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Abstract

Let v be a vector field in a bounded open set G ⊂ R
d. Suppose that v is observed with a

random noise at random points Xi, i = 1, . . . , n that are independent and uniformly distributed
in G. The problem is to estimate the integral curve of differential equation

dx(t)
dt

= v(x(t)), t ≥ 0, x(0) = x0 ∈ G

starting at a given point x(0) = x0 ∈ G and to develop statistical tests for hypothesis that
the integral curve reaches a specified set Γ ⊂ G. We develop an estimation procedure based
on Nadaraya-Watson type kernel regression estimator, show the asymptotic normality of the
estimated integral curve and derive differential and integral equations for the mean and covari-
ance function of the limit Gaussian process. This provides a method of tracking not only of
the integral curve, but also of the covariance matrix of its estimate. We also study the asymp-
totic distribution of the squared minimal distance from the integral curve to a smooth enough
surface Γ ⊂ G. Building upon this, we develop testing procedures for the hypothesis that the
integral curve reaches Γ.

The problems of this nature are of interest in diffusion tensor imaging, a brain imaging
technique based on measuring the diffusion tensor at discrete locations in the cerebral white
matter, where the diffusion of water molecules is typically anisotropic. The diffusion tensor
data is used to estimate the dominant orientations of the diffusion and to track white matter
fibers from the initial location following these orientations. Our approach brings more rigorous
statistical tools in the analysis of this problem providing, in particular, hypotheses testing
procedures that might be useful in the study of axonal connectivity of the white matter.
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1 Introduction

Let G ⊂ R
d be a bounded open set. Suppose a vector field v : G �→ R

d is observed at points
Xi ∈ G, i = 1, . . . , n with random errors, i.e. the observations are

Vi = v(Xi) + ξi,

where ξ, ξ1, ..., ξn are i.i.d. Eξ = 0 and Cov(ξ, ξ) = Σ.

We are interested in Cauchy problem for the following differential equation

dx(t)

dt
= v(x(t)), t ≥ 0, x(0) = x0 ∈ G, (1.1)

which of course can be equivalently written in an integral form:

x(t) = x0 +

t∫
0

v(x(s))ds.

Our goal is to provide an estimate X̂(t), t ≥ 0 of its solution based on the data (Xi, Vi), i =
1, . . . , n, and, most importantly, to study the asymptotic behavior as n → ∞ of such statistics
as

inf
0≤t≤T

d2(X̂(t), Γ),

where Γ ⊂ G is a given subset of G (most often, it will be the boundary of a specified region
in G) and

d(x, Γ) := inf{|x − y| : y ∈ Γ}
is the usual Euclidean distance from x to Γ. This would allow us to suggest tests of hypothesis
that the true trajectory x(t), 0 ≤ t ≤ T reaches certain region in G.

Our main interest in this problem is related to its potential applications to diffusion
tensor (DT) imaging, a technique in brain research introduced several years ago. It is often
combined with conventional MRI in a method called DT-MRI (see, e.g., [5]).

The diffusion of water molecules at a given location is characterized by a symmetric
positively definite 3× 3 diffusion matrix (often called in the literature diffusion tensor). The
principal eigenvector of this matrix shows the dominant direction of the diffusion. In cerebral
white matter, the diffusion is typically anisotropic and DT imaging allows one to recover
its dominant directions by measuring diffusion tensor field within voxels at a discrete set of
locations and computing principle eigenvectors of diffusion matrices (thus transforming the
tensor field into a vector field, see Figure 1).

The fiber tract then can be reconstructed by following the directions of the vectors in
small steps from a specified initial location. This essentially means solving numerically the
differential equation generated by the vector field. This provides a noninvasive approach to
study the axonal connectivity of white matter fiber inside a brain region. The method is
often referred to as white matter fiber tractography.

Since the diffusion tensor field is being measured at a discrete set of locations and each
matrix in the field represents an average within a voxel corrupted with noise, it becomes
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Figure 1: shows the 3D velocity from DT-MRI data. The left graph is fractional
anisotropic(FA) map; the right graph gives the 3D visualization of velocity inside selected
rectangle region of FA map.

crucial to use some methods of smoothing of tensor or vector fields or regularization tech-
niques that restrict fibers to smooth paths. For instance, in the paper of Basser et al [1],
B-spline smoothing was applied to the tensor field and in the paper of Poupon et al [14]
Markov random field models were used to obtain a regularized estimate of the vector field.
However, even fiber track estimates involving smoothing would possess certain degree of
variability and very little is known about the qualitative ways to assess the variability of
fiber track estimates which would facilitate the development of more rigorous approaches to
statistical analysis of DT-data. Recently, Parker et al [11] described a Monte Carlo approach
to construction of probabilistic connectivity maps that takes into account the uncertainty of
fiber orientation. Johns [7] suggests a bootstrap method of constructing confidence intervals
for fiber orientation estimates. However, up to our best knowledge, very little has been done
so far to develop a statistical theory of fiber tracking procedures that would provide a more
rigorous foundation for their further development (the situation is somewhat different in
conventional MRI and fMRI where the approaches based on rather deep statistical under-
standing of the problem are becoming more common, see, e.g., [15] and [13]). This seems
to be an important task since mathematical models used in fiber tractography are rather
involved and the existing methods utilize tools coming from very different areas (spline
smoothing and Frenét equation [1, 2], fast marching methods [9, 10], Markov Random Fields
and Bayesian techniques [14], tensorline tracking [16], PDEs and differential geometry based
methods [4], Linear State Space Models and Kalman filtering [6], etc.). Such a variety of
completely different and rather complex methods, often with different data acquisition tech-
niques, and with very little theoretical analysis makes their comparison and and evaluation
of their performance a very complicated problem.

Our goal in this paper is to make the first (and rather modest) step towards better
theoretical understanding of statistical problems in DT-imaging. Our approach to estimation
of x(t), t ≥ 0 will utilize Nadaraya-Watson type kernel regression estimate V̂ (x), x ∈ G of
the vector field v(x), x ∈ G and then plugging V̂ instead of v into the differential equation
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(1.1). The solution of the resulting Cauchy problem is our estimate X̂(t), t ≥ 0. [Thus, our
approach is somewhat akin to that of Basser et al [1]: the difference is that we are applying
smoothing to the vector field and not to the tensor field, which would be more natural,
but mathematically harder to analyze; also, we are using kernel regression based smoothing
instead of splines.] For this estimate, we establish in Section 2 its asymptotic normality,
i.e. the weak convergence (in the space of continuous functions) of the properly normalized
deviation process X̂(t) − x(t), t ∈ [0, T ] to a vector valued Gaussian process on [0, T ] with
mean and (matrix valued) covariance function that depend on the vector field v, on the
covariance matrix Σ of the noise ξ and on the kernel of Nadaraya-Watson type estimator
we are using. We will derive integral and differential equations for the covariance function
of the limit process, which allows us to develop a technique of simultaneous tracking of fiber
path and its covariance (see Section 4). In Section 3, we study the asymptotic distribution
(as n → ∞) of the distance

inf
0≤t≤T

d2(X̂(t), Γ)

from the estimated integral curve X̂(t), t ∈ [0, T ] to a set Γ ⊂ G. In particular, our results
apply to the case when Γ is a one point set, or when it is a sphere or other smooth enough
surface which is a boundary of a subregion of G. The asymptotic distributions for such
distances happened to be especially simple in the case when the minimum of the function
[0, T ] 	 t �→ d(x(t), Γ) is attained at a single point. In this case, the distributions are either
normal, or χ2-type (the distributions of quadratic forms of normal vectors) and they depend
on the geometry of Γ and on whether the true integral curve x(t), t ∈ [0, T ] reaches Γ and in
which way. These results allow one to bring in the analysis of DT-data some tools of rigorous
statistical inference. In particular, one can use the asymptotic normality of X̂(t) to construct
confidence ellipsoids for x(t) for a fixed t; one can go further than this and try to use the
results on Gaussian processes to develop nonparametric confidence bands and hypotheses
tests for the whole integral curve x(t), t ∈ [0, T ]; one can develop statistical tests for the
hypothesis that the true integral curve x(t), t ∈ [0, T ] reaches a specified subregion of G;
one can develop confidence intervals for the distance from x(t), t ∈ [0, T ] to a subregion.
The last two possibilities are especially important since they are related to the problem of
axonal connectivity which is one of the central in DT-imaging. We study some of the above
options in Section 4 both for simulated and for real data.

It should be mentioned that there is a number of issues that (in our view) go beyond
the scope of our paper, but they need to be explored in order to develop this methodology
to the full extent. First of all, a choice of estimator of vector field v in our paper (Nadaraya-
Watson type regression estimate) is relatively arbitrary and it is based only on our personal
tastes. Similar theory could, in principle, be developed for a number of other smoothing
techniques. Moreover, it might be more natural and it is statistically more appealing to do
smoothing of the underlying tensor field and only then to compute the principal eigenvectors
creating a vector field. This would lead, however, to one more layer of mathematics (mostly,
perturbation theory) needed to develop the asymptotic results of the type we are considering
below. Although this is rather important, we decided (as a first step) to restrict ourself here
to a simpler model in which the vector field is measured directly. Also, it is not common
in DT-imaging (at least, up to our best knowledge) to measure direction vectors at random
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locations, so, regression model with fixed design would be more appropriate here than the
model with random design we are using below. However, the probabilistic and analytic
computations seem to work nicer in the case of the random design. Because of this, we
chose this option here leaving the fixed design case for a future work. The vectors Vi are
usually normalized so that their norm is equal to 1, so they are, in fact, points on the
unit sphere in R

d. So, it would be more natural to consider some nonparametric regression
model for directional data rather than viewing it as an additive (Rd-valued) noise model,
as we are doing here for simplification. We are using kernel type nonparametric estimator,
but we are leaving open the questions of data-driven choice of the bandwidth parameter as
well as the development to the full extent of the theory of nonparametric problems of this
type (minimax lower bounds, optimal convergence rates, adaptation, etc). Finally, in fiber
tractography it is of great importance to take into account the possibility of fiber paths
branching or intersecting one another. This is not covered by our model (because of the
uniqueness of the solution of differential equation) and the extension of our results to this
case poses some nontrivial problems.

Realizing the importance of all these and some other issues, we, however, believe that the
results we obtained so far might be of some interest for further development of comprehensive
statistical theory of DT-imaging.

2 A kernel estimate of integral curves and its asymp-

totic normality

We will assume that G ⊂ R
d is a bounded open set of Lebesgue measure 1 and, for simplicity,

that Xi are i.i.d. uniformly distributed in G and that r.v. {ξi} are independent of {Xi}. We
will also assume that

supp(v) := {x : v(x) 
= 0} ⊂ G,

which allows us to set v = 0 outside of G. Furthermore, we need a smoothness assump-
tion on the vector field v. Unless stated otherwise, we assume that it is twice continuously
differentiable.

We will use the following Nadaraya-Watson type estimate of the vector field v

V̂ (x) = V̂n(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
Vi

with some kernel K satisfying standard assumptions, in particular,

∫
Rd

K(x)dx = 1,

∫
Rd

K(x)xdx = 0,

and with some bandwidth parameter h = hn. It will be also convenient to assume that K
has a bounded support, where it is twice continuously differentiable (the last assumption
can be replaced by more mild in most of the results, but it is not of great importance in the
context of the paper). As a result, the estimate V̂ (x) = 0 outside a bounded neighborhood
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of G. Comparing with the standard Nadaraya-Watson estimate, our estimate is simplified:
since the distribution of Xi is known (it is uniform), we do not need to use the kernel density
estimator in the denominator of V̂ .

Then, we define a plug-in estimate of the solution x(t), t ≥ 0 as the solution

X̂(t) = X̂n(t), t ≥ 0

of the following Cauchy problem:

dX̂(t)

dt
= V̂ (X̂(t)), t ≥ 0, X̂(0) = x0 ∈ G, (2.1)

which is equivalent to the integral equation

X̂(t) = x0 +

t∫
0

V̂ (X̂(s))ds. (2.2)

Note that since both v and V̂ vanish outside a neighborhood of G (v actually vanishes
outside G itself), the solutions x(t) and X̂(t) will remain in this neighborhood for all t > 0.

To be specific, we assume that all the vectors are vector-columns; the sign ∗ will denote
transposition of vectors or matrices. Whenever it is convenient, we use the notation 〈·, ·〉 for
the inner product in R

d. I denotes in what follows the identity matrix.

In what follows, we need also an estimate of the derivative of v and we use for this
purpose

V̂ ′(x) =
1

nhd+1

n∑
i=1

Vi

(
K ′

(
x − Xi

h

))∗
.

Under the assumptions we imposed V̂ , V̂ ′ are consistent estimates of v, v′ uniformly in R
d

(see Lemma 1 below).

Our first goal is to prove that under the assumptions h → 0 and nhd+3 → β ≥ 0 the
sequence of stochastic processes

√
nhd−1(X̂(t) − x(t)), 0 ≤ t ≤ T

converges weakly in the space C[0, T ] = C([0, T ], Rd) of R
d-valued continuous function on

[0, T ] to the Gaussian process with mean and covariance given by the following expressions:

Mβ(t) =
√

βM(t),

M(t) =
1

2

∫ t

0

U(t, s)

∫
K(z)〈v′′(x(s))z, z〉dzds,

C(t1, t2) :=

t1∧t2∫
0

ψ(v(x(s)))U(t1, s) · [Σ + v(x(s)) · v∗(x(s))] · U∗(t2, s)ds, (2.3)
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where

ψ(v) :=

∫
Ψ(vτ)dτ,

Ψ(y) :=

∫
K(z)K(z + y)dz,

and U(t, s) is the solution of the Cauchy problem for the following matrix differential equation

dU(t, s)

dt
= v′(x(t))U(t, s), U(s, s) = I.

Note also that v′′(x(s)) in the expression for M(t) is a d× d× d-tensor and 〈v′′(x(s))z, z〉 is
a vector valued quadratic form.

Equivalently, the Cauchy problem for the differential equation defining U(t, s) can be
written as the following integral equation:

U(t, s) = I +

t∫
s

v′(x(τ))U(τ, s)dτ.

U(t, s) is often called the Green’s function. If U and v′ commute, then U is matrix exponent,
otherwise U can be represented as a series. Since v′ is uniformly bounded in G, U is bounded
by Gronwall-Bellman inequality. Also U is Lipschitz in t.

The Gronwall-Bellman inequality will be frequently used in the proof of Theorem 1
below. We formulate it here for completeness. Let F, G be nonnegative continuous functions
in [a, b] and D ≥ 0 be a constant. Suppose that for all t ∈ [a, b)

G(t) ≤ D +

∫ t

a

F (s)G(s)ds.

Then for all t ∈ [a, b]

G(t) ≤ D exp

{∫ t

a

F (u)du

}
.

The definition of M implies that

dM(t)

dt
= v′(x(t))M(t) +

1

2

∫
K(z)〈v′′(x(t))z, z〉dz (2.4)

with initial condition M(0) = 0.

With a minor abuse of notation, we set C(t) := C(t, t). Then C(t) satisfies the following
differential equation

dC(t)

dt
= ψ(v(x(t)))[Σ + v(x(t)) · v∗(x(t))] + v′(x(t))C(t) + C(t)v′(x(t))∗

with initial condition C(0) = 0. This equation can be easily solved numerically (with X̂(t)
plugged in instead of x(t) and V̂ , V̂ ′ plugged in instead of v, v′) simultaneously with the
equation

dX̂(t)

dt
= V̂ (X̂(t)), X̂(0) = x0
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providing a numerical method of estimating x(t) along with the covariance matrix of the
estimate (see Section 4). One can also easily derive the following partial differential equations
for the covariance function C(t1, t2) : for t1 < t2

∂C(t1, t2)

∂t1
= ψ(v(x(t1)))[Σ + v(x(t1)) · v∗(x(t1))]U

∗(t2, t1) + v′(x(t1))C(t1, t2)

and
∂C(t1, t2)

∂t2
= C(t1, t2)v

′(x(t2))
∗;

for t1 > t2

∂C(t1, t2)

∂t2
= ψ(v(x(t2)))U(t1, t2)[Σ + v(x(t2)) · v∗(x(t2))] + C(t1, t2)v

′(x(t2))
∗

and
∂C(t1, t2)

∂t2
= v′(x(t2))C(t1, t2).

The boundary conditions for this system are: C(t, 0) = C(0, t) = 0 and C(t, t) = C(t).
However, since the system involves the Green function U, it is unclear whether it has any
computational advantage comparing with the integral representation of C(t1, t2) (as it was
the case with C(t)).

Theorem 1 Suppose that hn → 0 and nhd+2
n → ∞ as n → ∞. Then for all T > 0

sup
0≤t≤T

|X̂n(t) − x(t)| → 0 as n → ∞

in probability. Suppose also that nhd+3
n → β ≥ 0 as n → ∞. Let T > 0 and suppose that for

some γ = γT > 0 and for all 0 ≤ s ≤ t ≤ T∣∣∣∣ 1

t − s

∫ t

s

v(x(λ))dλ

∣∣∣∣ ≥ γ.

Then the sequence of stochastic processes√
nhd−1(X̂n(t) − x(t)), 0 ≤ t ≤ T

converges weakly in the space C[0, T ] to the Gaussian process with mean Mβ(t) and covariance
C(t1, t2).

We will need the following quite standard statement which we give without proof.

Lemma 1 Suppose that h → 0 and nhd+2 → ∞ as n → ∞. Under the assumptions above,

sup
x∈Rd

|V̂ (x) − EV̂ (x)| → 0,

sup
x∈Rd

|V̂ (x) − v(x)| → 0

and
sup
x∈Rd

|V̂ ′(x) − v′(x)| → 0

in probability.
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We now turn to the proof of Theorem 1.

Proof of Theorem 1. First we establish the following asymptotic representation: for
all t ∈ [0, T ]

X̂(t) − x(t) = z(t) + δ(t),

where z(t) = zn(t), δ(t) = δn(t) are sequences of stochastic processes such that

√
nhd−1 lim

n→∞
Ez(t) = Mβ(t),

nhd−1 lim
n→∞

Cov(z(t1), z(t2)) = C(t1, t2) (2.5)

and

sup
0≤t≤T

|δ(t)| = op

(
1√

nhd−1

)
. (2.6)

Next, we will prove the weak convergence of the sequence zn(t), 0 ≤ t ≤ T to the Gaussian
process in question.

Let
y(t) := X̂(t) − x(t).

We have

y(t) =

t∫
0

[V̂ (X̂(s)) − v(x(s))]ds =

t∫
0

(V̂ − v)(X̂(s))ds +

t∫
0

[v(X̂(s)) − v(x(s))]ds,

which implies (using a Lipschitz condition on v and the fact that both X̂ and x remain in a
bounded neighborhood of G) that with some constant L for all t ∈ [0, T ]

|y(t)| ≤ T sup
x∈Rd

|V̂ (x) − v(x)| + L

t∫
0

|y(s)|ds.

By Gronwall–Bellman inequality, this implies for all t ∈ [0, T ]

|y(t)| ≤ T sup
x∈Rd

|V̂ (x) − v(x)|eLt.

Therefore,
sup

t∈[0,T ]

|y(t)| ≤ TeLT sup
x∈Rd

|V̂ (x) − v(x)| → 0 as n → ∞

in probability by Lemma 1. This proves the first statement.

The following representation is obvious:

y(t) =

t∫
0

[V̂ (X̂(s)) − v(x(s))]ds =

t∫
0

(V̂ − v)(x(s))ds +

t∫
0

v′(x(s)) · y(s)ds + R(t), (2.7)
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where the remainder is defined as

R(t) :=

t∫
0

[V̂ (X̂(s)) − V̂ (x(s)) − v′(x(s)) · y(s)]ds

=

t∫
0

[(V̂ − v)(X̂(s)) − (V̂ − v)(x(s))]ds +

t∫
0

[v(X̂(s)) − v(x(s)) − v′(x(s)) · y(s)]ds.

Note that

|(V̂ − v)(X̂(s)) − (V̂ − v)(x(s))| =

∣∣∣∣
1∫

0

(V̂ − v)′(aX̂(s) + (1 − a)x(s))da · y(s)

∣∣∣∣
≤ sup

0≤a≤1
|(V̂ − v)′(aX̂(s) + (1 − a)x(s))| · |y(s)| ≤ sup

x∈Rd

|V̂ ′(x) − v′(x)||y(s)|.

Also,

|v(X̂(s)) − v(x(s)) − v′(x(s))y(s)| =

∣∣∣∣
1∫

0

[v′(aX̂(s) + (1 − a)x(s)) − v′(x(s))]da · y(s)

∣∣∣∣
≤ sup

0≤a≤1
|v′(aX̂(s) + (1 − a)x(s)) − v′(x(s))| · |y(s)| ≤ r(|y(s)|) · |y(s)|,

where
r(δ) := sup

x∈Rd

sup
|y|≤δ

|v′(x + y) − v′(x)| → 0 as δ → 0,

since v′ is uniformly continuous on G. Then for all t ∈ [0, T ]

|R(t)| ≤
(

sup
x∈Rd

|V̂ ′(x) − v′(x)| + r( sup
0≤s≤T

|y(s)|)
) t∫

0

|y(s)|ds. (2.8)

Since sup0≤s≤T |y(s)| → 0 in probability and by Lemma 1

sup
x∈Rd

|V̂ ′(x) − v′(x)| → 0

in probability, we have for all T > 0

sup
0≤t≤T

|R(t)| = op

( T∫
0

|y(s)|ds

)
(2.9)

which also implies

sup
0≤t≤T

|R(t)| = op

(
sup

0≤t≤T
|y(t)|

)
. (2.10)
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Denote

z(t) :=

t∫
0

[V̂ (x(s)) − v(x(s))]ds +

t∫
0

v′(x(s))z(s)ds.

In other words, z satisfies the equation

dz(t)

dt
= V̂ (x(t)) − v(x(t)) + v′(x(t))z(t), z(0) = 0.

Then the following integral representation for z holds:

z(t) =

t∫
0

U(t, s) · [V̂ (x(s)) − v(x(s))]ds. (2.11)

Let δ(t) := y(t) − z(t). Then we have

δ(t) =

t∫
0

v′(x(s)) · δ(s)ds + R(t),

which implies

|δ(t)| ≤ |R(t)| +
t∫

0

|v′(x(s))| · |δ(s)|ds ≤ sup
0≤t≤T

|R(t)| +
t∫

0

|v′(x(s))| · |δ(s)|ds.

Applying again Gronwall-Bellman inequality, we get

|δ(t)| ≤ sup
0≤t≤T

|R(t)| exp

{ t∫
0

|v′(x(u))|du

}

and using the boundedness of the exponent in the above inequality

|δ(t)| ≤ C sup
0≤t≤T

|R(t)|, 0 ≤ t ≤ T

with some constant C > 0. As a result, by (2.9),

sup
0≤t≤T

|δ(t)| = op

(∫ T

0

|y(t)|dt

)
as n → ∞.

Since y(t) = z(t) + δ(t), we also have

sup
0≤t≤T

|δ(t)| = op

(∫ T

0

|z(t)|dt

)
as n → ∞.
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It will follow from the computation of the mean and the covariance function of z(t) given
below that ∫ T

0

|z(t)|dt = Op

(
1√

nhd−1

)
. (2.12)

Therefore, we will also have

sup
0≤t≤T

|δ(t)| = op

(
1√

nhd−1

)
. (2.13)

Namely, we will prove that

Ez(t) = −h

∫
ft(s)·v′(x(s))·

(∫
K(z)zdz

)
ds+

h2

2

∫ t

0

U(t, s)·
∫

K(z)〈v′′(x(s))z, z〉dzds+o(h2),

(2.14)
which under the assumption

∫
K(z)zdz = 0 gives Ez(t) = O(h2), and, moreover, under the

assumption nhd+3 → β it yields

Ez(t) =
Mβ(t) + o(1)√

nhd−1
. (2.15)

In addition,

Cov(z(t1), z(t2)) =
(1 + o(1))

nhd−1

t1∧t2∫
0

∫
Ψ(v(x(s))τ)dτU(t1, s)·[Σ+v(x(s))·v∗(x(s))]·U∗(t2, s)ds

(2.16)
with o and O being uniform in t, t1, t2. This implies (under the assumption nhd+3 → β) that

E|z(t)|2 = O

(
1

nhd−1

)

uniformly in t ∈ [0, T ] and (2.12) follows. Thus, (2.13) holds and together with (2.14), (2.16)
this yields the statement of the theorem. It remains to show (2.14) and (2.16).

Let us rewrite (2.11) by defining a matrix valued function ft(s) := I[0,t](s)U(t, s) :

z(t) =

∫
I[0,t](s)U(t, s) · [V̂ (x(s)) − v(x(s))]ds =

∫
ft(s) · [V̂ (x(s)) − v(x(s))]ds

= Xn(ft) −
∫

ft(s) · v(x(s))ds,

where

Xn(f) :=

∫
f(s) · V̂ (x(s))ds =

1

nhd

n∑
j=1

∫
f(s)K

(
x(s) − Xj

h

)
ds · (v(Xj) + ξj).

Let L denote the set of all d × d-matrix valued bounded functions f on R such that the
support of f is a subset of [0, T ] and f is continuous almost everywhere in R. Note that L

13



is a linear space and functions ft we are interested in belong to L. In computing asymptotic
representations for expectation and covariance of Xn(f), we assume that f ∈ L. We start
with EXn(f) :

EXn(f) =
1

hd

∫
f(s)EK

(
x(s) − X

h

)
· v(X)ds

=
1

hd

∫
f(s)

∫
K

(
x(s) − y

h

)
· v(y)dyds

=

∫
f(s)

∫
K(z) · v(x(s) − zh)dzds

=

∫
f(s)

∫
K(z)

[
v(x(s)) − hv′(x(s)) · z +

h2

2
〈v′′(x(s))z, z〉 + o(h2)

]
dzds

=

∫
f(s) · v(x(s))ds − h

∫
f(s) · v′(x(s)) ·

(∫
K(z)zdz

)
ds

+
h2

2

∫
f(s) ·

∫
K(z)〈v′′(x(s))z, z〉dzds + o(h2), (2.17)

where we used a substitution z = x(s)−y
h

. Also,

Cov(Xn(f), Xn(g)) = E{[Xn(f) − EXn(f)][X∗
n(g) − EX∗

n(g)]}

=
1

n2h2d

n∑
j=1

Cov

(∫
f(s)K

(
x(s) − Xj

h

)
ds · (v(Xj) + ξj),

∫
g(s)K

(
x(s) − Xj

h

)
ds · (v(Xj) + ξj)

)

=
1

nh2d
Cov

(∫
f(s)K

(
x(s) − X

h

)
ds · (v(x) + ξ),

∫
g(s)K

(
x(s) − X

h

)
ds · (v(X) + ξ)

)

=
1

nh2d
Cov

(∫
f(s)K

(
x(s) − X

h

)
ds · ξ,

∫
g(s)K

(
x(s) − X

h

)
ds · ξ

)

+
1

nh2d
Cov

(∫
f(s)K

(
x(s) − X

h

)
ds · v(X),

∫
g(s)K

(
x(s) − X

h

)
ds · v(X)

)

=: (I) + (II),

since

Cov

(∫
f(s)K

(
x(s) − X

h

)
ds · v(X),

∫
g(s)K

(
x(s) − X

h

)
ds · ξ

)
= 0,

Cov

(∫
f(s)K

(
x(s) − X

h

)
ds · ξ,

∫
g(s)K

(
x(s) − X

h

)
ds · v(X)

)
= 0.

14



To handle (I), we write

(I) =
1

nh2d
E

{∫
f(s)K

(
x(s) − X

h

)
ds · ξ · ξ∗

∫
K

(
x(u) − X

h

)
g∗(u)du

}

=
1

nh2d

∫ ∫
E

{
K

(
x(s) − X

h

)
K

(
x(u) − X

h

)}
f(s)Σg∗(u)dsdu

Note that

E

{
K

(
x(s) − X

h

)
K

(
x(u) − X

h

)}
=

∫
K

(
x(s) − y

h

)
K

(
x(u) − y

h

)
dy

= hd

∫
K(z)K

(
z +

x(u) − x(s)

h

)
dz = hdΨ

(
x(u) − x(s)

h

)
.

Changing variable u = s + τh, we get

(I) =
1

nhd−1

∫ ∫
Ψ

(
x(s + τh) − x(s)

h

)
f(s)Σg∗(s + τh)dτds. (2.18)

Note that
x(s + τh) − x(s)

h
→ v(x(s)) as n → ∞

and also for all τ and a.s. for s

g(s + τh) → g(s) as n → ∞
(recall that the functions f, g ∈ L and hence are continuous almost everywhere in R). By
assumptions K has bounded support implying that the support of Ψ is also bounded. At the
same time, we have

0 < γ ≤
∣∣∣∣ 1

u − s

∫ u

s

v(x(λ))dλ

∣∣∣∣ ≤ sup
x∈Rd

|v(x)| < +∞.

Therefore, the function

τ �→ Ψ̄(τ) = sup
0≤s≤u≤T

Ψ

(
τ

1

u − s

∫ u

s

v(x(λ))dλ

)

also has bounded support and, since it is bounded, it is integrable. Thus, we can use Lebesgue
dominated convergence to prove that∫ ∫

Ψ

(
x(s + τh) − x(s)

h

)
f(s)Σg∗(s + τh)dτds →

∫ ∫
Ψ(v(x(s))τ)dτf(s)Σg∗(s)ds =

∫
ψ(v(x(s)))f(s)Σg∗(s)ds,

which along with (2.18) yields

(I) =
1 + o(1)

nhd−1

∫
ψ(v(x(s)))f(s)Σg∗(s)ds.
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[Indeed, the integration with respect to s is in finite range, the function (s, τ) �→ f(s)Σg∗(s+
τh) is uniformly bounded and

∣∣∣∣Ψ
(

x(s + τh) − x(s)

h

)∣∣∣∣ ≤ Ψ̄(τ),

so, Lebesgue dominated convergence can be used under the assumption that Ψ̄ is integrable
in R.]

Similarly, the expression (II) can be written as

(II) =
1

nh2d
E

{∫
f(s)K

(
x(s) − X

h

)
ds · v(X) · v∗(X)

∫
K

(
x(u) − X

h

)
g∗(u)du

}

−1

n

∫
f(s) · v(x(s))ds

∫
v∗(x(u)) · g∗(u)du(1 + o(1))

=
1

nh2d

∫ ∫
f(s)E

{
K

(
x(s) − X

h

)
K

(
x(u) − X

h

)
v(X) · v∗(X)

}
g∗(u)dsdu

−1

n

∫
f(s) · v(x(s))ds

∫
g∗(u) · v(x(u))du(1 + o(1))

Note that

E

{
K

(
x(s) − X

h

)
K

(
x(u) − X

h

)
v(X) · v∗(X)

}

=

∫
K

(
x(s) − y

h

)
K

(
x(u) − y

h

)
v(y) · v∗(y)dy

= hd

∫
K(z)K

(
z +

x(u) − x(s)

h

)
v(x(s) − zh) · v∗(x(s) − zh)dz,

where we use substitution z = x(s)−y
h

, dy = hddz. Therefore,

1

nh2d
E

{∫
f(s)K

(
x(s) − X

h

)
ds · v(X) · v∗(X)

∫
K

(
x(u) − X

h

)
g∗(u)du

}
=

1

nhd

∫ ∫
f(s)

∫
K(z)K

(
z +

x(u) − x(s)

h

)
v(x(s) − zh) · v∗(x(s) − zh)dzg∗(u)dsdu,

which after change of variable u = s + τh becomes

1

nhd−1

∫ ∫
f(s)

∫
K(z)K

(
z+

x(s + τh) − x(s)

h

)
v(x(s)−zh)·v∗(x(s)−zh)dzg∗(s+τh)dτds.

As before, we use Lebesgue dominated convergence (under the same conditions) to show
that the last expression is equal to

1 + o(1)

nhd−1

∫ ∫
f(s)

∫
K(z)K(z + τv(x(s)))dzdτv(x(s)) · v∗(x(s))g∗(s)ds
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=
1 + o(1)

nhd−1

∫
f(s)ψ(v(x(s)))v(x(s)) · v∗(x(s))g∗(s)ds,

implying that

(II) =
1 + o(1)

nhd−1

∫
f(s)ψ(v(x(s)))v(x(s)) · v∗(x(s))g∗(s)ds.

Finally, the covariance

Cov(Xn(f), Xn(g)) = (I) + (II)

=
1 + o(1)

nhd−1

∫ ∫
Ψ(v(x(s))τ)dτf(s) · [Σ + v(x(s)) · v∗(x(s))] · g∗(s)ds. (2.19)

We now turn to the proof of asymptotic normality of
√

nhd−1(X̂ − x). First we show
that for all f ∈ L √

nhd−1

(
Xn(f) −

∫
f(s)v(x(s))ds

)

converges to a normal distribution. Since by (2.17)

√
nhd−1

(
EXn(f) −

∫
f(s)v(x(s))ds

)
→

√
β

2

∫
f(s) ·

∫
K(z)〈v′′(x(s))z, z〉dzds,

it is enough to establish the CLT for

√
nhd−1(Xn(f) − EXn(f)) =

1√
nhd+1

n∑
j=1

(ηj − Eηj),

where

ηj :=

∫
f(s)K

(
x(s) − Xj

h

)
ds · (v(Xj) + ξj).

Under the assumptions we have made it is easy to check Lyapunov’s conditions of CLT, and
to this end we bound the fourth moment of ηj :

E|ηj|4 = E(η∗
j ηj)

2

= E

(∫ ∫
K

(
x(s) − Xj

h

)
K

(
x(s1) − Xj

h

)
f ∗(s)(v(Xj) + ξj)

∗(v(Xj) + ξj)f(s1)dsds1

)2

.

Under the assumptions that v and ξ are bounded, this gives with some constant C > 0

E|ηj|4 ≤ CE

(∫ ∫
K

(
x(s) − X

h

)
K

(
x(s1) − X

h

)
|f ∗(s)||f(s1)|dsds1

)2

= CE

∫ ∫ ∫ ∫
K

(
x(s) − X

h

)
K

(
x(s1) − X

h

)
K

(
x(s2) − X

h

)
K

(
x(s3) − X

h

)

×|f(s)||f(s1)||f(s2)||f(s3)|dsds1ds2ds3.
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By change of variable, we then get

E|ηj |4

≤ Chd

∫
R5

K(z)K

(
z +

x(s1) − x(s)

h

)
K

(
z +

x(s2) − x(s)

h

)
K

(
z +

x(s3) − x(s)

h

)
dz

×|f(s)||f(s1)||f(s2)||f(s3)|dsds1ds2ds3

= Chd+3

∫
R5

K(z)K

(
z + τ1

x(s + τ1h) − x(s)

τ1h

)
K

(
z + τ2

x(s + τ2h) − x(s)

τ2h

)

K

(
z + τ3

x(s + τ3h) − x(s)

τ3h

)
dz|f(s)||f(s + τ1h)||f(s + τ2h)||f(s + τ3h)|dsdτ1dτ2dτ3.

Denote

Λ(τ1, τ2, τ3) := sup

∫
K(z)K

(
z + τ1

x(s1) − x(s)

s1 − s

)

K

(
z + τ2

x(s2) − x(s)

s2 − s

)
K

(
z + τ3

x(s3) − x(s)

s3 − s

)
dz,

where the supremum is taken over all s, s1, s2, s3 ∈ [0, T ]. It follows from the conditions that
the function Λ is integrable in R

3. As a result, we get

E|ηj|4 ≤ Chd+3

∫ ∫ ∫
Λ(τ1, τ2, τ3)

(∫
|f(s)|4ds

)1/4

(∫
|f(s + τ1h)|4ds

)1/4(∫
|f(s + τ2h)|4ds

)1/4(∫
|f(s + τ3h)|4ds

)1/4

dτ1dτ2dτ3

= Chd+3

∫
|f(s)|4ds

∫ ∫ ∫
Λ(τ1, τ2, τ3)dτ1dτ2dτ3.

It follows that with some constant C

1

n2h2(d+1)

n∑
j=1

E|ηj − Eηj |4 ≤ Cnhd+3

n2h2(d+1)
=

C

nhd−1
→ 0,

implying Lyapunov’s condition of CLT. This shows the asymptotic normality of

√
nhd−1(Xn(f) − EXn(f)) and

√
nhd−1

(
Xn(f) −

∫
f(s)v(x(s))ds

)

for all f ∈ L. Hence, if f1, . . . , fm ∈ L (which is a linear space), the CLT holds for any linear
combination of f1, . . . , fm. Using standard characteristic functions argument, this shows that
the joint distribution of (Xn(f1), . . . , Xn(fm)) is also asymptotically normal. Applying this to
f = ft proves the convergence of finite dimensional distributions of the stochastic processes√

nhd−1zn(t), 0 ≤ t ≤ T to finite dimensional distributions of the Gaussian process with
mean Mβ and covariance C(t1, t2). Due to (2.13), this also implies the convergence of f.d.d.
of the process √

nhd−1(X̂n(t) − x(t)), 0 ≤ t ≤ T

18



to the same limit.

Finally, we check asymptotic equicontinuity condition for the sequence of processes√
nhd−1zn(t), 0 ≤ t ≤ T to prove their weak convergence in the functional space C[0, T ].

Again, due to (2.13), this would imply weak convergence of
√

nhd−1(X̂n − x) to the same
limit. Since √

nhd−1zn(t) =
√

nhd−1(Xn(ft) −
∫

ft(s)v(x(s))ds) =

√
nhd−1(Xn(ft) − EXn(ft)) +

√
nhd−1(EXn(ft) −

∫
ft(s)v(x(s))ds)

and the bias term
√

nhd−1(EXn(ft) −
∫

ft(s)v(x(s))ds) tends to Mβ uniformly in t ∈ [0, T ]
due to (2.17), we have to consider only the process

ζn(t) :=
√

nhd−1(Xn(ft) − EXn(ft)).

To this end, we bound in a standard way the fourth moment of Xn(f) − EXn(f) :

E|Xn(f) − EXn(f)|4 =
1

n4h4d
E

∣∣∣∣
n∑

j=1

(ηj − Eηj)

∣∣∣∣
4

=
1

n4h4d

[
n(n − 1)

2

(
E|η − Eη|2

)2

+ nE|η − Eη|4
]
. (2.20)

As before,
E|η − Eη|2 ≤ E|η|2

= E

∫ ∫
K

(
x(s) − X

h

)
K

(
x(s1) − X

h

)
f ∗(s)(v(X) + ξ)∗(v(X) + ξ)f(s1)dsds1

≤ C

∫ ∫
EK

(
x(s) − X

h

)
K

(
x(s1) − X

h

)
|f ∗(s)||f(s1)|dsds1

≤ Chd

∫ ∫ ∫
K(z)K

(
z +

x(s1) − x(s)

h

)
dz|f(s)||f(s1)|dsds1

≤ Chd+1

∫ ∫ ∫
K(z)K

(
z + τ

x(s + τh) − x(s)

τh

)
dz|f(s)||f(s + τh)|dsdτ

≤ Chd+1

∫ ∫
Ψ̄(τ)|f(s)||f(s + τh)|dsdτ

≤ Chd+1

∫
Ψ̄(τ)

(∫
|f(s)|2ds

)1/2(∫
|f(s + τh)|2ds

)1/2

dτ

≤ Chd+1

∫
Ψ̄(τ)dτ

∫
|f(s)|2ds.

Plugging the bounds on E|η − Eη|2 and on E|η − Eη|4 in (2.20) yields with large enough
constant C

E

(√
nhd−1|Xn(f) − EXn(f)|

)4

≤ C

[
n2h2d+2

n2h2d+2

(∫
|f(s)|2ds

)2

+
nhd+3

n2h2d+2

∫
|f(s)|4ds

]
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≤ C

[(∫
|f(s)|2ds

)2

+
1

nhd−1

∫
|f(s)|4ds

]
.

We will apply it to f := ft1 − ft2 with t1, t2 ∈ [0, T ]. Since U(t, s) is bounded and satisfies
Lipschitz condition with respect to t, it easily follows that with some L > 0∫

|ft1(s) − ft2(s)|2ds ≤ L|t1 − t2| and

∫
|ft1(s) − ft2(s)|4ds ≤ L|t1 − t2|.

Therefore we have (with some C > 0)

E|ζn(t1) − ζn(t2)|4 ≤ C

[
|t1 − t2|2 +

1

nhd−1
|t1 − t2|

]
,

which gives for |t1 − t2| ≤ 1
nhd−1

E|ζn(t1) − ζn(t2)|4 ≤ 2C|t1 − t2|2.
If now An is a maximal 1

nhd−1 -separated subset of [0, T ], then standard Kolmogorov’s type
chaining argument shows that for all ε > 0

lim
δ→0

lim sup
n→∞

P

{
sup

t1,t2∈An,|t1−t2|≤δ

|ζn(t1) − ζn(t2)| ≥ ε

}
= 0. (2.21)

Let πn be a mapping from [0, T ] into An such that

∀t ∈ [0, T ] : |t − πnt| ≤ 1

nhd−1
.

Using the definition of ζn(t) and boundedness and Lipschitz property of U(t, s), we easily
get (with some constant C > 0)

|ζn(t1) − ζn(t2)| ≤ CT
√

nhd−1 sup
x∈Rd

|V̂ (x) − EV̂ (x)||t1 − t2|.

Therefore,

sup
t∈[0,T ]

|ζn(t) − ζn(πnt)| ≤ CT
1√

nhd−1
sup
x∈Rd

|V̂ (x) − EV̂ (x)|.

Using Lemma 1,
sup

t∈[0,T ]

|ζn(t) − ζn(πnt)| = oP (1). (2.22)

It immediately follows from (2.21) and (2.22) that

lim
δ→0

lim sup
n→∞

P

{
sup

t1,t2∈[0,T ]|t1−t2|≤δ

|ζn(t1) − ζn(t2)| ≥ ε

}
= 0,

which is the asymptotic equicontinuity condition for the process ζn.

Remark. The condition of boundedness of the support of the kernel K can be replaced
by the conditions that the functions Ψ̄ and Λ are integrable. The proof of Theorem 1 goes
through and the theorem applies to such kernels as Gaussian.
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3 Asymptotic distribution of the distance from esti-

mated curve to a given region

We turn now to some consequences of the CLT for the process
√

nhd−1(X̂ − x), whose
Gaussian limit we will denote here ξ(t), t ∈ [0, T ] (with mean Mβ(t) and covariance C(t1, t2),
as defined in Section 2). In particular, we are interested in asymptotic properties of statistics
of the following type

inf
t∈[0,T ]

ψ(d(X̂(t), Γ)),

where Γ is a subset of G, d(x, Γ) is a distance from x to Γ and ψ is a monotone function (for
instance, ψ(u) = u2 or ψ(u) = u, u > 0). In other words, we want to study the asymptotic
behavior of the minimal distance from the estimated integral curve X̂ to a target set Γ. Such
results are of statistical significance since they allow one to develop tests for hypotheses
that the true integral curve x(t) is passing through a given region or to construct confidence
intervals for the distance to the region. We will study this problem under the assumption
that the function

ϕ(x) := ψ(d(x, Γ))

is smooth enough which leads to a somewhat more general question about convergence in
distribution (subject to a proper normalization) of the sequence

inf
t∈[0,T ]

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t)).

Theorem 2 Let x(t), t ≥ 0 be an integral curve starting at x(0) = x0 ∈ G. Suppose that
ϕ : G �→ R is continuously differentiable. Denote

M := {τ ∈ [0, T ] : ϕ(x(τ)) = inf
0≤t≤T

ϕ(x(t))}.

Suppose also the conditions of Theorem 1 hold. Then the sequence of random variables

√
nhd−1

[
inf

t∈[0,T ]
ϕ(X̂(t)) − inf

t∈[0,T ]
ϕ(x(t))

]

converges in distribution to the random variable

inf
τ∈M

ξ(τ)∗ϕ′(x(τ)).

In particular, if the minimal set M consists only of one point τ ∈ (0, T ), then the above
sequence is asymptotically normal with mean Mβ(τ) and variance

σ2 = (ϕ′(x(τ)))∗C(τ)ϕ′(x(τ)).

Suppose now that ϕ is twice continuously differentiable. If, for all τ ∈ M, ϕ′(x(τ)) = 0 and

ϕ′′(x(τ))(v(x(τ)), v(x(τ))) > 0,
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then the sequence of random variables

nhd−1

[
inf

t∈[0,T ]
ϕ(X̂(t)) − inf

t∈[0,T ]
ϕ(x(t))

]

converges in distribution to the random variable

1

2
inf
τ∈M

[
ϕ′′(x(τ))(ξ(τ), ξ(τ)) −

(
ϕ′′(x(τ))(v(x(τ)), ξ(τ))

)2

ϕ′′(x(τ))(v(x(τ)), v(x(τ)))

]
.

If the minimal set consists only of one point τ, then the limit becomes

1

2

[
ϕ′′(x(τ))(Z, Z) −

(
ϕ′′(x(τ))(v(x(τ)), Z)

)2

ϕ′′(x(τ))(v(x(τ)), v(x(τ)))

]
,

where Z is a normal random vector in R
d with mean Mβ(τ) and covariance C(τ). On the

other hand, if for all u ∈ R
d

ϕ′′(x(τ))(v(x(τ)), u) = 0,

then the distributional limit of the sequence

nhd−1

[
inf

t∈[0,T ]
ϕ(X̂(t)) − inf

t∈[0,T ]
ϕ(x(t))

]

is
1

2
inf
τ∈M

ϕ′′(x(τ))(ξ(τ), ξ(τ)),

which in the unique minimum case becomes 1
2
ϕ′′(x(τ))(Z, Z).

Proof. Define
Ŷ (t) := ϕ(X̂(t)), y(t) := ϕ(x(t)), 0 ≤ t ≤ T.

Let an :=
√

nhd−1. Since the function ϕ is continuously differentiable, we can use a standard
∆-method type of argument to prove that the sequence of stochastic processes

an(Ŷ (t) − y(t)), 0 ≤ t ≤ T

converges weakly in the space C[0, T ] to the Gaussian stochastic process η(t) := ϕ′(x(t))ξ(t), 0 ≤
t ≤ T. Let

M := {τ : y(τ) = inf
0≤t≤T

y(t)}
be the minimal set of y. Then the sequence

an

(
inf

t∈[0,T ]
Ŷ (t) − inf

t∈[0,T ]
y(t)

)

converges in distribution to the random variable infτ∈M η(τ). The above fact might very
well be known (see, for instance, Pollard [12] for some results of similar nature in a slightly
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different context), but since we have not found a direct reference, we give its proof for
completeness. First note that for any small enough ε > 0 there exists δ > 0 such that for all
t 
∈ Mδ

y(t) ≥ inf
t∈[0,T ]

y(t) + ε,

Mδ being the δ-neighborhood of M. Moreover, if one defines

δ(ε) := inf
{

δ > 0 : ∀t 
∈ Mδ y(t) ≥ inf
t∈[0,T ]

y(t) + ε
}
,

then δ(ε) → 0 as ε → 0. [Indeed, otherwise there exists εn → 0 and δ > 0 such that δ(εn) > δ
for all n ≥ 1. For this δ, there exists tn 
∈ Mδ satisfying the condition

y(tn) < inf
t∈[0,T ]

y(t) + εn.

Extracting a subsequence of tn that converges to τ 
∈ Mδ we get y(τ) = inft∈[0,T ] y(t),
contradiction]. Let

An(ε) :=

{
sup

t∈[0,T ]

∣∣∣Ŷ (t) − y(t)
∣∣∣ ≤ ε/3

}
.

Since weak convergence of an(Ŷ − y) with an → ∞ implies

sup
t∈[0,T ]

∣∣∣Ŷ (t) − y(t)
∣∣∣ → 0

in probability, we have P(Ac
n(ε)) → 0 as n → ∞. On the event An(ε),

inf
t�∈Mδ

Ŷ (t) ≥ inf
t�∈Mδ

y(t) − ε/3 ≥ inf
t∈[0,T ]

y(t) + ε − ε/3 ≥ inf
t∈[0,T ]

Ŷ (t) + ε/3,

which implies on this event
inf

t∈[0,T ]
Ŷ (t) = inf

t∈Mδ

Ŷ (t).

The following obvious representation holds for all τ ∈ M and all t with |t − τ | < δ :

Ŷ (t) − y(τ) = Ŷ (τ) − y(τ) + y(t) − y(τ) + (Ŷ − y)(t) − (Ŷ − y)(τ).

It implies that on the event An(ε)

inf
t∈[0,T ]

Ŷ (t) − inf
t∈[0,T ]

y(t) = inf
t∈Mδ

Ŷ (t) − inf
t∈[0,T ]

y(t) =

= inf
τ∈M

[
Ŷ (τ) − y(τ) + inf

t:|t−τ |<δ
(y(t) − y(τ))

]
+ rn(δ),

where
rn(δ) ≤ sup

|t1−t2|<δ

∣∣∣(Ŷ − y)(t1) − (Ŷ − y)(t2)
∣∣∣.

Note that
inf

t:|t−τ |<δ
(y(t) − y(τ)) = 0
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and that the asymptotic equicontinuity of an(Ŷ − y) implies for all ε > 0

lim
δ→0

lim sup
n→∞

P

{
anrn(δ) ≥ ε

}
= 0.

This is enough to conclude that

inf
t∈[0,T ]

Ŷ (t) − inf
t∈[0,T ]

y(t) = inf
τ∈M

(Ŷ (τ) − y(τ)) + oP

(
1

an

)
,

implying the convergence in distribution of

an

(
inf

t∈[0,T ]
Ŷ (t) − inf

t∈[0,T ]
y(t)

)

to infτ∈M η(τ).

We now turn to the case of ϕ′(x(τ)) = 0 for all τ ∈ M. Since we assume in this case
that ϕ is twice continuously differentiable, we can use Taylor expansion of the second order
to get for τ ∈ M and with some θ ∈ (0, 1)

ϕ(X̂(t)) = ϕ(x(t)) +
(
ϕ′(x(t)) − ϕ′(x(τ))

)
(X̂(t) − x(t))

+
1

2
ϕ′′

(
x(t) + θ(X̂(t) − x(t))

)(
X̂(t) − x(t), X̂(t) − x(t)

)
. (3.1)

Since both functions ϕ′ and t �→ x(t) are Lipschitz and ϕ′′ is uniformly bounded (as an
operator valued function), we easily get that∣∣∣ϕ(X̂(t)) − ϕ(x(t))

∣∣∣ ≤ ηn|t − τ | + η2
n,

where with some constant L > 0

ηn := L sup
0≤s≤T

|X̂(s) − x(s)| = OP

(
1√

nhd−1

)
.

Let Mn → ∞ slowly enough (this sequence will be chosen later) and

Bn :=

{√
nhd−1ηn ≤ Mn

}
.

Then, obviously, P(Bc
n) → 0.

Note that since x(t) is twice continuously differentiable we have

x(t) − x(τ) = v(x(τ))(t − τ) + O(|t − τ |2).
Therefore,

ϕ(x(t)) − ϕ(x(τ)) =
1

2
ϕ′′(x(τ))(x(t) − x(τ), x(t) − x(τ)) + o(|x(t) − x(τ)|2)

=
1

2
ϕ′′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2 + o(|t− τ |2) (3.2)
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with o-term being uniform in τ, t.

Since ϕ′′ is continuous and for all τ ∈ M

ϕ′′(x(τ))(v(x(τ)), v(x(τ))) > 0,

it easily follows that with some κ > 0

|ϕ(x(t)) − ϕ(x(τ))| ≥ κ2|t − τ |2

for all τ ∈ M and |t− τ | < δ, δ being sufficiently small. On the event Bn, this implies for all
τ ∈ M and all |t − τ | < δ

ϕ(X̂(t))−ϕ(x(τ)) ≥ ϕ(x(t))−ϕ(x(τ))−(ηn|t−τ |+η2
n) ≥ κ2|t−τ |2− Mn√

nhd−1
|t−τ |− M2

n

nhd−1
.

We can and do assume that κ < 1. As soon as

|t − τ | ≥ 4

κ2

Mn√
nhd−1

=: δn,

we have on the event Bn

ϕ(X̂(t)) − ϕ(x(τ)) ≥ κ2

2
|t − τ |2 ≥ 8

κ2

M2
n

nhd−1
. (3.3)

Now we will study the asymptotic behavior of

nhd−1
(

inf
t∈Mδn

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t))
)

= nhd−1 inf
τ∈M

inf
t:|t−τ |≤δn

(
ϕ(X̂(t)) − ϕ(x(τ))

)
.

We will use representation (3.1) and relationship (3.2). Note that

(
ϕ′(x(t)) − ϕ′(x(τ))

)
(X̂(t) − x(t)) = ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))(t − τ) + r1,

where

r1 :=
(
ϕ′(x(t)) − ϕ′(x(τ)) − ϕ′′(x(τ))(x(t) − x(τ))

)
(X̂(t) − x(t))

+ϕ′′(x(τ))(x(t) − x(τ) − v(x(τ))(t − τ))(X̂(t) − x(t))

+ϕ′′(x(τ))(v(x(τ)), (X̂ − x)(t) − (X̂ − x)(τ))(t − τ).

Using Gronwall-Bellman inequality the same way as at the beginning of the proof of Theorem
1, we get with some constant C > 0

|(X̂ − x)(t) − (X̂ − x)(τ)| ≤ C|t − τ | sup
y∈Rd

|V̂ (y) − v(y)|.

This easily gives the following bound on the remainder:

|r1| ≤ o(|t − τ |) sup
t∈[0,T ]

|X̂(t) − x(t)| + O(|t− τ |2) sup
y∈Rd

|V̂ (y) − v(y)|
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with o and O being uniform with respect to τ, t. In addition,

1

2
ϕ′′

(
x(t) + θ(X̂(t) − x(t))

)(
X̂(t) − x(t), X̂(t) − x(t)

)

=
1

2
ϕ′′(x(τ))

(
X̂(τ) − x(τ), X̂(τ) − x(τ)

)
+ r2

where

r2 :=
1

2

(
ϕ′′

(
x(t) + θ(X̂(t) − x(t))

)
− ϕ′′(x(τ))

)(
X̂(t) − x(t), X̂(t) − x(t)

)

+ϕ′′(x(τ))
(
(X̂ − x)(t) − (X̂ − x)(τ), X̂(t) − x(t)

)

+
1

2
ϕ′′(x(τ))

(
(X̂ − x)(t) − (X̂ − x)(τ), (X̂ − x)(t) − (X̂ − x)(τ)

)
.

As before, with some constant C > 0 we have

|r2| ≤ C

(
|t − τ | + sup

t∈[0,T ]

|X̂(t) − x(t)|
)(

sup
t∈[0,T ]

|X̂(t) − x(t)|
)2

+C|t − τ | sup
y∈Rd

|V̂ (y) − v(y)| sup
t∈[0,T ]

|X̂(t) − x(t)| + C|t − τ |2
(

sup
y∈Rd

|V̂ (y) − v(y)|
)2

.

If Mn → ∞ slowly enough, τ ∈ M and |t − τ | < δn, we get

ϕ(X̂(t)) − ϕ(x(τ))

=
1

2
ϕ′′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2 + ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))(t − τ)

+
1

2
ϕ′′(x(τ))

(
X̂(τ) − x(τ), X̂(τ) − x(τ)

)
+ oP

(
1

nhd−1

)
(3.4)

with oP term being uniform in τ ∈ M and |t − τ | < δn. This implies that

inf
τ∈M

inf
t:|t−τ |<δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]

= inf
τ∈M

{
inf

t:|t−τ |<δn

[
1

2
ϕ′′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2 + ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))(t − τ)

]

+
1

2
ϕ′′(x(τ))

(
X̂(τ) − x(τ), X̂(τ) − x(τ)

)}
+ oP

(
1

nhd−1

)
.

The minimum of the quadratic function

R 	 t �→ 1

2
ϕ′′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2 + ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))(t − τ)

is equal to

−1

2

(
ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))

)2

ϕ′′(x(τ))(v(x(τ)), v(x(τ)))
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and is attained at

t0 = τ − ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))

ϕ′′(x(τ))(v(x(τ)), v(x(τ)))
.

For this t0 we have (using that ϕ′′(x(τ)) is bounded and that ϕ′′(x(τ))(v(x(τ)), v(x(τ))) > 0)
that with some constant D

|t0 − τ | ≤ D|X̂(τ) − x(τ)| = OP

(
1√

nhd−1

)
= oP(δn).

Let Dn := {supt∈[0,T ] |X̂(t) − x(t)| ≤ δn/D}.
Then P(Dc

n) → 0 and on the event Dn

inf
|t−τ |≤δn

[
1

2
ϕ′′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2 + ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))(t − τ)

]

= inf
t∈R

[
1

2
ϕ′′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2 + ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))(t − τ)

]

= −1

2

(
ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))

)2

ϕ′′(x(τ))(v(x(τ)), v(x(τ)))
.

As a result,

inf
t∈Mδn

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t)) = inf
τ∈M

inf
t:|t−τ |<δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]

= inf
τ∈M

[
1

2
ϕ′′(x(τ))

(
X̂(τ) − x(τ), X̂(τ) − x(τ)

)
− 1

2

(
ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))

)2

ϕ′′(x(τ))(v(x(τ)), v(x(τ)))

]

+

[
inf

t∈Mδn

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t))

]
IDc

n
+ oP

(
1

nhd−1

)
. (3.5)

and since P(Dc
n) → 0, we also have that

[
inf

t∈Mδn

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t))

]
IDc

n
= oP

(
1

nhd−1

)
.

In particular, this implies that

inf
t∈Mδn

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t)) = inf
τ∈M

inf
t:|t−τ |<δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]
= OP

(
1

nhd−1

)
.

On the other hand, it follows from (3.3) that

inf
τ∈M

inf
t:δ>|t−τ |≥δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]

≥ 8

κ2

M2
n

nhd−1
−

∣∣∣∣ inf
τ∈M

inf
t:δ>|t−τ |≥δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]∣∣∣∣IBc
n
− 8

κ2

M2
n

nhd−1
IBc

n
.

27



Since P(Bc
n) → 0, we get

inf
τ∈M

inf
t:δ>|t−τ |≥δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]
≥ 8

κ2

M2
n

nhd−1
− oP

(
1

nhd−1

)
.

Since Mn → ∞, the above easily implies that

P

{
inf

t∈Mδn

ϕ(X̂(t)) ≤ inf
τ∈M

inf
t:δ>|t−τ |≥δn

ϕ(X̂(t))

}

≥ P

{
inf
τ∈M

inf
t:|t−τ |<δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]
≤ inf

τ∈M
inf

t:δ>|t−τ |≥δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]}

≥ P

{
inf
τ∈M

inf
t:|t−τ |<δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]
≤ 4

κ2

M2
n

nhd−1
≤ inf

τ∈M
inf

t:δ>|t−τ |≥δn

[
ϕ(X̂(t)) − ϕ(x(τ))

]}
→ 1

as n → ∞, so, P(Ec
n) → 0 where

En :=

{
inf

t∈Mδn

ϕ(X̂(t)) ≤ inf
τ∈M

inf
t:δ>|t−τ |≥δn

ϕ(X̂(t))

}
.

This leads to the relationship

inf
t∈Mδ

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t))

= inf
t∈Mδn

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t)) +
[

inf
t∈Mδ

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t))
]
IEc

n

= inf
t∈Mδn

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t)) + oP

(
1

nhd−1

)
. (3.6)

Finally, if we choose ε small enough so that δ(ε) < δ (recall the notations introduced at the
beginning of the proof), then we will have on the event An(ε)

inf
t∈Mδ

ϕ(X̂(t)) = inf
t∈[0,T ]

ϕ(X̂(t)).

Since P(An(ε)c) → 0, this yields

inf
t∈[0,T ]

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t))

= inf
t∈Mδ

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t)) +
[

inf
t∈[0,T ]

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t))
]
IAn(ε)c

= inf
t∈Mδ

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t)) + oP

(
1

nhd−1

)
. (3.7)

Combining bounds (3.5)–(3.6), we get

inf
t∈[0,T ]

ϕ(X̂(t)) − inf
t∈[0,T ]

ϕ(x(t))

= inf
τ∈M

[
1

2
ϕ′′(x(τ))

(
X̂(τ) − x(τ), X̂(τ) − x(τ)

)
− 1

2

(
ϕ′′(x(τ))(v(x(τ)), X̂(τ) − x(τ))

)2

ϕ′′(x(τ))(v(x(τ)), v(x(τ)))

]

+oP

(
1

nhd−1

)
,

28



which immediately implies the second statement. The proof of the last statement is the same
except that (3.1) simplifies to

ϕ(X̂(t)) − ϕ(x(τ)) =
1

2
ϕ′′(x(τ))

(
X̂(τ) − x(τ), X̂(τ) − x(τ)

)
+ oP

(
1

nhd−1

)
,

which leads to further simplifications in what follows in the proof.

First, we apply the above theorem to the following simple example. Let a ∈ G and let
ϕ(x) := |x − a|2. Then ϕ′(x) = 2(x − a), ϕ′′(x) = 2I and we are getting the following result
describing the asymptotic behavior of inf t∈[0,T ] |X̂(t) − a|2.
Corollary 1 Let a ∈ G and x(t), t ≥ 0 be an integral curve starting at x(0) = x0 ∈ G.
Suppose that for some τ ∈ (0, T )

inf
0≤t≤T

|x(t) − a|2 = |x(τ) − a|2,

and, moreover, suppose that τ is the only point where the infimum is attained. Suppose also
the conditions of Theorem 1 hold. If x(τ) 
= a, then the sequence

√
nhd−1

[
inf

0≤t≤T
|X̂(t) − a|2 − inf

0≤t≤T
|x(t) − a|2

]

is asymptotically normal with mean 2Mβ(τ)∗(x(τ) − a) and variance

σ2 = 4(x(τ) − a)∗C(τ)(x(τ) − a).

If x(τ) = a, then the sequence

nhd−1 inf
0≤t≤T

|X̂(t) − a|2

converges in distribution to the random variable

|Z|2 −
(
Zv(x(τ))∗

)2

|v(x(τ))|2 ,

where Z is a normal random vector in R
d with mean Mβ(τ) and covariance C(τ).

Next we consider a sphere Γ := {x : |x − a| = r} ⊂ G. Let

d(x, Γ) := inf
y∈Γ

|x − y| =
∣∣∣|x − a| − r

∣∣∣
be the distance from x to Γ and let ϕ(x) := d2(x, Γ). Then

ϕ′(x) = 2
(
|x − a| − r

) x − a

|x − a|
and, for x ∈ Γ,

ϕ′′(x) = 2
(x − a)(x − a)∗

|x − a|2 .

This leads to the following corollary.
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Corollary 2 Let Γ := {x : |x − a| = r} ⊂ G be a sphere and let x(t), t ≥ 0 be an integral
curve starting at x(0) = x0 ∈ G. Suppose that for some τ ∈ (0, T )

inf
0≤t≤T

d2(x(t), Γ) = d2(x(τ), Γ) =: D2,

and, moreover, suppose that τ is the only point where the infimum is attained. Suppose also
the conditions of Theorem 1 hold. If D2 > 0, then the sequence

√
nhd−1

[
inf

0≤t≤T
d2(X̂(t), Γ) − D2

]

is asymptotically normal with mean 2DMβ(τ)∗n(x(τ)) and variance

σ2 = 4D2n(x(τ))∗C(τ)n(x(τ)),

where

n(x) :=
x − a

|x − a| .

If D2 = 0 and, moreover, the vector v(x(τ)) is tangent to Γ, then the sequence

nhd−1 inf
0≤t≤T

d2(X̂(t), Γ)

converges in distribution to the random variable γ2, where γ is a normal random variable
with mean Mβ(τ)∗n(x(τ)) and variance n(x(τ))∗C(τ)n(x(τ)).

Remark. The result can be extended to more general smooth surfaces Γ. In this case,
n(x) would be the unit normal vector to Γ at the point x′ ∈ Γ that is the closest to x
(assuming the uniqueness of such a point).

Remark. Suppose H ⊂ G is an open not empty subset of G with boundary ∂H = Γ.
Let x(t), t ∈ [0, T ] be the integral curve with initial condition x(0) = x0, x0 
∈ H ∪ Γ. If for
some t ∈ [0, T ] x(t) ∈ H, then

inf
0≤t≤T

d2(x(t), Γ) = 0

since x(t), t ∈ [0, T ] is a continuous function. Also, it easily follows from the first statement
of Theorem 1 that with probability tending to 1 we have

inf
0≤t≤T

d2(X̂(t), Γ) = 0

(since X̂, being close to x uniformly in [0, T ], must enter the set H and hence cross its
boundary Γ). As a result, for any sequence an → ∞

an

[
inf

0≤t≤T
d2(X̂(t), Γ) − inf

0≤t≤T
d2(x(t), Γ)

]
= an inf

0≤t≤T
d2(X̂(t), Γ)

tends to 0 in probability and in distribution.
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4 Numerical implementation and examples

4.1 Remarks on numerical implementation

We start with several remarks concerning numerical implementation of estimation and testing
procedures based on the results of Sections 2-3.

1. We will use a simple Euler’s type method to solve the differential equations numerically
(obviously, more sophisticated numerical method can also be useful here, with potential
improvement of the results). Let δ be the step size. Then the following recurrent relationship
approximates equation (2.2):

X̂0 := x0,

X̂k+1 := X̂k + V̂ (X̂k)δ. (4.1)

2. We also need to solve the equation for covariance matrix C(t). This differential equa-
tion is being approximated by the following recurrent relationship:

Ĉ0 := 0,

Ĉk+1 := Ĉk + δ
[
ψ(V̂ (X̂k))

(
Σ̂ + V̂ (X̂k)V̂ (X̂k)

∗
)

+ V̂ ′(X̂k)Ĉk + ĈkV̂
′(X̂k)

∗
]
, (4.2)

where Σ̂ is an estimate of the covariance matrix Σ of the noise ξi.

3. As an estimate of Σ, we use

Σ̂ :=
1

n

n∑
j=1

(Vi − V̂ (Xi))(Vi − V̂ (Xi))
∗.

Consistency of the estimator Σ̂ easily follows from Lemma 1. In practice, the noise ξi is
not necessarily homogeneous and it might make sense to use localized versions of the above
estimate.

4. Obviously, the recurrent relationships (4.1) and (4.2) can be solved simultaneously, so,
in fact, our approach is based on simultaneous tracking of the ”fiber path” and its covariance

matrix. We are doing this for k = 1, . . . , N, N :=
[

T
δ

]
.

5. It easily follows from the definition of function ψ (see Section 2) that if the kernel K
is spherically symmetric (i.e. K depends only on |x|), then ψ is also spherically symmetric.
In this case, ψ is a constant on the unit sphere in R

d. In applications, the vector field v
consists of unit vectors. Hence, for a spherically symmetric kernel K, the ψ-factor in the
differential equation for C(t) and in the recurrent relationship that approximates it can be
replaced by the constant, simplifying the equations. In what follows, we use the standard
Gaussian kernel K,

K(x) :=
1

(2π)d/2
exp

{
−|x|2

2

}
,

which of course is spherically symmetric.
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6. To estimate the function M(t), one needs an estimator of v′′. This can be done, for
instance, by utilizing kernel estimators one more time. The entries of the estimator V̂ ′′ (which
is a d × d × d-tensor) are defined as

V̂ ′′
jkl(x) =

1

nh̃d+2

n∑
i=1

∂2K

∂xj∂xk

(
x − Xi

h̃

)
V

(l)
i ,

V l
i , l = 1, . . . , d being the components of vector Vi. The kernel K can be taken the same as

in the estimate of V̂ , but the bandwidth parameter h̃ = h̃n is different (so, V̂ ′′ is not the
second derivative of V̂ ). To make V̂ ′′ a consistent estimator of v′′ the assumptions h̃ → 0 and
nh̃d+4 → ∞ are needed. The second assumption does not hold for the bandwidth h needed
in Theorem 1.

If K is the Gaussian kernel, the following computation is straightforward (∆ denotes
the Laplacian):

Ŵ (x) :=

∫
K(z)〈V̂ ′′(x)z, z〉dz

=
1

nh̃d+2

n∑
i=1

∆K

(
x − Xi

h̃

)
Vi

=
1

nh̃d+2

n∑
i=1

(∣∣∣∣x − Xi

h̃

∣∣∣∣
2

+ d

)
K

(
x − Xi

h̃

)
Vi.

Now, the following recurrent relationship (that is to be solved simultaneously with (4.1)
and (4.2)) provides numerical approximation of equation (2.4):

M̂0 = 0;

M̂k+1 = M̂k + δ

[
V̂ ′(X̂k)M̂k +

1

2
Ŵ (X̂k)

]
(4.3)

7. Solving (4.1), (4.2) and (4.3) yields numerical approximations of X̂(t), 0 ≤ t ≤ T,
Ĉ(t), 0 ≤ t ≤ T and M̂(t) that can be now used to compute

min
1≤k≤N

d2(X̂k, Γ),

which is a numerical approximation of

inf
0≤t≤T

d2(X̂(t), Γ),

for a given set Γ and also to compute other quantities needed for implementation of testing
procedures. If the above minimum is attained at k̂ and τ̂ := k̂δ, then τ̂ can be used as an
estimate of τ for which the minimal distance from the true integral curve x(t), 0 ≤ t ≤ T
to Γ is attained. If such a τ is unique (as it was assumed in corollaries 1 and 2), then it
is not hard to show consistency of τ̂ (under proper assumptions on δ). This allows us to
approximate the limit distributions in corollaries 1 and 2.
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8. The above considerations allow us to implement the testing procedures based on
corollaries 1 and 2. For instance, in the case of Corollary 1, the test statistic is approximated
by

Λ̂ := nhd−1 min
1≤k≤N

∣∣∣X̂k − a
∣∣∣2. (4.4)

Given a significance level α ∈ (0, 1), the hypothesis that the integral curve x(t), 0 ≤ t ≤ T
passes through the point a (against the alternative that it does not) is being rejected if
Λ̂ ≥ Λα, where Λα is determined from the following equation:

P

{
Λ̄ ≥ Λα

}
= α.

Here

Λ̄ := |Z|2 −
(
ZV̂ (X̂k̂)

∗
)2

|V̂ (X̂k̂)|2
,

where Z is a normal random vector in R
d with mean

√
βM̂k̂ and covariance Ĉk̂ (we assume

that h =
(

β
n

)1/(d+3)

with β > 0; we set β = 0 if h = hn is such that nhd+3
n → 0).

9. Corollaries 1 and 2 can be also used to derive asymptotic approximations of the power
of the test and to study how it depends on D (the minimal distance from the true integral
curve to Γ). For instance, in the case of Corollary 1, the power can be approximated by the
following expression:

1 − Φ

(
(nhd−1)−1/2Λα − (nhd−1)1/2D2 − 2

√
βDM(τ)∗n(x(τ))

2D
(
n(x(τ))∗C(τ)n(x(τ))

)1/2

)
,

where Φ is the standard normal distribution function,

D2 := inf
0≤t≤T

|x(t) − a|2,

and

n(x) :=
x − a

|x − a| .

Replacing M(τ), C(τ) and x(τ) by their ”estimates” leads to the following expression de-
scribing the dependence of the power on the true distance D :

1 − Φ

(
(nhd−1)−1/2Λα − (nhd−1)1/2D2 − 2

√
βDM̂∗

k̂
n(X̂k̂)

2D
(
n(X̂k̂)

∗Ĉk̂n(X̂k̂)
)1/2

)
. (4.5)

10. We are not addressing in any detail an important problem of choosing the bandwidth
parameter h. For a fixed t and h = (β

n
)1/(d+3) the asymptotic formula for the mean squared

error matrix of X̂ is (see Theorem 1):

E(X̂(t) − x(t))(X̂(t) − x(t))∗ ≈ n− 4
d+3

[
C(t)β− 4

d+3 + M(t)M(t)∗β
4

d+3

]
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This immediately implies the following formula for mean integrated squared error:

E

∫ T

0

|X̂(t) − x(t)|2dt ≈ n− 4
d+3

[∫ T

0

Tr(C(t))dtβ− d−1
d+3 +

∫ T

0

Tr(M(t)M(t)∗)dtβ
4

d+3

]
.

Its minimum is attained at

β̄ :=
d − 1

4

∫ T

0
Tr(C(t))dt∫ T

0
Tr(M(t)M(t)∗)dt

,

and, given estimates of C and M, β̄ can be estimated based on the data. Since one might be
interested in optimizing not the global deviation of X̂ from x but rather in distance from x
to a set Γ (as in corollaries 1 and 2, an alternative might be to use the asymptotics of these
corollaries rather than the global result of Theorem 1. For instance, based on Corollary 1,
the following asymptotic formula might be used:

E

[
inf

0≤t≤T
|X̂(t) − a|2 − inf

0≤t≤T
|x(t) − a|2

]2

≈ n− 4
d+3

[
4(x(τ) − a)∗C(τ)(x(τ) − a)β− d−1

d+3 + 4
(
M(τ)∗(x(τ) − a)

)2

β
4

d+3

]
,

whose minimum is attained at

β̄1 :=
d − 1

4

(x(τ) − a)∗C(τ)(x(τ) − a)(
M(τ)∗(x(τ) − a)

)2 .

One can also try to develop an approach based on maximizing the power of the hypotheses
tests considered above.

4.2 Several experiments with simulated and real data

We turn now to some of the results of our experiments with simulated and real data. First,
we simulated two vector fields, one with circular integral curves (Figure 2) and another one
with spiral integral curves (Figure 3). In both cases, the vector fields were observed at a
finite number of random points uniformly distributed inside a rectangular domain in R

2

with random noise.

We used Nadaraya-Watson type regression estimator to smooth the vector field and then
computed an estimate of an integral curve starting at a given point by solving numerically the
differential equation generated by the smoothed field using Euler’s method. Simultaneously
with tracking the estimate of the integral curve, we have also tracked the covariance matrix
of the estimate and used it to plot the 95%-confidence ellipsoids along the integral curve.
The results are shown in figures 2 and 3.

Our next goal is to study (by Monte Carlo simulation) the accuracy of normal approxi-
mation of the distribution of the distance from the estimated integral curve to a given point
or to a given sphere (see corollaries 1 and 2). To this end, we simulated the random points
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and the noisy vector field as in Figure 2 and computed the estimated integral curve based
on Nadaraya-Watson regression smoothing. We repeated these simulations independently
N = 2000 times and each time computed the square of the distance D̂2 to the point with
coordinates (0, 2) (labeled with + on Figure 4). The squared distance from this point to the
true integral curve was D2 = 1. We also computed each time the estimate σ̂2 of the variance
σ2 (see Corollary 1). Finally, we computed at each round of simulations the standardized
version of D̂2, given by the expression

√
nh

D̂2 − D2

σ̂

(recall that d = 2 in our case). The histogram of the last variable is shown in the top
part of Figure 5 in comparison with the standard normal curve. The bottom part part of
Figure 5 shows the results of similar simulation experiment in the case of the distance from
the estimated integral curve to a sphere (a circle in our case; see Corollary 2). There is a
deviation of the histograms from normality that is quite understandable for a number of
reasons: the fact that we ignored the bias Mβ in the normal approximation; in the case when
D2 = 0, Corollary 1 suggests that the asymptotic distribution should be of χ2-type rather
than normal and because of this for small value of D2 one can start seeing some deviations
from normality for a finite sample; the variance σ2 needed in normalization was replaced by
its estimate σ̂2; numerical approximation we are using to compute the distance has certain
impact on the distribution; and last but not least, the sample size n in our simulations is
essentially rather small for this type of central limit theorem (n =????). Kolmogorov-Smirnov
test clearly shows that these deviations from normality are very significant (p < 0.00???).
However, when n = 500 the p-value of the test becomes of the order 0.0542 and for larger
values of n the deviations from normality are not any longer statistically significant.

Quite similarly, Figure 6 shows histograms of squared distances from the estimated
integral curve to a specified point (the top figure) or to a specified circle (the bottom figure)
in the case when the true integral curve passes through the point or is tangent to the circle.
In this case, according to corollaries 1 and 2, the asymptotic distribution of the squared
distance should be of χ2 type.

Next we studied the power of testing the null hypothesis that the integral curve passes
through a specified point of interest. The test is based on the second statement of Corollary
1. The test statistic is Λ̂ given by (4.4). The top part of Figure 7 shows the true integral
curve and also ten points of interest: one of them is on the curve (so that the null hypothesis
is satisfied for this point) and nine other points represent alternatives. We estimated this
integral curve based on n = 77 observations of noisy vector field as in Figure 2. We repeated
the experiment 1000 times, each time simulating the data, estimating the integral curve and
testing the hypothesis with significance level α = 0.05. The red curve shown in the bottom
part of Figure 7 represents the empirical estimation of the power of our test (the frequency of
rejecting the null hypothesis) for each of the alternatives. The blue curve represents the value
of the power based on theoretical formula (4.5) (which seems to consistently overestimate
the power). We also repeated Monte Carlo computation of power function independently 100
times; Figure 8 shows a ”waterfall graph” of empirical power function.

Figure 9 represents what we call the p-value map: for each point in the plane, we tested
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the null hypothesis that the true integral curve passes through this point and determined
the observed significance level of our test, which we then plotted creating the image that can
be used to assess the degree of connectivity of points in the plane with a given path.

Finally, figures 10 and 11 give some examples of fiber tracking and visualization of 95%
confidence ellipsoids for real DT-MRI data. A detailed discussion of the applications of our
methodology to DT-MRI goes beyond the scope of this paper and will be given in further
publications in more specialized journals on neuroimaging.
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Figure 2: The top figure shows the true vector field whose x- and y-coordinates are given
by formulas vx = − y√

x2+y2
, vy = x√

x2+y2
(”the circular field”). The figure in the middle

represents the noisy vector field obtained by adding 2-dimensional standard normal vectors
to the true field. Finally, the bottom figure shows the results of smoothing of the noisy
vector field and integral curve estimation using Nadaraya-Watson type regression estimator.
The red curve is the estimated trajectory that starts at the point (3, 0). The green arrows
show the noisy vector field; the blue arrows represent the smoothed vector field at discrete
points along the estimated trajectory. The total number of points in the rectangle n = 77.
The Nadaraya-Watson estimator was computed with h = 0.8 and the step size used in the
numerical solution of ODE was δ = 0.02.
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Figure 3: shows similar results in the case of spiral integral curves. Now the true vec-
tor field is given by the following formulas: vx = −y+0.2x

R
, vy = x+0.2y

R
, where R :=√

(−y + 0.2x)2 + (x + 0.2y)2. The noisy vector field is simulated by adding to the true field
independent copies of 3Z, Z being a 2-dimensional standard normal vector. The estimated
trajectory (represented by the red curve) starts at (1, 0) (the small red circle). In this exam-
ple, n = 150, h = 0.6, δ = 0.02.
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Figure 4: shows a circular true integral curve and locations of points and balls of interest in
Monte Carlo study of the distribution of distances (see figures 5 and 6 below).
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Figure 5: The top figure presents the histogram of standardized minimal squared distances
between the estimated integral curves and the point x=(0,2) obtained by the Monte Carlo
simulations (N=2000) ; the bottom figure shows the histogram of standardized minimal
squared distances between the estimated integral curve to the ball with center x=(0,2) and
radius 0.1 obtained again by the Monte Carlo simulations (N=2000). The histograms are
compared with the standard normal distribution.
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Figure 6: The top figure presents the histogram of the minimal squared distances from the
estimated integral curve to the point x=(0,3) obtained by the Monte Carlo simulations
(N=2000) in comparison with χ2-type curve based on the theory. Note that now the point is
on the true integral curve. The bottom figure shows the histogram of the minimal squared
distances from the estimated integral curve to the ball with center x=(0,2.9) and radius 0.1
obtained by the Monte Carlo simulations (N=2000) again in comparison with χ2-type curve
based on our theory. The empirical distributions in this case are much closer to χ2-type than
the distributions shown on Figure 5
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Figure 7: The top part shows true integral curve and selected points of interest for measuring
the power. The bottom part represents graphs of the power function based on Monte Carlo
study (the red curve) and based on theoretical formula (4.5) (the blue curve).
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Figure 8: shows a waterfall graph of empirical power function using the same points as above
by repeating the Monte Carlo experiment 100 times.
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Figure 9: p-value map: for each point in the plane, it shows the p-value of testing the null
hypothesis that the true integral curve passes through this point

Figure 10: presents a single estimated fiber trajectory using the proposed tracking procedure
on real DT-MRI data. The blue point shows the starting seed point

Figure 11: shows the visualization of 3-D confidence ellipsoid (C.E.) of tracking procedure
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