+1), and z(t+1), updating θ by (10). Repeat the EM steps until convergence.
The variance of the estimator θ̂ can be calculated by

V ar(θ̂) = V ar[(X′VWX + Λ)−1X′VWz]

= (X′VWX + Λ)−1X′VV ar[y − p](X′VWX + Λ)−1X′V

= (X′VWX + Λ)−1X′VWVX′(X′VWX + Λ)−1

which is the sandwich estimate defined by Gray (1992). Following Hastie and
Tibshirani (1990) and Park and Hastie (2008), the effective degree of freedom
for the PLR regression with missing data can be approximated by

df(λ) = tr((X′VWX + Λ)−1X′VWX) (11)

2.5 Choosing tuning parameter λ

The quadratic regularization offers the advantages emphasized in previous sec-
tions. In addition, it can be used to smooth a model and control the effective
degree of freedom (Park and Hastie 2008). The algorithm described above is
for a fixed λ value. In a real analysis, the tuning parameter needs to be se-
lected. Ordinary cross validation (OCV) such as leave-one-out cross validation
or k-fold cross validation can be used for selecting λ. However, OCV is com-
putationally intensive, since for each value of λ, we have to fit the model and
estimate the parameters using the EM algorithm. A computationally efficient
alternative to choose λ is to use the generalized cross validation (GCV), as it
only requires fitting the model once and can greatly reduce the computational



burden. Here, we adopt a non-linear GCV approach proposed by Fu (2005).
The non-linear GCV requires fitting the model once, and it takes the form

GCV =
Dev

n(1 − vs/n)2
(12)

where Dev= 2ℓ(y,y)− 2ℓ(y,p) is the model deviance (McCullagh and Nelder
1989); v(= p + 6) is the number of covariates in the model excluding the
intercept; and s is the shrinkage rate, which is defined as

s =
‖θ̂(λ)‖2

‖θ̂‖2
(13)

where θ̂(λ) are the coefficient estimates with the L2 regularization, and θ̂ are
the ordinary coefficient estimates without constraint. The shrinkage rate s
defines the degree of shrinkage, with 0 for complete shrinkage and 1 for no
shrinkage (Tibshirani 1996). A full model fitted with all of the parameters
is used to choose the tuning parameter λ, which is then fixed for subsequent
analysis.

2.6 Variable selection

Unlike LASSO (Tibshirani 1996), or more recently, the adaptive LASSO (Zou
2006), which do shrinkage and variable selection simultaneously, the L2 penalty
only does shrinkage but not variable selection. In fact, none of the coefficients
shrink to zero unless the distribution of the variable is extremely sparse (Park
and Hastie 2008). Regular hypothesis testing procedures, such as the likelihood
ratio test or the score test, do not work under the penalized framework due to
the difficulty of deriving the null distribution of the test statistic. For ease of
interpretability, we need a method for variable selection. The classic forward
selection procedure is used to accomplish this.

The forward selection starts with a null model, in which only the intercept
term is included. Then, for each forward step, factors are added to the model
one at a time. The choice of the factor to be added in each step is based
on the AIC/BIC criteria, where AIC is defined by AIC=Dev+2df and BIC is
defined by BIC=Dev+log(n)df . The model with the smallest AIC/BIC value is
chosen as the final model. When at least one genetic parameter (excluding the
intercept) is included in the final model, we declare that the SNP is associated
with the disease under study.

Tuning parameter λ is selected by fitting the full model which includes all
the factors. It is then fixed for subsequent variable selection. It is worth noting
that this may not be the optimal regularization. To efficiently select variables,



we may need to search for the optimal regularization parameter λ at each
selection step. For example, one may start with a tuning parameter λ chosen
based on the null model, add one more variable to the model, then search for
a better tuning parameter and continue. This, however, will incur extremely
high computational costs. In the meantime, new problems may be introduced.
For example, if we select λ at each step, it may vary at each selection step,
resulting in difficulty in comparing the AIC/BIC values for model comparison.
We leave this as an open issue for future investigation. A similar issue is also
discussed in Zhu and Hastie (2004).

3 Simulation

Extensive simulation studies were conducted to evaluate the model perfor-
mance and its statistical behavior under different sample sizes and different
gene action modes. At an SNP locus, we assumed the same population allele
frequency for both a mother and a father’s minor allele. Assuming HWE,
the genotype frequency can be calculated from the allele frequency for both
parents. Using multinomial distribution, the genotype information for both
parents can then be simulated. Assuming random mating in the simulated
population, the offspring genotype can easily be simulated from the parents’
genotype data. For example, if an individual’s mother has genotype BB and
father has genotype Bb, then the individual’s genotype has a 50% chance of
being BB and a 50% chance of being Bb. Individual disease status was then
simulated from a bernoulli distribution, with the probability of being affected
defined by the parameters given in Table 1. For simplicity, only genetic fac-
tors were simulated, even though non-genetic factors such as age or weight can
also be simulated with specified parameter values. Once the phenotype data
were simulated, paternal genotype data were discarded and only maternal-fetal
pairs were recorded for further analysis.

Simulations were conducted assuming a case-control sample size (denoted
by n) of 500 and 1000. The minor disease allele frequency (denoted by q)
was assumed to be 0.1, 0.3, and 0.5. The given values for all of the genetic
parameters were listed in Table 2. Scenario S0 assumes no genetic effect at
all. Other scenarios assume different gene actions. For example, a disease
phenotype may result from the function of only the main effects of maternal
genes (S1) or fetal genes (S2), or may be due to the function of the conflict
effects only (S5 and S6). The simulated samples contain roughly 50% cases
and 50% controls. Data simulated with these configurations were subject to
analysis with the proposed logistic regression with L2 regularization and the
ordinary logistic regression. Results from 1000 Monte Carlo repetitions were
recorded.



Table 2: List of parameter values under different simulation designs
Scenario am dm ao do im ic

S0 0 0 0 0 0 0
S1 0.8 0.8 0 0 0 0
S2 0 0 0.8 0.8 0 0
S3 0.8 0 0.8 0 0 0
S4 0 0 0.8 0 0.8 0
S5 0 0 0 0 0.8 0
S6 0 0 0 0 0 0.8

In all of the simulations, the AIC criterion performs consistently poorer
than the BIC, hence the results from the AIC were not reported. Figure 1
shows the results for variable selection under different simulation scenarios.
The top figure corresponds to scenario S0, in which the proportion of selection
is equivalent to the false positive (or selection) rate. For each parameter, the
red, green and blue bars correspond to the selection results with an allele
frequency of 0.1, 0.3, and 0.5, respectively. The two bars with the same color
under each allele frequency represent the selection results for a sample size
of 500 and 1000. It is clear that the false selection rate for the parameters
under different sample sizes and minor allele frequencies are all under the
nominal level of 0.05, indicating a good false positive control of the proposed
method. Figure 1 also shows the power (true positive) and the false selection
rate for scenarios S1 to S6. As we expected, the selection power increases as
the sample size and the minor allele frequency increase. The selection rates
for true negatives are also under reasonable control. It is worth noting that
the incompatibility effect (Fig. 1-S6) has a higher selection power, compared
to the imprinting effect (Fig. 1-S5), given that both parameters have the same
effect size. This might be due to the uncertainty of inferring the imprinting
effect when applying the EM algorithm.

To compare the performance between the proposed PLR method with
the ordinary logistic regression (OLR), we also analyzed the simulated data
with the OLR method. Likelihood ratio test was applied to test significance
for each parameter when the OLR was applied. Without loss of generality,
comparisons were made only under the minor allele frequency of 0.3 and the
sample size of 500. Figure 2 shows the power plot under scenarios S0-S6 with
parameter values given in Table 2. It is clear that the OLR method has a
relatively low power to detect true positives, especially for the maternal addi-
tive and dominance effects, the offspring dominance effect and the two genetic
conflict effects. The OLR method gives constantly under-estimated false pos-
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Figure 1: The plot of variable selection results under different simulation scenarios
(Parameter values are listed in Table 2). There are three sets of colored bars asso-
ciated with each parameter. The red, green and blue bars correspond to selection
results with minor allele frequencies 0.1, 0.3 and 0.5, respectively. For each allele
frequency, the left and right bars correspond to the selection results with the sam-
ple size 500 and 1000, respectively. The horizontal dash-dotted line indicates the
nominal level of 0.05.

itive rates for parameters dm and ic for the seven simulation scenarios. The
results indicate that the OLR method is less competitive than the proposed
PLR method.

As suggested by one reviewer, we did additional simulations to check
the model performance under population stratification and asymmetric mat-
ing. We followed the simulation design given in Sinsheimer et al. (2003).
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Figure 2: The comparison of power plot with the ordinary logistic regression (OLR)
and the penalized logistic regression (PLR) under different simulation scenarios.
Each plot corresponds to one simulation scenario listed in Table 2. The horizontal
dash-dotted line indicates the nominal level of 0.05.

To evaluating the effect of population stratification, we simulated 1000 data
sets of 400 child-parent triads, with parental genotype frequencies given by
P (BB) = 0.14, P (Bb) = 0.49, and P (bb) = 0.37, and an additional 100 child-
parent triads with parental genotype frequencies given by P (BB) = 0.01,
P (Bb) = 0.06, and P (bb) = 0.93. We allowed the baselines to differ in these
two populations. The cases and controls were sampled with a roughly 1:1 ra-
tio in each subpopulation. The genotype frequency indicates deviation from
Hardy-Winberg equilibrium (HWE) at the simulated locus. We assumed an
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Figure 3: The power plot for variable selection under population stratification and
asymmetric mating for different simulation scenarios. Each plot corresponds to one
simulation scenario listed in Table 2. The horizontal dash-dotted line indicates the
nominal level of 0.05.

equal effect size for each parameter in the two populations. For simplicity, the
simulation was done with sample size n = 500. A list of parameter values used
for the simulation study is given in Table 2. The red bars in Figure 3 show the
power plots under population stratification for different simulation scenarios.
It is observed that the true and false positives are under reasonable control
with the proposed method under different simulation scenarios, indicating the
method robustness to population stratification.

To evaluating the effect of asymmetric mating on variable selection, we
simulated 1000 data sets — each composed of two populations of child-parent



triads — allowing for asymmetric mating between the males and females in
the two populations, following the simulation design given in Sinsheimer et al.
(2003). For each data set, 400 child-parent triads were simulated with both
parental genotype frequencies given by P (BB) = 0.14, P (Bb) = 0.49, and
P (bb) = 0.37. An additional sample of 100 child-parent triads were simulated
with paternal genotype frequencies given by P (BB) = 0.01, P (B = b) = 0.06,
P (bb) = 0.93, and maternal genotype frequencies given by P (BB) = 0.14,
P (Bb) = 0.49, and P (bb) = 0.37. Again, the cases and controls were sampled
with a roughly 1:1 ratio in each subpopulation. Simulation results are shown
in Figure 3 (indicated by blue bars). The results indicate that the method
performs reasonably good, even though there were slightly inflated false pos-
itives observed for the maternal additive (S4 and S5), offspring dominance
effect (S4 and S5) and imprinting effect (S1 and S2), under the asymmetric
mating design. Sinsheimer et al. (2003) previously showed that asymmetry
mating leads to bias in the maternal allelic effects in their approach. Since
ridge regression gives biased parameter estimations, it is meaningless to report
bias estimation in this study. Thus it is hard to compare the two methods in
this regard.

In summary, the proposed method performs reasonably well under differ-
ent scenarios. When there is no gene effect, the false positive rate for each
parameter is reasonably controlled. We also observed a reasonable selection
power for those significant parameters, in which the power varies depending
on the size of sample and minor allele frequency. In addition, the proposed
method is reasonably robust to population stratification and asymmetric mat-
ing, even though it appears that population stratification has a relatively larger
negative effect than the asymmetric mating does, on the selection power of the
imprinting effect.

4 A case study

Our method is applied to a genetic association study of small for gestational
age (SGA) neonates. Infants whose weight falls below the 10th percentile for
gestational age are classified as SGA (Cardosi 2006). Experimental evidence
has shown that SGA infants have an elevated risk of developing metabolic dis-
ease — particularly obesity, insulin resistance, carbohydrate intolerance and
dyslipidemia — and confer a substantial risk of morbidity and mortality both
in the perinatal period and later in life (reviewed in Saenger et al. 2007).
For example, SGA may lead to complications for newborns, including respira-
tory complications, hypotension, hypoglycemia, necrotizing enterocolitis, and
neonatal death (Bernstein et al. 2000; Villar et al. 1990). Consequently,
children born with SGA are prone to neurological impairment and delayed



cognitive development (Paz et al. 1995; Taylor and Howie 1989).
An increasing number of SGA infants has been reported in recent years,

but the etiology of SGA remains largely unknown. It has been commonly
recognized that a complication of pregnancy and/or delivery is a complex
trait determined by multiple environmental and genetic factors (Hao et al.
2004). The importance of genetic factors in the regulation of fetal growth has
been recognized and increasing evidence has been documented in the literature
(Reviewed in Saenger et al. 2007). The genetic conflict theory proposed by
Haig (2004) offers an alternative explanation of the disease risk associated with
SGA. However, no genetic association study has been reported regarding the
genetic conflict effects that increase SGA risk.

To understand the genetic basis of SGA, particularly any genetic conflict
effects that increase the infant SGA rate, a number of candidate genes were
selected from pathways, including immune response and angiogenesis. Sub-
jects were recruited through the Department of Obstetrics and Gynecology at
Sotero del Rio Hospital in Puente Alto, Chile. SNPs were selected for genotyp-
ing in order to capture at least 90% of the haplotypic diversity of each gene. A
total of 488 SNPs from 164 genes were analyzed in 340 SGA mother-offspring
pairs and in 585 control mother-offspring pairs after eliminating SNPs that
show deviation from HWE in the controls, SNPs with a minor allele frequency
of less than 0.05, and families with obvious relationship errors and genotyp-
ing errors in the SNPs. No evidence of population stratification was revealed
using the genomic control method (Devlin and Roeder 1999), since the esti-
mated inflation factor was near one (i.e., no inflation). A number of clinical
risk factors potentially associated with SGA risk were also measured. These
include maternal age, maternal weight and height at birth, maternal hyperten-
sion, allergy and asthma condition, maternal BMI index, number of preterm
deliveries, neonatal height, head size and gender. A logistic regression was first
conducted for all of the clinical covariates, to select the one(s) that should be
included when estimating the effects of the genetic parameters. Among the
group of analyzed covariates, only maternal weight was significant at the 5%
level. Considering that neonatal gender might be associated with the risk of
SGA, it was also included in the analysis. Thus, two covariates were included
in the model together with other genetic factors with the aim of assessing
which genetic risk factors contribute to the risk of SGA, after adjusting for
the effects of the two environmental factors.

A full list of selected SNPs with their genetic effects is shown in the supple-
mental table. For each SNP, the first row corresponds to the selected features
with estimated effects, where “-” sign indicates the feature(s) is(are) not sig-
nificant. In addition to the estimated values, there are additional two rows,
with values given in parenthesis. Details about these two rows are explained



Table 3: Partial list of genes and SNPs showing significant association with
SGA. Non-significant effects are indicated by “-” sign. The permutation and
bootstrap scores (given in the parenthesis) are listed as italic and regular fonts,
respectively.

Gene rs Number Location Significant effects
symbol am dm ao do im ic BS MW
FGF4 634043245 Exon 3 - - - 0.361 - - - -

(0.5 ) (1.5 ) (1 ) (0.5 ) (3 ) (1 ) (0.5 ) (1.5 )
(6) (0) (7.5) (49.5) (8) (2.5) (1) (0)

634043464 Down- 0.748 - - - - - - -
stream (1.5 ) (0.5 ) (2 ) (0.5 ) (2 ) (1 ) (2 ) (2.5 )

(66) (9) (1) (4) (11.5) (16.5) (0) (0)
LPL 22220155 Intron 6a - - - - - 0.363 - -

(0.5 ) (4.5 ) (0.5 ) (3 ) (0.5 ) (2.5 ) (2.5 ) (2.5 )
(6.5) (16.5) (2) (3) (3) (68.5) (3.5) (3)

612980414 Intron 8 - - - - - 0.456 - -
(2 ) (0.5 ) (1 ) (0.5 ) (0.5 ) (3.5 ) (0.5 ) (0.5 )
(2.5) (3) (10) (6.5) (1) (42) (1.5) (3)

PON1 20209376 intron 5 - - - - -1.223 - - -
(0 ) (1 ) (1 ) (1 ) (5 ) (1.5 ) (1 ) (1 )
(0) (0.5) (5.5) (21.5) (83.5) (2.5) (1) (0.5)

IL2RA 23884895 Intron 5 - - - - - 0.519 - -
(1.5 ) (0.5 ) (1 ) (0.5 ) (3 ) (1 ) (0 ) (0 )
(3.5) (4.5) (5.5) (1.5) (4) (76) (1.5) (2)

BS refers to baby sex; MW refers to maternal weight.

at the end of this section. Note that the ridge estimator is a biased estimate.
The selected feature only indicates its relative importance in association with
a disease trait. An actual inference about the feature can be done by simply
fitting those selected features into an ordinary logistic regression model. The
estimated values listed in the Tables are refitted values.

A partial list of significant SNPs is given in Table 3 to demonstrate the
model implementation. Gene FGF4 (fibroblast growth factor 4), located on
chromosome 11, is one of the genes being selected. The gene is essential for
mammalian embryogenesis and fetal growth (Lamb and Rizzino 1998). We
detected a fetal dominance effect at Exon 3 and an additive maternal effect
at downstream position. This gene is regulated by a powerful downstream en-
hancer (Lamb and Rizzino 1998). Thus, the significant maternal SNP located



at the downstream position might play a regulation role in LD with an SNP
that plays a regulation role. No conflict effects were detected for this gene.

Two SNPs in gene LPL (lipoprotein lipase) showed a pure incompatibility
effect. Studies have shown that LPL is associated with intrauterine growth
restriction (IUGR), which reduces the placental supply of nutrients to the
fetus and prevents the fetus from achieving its growth potential (Saenger et al.
2007; Tabano et al. 2006). The definition of IUGR has a great deal of overlap
with SGA (Wollmann 1998), and both share similar genetic risk factors. Gene
IL2RA also shows an incompatibility effect. This gene was previously reported
in Parimi et al. (2008) to have a significant incompatibility effect increasing
the risk of PE in mother. Thus the two diseases might share a common risk
factor, and the result might indicate the heterogeneity of the gene function.
One SNP located at gene PON1 (Paraoxonase-1) showed an imprinting effect.
PON1 belongs to a family of at least three genes, including PON2 and PON3,
all of which map to human chromosome 7q21.3 and are imprinted (Morison et
al. 2005).

In the real data analysis, the λ value was chosen as a gradient of 2ω,
ω = −10 : 10. To show the performance of GCV criterion in selecting tuning
parameter λ, we used gene IL2RA as an example. Fig. 4 plots the selection
results for that gene. A minimum GCV value was reached when λ takes value
8. We adopted an adaptive selection procedure to choose λ — that is, when
increasing the value of λ caused an increase in GCV value, the selection was
automatically terminated.

Note that the variable selection procedure does not give a p-value for a
selected feature. If the data were perturbed, a different set of features might
be selected. To assess whether the selected feature(s) was(were) false identifi-
cation(s), we applied a permutation analysis similar to the one used by Wang
et al. (Wang et al. 2007). We permuted the data by randomly reshuffling
the relationship between the disease status and the genetic markers (keep the
maternal-fetal paired relationship), and applied the proposed method to the
permuted data sets. 200 permutation runs were repeated. Each permutated
data set represents a random sample generated from the null distribution. The
results for each SNP are tabulated in Table 3. The values given in parenthesis
and shown in italic font correspond to the percentage being selected. Among
the 200 runs, the selection rate for all of the factors is less than or close to 5%,
indicating that our method indeed selects the relevant genetic effects, with few
false positives.

Alternatively, one can apply a bootstrap assessment (Efron and Tibshirani
1993). The bootstrap analysis provides a measure of how likely the features are
to be selected (Park and Hastie 2008). To do so, we randomly bootstrapped
200 samples and ran the variable selection with a fixed λ value selected based
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Figure 4: The GCV values versus the tuning parameter λ for gene IL2RA.

on the original data. The frequency for each feature included in the model
was counted with the percentage listed in parenthesis and shown in a regular
font (Table 3). Clearly, those features selected based on the original data had
a relatively high chance of being selected in the bootstrap analysis, indicating
their importance. For example, the incompatibility effect for gene IL2RA
had a 79.5% chance being selected in the bootstrapped samples, whereas the
chance of selecting other factors was smaller than this number. However,
some features showed a relatively high selection frequency in the bootstrap
analysis, but were not selected based on the original data. For example, the
fetal dominance effect in gene PON1 had a 21.5% chance of being selected in
the bootstrap analysis, indicating less important for this feature. It is also
possible that the dominance effect is highly correlated with the imprinting
effect, such an occurrence can be detected by calculating the co-occurrence
matrix, as proposed by Park and Hastie (2008).



5 Discussion

Pregnancy has traditionally been viewed as a harmonious cooperation be-
tween the mother and the fetus (Haig 2004). This view, however, fails to
recognize aspects of potential genetic conflicts among the three sets of genes
— the maternal gene, the PDFA and the MDFA in the fetus’ genome. Due
to the unique environment that exists during pregnancy, the maternal geno-
type unlike its paternal counterpart, has the opportunity to influence fetal
development, through the mediation of the altered uterine environment. The
fetus’ genes also play pivotal roles in regulating and controlling its own growth.
Thus, the normal function of fetal growth relies on the coordinated function
of these three sets of genes. Any unusual function caused by different levels of
investment among these three sets of genes may result in a functional abnor-
mality in fetal growth, and may subsequently lead to disease, such as the small
sized or under-weight infants defined as SGA neonates. Therefore, a “disease”
developed during pregnancy could have unique genetic bases.

Quite often the two genetic conflict effects, the genomic imprinting and the
maternal-fetal genotype incompatibility, are ignored when searching for disease
factors in an association study. The existence of such effects, however, may
lead to incorrect interpretations of the (marginal) effects of particular genes
when performing a human genetic association study at the individual level.
In this article, we make an attempt to model and test those genetic conflicts
that can arise during pregnancy to increase disease risk. Our model considers
both maternal and fetal main effects, as well as genetic conflict effects, when
dissecting disease gene association, and is a unified framework. Simulation
studies under different scenarios show that the model has reasonable power
and good false positive control.

We applied our model to a real data set for SGA neonates. The results
indicate that there are a relatively large proportion of genetic risk factors that
confer conflict effects (see the supplemental table). The selected genes listed in
Table 3 are further evaluated with both permutation and bootstrap analyses.
The results confirm that it is highly possible that the selected factors may
trigger effects in increasing SGA risk. Increasing evidence has shown that the
majority of imprinted genes in mammals play important roles in controlling
embryonic growth and development, and some are involved in post-natal de-
velopment (Isles and Holland 2005; Tycko and Morison 2002). Imprinted genes
also play a role in the regulation of placental blood vessel development and
in controlling nutrient transport. Thus, they may also indirectly control fetal
growth and development (Constancia et al. 2004). This explains in part why
a substantial number of imprinting effects are identified in this study. Among
the SNPs showing imprinting effects, the majority show maternal imprinting



(or paternal expression). Some of this phenomenon can be explained by Haig’s
genetic conflict theory, in which the paternal copy always favors fetal growth
(Haig 2004). Empirical study also indicates that fetal genes — especially those
expressed by the father — may have a substantial influence on fetal growth
when the maternal copy is restrained (Dunger et al. 2006).

In this study, the MF genetic conflict is modelled in a composite way
whereby a genetic conflict exists whenever there is a mismatch between the
maternal and the fetal genotype. Parimi et al. (2008) previously broke down
the MF conflict into six different categories, each one corresponding to a unique
conflict mechanism. Their simulation study indicates that the one that was
coded in a composite way, as we did in the current work, is the most powerful
model. However, when an MF conflict is detected, it is worth distinguishing
which model is the optimal one. For example, what if the MF conflict is
due to gestational drive (the mother has an allele that the fetus does not)
or symmetric incompatibility (the fetus has any allele that the mother does
not) (Parimi et al. 2008). This can be determined using a statistical model
selection method — fitting different conflict models assuming different MF
conflict mechanisms. The AIC or BIC type selection method can be applied
for this purpose.

Our model is developed under the L2 regularized regression considering
binary disease phenotype. The advantage of this ridge-type regression is dis-
cussed in section 2, particularly for the multicolinearity problem. There has
been a great interest shown in the statistical literature in developing efficient
variable selection method. Most methods are developed under the L1 regu-
larization framework — for example, the LASSO (Tibshirani 1996) and the
adaptive LASSO (Zou 2006). The advantage of the L1 regularization method
is that it can handle a large number of variables, the so-called large p small n
problem. Moreover, these algorithms can do variable estimation and selection
simultaneously, and are computationally favorable when p is large. However,
the LASSO-type algorithm randomly picks just one variable in a cluster of
highly correlated variables and disregards the remaining ones (Zou and Hastie
2005). Thus, the results might not be biologically justifiable. For example,
when there is imprinting or incompatibility effect which might be correlated
with the maternal or the fetal main effect, the LASSO algorithm may end
up choosing the main effect and lead to wrong inference. Moreover, Tib-
shirani (1996) pointed out that for regular n > p situations, the prediction
performance of LASSO is dominated by the ridge regression if there are high
correlations between the predictors.

The model developed in this article allows one to test the effects of ma-
ternal and fetal main effects, as well as the genetic conflicts that increase
fetal disease risk. The incorporation of the maternal effect in searching for



an association signal in a case-control design can avoid misinterpretation of
an association signal, as shown by Buyske (2008). It is worth noting that the
symmetric design also allows one to test these effects on maternal behavior or
any pregnancy-related diseases in the mother, such as PE. As shown in the
simulation studies, the model is quite robust to population stratification and
asymmetric mating (Fig. 3). Simulations also indicate the relative merit of
the proposed penalized method against the regular logistic regression (Fig. 2).
With increasing computing power, the method is feasible for large-scale candi-
date gene or genomewide association studies, especially as the genotyping cost
is rapidly decreasing. A computer program written in R can be downloaded
at the author’s website at http://www.stt.msu.edu/∼cui.
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Supplemental table: A full list of genes and SNPs showing significant
effects associated with SGA

Gene rs Number Location Significant effects
symbol am dm ao do im ic MW BS
APOC3 633938988 Exon 3 - - - -0.372 - -0.388 - -
CCL2 633922561 Intron 1 - - - - - 0.644 - -
CETP 8946997 Intron 10 - - - 0.423 - - - -
COL1A2 28162145 Intron 4 - - 0.424 - - - - -

28139054 Intron 19 - - - 0.266 - - -0.420 -
28171921 Intron 46 - - -0.321 - - - - -
28698658 Intron 51 - - - - - -0.515 - -

COL4A1 633898711 Intron 1b - - - - -0.836 - - -
633901866 Intron 13 - 0.362 - - - - - -0.363

COL4A3 634240165 Intron 2a - - - - 0.404 - - -
COL5A2 635134934 Exon 51 - - - - -1.330 - - -
CRHR2 617474044 Intron 5 - - - - 0.489 - - -

617474102 Intron 7 - - - - 0.708 - - -
CSPG2 634208341 promoter - - - - - 0.515 - -
DAF 633860783 promoter -0.349 - - - - - - -
F13A1 9370755 Exon 12 - - - - - 0.446 - -
F2 9077693 Exon 6 0.280 - - - - - - -

9084637 Intron 13 -0.195 - - - - - - -
FGF4 634043245 Exon 3 - - - 0.362 - - - -

634043464 Downstream 0.699 - - - - - - -
FLT4 22767327 Intron 7 - - - - 0.569 - - -0.331
FN1 633938384 Exon 1 - - - - 1.068 - - -
HSPG2 634092163 Intron 60 - - - - 0.505 - - -
IFNGR2 5071132 Intron 5 - - - - -0.696 - - -
IGF1R 44530209 Intron 17a - - - - 0.643 - - -0.444
IL18BP 16402666 Intron 2 - -0.388 - - - 0.505 - -
IL2 634065022 Promoter - 0.309 - - - - - -
IL2RA 23884895 Intron 5 - - - - - 0.475 - -
IL6 632284204 Promoter - - - - -0.776 - - -

3868962 Intron 2 - - - - - -0.290 - -
IL6R 24756885 Exon 2 0.484 - - - - - - -
LIPC 18683260 Promoter - - - - - -0.427 - -0.331
LPL 22220155 Intron 6a - - - - - 0.382 - -

612980414 Intron 8 - - - - - 0.456 - -
LTF 633838634 Intron 13 - - - - - 0.432 - -
MMP7 613913123 Exon 6 - - - - 0.838 - - -
MMP9 17252653 Intron 4 - - - - - 0.810 - -
NFKB1 659435702 Intron 22 -0.288 - - - - - - -0.273
NPY 3047643 Promoter - - - - - -0.272 - -
PTGS1 628331732 Intron 7 - 0.385 - - - - - -
REN 628862674 Intron 6 - - - 0.286 - - - -
SPARC 1125290 Intron 5 - -0.463 - - - - - -
TIMP2 634841123 Exon 3 - - 0.569 - - - - -
TLR9 4482153 Exon 2 0.263 - - - - - - -0.334
TNR 614058142 Intron 16a - - - - 0.374 - - –


