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Abstract

Fractional wave equations are important in many areas of science
and engineering. Fujita (1990) proposed a stochastic solution to
the time-fractional wave equation

∂γ

∂tγ
p = ∆xp,

using the supremum of a negatively skewed stable process. The
index α ∈ (1,2) of that stable process corresponds to a fractional
time derivative of order γ = 2/α. In this talk, we present a
continuous time random walk model for that same fractional
wave equation. In the long time limit, this model leads to a
stochastic solution involving the inverse or hitting time of a stable
subordinator with index 1/α. The subordinator in our model
is the first passage time of the stable process in Fujita. It is
also related to the solution in Mainardi (2010) via the Zolotarev
duality formula for stable densities. The continuous time random
walk model can be useful for particle tracking solutions to the
fractional wave equation.
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Solution to the wave equation

The traditional wave equation

∂2

∂t2
p(x, t) = ∆xp(x, t)

models wave propagation in an ideal conducting medium.

For initial conditions p(x,0) = φ(x) and p′(x,0) = ψ(x), the

traditional wave equation has the (d’Alembert) solution

p(x, t) =
1

2
[φ(x+ t) + φ(x− t)] +

∫ x+t

x−t
ψ(y) dy.

This is proven by considering the equivalent integral equation

p(x, t) = φ(x) + tψ(x) +
∫ t

0
∆xp(x, s) ds

for any continuous and exponentially bounded functions φ, ψ.



Fractional wave equation

The fractional wave equation (integral form) with 1 < γ < 2 is

p(x, t) = φ(x) +
tγ/2

Γ(1+ γ/2)
ψ(x) +

1

Γ(γ)

∫ t

0
(t− s)γ−1∆xp(x, s) ds.

For ψ = 0, the equivalent differential form is

∂γ

∂tγ
p(x, t) = ∆xp(x, t)

using the Caputo fractional derivative

∂γ

∂tγ
p(x, t) =

1

Γ(2− γ)

∫ t

0
p′′(x, u)(t− u)1−γdu

of order 1 < γ < 2.

This equation models wave conduction in a heterogeneous medium.



Fujita’s solution

Take Xγ(t) a negatively skewed stable with index 2/γ and

E

[

eikXγ(t)
]

= exp
[

−t|k|2/γe−i(π/2)(2−2/γ) sgn(k)
]

and define its supremum process

Yγ(t) = sup
0≤u≤t

Xγ(u).

Fujita (1990) gives the fractional wave equation solution

p(x, t) =
1

2
E [φ(x+ Yγ(t)) + φ(x− Yγ(t))] +

1

2
E

∫ x+Yγ(t)

x−Yγ(t)
ψ(y) dy.

for continuous, exponentially bounded initial conditions φ, ψ.



Solution via inverse stable process

Bertoin (1996) Theorem VII.1 implies that the first passage time

Du = inf{t ≥ 0 : Xγ(t) > u}

is a stable subordinator with index β = γ/2 and Laplace transform

E

[

e−sDu
]

= e−us
β
for all u ≥ 0 and s ≥ 0.

But the inverse β-stable subordinator

Et = inf{u ≥ 0 : Du > t}

equals the supremum Yγ(t) of Xγ(t) (inverse of the inverse).

Then we can set Et = Yγ(t) in the Fujita solution.



Meaning of the Et solution

The integral form of the fractional wave equation with γ = 2β is

p(x, t) = φ(x) +
tβ

Γ(1+ β)
ψ(x) +

1

Γ(2β)

∫ t

0
(t− s)2β−1∆xp(x, s) ds.

The unique solution for continuous, exponentially bdd φ, ψ is

p(x, t) =
1

2
E [φ(x+ Et) + φ(x− Et)] +

1

2
E

∫ x+Et

x−Et
ψ(y) dy.

The time randomization t 7→ Et accounts for delays in wave

propagation in a heterogeneous medium.

Generally Et grows like tβ, so it slows the wave propagation.



Mainardi solution

Mainardi (2010): Solution to the FWE with p′(x,0) = 0 is

p(x, t) =
∫ ∞

0

1

2
[φ(x− u) + φ(x+ u)] q(u, t) du.

where q(u, t) is the pdf of Xγ(t). That is,

p(x, t) =
1

2
E

[

φ(x−Xγ(t)) + φ(x+Xγ(t))
∣

∣

∣Xγ(t) > 0
]

.

Baeumer et al. (2009) prove that the conditional pdf of Xγ(t)

given Xγ(t) > 0 equals the pdf of the inverse stable Et.

Then the Mainardi solution is equivalent to the Et solution.



Random walk model for wave equation

Let X0 be a random variable with density φ(x).

Take X1 independent of X0 with P[X1 = ±1] = 1/2.

Set Xn = X1 for n > 1, and let S(t) = X1 + · · ·+X[t].

Then X0 + c−1S(ct) ⇒ Ut as c→ ∞ and Ut has a pdf

p(x, t) =
1

2
[φ(x+ t) + φ(x− t)]

that solves the traditional wave equation.

Particle tracking solution: simulate this random walk



CTRW model for fractional wave equation

Take S(t) = X1 + · · ·+X[t] as before.

Take P[Wn > t] = t−β/Γ(1− β) iid independent of X0, X1.

Let Tn =W1 + · · ·+Wn and Nt = max{n ≥ 0 : Tn ≤ t}.

Then X0 + c−βS(Nct) ⇒ Ut as c→ ∞ and Ut has a pdf

p(x, t) =
1

2
E [φ(x+ Et) + φ(x− Et)]

that solves the fractional wave equation.

Particle tracking solution: simulate this CTRW



Extension: Bounded domains

Given an open subset D of R
d, consider the Laplacian operator

Lx = ∆x on L2(D) with Dirichlet boundary conditions.

For any φ ∈ Dom(Lx) there exists a unique solution p(x, t) to the

wave equation

∂2

∂t2
p(x, t) = ∆xp(x, t); p(x,0) = φ(x); p′(x,0) = 0; p(x, t) = 0 ∀x /∈ D.

Then we show that

pγ(x, t) = E[p(x,Et)]

solves the corresponding fractional wave equation for 1 < γ < 2

∂γ

∂tγ
p(x, t) = ∆xp(x, t); p(x,0) = φ(x); p′(x,0) = 0; p(x, t) = 0 ∀x /∈ D

where Et is the inverse stable subordinator with index β = γ/2.



Remark: Caputo or Riemann-Liouville?

The Riemann-Liouville fractional derivative of order 1 < γ < 2 is

D
γ
t p(x, t) =

1

Γ(2− γ)

d2

dt2

∫ ∞

0
p(x, u)(t− u)1−γ du.

The Caputo and Riemann-Liouville derivatives are related by

∂γ

∂tγ
f(t) = D

γ
t f(t)− f(0)

t−γ

Γ(1− γ)
− f ′(0)

t1−γ

Γ(2− γ)
.

The fractional wave equation in Riemann-Liouville form is:

D
γ
t p(x, t) = φ(x)

t−γ

Γ(1− γ)
+ ψ(x)

t−γ/2

Γ(1− γ/2)
+∆xp(x, t).

Since we have t−γ/2 and not t1−γ, Caputo is not as useful.



Remark: Power law wave equation

The power law wave equation from Kelly et al. (2008)

∂2

∂t2
p+

2α0
b

D
y+1p+

α
2y
0

b2
D
2yp = ∆xp

with b = cos(πy/2) and 1 < y < 2 is a model for ultrasound.

Here the Riemann-Liouville fractional derivatives are used.

Again, the solution comes from replacing t by Et in the solution

to the traditional wave equation, and taking expectations.

Now Et is the inverse of a stable with drift with index y.

The CTRW model is similar, see Straka et al. (2013).



Summary

• Stochastic solution for fractional wave equation

• Randomize time via inverse stable subordinator

• Leads to CTRW model for particle tracking

• Riemann-Liouville derivative seems most appropriate

• Extends to more general equations

• What about space-time fractional wave equations?
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