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Abstract

Time-changed Lévy processes include the fractional Poisson process, and the scaling
limit of a continuous time random walk. They are obtained by replacing the deterministic
time variable by a positive non-decreasing random process. The use of time-changed
processes in modeling often requires the knowledge of their second order properties such
as the correlation function. This paper provides the explicit expression for the correlation
function for time-changed Lévy processes. The processes used to model random time
include subordinators and inverse subordinators, and the time-changed Lévy processes
include limits of continuous time random walks. Several examples useful in applications
are discussed.
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1. Introduction and notation.

Time-changed Lévy processes arise in many applications. Gorenflo and
Mainardi [15] show that a continuous time random walk (CTRW) with
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power law distributed random waiting times between each random jump
converges to a Lévy process time-changed by an inverse stable subordinator,
see also [30,32]. The CTRW is used as a model of anomalous diffusion in
physics, finance, hydrology, and other fields [6,7,29,36,42]. Mainardi et al.
[26,27] study the fractional Poisson process, where the exponential waiting
time distribution is replaced by a Mittag-Leffler distribution, see also [5,20,
40]. Meerschaert et al. [34] showed that the same fractional Poisson process
can also be obtained via an inverse stable time-change. Recent work in
finance questioned the classical geometric Brownian motion (gBM) model,
and random activity time models have been developed [16,21]. In these and
other applications [12,17,43] it is useful to compute the correlation function
of the time-changed process, and this paper develops explicit computational
formulae.

The simplest CTRW model assumes that the independent identically
distributed (iid) particle jumps Jn with mean µ = E[Jn] = 0 and finite vari-
ance σ2 = Var(Jn) = E[(Jn − µ)2] are separated by iid waiting times Wn,
with P (Wn > t) ∼ t−α/Γ(1−α) as t→∞. Then the particle arrives at loca-
tion Sn = J1+· · ·+Jn at time Tn = W1+· · ·+Wn. The number of jumps by
time t > 0 is given by the renewal process Nt = max{n ≥ 0 : Tn ≤ t}. The
extended central limit theorem [35, Theorem 4.5] yields n−1/αT[nt] ⇒ L(t),

a standard α-stable subordinator with E[e−sL(t)] = e−ts
α

for all s, t > 0.
Since {Nt ≥ n} = {Tn ≤ t}, a continuous mapping argument yields
n−αNnt ⇒ Y (t) = inf{u > 0 : L(u) > y}, an inverse α-stable subordi-
nator. Since the inverse process Y (t) is constant over the jump intervals
of L(t) (whose length is, in general, not an exponential random variable),
it is not a Markov process. The increments of Y (t) are neither station-
ary nor independent [30]. The CTRW S(Nt) gives the particle location at
time t > 0, with long time limit n−α/2S(Nnt) ⇒ X(Y (t)) in Skorokhod’s
M1 topology, where X(t) Brownian motion [30, Theorem 4.2]. The proof
uses the fact that X(t) and L(t), two independent Lèvy processes, have no
common points of discontinuity almost surely, and applies the continuous
mapping theorem. The outer process X(t) models the random walk, and
the inner process Y (t) accounts for particle waiting times.

A very general class of CTRW models was considered in [32], where

the particle jumps J
(c)
n form a triangular array in Rd, and the waiting

times form another triangular array W
(c)
n in R+. The pair of row sums

(S(c)(cu), T (c)(cu)) is assumed to converge to (X(u), L(u)), u ≥ 0 as c→∞
in Skorokhod’s J1 topology on D([0,∞),Rd×R+), where (X(u), L(u)) is a
Lévy process on Rd × R+. In this setting X(t) could be an arbitrary Lévy
process, and L(t) is a subordinator (i.e. a one-dimensional Lévy process
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with nonnegative increments). The Laplace transform of L(t) is

E[e−sL(t)] = e−tφ(s), s ≥ 0,

where the Laplace exponent is a Bernstein function

(1) φ(s) = µs+

∫
(0,∞)

(1− e−sx)ν(dx), s ≥ 0.

If the drift coefficient µ = 0, or if the Lévy measure ν satisfies ν(0,∞) =∞,
then L is strictly increasing. If, in addition, X(t) and L(t) have no common
points of discontinuity almost surely which is, for example, true if jumps
are independent of waiting times, then Straka and Henry [44] showed that

the CTRW X(c)(t) = S(c)(N
(c)
t ) with N

(c)
t = max{n ≥ 0 : T (c)(n) ≤ t}

converges to X(Y (t)) in Skorokhod’s J1 topology on D([0,∞),Rd). Here,
as before, Y (t) = inf{u > 0 : L(u) > y}.

For the case where X(t) is Brownian motion and L(t) is a standard sta-
ble subordinator, a formula for the correlation function has been obtained
by Janczura and Wy lomańska [17] using the result of Magdziarz [24, The-
orem 2.1], see also [25, Section 2], who showed that X(Y (t)) is a mar-
tingale with respect to a suitably defined filtration. Then Janczura and
Wy lomańska [17] computed that for 0 ≤ s ≤ t

corr(X(Y (t)), X(Y (s))) =
(s
t

)α/2
.

The present paper uses a different method to compute the correlation func-
tion, and treats a more general case when the outer process is any Lévy
process, and the inner process is any random time-change, both with finite
second moment. Then the explicit formula is derived for the correlation
function of several other time-changed processes that arise in applications.

2. Correlation function.

In this section, we prove a general result that can be used to compute the
correlation function of a time-changed Lévy process Z(t) = X(Y (t)) where
X, Y are independent, and in general Y may be non-Markovian with non-
stationary and non-independent increments. For example, it might be an
inverse subordinator, as in CTRW limit theory. Then Z may also be also
non-Markovian with non-stationary and non-independent increments. The
next result gives an explicit expression for the correlation function of this
time-changed process.

Theorem 2.1. Suppose that X(t), t ≥ 0 is a homogeneous Lévy process
with X(0) = 0, and Y (t) is a non-decreasing process independent of X.
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If ψ(ξ) = − logEeiξX(1) is the characteristic exponent of the Lévy process,
then the characteristic function of the process Z(t) = X(Y (t)) is given by

EeiξZ(t) = Ee−ψ(ξ)Y (t).

Moreover, if EX(1) and U(t) = EY (t) exist, then EZ(t) exists and

(2) E[Z(t)] = U(t)E[X(1)];

if X and Y have finite second moments, so does Z and

(3) Var[Z(t)] = [EX(1)]2 Var[Y (t)] + U(t) Var[X(1)],

and the covariance function is given by

(4) Cov[Z(t), Z(s)] = Var[X(1)]U(min(t, s)) + [EX(1)]2 Cov[Y (t), Y (s)].

Proof. Using the independence of the processes X and Y we get

EeiξZ(t) = EeiξX(Y (t)) =

∫
EeiξX(y)P(Y (t) ∈ dy)

=

∫
e−yψ(ξ)P(Y (t) ∈ dy) = Ee−ψ(ξ)Y (t).

Differentiating the characteristic function, we can work out the moments
of the random variables (provided that they exist; for even moments this
is guaranteed by the differentiability of the characteristic function). From
EeiξX(t) = e−tψ(ξ), we see that EX(t) = itψ′(0) and VarX(t) = tψ′′(0).
Thus,

EZ(t) = −i d
dξ

EeiξZ(t)

∣∣∣∣
ξ=0

= −iEY (t)ψ′(0) = U(t)EX(1)

and

E
[
Z(t)2

]
= − d2

dξ2
EeiξZ(t)

∣∣∣∣
ξ=0

= E
[
Y (t)ψ′′(0)− Y 2(t){ψ′(ξ)}2

]
= U(t) VarX(1)− E

[
Y (t)2

][
EX(1)]2

= U(t) VarX(1) +
[
EX(1)

]2
VarY (t) +

[
EY (t)

]2[EX(1)]2.

This proves (3).
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Since the outer process X(t) has independent increments, for 0 < s < t
we have

E[X(t)X(s)] = E[(X(t)−X(s))X(s)] + E[X(s)2]

= E[X(t)−X(s)]E[X(s)] + E[X(s)2]

= (t− s)sE[X(1)]2 + Var[X(s)] + s2E[X(1)]2

= tsE[X(1)]2 + sVar[X(1)].

Then, since the processes X and Y are independent, a simple conditioning
argument yields

E[X(Y (t))X(Y (s))] = E[Y (t)Y (s)]E[X(1)]2 + E[Y (s)] Var[X(1)].

Then the covariance function of the time-changed process is

Cov[Z(t), Z(s)]

= E[Y (t)Y (s)]E[X(1)]2 + E[Y (s)] Var[X(1)]− E[Z(t)]E[Z(s)]

= E[Y (t)Y (s)]E[X(1)]2 + E[Y (s)] Var[X(1)]− U(t)U(s)E[X(1)]2

= U(s) Var[X(1)] + E[X(1)]2 Cov[Y (t), Y (s)],

by another conditioning argument.

Remark 2.1. In the special case EX(1) = 0, the results of Theorem 2.1
simplify. Now the time-changed process Z(t) = X(Y (t)) has mean zero, its
variance is

Var[Z(t)] = U(t) Var[X(1)],

its covariance function is

Cov[Z(t), Z(s)] = Var[X(1)]U(min(t, s)),

and its correlation function is

corr[Z(t), Z(s)] =
U(min(t, s))√
U(t)U(s)

=

√
U(min(t, s))

U(max(t, s))
.

This special case is relevant to many applications.

3. Applications.

In this section, we compute the correlation function for several exam-
ples that are important in applications. In view of Theorem 2.1, the main
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technical issue is the computation of the renewal function U(t) for the time-
change process Y . The first example deals with a time-change process that
is a subordinator, and time-changes in the gBM model for a risky asset. The
time-change allows one to obtain distributions of log-returns (increments
of the logarithm of a price) that are heavier-tailed and higher-peaked than
Gaussian. This distributional property is one of the ‘stylized facts’ that are
typical of financial data [14].

Example 3.1 (Inverse Gaussian subordinator). The inverse Gaus-
sian subordinator Y (t) is obtained as a hitting time process:

Y (t) = inf {u ≥ 0 : γu+W (u) = δt} , t ≥ 0,

where W is the standard Brownian motion, and γ, δ > 0, see [1,45]. The
process Y (t), t ≥ 0, is a Lévy process with U(t) = E[Y (t)] = δt/γ, and

Cov[Y (t), Y (s)] = Var[Y (1)] min(t, s) =
δ

γ3
min(t, s).

If the outer process X(t) is a Brownian motion with drift, with mean µt
and variance σ2t, then the time-changed process Z is used to specify the
normal inverse Gaussian (NIG) model for a risky asset [4]. This process
is also the limit of a CTRW with finite variance jumps and finite mean
waiting times [19]. Theorem 2.1 implies that the NIG process has mean
E[Z(t)] = µδt/γ, and covariance function

Cov[Z(t), Z(s)] =
δ(µ2 + σ2γ2)

γ3
min(t, s),

for any s, t ≥ 0. A variance gamma model [23] similar to NIG model is
obtained when the inverse Gaussian subordinator is replaced by a Gamma
subordinator.

The remaining examples deal with the random time-changes that are
the inverse or hitting time processes of a Lévy subordinator L with the
Laplace exponent φ defined in equation (1). The inverse or first passage
time process of L

(5) Y (t) = inf {u ≥ 0 : L(u) > t} , t ≥ 0

is nondecreasing, and its sample paths are almost surely continuous if L is
strictly increasing. For any Lévy subordinator L, Veillette and Taqqu [45]
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show that the renewal function U(t) = E[Y (t)] of its inverse (5) has Laplace
transform Ũ given by:

(6) Ũ(s) =

∞∫
0

U(t)e−stdt =
1

sφ(s)
,

where φ is Laplace exponent of L. Thus, U characterizes the inverse process
Y , since φ characterizes L. For example, it follows easily from [46, Theorem
4.2] that the second moment of Y is

EY 2(t) =

∫ t

0
2U(t− τ)dU(τ).

The covariance function of Y is given by [46, Corollary 4.3]:

(7) Cov[Y (t1), Y (t2)] =

min(t1,t2)∫
0

(U(t1−τ)+U(t2−τ))dU(τ)−U(t1)U(t2).

For many inverse subordinators, the Laplace exponent φ can be written
explicitly using (6), but the inversion to obtain the renewal function may
be difficult. Numerical methods for the inversion were proposed in [45,46].
Below we give examples from applications where the Laplace transform can
be inverted analytically and where its asymptotic behavior can be found in
order to characterize the behavior of the correlation function of the time-
changed process.

Example 3.2 (Inverse stable subordinator). Suppose L(t) is stan-
dard α-stable subordinator with index 0 < α < 1, so that the Laplace
exponent φ(s) = sα for all s > 0. Bingham [9] and Bondesson et al. [10]
showed that the inverse stable subordinator (5) has a Mittag-Leffler distri-
bution:

E
[
e−sY (t)

]
=
∞∑
n=0

(−stα)n

Γ(αn+ 1)
= Eα(−stα),

where Eα is Mittag-Leffler function:

Eα(z) =

∞∑
k=0

zk

Γ(1 + αk)
.

When the outer process X(t) is a homogeneous Poisson process, the time-
changed process X(Y (t)) is fractional Poisson process [5,20,26,27,34,39,40].
More generally, for any Lévy process X(t), the time-changed process
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X(Y (t)) is a CTRW limit where the waiting times between particle jumps
belong to the domain of attraction of the stable subordinator L(t), see [32].

Since Ũ(s) = 1/sα+1, the renewal function

(8) U(t) = E[Y (t)] =
tα

Γ(1 + α)
.

For 0 < s ≤ t, substitute (8) into (7) to see that the covariance function of
the inverse stable subordinator is

Cov[Y (t), Y (s)] =
α

Γ(1 + α)2

∫ s

0
((t− τ)α + (s− τ)α) τα−1dτ − (ts)α

Γ(1 + α)2

=
αt2α

Γ(1 + α)2

∫ s/t

0
(1− u)αuα−1du

+
αs2α

Γ(1 + α)2
B(α, α+ 1)− (ts)α

Γ(1 + α)2

=
1

Γ(1 + α)2

[
αt2αB(α, α+ 1; s/t)

+ αs2αB(α, α+ 1)− (ts)α
]
,

(9)

using a substitution u = τ/t, where B(a, b;x) :=
∫ x

0 u
a−1(1−u)b−1du is the

incomplete Beta function, and B(a, b) := Γ(a)Γ(b)/Γ(a+ b) = B(a, b; 1) is
the Beta function. An equivalent form of the covariance function in terms
of the hypergeometric function was obtained in [45, Equation (74)]. Apply
the Taylor series expansion (1− u)b−1 = 1 + (1− b)u+O(u2) as u→ 0 to
see that

B(a, b;x) =
xa

a
+ (1− b) x

a+1

a+ 1
+O(xa+2) as x→ 0.

Then it follows that for s > 0 fixed and t→∞ we have

F (α; s, t) := αt2αB(α, α+ 1; s/t)− (ts)α

= αt2α
(s/t)α

α
− α(s/t)α+1

α+ 1
+O((s/t)α+2)− (ts)α

= −α(s/t)α+1

α+ 1
+O((s/t)α+2),

so that

Cov[Y (t), Y (s)] =
1

Γ(1 + α)2

[
αs2αB(α, α+ 1) + F (α; s, t)

]
,(10)
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where F (α; s, t)→ 0 as t→∞. Hence

Cov[Y (t), Y (s)] −−−→
t→∞

αs2αB(α, α+ 1)

Γ(1 + α)2
=

s2α

Γ(2α+ 1)
.

Letting s = t it follows from (9) that

Var[Y (t)] =
1

Γ(1 + α)2

[
2t2α

αΓ(α)Γ(α+ 1)

Γ(2α+ 1)
− t2α

]
= t2α

[
2

Γ(2α+ 1)
− 1

Γ(1 + α)2

]
,

(11)

which agrees with the computation in [2, Section 5.1]. From (10) and (11)
it follows that for 0 < s ≤ t

corr[Y (s), Y (t)] =

[
αs2αB(α, α+ 1) + F (α; s, t)

]
(st)α

[
2Γ(1+α)2

Γ(2α+1) − 1
]

where F (α; s, t)→ 0 as t→∞, and hence

corr[Y (s), Y (t)] ∼
(s
t

)α [
2− Γ(2α+ 1)

Γ(1 + α)2

]−1

as t→∞.

This power law decay of the correlation function can be viewed as a long
range dependence for the inverse stable subordinator Y (t), since the corre-
lation function is not integrable at infinity.

From (2) and (8) we can see that the time-changed process Z(t) =
X(Y (t)) has mean

(12) E[Z(t)] =
tαE[X(1)]

Γ(1 + α)
.

Substituting (11) into (3) yields the variance of the time-changed process:

Var[Z(t)] =
tα Var[X(1)]

Γ(1 + α)
+
t2α[EX(1)]2

α

(
1

Γ(2α)
− 1

αΓ(α)2

)
.(13)

This formula was derived previously by Beghin and Orsingher [5] in the
special case where outer process X(t) is a Poisson process, so that Z(t)
is a fractional Poisson process. It follows from (4), (8), and (10) that for
0 < s ≤ t the covariance function of Z(t) = X(Y (t)) is

Cov[Z(t), Z(s)]

=
sα Var[X(1)]

Γ(1 + α)
+

[EX(1)]2

Γ(1 + α)2

[
αs2αB(α, α+ 1) + F (α; s, t)

]
,

(14)
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where F (α; s, t)→ 0 as t→∞, hence for a fixed s > 0

Cov[Z(t), Z(s)] −−−→
t→∞

sα Var[X(1)]

Γ(1 + α)
+
s2α[EX(1)]2

Γ(1 + 2α)
.

In particular, for the fractional Poisson process the covariance function is

Cov[Z(t), Z(s)]

=
sαλ

Γ(1 + α)
+

λ2

Γ(1 + α)2

[
αs2αB(α, α+ 1) + F (α; s, t)

]
,

where λ > 0 is the intensity of the outer Poisson process.
For 0 < s ≤ t, the time-changed process Z(t) = X(Y (t)) has correlation

corr[Z(t), Z(s)] =
Cov[Z(s), Z(t)]√

Var[Z(s)] Var[Z(t)]

where Cov[Z(s), Z(t)] is given by (14) and the remaining terms are specified
in (13). The asymptotic behavior of the correlation depends on whether the
outer process has zero mean. If E[X(1)] 6= 0, then for any s > 0 fixed we
have

Var[Z(t)] ∼ t2α[EX(1)]2

α

(
1

Γ(2α)
− 1

αΓ(α)2

)
as t→∞,

and so we have

corr[Z(t), Z(s)] ∼ t−αC(α, s) as t→∞,

where

C(α, s) =

(
1

Γ(2α)
− 1

αΓ(α)2

)−1 [ αVar[X(1)]

Γ(1 + α)[EX(1)]2
+

αsα

Γ(1 + 2α)

]
.

On the other hand, if E[X(1)] = 0, then the covariance function of the
time-changed process for 0 < s ≤ t simplifies to

Cov[Z(t), Z(s)] = Var[X(1)]
sα

Γ(1 + α)
.

and corr[Z(t), Z(s)] = (s/t)α/2 , a formula obtained by Janczura and
Wy lomańska [17] for the special case when the outer process X(t) is a
Brownian motion.

In summary, the correlation function of Z(t) decays like a power
law t−α when E[X(1)] 6= 0, and even more slowly, like the power
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law t−α/2 when E[X(1)] = 0. In either case, the non-stationary time-
changed process Z(t) exhibits long range dependence. If E[X(1)] = 0,
the time-changed process Z(t) = X(Y (t)) also has uncorrelated incre-
ments: Since Cov[Z(t), Z(s)] does not depend on t, we have Var[Z(s)] =
Cov[Z(s), Z(s)] = Cov[Z(s), Z(t)] and hence, since the covariance is addi-
tive, Cov[Z(s), Z(t) − Z(s)] = 0 for 0 < s < t. Uncorrelated increments
together with long range dependence is a hallmark of financial data [42],
and hence this process can be useful to model such data. Since the outer
process X(t) can be any Lévy process with a finite second moment, the
distribution of the time-changed process Z(t) = X(Y (t)) can take many
forms. Similar long range dependent behavior has been obtained for a frac-
tional Pearson diffusion, the time-change of a stationary diffusion process
using the inverse stable subordinator [22].

Example 3.3 (Inverse tempered stable subordinator). The
standard tempered stable subordinator L(t) with 0 < α < 1 is a Lévy
process with tempered stable increments [3,41]. The Lévy measure of the
unit increment is

ν(dx) =
α

Γ(1− α)
x−α−1e−λx, x > 0,

and then (e.g., see [35, Section 7.2]):

E[e−sL(t)] = e−tφ(s) = exp{t((λ+ s)α − λα}.

When s → 0, the Laplace exponent φ(s) = (λ + s)α − λα ∼ sαλα−1 as
s→ 0, and hence

Ũ(s) =
1

sφ(s)
=

1

s((λ+ s)α − λα)
∼ s−2λ

1−α

α
as s→ 0.

The Karamata Tauberian theorem (e.g., see [8, p.10]) implies that U(t) ∼ tp
as t→∞ is equivalent to Ũ(s) ∼ s−1−pΓ(1+p) as s→ 0. Hence the renewal
function behaves as follows:

U(t) ∼ tλ
1−α

α
as t→∞.

The same Karamata Tauberian theorem also implies that U(t) ∼ tp as
t→ 0 is equivalent to Ũ(s) ∼ s−1−pΓ(1 + p) as s→∞. Since φ(s) ∼ sα as
s→∞, Ũ(s) ∼ s−α−1 as s→∞, and hence

U(t) ∼ tα

Γ(1 + α)
as t→ 0.

11
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When the outer process X has zero mean, then from Remark 2.1, the vari-
ance of the time-changed process

Var[Z(t)] = U(t) Var[X(1)]

grows as t when t → ∞. For a fixed s > 0 and t → ∞, the correlation
function of the process Z decays as 1/

√
t:

corr[Z(t), Z(s)] =

√
U(s)

U(t)
∼

√
αU(s)

λ(1−α)/2
√
t
.

When t is fixed and s→ 0, then

corr[Z(t), Z(s)] =

√
U(s)

U(t)
∼ sα/2√

Γ(1 + α)U(t)
.

The inverse tempered stable subordinator models transient anomalous dif-
fusion, since it smoothly transitions between the inverse stable subordinator
at early time, to a linear clock at late time. This has proven useful in ap-
plications to geophysics [33,47,48] and finance [11].

Example 3.4 (Inverse stable mixture). Now consider a mixture of
standard α-stable subordinators with Laplace exponent

φ(s) =

∫ 1

0
q(w)swdw =

∫ ∞
0

(1− e−sx)lq(x)dx,

where q(w) is a probability density on (0, 1), and the density lq(x) of the
Lévy measure is given by

(15) lq(x) =

∫ 1

0

wx−w−1

Γ(1− w)
q(w)dw.

Such mixtures are used in time-fractional models of accelerating subdiffu-
sion, see Mainardi et al. [28] and Chechkin et al. [12]. They can also be
used to model ultraslow diffusion, see Sokolov et al. [43], Meerschaert and
Scheffler [31], and Kovács and Meerschaert [18].

The α-stable subordinator corresponds to the choice q(w) = δ(w − α),
where δ(·) is the delta function. The model

q(w) = C1δ(w − α1) + C2δ(w − α2), C1 + C2 = 1,

with α1 > α2 was considered in Chechkin et al. [12]. The subordinator L in
this case is the linear combination of two independent stable subordinators
with φ(s) = C1s

α1 + C2s
α2 , so that

Ũ(s) =
1

s(C1sα1 + C2sα2)
.

12
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This Laplace transform can be explicitly inverted using the following prop-
erty [37]:

(16)

∫ ∞
0

e−sttγk+δ−1E
(k)
γ,δ (±bt

γ)dt =
k!sγ−δ

(sγ ∓ b)k+1
, Re(s) > |b|1/γ ,

where

E
(k)
α,β(y) =

dk

dyk
Eα,β(y)

is the k-th order derivative (k = 0, 1, 2, . . . ) of two-parameter Mittag-Leffler
function

(17) Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0.

Setting k = 0, δ = α1 + 1, γ = α1 − α2, and b = C2/C1 we get

U(t) = E[Y (t)] =
tα1

C1
Eα1−α2,α1+1(−C2t

α1−α2/C1).

Then (2) implies that the time-changed process Z(t) = X(Y (t)) has mean

E[Z(t)] =
tα1E[X(1)]

C1
Eα1−α2,α1+1(−C2t

α1−α2/C1).

When E[X(1)] = 0, Remark 2.1 shows that the time-changed process has
zero mean and variance

Var[Z(t)] = Var[Z(1)]U(t) =
Var[X(1)]

C1
tα1Eα1−α2,α1+1(−C2t

α1−α2/C1).

In the case when the outer process is Brownian motion, this expression
for the mean square displacement of the time-changed process was ob-
tained in [12] using a different method. Veillette and Taqqu [45] derive
the asymptotic behavior of the variance using a Tauberian theorem for the
Laplace transform. We use the properties of two-parameter Mittag-Leffler
function to obtain more a precise asymptotic expansion of the variance.
From [38, Theorem 1.4] for real z < 0, 0 < α < 2 and any positive integer
p

Eα,β(z) = −
p∑

k=1

z−k

Γ(β − αk)
+O(|z|−1−p) as z →∞.

With p = 1 we obtain

Var[Z(t)] = Var[Z(1)]
tα2

C2Γ(α2 + 1)
+O(t2α2−α1) as t→∞.

13
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When t→ 0, equation (17) yields

Var[Z(t)] = Var[Z(1)]
tα1

C1Γ(α1 + 1)
+O(t2α1−α2) as t→ 0.

When E[X(1)] = 0, the behavior of the covariance function for a fixed s > 0
and t→∞ is obtained from Remark 2.1. We have

corr[Z(t), Z(s)] ∼ C3(s, α1, α2)t−α2/2,

where

C3(s, α1, α2) =

(
C2Γ(α2 + 1)sα1Eα1−α2,α1+1(−C2s

α1−α2/C1)

C1

)1/2

.

When t is fixed and s→ 0

corr[Z(t), Z(s)] ∼ C4(t, α1, α2)sα1/2,

where

C4(t, α1, α2) =
(
Γ(α1 + 1)tα1Eα1−α2,α1+1(−C2t

α1−α2/C1)
)−1/2

.

For the case when E[X(1)] 6= 0, we can also explicitly compute the
variance of the time-changed process using equation (3). From [46, Theorem
3.1], the Laplace transform of E[Y 2(t)] := U(t; 2) equals

Ũ(s; 2) =
2

sφ2(s)
=

2s−1−2α2

C2
1 (sα1−α2 + C2/C1)2

.

Invert the Laplace transform using (16) with k = 1, γ = α1 − α2, δ =
α1 + α2 + 1, and b = C2/C1 to get

U(t; 2) =
2

C2
1

t2α1E
(1)
α1−α2,α1+α2+1

(
−C2t

α1−α2/C1

)
.

Therefore the variance of the inner process is

Var[Y (t)] =
t2α1

C2
1

[
2E

(1)
α1−α2,α1+α2+1

(
−C2t

α1−α2/C1

)
− Eα1−α2,α1+1

(
−C2t

α1−α2/C1

)2 ]
,

and the variance of the time-changed process Z(t) = X(Y (t)) is

Var[Z(t)] = Var[X(1)]
tα1

C1
Eα1−α2,α1+1(−C2t

α1−α2/C1)

+ E[X(1)]2
t2α1

C2
1

[
2E

(1)
α1−α2,α1+α2+1

(
−C2t

α1−α2/C1

)
− Eα1−α2,α1+1

(
−C2t

α1−α2/C1

)2 ]
.

14
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This extends the results of Chechkin et al. [12] for the mean square dis-
placement to the case when the outer process has a non-zero mean.

When the mixture is uniform, i.e., q(w) = 1 on [0, 1], an explicit expres-
sion for the renewal function was given by Veillette and Taqqu [45]:

U(t) = γe + log(t) +

∫ ∞
t

et−zz−1dz,

where γe
.
= 0.57721 is the Euler constant. Since the integral term remains

bounded for t large, the mean of the time-changed process Z(t) = X(Y (t))
grows very slowly, like log(t), as t→∞. When the mean of the outer process
is zero, the variance of the time-changed process also grows like log(t), and
for fixed s and t→∞ the correlation function decays as 1/

√
log(t):

corr[Z(s), Z(t)] ∼
√
U(s)/ log(t).

The next example of an inverse stable mixture models ultraslow diffu-
sion [31]. Take any α > 0 and let

p(β) = C
βα−1

Γ(1− β)
I(0 < β < 1),

where

C−1 =

∫ 1

0

βα−1

Γ(1− β)
dβ <∞

since Γ(1− β)→ 1 as β → 0. In this case the subordinator L has the Lévy
measure

ν(u,∞) =

∫ ∞
0

u−βp(β) dβ,

and its density is

lq(u) =

∫ ∞
0

βu−β−1p(β)dβ =

∫ 1

0

βu−β−1

Γ(1− β)
Cβα−1dβ,

so that in q(β) = Cβα−1 in (15).
The subordinator L can be obtained as a limit of a triangular array

constructed as follows. Take {Bi} iid with pdf p(β). Define a triangular
array by taking Jci iid for each c > 0 such that P[Jci > t | Bi = β] =
c−1t−β for t ≥ 1. Note that if we take Ji iid such that P[Ji > t | Bi =
β] = t−β for t ≥ 1 then we can let Jci = c−1/βJi when Bi = β. Then,
conditional on Bi = β, Ji has a distribution in the domain of attraction of
a β-stable subordinator. Then Theorem 3.4 in [31] implies that

Jc1 + · · ·+ Jc[ct] ⇒ L(t) as c→∞,

15
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where E[e−sL(t)] = e−tφ(s) for all t ≥ 0, and

φ(s) =

∫ ∞
0

(
1− e−su

)
ν(du)

=

∫ 1

0

∫ ∞
0

(
1− e−su

)
βu−β−1du p(β) dβ

=

∫ 1

0
Γ(1− β)sβp(β) dβ

= C

∫ 1

0
sββα−1 dβ

= C

∫ 1

0
e−β log(1/s)βα−1 dβ,

where we have used a formula from [35, p. 114] to arrive at the third line.
Let z = log(1/s) and make a substitution y = βz to see that∫ 1

0
e−zββα−1 dβ =

∫ z

0
e−y(y/z)α−1z−1 dy = z−αΓ(α, z)

in terms of the incomplete gamma function Γ(α, z) =
∫ z

0 e
−yyα−1 dy . Then

we have
φ(s) = C(log(1/s))−αΓ(α, log(1/s)),

and the Laplace transform of the renewal function U(t) = E[Y (t)] is

Ũ(s) = s−1 (log(1/s))α

CΓ(α, log(1/s))
.

Hence we have Ũ(s) = s−1L(1/s) where

L(x) =
(log x)α

CΓ(α, log x)
∼ (log x)α

CΓ(α)
as x→∞

is slowly varying as x→∞. Now we apply the Karamata Tauberian theo-
rem (e.g., see [13, Theorem 4, p. 446]) with ρ = 1 to conclude that

U(t) ∼ (log t)α

CΓ(α)
as t→∞.

As in the previous example of a uniform mixture (the special case α = 1),
the mean of the time-changed process Z(t) = X(Y (t)) grows very slowly,
like (log(t))α, as t → ∞. When the mean of the outer process is zero,
Remark 2.1 shows that the variance of the time-changed process also grows
like (log(t))α. For a fixed s > 0 the correlation function decays slowly:

corr[Z(s), Z(t)] ∼
√
CΓ(α)U(s)(log(t))−α/2

as t→∞.
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Example 3.5 (Inverse Poisson subordinator). Consider

L(t) = µt+N(t), t ≥ 0, µ ≥ 0,

where N(t) = max{n ≥ 1 : Tn ≤ t}, and Tn = E1 + · · · + En and
E1, E2, E3, . . . are iid exponential random variables with mean 1/λ, so that
N(t) is a homogeneous Poisson process. The Laplace exponent of L(t) is
given by

φ(s) = µs+ λ(1− e−s).

For µ = 0, using the definition (5) together with the fact that {Tn ≤ t} =
{Nt ≥ n}, it is not hard to check that the inverse subordinator Y (t) = T[t+1],
and therefore Y (t) is distributed as Γ([t + 1], 1/λ). Using the standard
formulae for the gamma distribution, we then have

U(t) = E[Y (t)] =
[t+ 1]

λ
, VarY (t) =

[t+ 1]

λ2
.

For 0 ≤ s < t the covariance function of the inner process is

Cov[Y (t), Y (s)] = Cov[(E1 + · · ·+ E[t+1])[(E1 + · · ·+ E[s+1])] =
[s+ 1]

λ2
.

Therefore for the time-changed process Z(t) = X(Y (t)) we have

E[Z(t)] =
E[X(1)][t+ 1]

λ
, Var[Z(t)] =

[t+ 1]

λ2

(
[EX(1)]2 + λVar[X(1)]

)
,

and for 0 ≤ s < t

Cov[Z(t), Z(s)] = Var[X(1)]
[s+ 1]

λ
+ E[X(1)]2

[s+ 1]

λ2
.

When µ 6= 0, Ũ(s) ∼ s−2/(λ + µ) as s → 0, and then the Karamata
Tauberian theorem implies that U(t) ∼ t/(µ+ λ) as t → ∞. When the
outer process has zero mean, Remark 2.1 implies that the time-changed
process has zero mean, a variance

Var[Z(t)] ∼ Var[X(1)]
t

µ+ λ

that grows linearly, and a covariance function

Cov[Z(t), Z(s)] ∼ Var[X(1)]
min(t, s)

µ+ λ

that grows linearly as the smaller of s and t. For fixed s and t → ∞, the
correlation function of the time-changed process decays like 1/

√
t.
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Example 3.6 (Fractional Poisson subordinator). If Y (t) is a frac-
tional Poisson process introduced in Example 3.2, then its renewal func-
tion is given by (12) with E[X(1)] = λ, its variance is given by (13) with
Var[X(1)] = λ, and its covariance is given by (14). Then the correlation
structure of the time-changed Z(t) = X(Y (t)) can be obtained from Theo-
rem 2.1 and Remark 2.1. Hence the time-changed process Z(t) = X(Y (t))
has mean

E[Z(t)] = E[X(1)]
tαλ

Γ(1 + α)
,

variance

Var[Z(t)] = E[X(1)]2
{

tαλ

Γ(1 + α)
+
t2αλ2

α

(
1

Γ(2α)
− 1

αΓ(α)2

)}
+ Var[X(1)]

tαλ

Γ(1 + α)
,

and for 0 ≤ s < t its covariance

Cov[Z(t)] = Var[X(1)]
sαλ

Γ(1 + α)
+ E[X(1)]2

{
sαλ

Γ(1 + α)

+
λ2

Γ(1 + α)2

[
αs2αB(α, α+ 1) + F (α; s, t)

]}
.

If the outer process has zero mean, then Remark 2.1 shows that the time-
changed process has zero mean, and its variance

Var[Z(t)] = Var[X(1)]
tαλ

Γ(1 + α)

grows like tα as t→∞. For 0 ≤ s < t its covariance function is

Cov[Z(t), Z(s)] = Var[X(1)]
sαλ

Γ(1 + α)

and hence its correlation function

corr[Z(t), Z(s)] =
(s
t

)α/2
decays like t−α/2 as t→∞.
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