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Abstract

Continuous time random walks (CTRWSs) are versatile models
for anomalous diffusion processes that have found widespread
application in the quantitative sciences. T heir scaling limits are
typically non-Markovian, and the computation of their finite-
dimensional distributions is an important open problem. This
paper develops a general semi-Markov theory for CTRW Ilimit
processes in d-dimensional Euclidean space with infinitely many
particle jumps (renewals) in finite time intervals. The particle
jumps and waiting times can be coupled and vary with space
and time. By augmenting the state space to include the scaling
limits of renewal times, a CTRW |limit process can be embedded
in @ Markov process. EXxplicit analytic expressions for the tran-
sition kernels of these Markov processes are then derived, which
allow the computation of all finite dimensional distributions for
CTRWIimits. Two examples illustrate the proposed method.



Continuous time random walks
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The CTRW is a Markov process in space-time:
(Sna Tn) — (Jla Wl) + T (Jnv Wn)



CTRW Ilimit process

Assume that the CTRW at scale ¢ > 0 converges

[cu]

(85> Toup) = (A0, Do) + 3 (JE,WE) = (Au, Du)
k=1

in D([0,00),R9T1) as ¢ — co. If Nf = max{k > 0: T¢ <t} then

is the location of a randomly selected particle at time ¢ > O.
Assume D, strictly increasing and unbounded. Then

X = X = (AEt_)"' in D([0, 00),R%) as ¢ — oo,
where E; = inf{u > 0: D, >t} is the first passage time of Dy.



Two examples
Example 1: Take P[WE >t =c¢ 1+ P/r(1—p) iid, J¢ =c¢ 1.

Then (Ay,Dy) = (u,Dy), Dy is the B-stable subordinator with
E[e~sPu] = e‘“sﬁ, and X; = Ag, = FE¢, the inverse subordinator.

Example 2: Take P[WE > t] = ¢ 1+ P/ (1 — B) iid, JS = WE.

Then (Ay, Dy) = (Duy, Dy), and X; = (Dg, )T is the height of
D,, just before it jumps over level t > 0. Note P(X; <t) = 1.



One sample path

Sample path of D, (a pure jump process) showing FE; and X;.
Both E; and X; are non-Markov processes.
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Inverse processes

Graph of E} is just the graph of D, with the axes flipped.
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Markov embedding

et V}; denote the spent waiting time for F;. Extend an idea from
renewal theory: Any (X;_,V;—) is an Fp,_ Markov process.
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Assumptions

The semigroup Ty f(z,t) = EXf( Ay, Du)] on Co(R4T1) has gen-
erator in jump-diffusion form, as in Applebaum Eq. (6.42):

d
1=1

1

1<:,5<d

d
+/ {f (z+y,t+w) = f(z,t) = 3 hi(y, w0, f(w,t) | K(,t; dy, dw)

=1

where hi(z,t) = z;1{(z,t) € [-1,1]9T1}, (a;;) is non-negative
definite, jump kernel K(z,t;dy,dw) on (dy,dw) € R% x [0, o0),
~(x,t) > 0, and

[ (27 Ayl + 1] K (@, t: dy,dw) < 00 ¥ (1) € R



Main Result: Finite dimensional distributions

Time-invariant case: Transition probabilities of (X;_,V;_) are

Pi(zq, O; dz, dv) = ~v(z, t)u*0"0(x, t) dz 5o (dv)
+ K(z0; R x [v,00))U%040(dg, t — dv)1{0 < v < t},
Py(0, vo; dz, dv) = 8o (dz)8,q4¢(dv) Kug(z0; RY X [vg + t,00))
+ / / Pyy+t—w(To + v, 0; dz, dv) Kyy (z0; dy, dw),
ycR4d we [vg,vg+t)
where the O-potential (mean occupation measure)

/f(:c, V)U0A0(dz, do) = E0:t0 UOOO F( Ay, Du)du]

has density u%0:'0(z,v), and the conditional jump intensity
K (xq; dx,dvl{v > t})

Ki(zq,; dx,dv) =
K (:Bo;Rd X [t,oo))

Y

Proof: Sample path analysis, compensation formula.



Example 1: FDD of E;
Space drift b =1, time drift v = 0, diffusion a = 0.
Dy, has PDF g(t,u), Lévy measure ¢[y, co) =y P/ (1 — B).
O-potential density %00 (x, t) = g(t — tg,x — xg)1{t > tg,x > xo}
Jump intensity K (z,t; dy, dw) = §g(dy)Bw P 1dw/I (1 — B)

Conditional jump intensity

So(dy)Bw=P~tdw/I (1 — )

Ky(x,t; dy, dw) =

v=P/T (1~ B)
= 60(dy)B(v/w)Pdw/w
Transition probability (for tg = 0 and vg = 0)
—B

Pi(x0,0; dx,dv) = g(t —v,x — xg) dx dv

r(1-25)



Example 1: Case vg = 0 (point of increase of E})

=B
r(1-25)

D(u) /l/,f
t _______________________
} v=V(t)

—

Transition probability P;(xq, 0; dx, dv) = g(t — v,z — xg) dx dv

— t-v

Xo x=E(t) u



Inverse stable subordinator density

t fv_ﬁ
Since Eg = 0, E; has density h(x,t) = t— v, x)dv.
0 : Y o) = [ s g9t - v do
Here 3= 0.6 and t = 1. Can show h(0+,t) =t P/ (1 - B).
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Example 1: Case vg > 0 (resting point of Ej)

Depends on vg = 0 case. We compute

—B
Pi(zo,vo; dz,dv) = 5mo(dx)5vo—|—t(dv) (UO T t) 1{vg > O}
B +t—v —p—-1
+ (%) s:ovot g((t —v) — (w—vg),z — x0) I?zul — B)d'w dx dv.

The first term represents the chance that ADgz;, > vg + t given
ADgzy > vg, in which case x = xg and v = vg + ¢.

Then E; continues to rest throughout the interval of length ¢.



Example 1: Case vy > 0 (resting point of E;)

B rvg+t—uv —B—-1
2nd term (";—0) SZOUO g((t — v) — (w — vg), = — 70) f’(wl 5

D(u) /
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Example 1: Finite dimensional distributions

Two time points: Put together cases vg = 0 and vg > 0 to get

POOEy, € dx, Vi, € dv, By, € dy, Vi, € dw]
— Pt1(07 0; dx, d’U)PtQ_tl($, v, dy7 dw)

—B
= I_(z — 5)g(t1 —v,z)drdvl{x > 0,0 <v <t}
v+t —1q —p
X (0B 1, () (20 5
v B vtto—t1—w BS_ -1
+(2) [ 9((12 — 11 —w) = (s =),y — ) £y —gyds dy du

Integrate out v,w to get joint PDF of E; , Ey,.



Example 2: FDD of X;
Recall X; = (DEt_)"‘, height of D, before jump over level t.
Space drift b = 0, time drift v = 0, diffusion a = 0.
(Dy) has PDF g(t,u), Lévy measure ¢[y, o) =y B/ (1 — B).
Jump Intensity is K(z,t; dy, dw) = 6w (dy)Bw P~ 1dw /I (1 — B)
0-potential density U%0:0(dx, dt) = §,,4+(dx)t’~1dt/I(B)
Conditional jump intensity Ky(z,t; dy, dw) = 8 (dy)8(v/w)Pdw /w.

Transition probability (for tg = 0 and vg = 0) is
v B (t—v)PL
r1-5) 1B

Pi(z0,0;dz,dv) = §5044—p(dz) dv1{0 < v <t}



Example 2: Case vg = 0 (point of increase of E})

v P (t—wv)P1
r(1-5) (B

D(u) /l/,f
t _______________________
} v=V(t)
x=X(t)

Pi(z0,0;dz,dv) = §5044—p(dT) dv1{0 < v <t}
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Example 2: Probability density of X; (given Xy = 0)

(t —x) P P12
r(1-p5) reg)

D(u) /I/,f
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} .
x=X(t) —

E(O) E(t) u

Probability density f(z,t) =

{0 <z < t}




Example 2: Case vy > 0 (resting point of E;)

Depends on vg = 0 case. We compute

vo + t) =P

Pi(zo,vo; dz, dv) = 5:Co(dx)5vo—|—t(dv> <

’Uo—l—t v _5 (’UO —I— t—w — 'U)ﬁ_l
*‘/;=w3<58> ottt () r(5)

Bw=F1
r(1-5)
The first term represents the chance that ADgz;, > vg + t given
A Dz, > vg, in which case x = zg and v =wvg + ¢ (as in Ex. 1).

X 1{0 <v<vg+t—w} dw dv

Then X; remains constant throughout the interval of length t.



Example 2: Case vg > 0 (2nd term)

dw dv

[ ) = o) !

00\ f
5$O+v0—|—t—fv(d$) (_> w=uvQ r(ﬁ) r(l N B>

v

D(u) /
t o e = e o = = e e = e = = e = e = = =
} v=V(t)
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Summary

CTRW Ilimit process is not Markov

Embed in a Markov process

Can include coupled space-time jumps

Can be space-time inhomogeneous

All FDD can be computed

Solves an important problem in physics
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Example 1: Computing the O-potential

Recall that Ay, = v and D, has PDF g(¢,u) given Dg = 0. Make
a change of variables y = u + xg, w =t + tg to see that

B7010 | [ f(Au, D)du| =B | [ f(Au+ 20, Du + to)du
— /OOO /OOO f(u—+ zg,t 4+ tg)g(t,u) dt du
- /y jxo /| 0;0 f (g, w)g(w — to,y — o) dw dy

0. @) 0. @) "
= [~ [ flywutolo(y, w) dw dy
y=xg Jw=tg

so that u®0:0(y, w) = g(w — tg,y — zg) 1{w > tg,y > xo}.



Example 2: Computing the O-potential

Recall that A, = D, has PDF g(t,u) given Dg = 0. WLOG
to = 0. Then

E00 | [ f(Au, Dudu| =EOC| [~ $(Du + w0, Du)du
— /OOO /OOO f(t+ zo,t)g(t,u) dt du
— /xeR /OOO /Ooof(a:,t)g(t,u) du 8044 (dx) dt

— o0 0,0
— LER/t:O f(z, U0 (dz, dt)

so that

u) dudt = 0,4 (da:)t _dt

since /OOO e~ St /Ooog(t, w) du = /OOO e_usﬁdu —sP=r [tﬁ_l/r(ﬁ)]

000 (dz, dt) = 6, 44(dz) /

u=



