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Abstract

Fractional derivatives were invented in the 17th century, soon af-
ter their integer order cousins. In the past decade, an explosion
of practical applications has intensified interest in the subject.
Fractional differential equations are now being used in cell bi-
ology, ecology, electronics, hydrology, and medical imaging to
model anomalous diffusion, where a plume of particles spreads
faster than the traditional integer-order diffusion equation pre-
dicts. There now exist a variety of effective numerical methods
to solve fractional diffusion equations. However, the mathemat-
ically correct specification of a well-posed fractional diffusion on
a bounded domain remains an open problem. The main issue is
to write appropriate boundary conditions, or their fractional ana-
logues. In this talk, we will discuss this open problem, and one
8%?sit_)le approach using the newly developed theory of nonlocal
iffusion.
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Fractional derivatives: An old idea gets new life

Fractional derivatives d®f(x)/dx® for any a > 0 were invented by
Leibniz soon after the more familiar integer derivatives.

Some derivative formulas extended to the fractional case:
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Riemann-Liouville fractional derivatives

The Riemann-Liouville fractional derivatives are defined by
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where n — 1 < a < n.

If f(x) =0 for all x < L then D;‘)Lf(x) =D _oof(x) :=DZf(z).
If f(x) =0 forall z > R then Dﬁx’Rf(a:) = D2, of(z) :=D2, f(z).

Fourier transforms: DY f(z) <= (Fik)*f(k) [Samko, (7.4)]

Here (k) 1= / T e £ (1) da,
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Application to groundwater hydrology

Fractional diffusion equation with « = 1.1 captures power law
leading tail at the MADE experimental site [BSMWO01].

1079 ; ; 5 1079 5
10-2 =~ 102p—>—— 3 i
% 1 z 3 o © 0g 1
= 10-4 = 1074 0 J
3 3 -
E F O plume data N 4 O plume data
£ 107°F - oc—stat?le é 10-6F — o-stable
5 [ ~ Gaussian = [ — Gaussian
Z Z
10-8F 10-8F
[ a) Snapshot 3 (day #224) _ [ b) Snapshot4 (day #328)
-10 1 L ] -10 1 1
07 10 100 1077 10 100
Longitudinal Distance (meters) Longitudinal Distance (meters)
_ . Oc(z,t) Oc(x,t) 0% (x,t)
Governing equation: ——= = —-0.12——~= +40.14

ot T ox™



Application to Ecology

Fractional derivatives model power law movements [BKMOS].
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Fractional diffusion jumps the barrier (nonlocal operator).

Real invasive species data shows this behavior.



Grunwald-Letnikov fractional derivatives

For any a« > 0O we can define
Lol (@) = Jim b AL, f(2)

where

. _ (=1))TA+a)

Yf @) = wif(xFjh), wj:=(-1) (?) JIr(l 4 a—3j)

=0
If fis bounded, and f(*) ¢ LI(R) for k < n, for some n > 1 + a,
then DY . f(x) exists, and its FT is (&ik)®f(k) [MS12, Prop 2.1].

Hence DY f(z) = DY . f(x), since they have the same FT.



Numerical methods

Explicit/implicit Euler schemes based on the standard Griinwald
approximation are unstable [MTO04, Props 2.1, 2.3].

A stable, consistent implicit Euler method uses a shifted formula

Chsf(x) =) (?) (=1) f(z F (j + s)h),
§=0
and then for f € L1(R) N C™(R) we have [MTO04, Theorem 2.4]
Yof(x) = h™AYy, f(z) + O(h).

The proof uses Fourier transforms.



Grunwald derivative for finite R, L

A nice trick used by Chen and Deng (2014) sets f(x) = 0 for
x < L and/or x > R, and then applies Fourier transform methods.

Then one can prove

D2, f(z) = h™OAF f(z) + O(h)

by the same arguments. This approach also leads to stable higher
order methods (e.g., 4th order).

The proof (first order) using combinatorial methods is much
harder [Podlubny, pp. 49—-55 and 62—-63].



Numerical codes for fractional diffusion

Consider the fractional diffusion equation
on a finite domain L<z < R, 0<t<T.

Shifted Grinwald approximation = implicit Euler codes [MTO04].

@)
These codes are mass-preserving since Z (?) (-1) = 0.

7=0
Use operator splitting for 2-d [MST06] or reaction term [BKMO3].
Other methods:
Finite elements [Fix and Roop, 2004; Wang and Yang, 2013]
Finite volume method [D’Elia and Gunzburger, 2013]

Spectral collocation method [Zayernouri and Karniadakis, 2014].



Numerical example

The fractional diffusion equation

Op(x,t) = a(z)Dy °p(x,t) + c(z, 1)
on the bounded domain 0 < z < 1, with

p(x,0) = 3
p(0,t) =0
p(1,t) =e !
_M(22) 55
a(x) = g

c(z,t) = —(1 + x)e tz3
has exact solution p(z,t) = e~ tz3 for all t > 0 [MTO06].



Numerical solution

Crank-Nicolson solution at time ¢t = 1.0 with At = 1/10 and
Axr = h = 1/10 matches the exact solution [MTO06].
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Error analysis

Crank-Nicolson method is first-order accurate. Richardson ex-
trapolation yields a second order method [MTO06].

At Azx CN Error Rate RE Error Rate
1/10|1/10 | 1.82x10~3 — 1.77x10~% —
1/15[1/15|1.17x1073 |~ 15/10 | 7.85x10° | ~ (15/10)"
1/20 | 1/20 | 8.64x10~% | £ 20/15 | 4.41x107> | = (20/15)~
1/25|1/25|6.85x107% | ~ 25/20 | 2.83x107° | ~ (25/20)"




Computing the exact solution

Not hard to check that

a _ Mp+1) o
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o _ Mp+1) o
D2, r(R—z)P = For 1 1 _a)(R—az)p

If p(z,t) = e tz3 then

r(4) ot 1.2
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Plug into dp(z,t) = a(z)DL-8p(x,t) + c(z,t) to get c(x,t).

op(x,t) = —e 23  and D%'Sp(:ﬂ,t) =



Existence and uniqueness

There exists a solution p(z,t) = e~ 'z3 to the fractional PDE

Bip(z,t) = a(z)DyOp(x,t) + c(z,t)

on 0 < z < 1, with p(z,0) = z3, p(0,t) = 0, p(1,t) = e},
c(z,t) = —(1 + x)etz3, and a(z) =M (2.2)z28/6.

Question: Is this solution unique?
We assume p(x,t) = 0 for z < 0 to make D} 8p(z,t) = D1 8p(z,t).

Suppose for example that p(x,t) =1 for —1 < x < 0. Then

r(4) _ 10 1 d? O 1
re2)° ¥ T 022 I (z—£)08

[:13_1'8 — (x4 1)—1.8}

D%'Sp(a}, t) = d§

and then c(xz,t) must change. BC p(0,¢t) = 0 is under-specified.



Symmetric case

Theorem. For any po e Ve i ={veV iv(z)=0Vxé& (L, R)} (V
defined in next slide), the fractional diffusion problem

op(z,t) = Dgp(z,t) + D2 p(x, 1)
p(z,0) =po(x) forall L<z <R
p(x,t) =0 forall z ¢ (L,R) and all t € [0,T]

has a unique solution in L= ([0, T], V.)NH1([0,T], L?(R)) [DDGLM14].
Open problems:

Non-symmetric case aD¢p(z,t) + bD% p(x,t).
Variable coefficients a(x,t), b(x,t), forcing term, reaction term.
Higher dimensions.

Non-Dirichlet boundary conditions.



Proof [DDGLM14, Theorem 4.1]

The nonlocal diffusion equation

O(2,t) = Lp(z,t) = [ [p(y,t) = p(w, O] 1(y, ) dy
with kernel y(y,z) = Cly—=z| =1 is a fractional diffusion equation
where C =1/I'(1 —«a) and a € (0,1) [MS12, Example 3.24].

Define the nonlocal energy semi-norm

lolll =5 [ 1o(@) — o)y, ) dyd,

the nonlocal energy space V := {v € L2(R) : ||]v||]| < o}, and
recall that the nonlocal volume-constrained energy space is

Vei={veV:ivz)=0Vaxd(L,R)}.



Proof, continued [DDGLM14, Theorem 4.1]

V. is a Hilbert space, and a closed subspace of L?(R).

The bilinear form

a(u,v) = /M (u(@) = u(®)) (v(@) — v (W) )7 (y, ) dy d
is coercive and continuous on V. x V¢, and a(u,v) = (L(u),v).
L generates a continuous semigroup.

Invoke the standard theory [Pazy, 1983].



Reflected stable process

Take a stable Lévy process Y; with
E[ezkY;g] — 6t(ik)0‘

for some 1 < a < 2, with no positive jumps.

Then the reflected process
Zy =Y —inf{Ys:0<s <t}
is @ Markov process on the real line [BKMSS14, Theorem 2.1].

Application: If 9;p = Lp governs the Markov process X (t), then
0Pp = Lp governs X(Z;) for 8 = 1/a [BKMSS14, Theorem 4.1].

Here L generates the Cy semigroup Tif(x) = E[f(X¢)|Xo = z].



Reflected stable sample path

Stable process Y; (thin line) with o = 1.3 and reflected stable Z;
(thick line). See Appendix for R code.
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Fractional reflecting boundary condition

The probability densities p(x,t) of the reflected stable process
x = Zy solve [BKMSS14, Theorem 2.3]

Oyp(x,t) = DY, p(a,t); D, 1p(0,t) = 0.

Without the reflecting boundary condition D% 1p(0 t) = 0, the
fractional PDE 0Oip(zx,t) = D% _p(x,t) governs the stable process
Y; on the entire real line.

The BC DY 1p(O t) = 0 is a no-flux boundary condition, just like
the o« = 2 case where Y; is a Brownian motion.



Reflected Brownian motion

The PDF of a reflected Brownian motion solves the diffusion
equation Op = a,%p with a reflecting boundary condition:

Ox —— h—0+ h =0

In the stable case, the reflecting boundary condition is

= Ilm =0

D p(a,t

Z w p(:c + kh,t)

x=0
where

NMa+1)
ElM(a—k+1)

= —1, and wg_l =0 for k > 1.

w = (—1)F

When a = 2, w8_1 =1, fwff_l



Tempered fractional derivatives

The tempered fractional derivatives

M () = ﬁi;‘:;i (=)~ J@) +uf (@) My dy
02 1() 1= 25— [T (Fa )~ 1@ —uf @) ey ay

forany 1 <a<2and A >0 [SMC14, (16) and (17)].

Fourier transforms [BM10, Sec 2]:

L f(w) > [(/\izk)a Aaq:z'kav—l} Fk).

A = 0 = Riemann-Liouville fractional derivative.

0 < a< 1= simpler formula [MS12, (7.17) and (7.25)]



Application to finance

Bilinear ARMA forecast errors for annual inflation rates fit

D a
op(z,1) = 5 [0 p(x, 1) + 0% c(x,1)]

at t = 1 (solid line) with @ = 1.1,\ = 12,D = 0.1. Diffusion
equation (dotted line, a = 2) misses sharp data peak [SMC14].
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Numerical solution [SMC14, Example 5.3]

Exact solution u(z,t) = 2Pe=**~t/I(1 4+ B) vs implicit Euler for

Op(w,t) = a(2)02 p(x,t) + c(a, t)
on z € [0,1], with o« = 1.5, A = 0.5, 8 = 2.5, boundary con-
ditions p(0,t) = 0 and p(1,t) = e *t/I(84 1), initial con-
dition p(z,0) = zPe=* /(8 + 1), diffusion coefficient a(z) =
z*T(1+8—a)/F(B+ 1), and forcing function

—)\x—tr(l + B8 — a)

c(z,t) =e
r(6+1)
((1 — a)\ogtB n a e lgat+f-1 210 )
r(8+1) r(6) r(1+48—-a)
At Az MaxXx error | Error rate

.05000 | .05000 | .003560 —

.02500 | .02500 | .001900 1.87

.01250 | .01250 | .000982 1.94

.00625 | .00625 | .000499 1.97




Numerical method [SMC14, Theorem 5.2]

Stable, consistent implicit Euler codes for 1 < a < 2: use

O f(@) + X" (@) = lim h™* 37 gjf(x — (j = 1)h),

=0
where the exponentially tempered Griunwald weights are
o wje_(j_l)h)‘ for ] 75 ].,
& wyq —eMMN(1 —e "M for j =1.

Codes are mass-preserving since (by the Binomial formula)

00 . o
Z ’wje_)\jh — (1 . e—h)\)
7=0

Question: Are solutions unique? This is a nonlocal diffusion
with kernel v(y,z) = C(y — 2) ¢ e 2y—2) g (y — ).
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R code for reflected stable sample path

Plot stable Y_t with characteristic function exp(t(ik)~a)
and the reflected stable process Z_t=Y_t-inf{Y_u:0<=u<=t}
You need to install the fBasics package on your R platform.
Try Packages > Load package to see if fBasics is available.
If not then use Packages > Install package(s)
library(fBasics)
t=seq(1:1000)
a=1.3

g=(abs(cos(pi*a/2)))~(1/a)
y=rstable(t,alpha=a,beta=-1.0,gamma=g,delta=0.0,pm=1)
Y=cumsum (y)

Z=Y-cummin (Y)
plot(t,Y,type="1",ylim=c(min(Y) ,max(Z)))
lines(t,Z,1lwd=2)



