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1 Introduction

Fractional calculus is a rapidly growing field of research, at the interface between
probability, differential equations, and mathematical physics. Fractional calculus is
used to model anomalous diffusion, in which a cloud of particles spreads in a different
manner than traditional diffusion. This book develops the basic theory of fractional
calculus and anomalous diffusion, from the point of view of probability.

Traditional diffusion represents the long-time limit of a random walk, where fi-
nite variance jumps occur at regularly spaced intervals. Eventually, after each par-
ticle makes a series of random steps, a histogram of particle locations follows a bell-
shaped normal density. The central limit theorem of probability ensures that this same
bell-shaped curve will eventually emerge from any random walk with finite variance
jumps, so that this diffusion model can be considered universal. The random walk
limit is a Brownian motion, whose probability densities solve the diffusion equation.
This link between differential equations and probability is a powerful tool. For exam-
ple, a method called particle tracking computes approximate solutions of differential
equations, by simulating the underlying stochastic process.

However, anomalous diffusion is often observed in real data. The “particles”
might be pollutants in ground water, stock prices, sound waves, proteins crossing a
cell boundary, or animals invading a new ecosystem. The anomalous diffusion can
manifest in asymmetric densities, heavy tails, sharp peaks, and/or different spread-
ing rates. The square root scaling in the central limit theorem implies that the width
of a particle histogram should spread like the square root of the elapsed time. Both
anomalous super-diffusion (a faster spreading rate) and sub-diffusion have been ob-
served in real applications. In this book, we will develop models for both, based on
fractional calculus.

The traditional diffusion equation relates the first time derivative of particle con-
centration to the second derivative in space. The fractional diffusion equation replaces
the space and/or time derivatives with their fractional analogues. We will see that
fractional derivatives are related to heavy tailed random walks. Fractional derivatives
in space model super-diffusion, related to long power-law particle jumps. Fractional
derivatives in time model sub-diffusion, related to long power-law waiting times be-
tween particle jumps. Fractional derivatives were invented by Leibnitz soon after their
more familiar integer-order cousins, but they have become popular in practical appli-
cations only in the past few decades. In this book, we will see how fractional calculus
and anomalous diffusion can be understood at a deep and intuitive level, using ideas
from probability.

The first chapter of this book presents the basic ideas of fractional calculus and
anomalous diffusion in the simplest setting. All of the material introduced here will
be developed further in later chapters.

DOI110.1515/9783110258165-001



2 —— 1 Introduction

1.1 The traditional diffusion model

The traditional model for diffusion combines elements of probability, differential
equations, and physics. A random walk provides the basic physical model of particle
motion. The central limit theorem gives convergence to a Brownian motion, whose
probability densities solve the diffusion equation. We start with a sequence of in-
dependent and identically distributed (iid) random variables Y, Yy, Y5, Y3, ... that
represent the jumps of a randomly selected particle. The random walk

Sp=Y1+---+Y,

gives the location of that particle after n jumps. Next we recall the well-known central
limit theorem, which shows that the probability distribution of S,, converges to a nor-
mal limit. Here we sketch the argument in the simplest case, using Fourier transforms.
Details are provided at the end of this section to make the argument rigorous. A com-
plete proof of the central limit theorem will be given in Theorem 3.36 using different
methods. Then in Theorem 4.5, we will use regular variation to show that the same
normal limit governs a somewhat broader class of random walks.

Let F(x) = P[Y < x] denote the cumulative distribution function (cdf) of the
jumps, and assume that the probability density function (pdf) f(x) = F'(x) exists. Then

we have
b

Pla<Y<b]= jf(x) dx = F(b) - F(a)

for any real numbers a < b. The moments of this distribution are given by
Up =E[YP] = prf(x) dx

where the integral is taken over the domain of the function f.
The Fourier transform (FT) of the pdfis

flk)=E [e’”‘y] = Je’ikxf(x) dx.

The FT is closely related to the characteristic function E [e”‘ Y] = f(~k). If the first two
moments exist, a Taylor series expansion €% = 1 + z + z2/2! + .- leads to

Flk) = j (1 —ikx+ %(—ikx)z + ---)f(x) dx =1-ikuy - 1py +o(k?)  (L1)

since f f(x) dx = 1. Here o(k?) denotes a function that tends to zero faster than k? as
k — 0. A formal proof of (1.1) is included in the details at the end of this section.
Suppose p1 = 0 and y, = 2, i.e., the jumps have mean zero and variance 2. Then
we have
fk)=1-k*+o(k?)
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ask — 0.Thesum S, = Y; +---+ Y, has FT
E [e—iksn] -E [e—ik(Y1+~~~+Yn)]
-E [e—ile] W E [e—ikY,,]
-E [e—ikY]" - Flon
and so the normalized sum n~1/2S, has FT

E [e—ik(n*/zsn)] -E [e—i(nfl/zk)sn] = f(n 12 K)"
2 n
= (1 - % + o(n‘1)> — e (1.2)

using the general fact that (1 + (r/n) + o(n"1))" — e’ asn — oo forany r € R (see
details). The limit
e _ikz Sike Ly
e =E|e = J e™——e dx
[ Vin
using the standard formula from FT tables [203, p. 524]. Then the continuity theorem
for FT (see details) yields the traditional central limit theorem (CLT):

n-12s, = Niv+n =7 (1.3)
\n
where = indicates convergence in distribution. The limit Z in (1.3) is normal with mean
zero and variance 2.
An easy extension of this argument gives convergence of the rescaled random
walk:
S[C[] =Y+ + Y

gives the particle location at time ¢t > 0 at any time scale ¢ > 0. Increasing the time
scale ¢ makes time go faster, e.g., multiply ¢ by 60 to change from minutes to hours.
The long-time limit of the rescaled random walk is a Brownian motion: As ¢ — co we
have

[c

o 2 [et] 2 cqie
E [e‘l’“ mslfﬂ] = (1 - k? + o(c‘l)) = [ (1 - k? + o(c‘l)) ] St (14)

where the limit

e = p(k, t) = Je‘”‘"p(x, t) dx

is the FT of a normal density

1 e
px, ) = —= e /0
Vamt

with mean zero and variance 2¢t. Then the continuity theorem for FT implies that

Cil/ZS[Ct] =1 Zt
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where the Brownian motion Z; is normal with mean zero and variance 2t.
Clearly the FT p(k, t) = e~ solves a differential equation

dp 5. 5.
Fri -k°p = (ik)°p. (1.5)

If f' exists and if f, f’ are integrable, then the FT of f' (x) is (ik)f (k) (see details). Using
this fact, we can invert the FT on both sides of (1.5) to get (see details)

o _ o

YER L (1.6)

This shows that the pdf of Z; solves the diffusion equation (1.6). The diffusion equation
models the spreading of a cloud of particles. The random walk S,, gives the location of
a randomly selected particle, and the long-time limit density p(x, t) gives the relative

concentration of particles at location x at time ¢ > 0.
More generally, suppose that u; = E[Y,] = 0and > = E[Y2] = 02 > 0. Then

fk) =1~ 10%k? + o(k?)

leads to

n
+ o(nl)) — exp(-30°k?)

and

]E[e—l'k(,‘*lllslct]] — (1 _ O'sz

[ct]
+ o(c‘1)> — exp(-1t0?k?) = p(k, t).  (17)

This FT inverts to a normal density

2 2
p(x, t) = ——==e*/C70
V2mo?t
with mean zero and variance ¢2t. The FT solves
dp o%,,. 0% . .
E = —7k2 = T(Zk)zp
which inverts to
op 0’ 9’p
E —_ 7 m- (1.8)

This form of the diffusion equation shows the relation between the dispersivity D =
02/2 and the particle jump variance. Apply the continuity theorem for FT to (1.7) to
get random walk convergence:

Cil/ZS[Ct] = Zt

where Z; is a Brownian motion, normal with mean zero and variance o2t.
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In many applications, it is useful to add a drift: vt + Z; has FT

]E[e—ik(vt+Zt)] — e—lkvt—zta k2 (k t),

ap (.. 0% 5.
G (—1kv+ 7(1k) )p

Invert the FT to obtain the diffusion equation with drift:
P) 2 N2
%p_ %P 09D
ot ox 2 ox?

This represents the long-time limit of a random walk whose jumps have a non-zero

mean v = u; (see details). Figure 1.1 shows a typical concentration profile, a normal
pdf

which solves

(1.9)

1 2 2
— —(x=vt)*/(20°t)
p(x, t) Woreer, 2te (1.10)

that solves the diffusion equation with drift (1.9). Figure 1.2 shows how the solution
evolves in time. Since vt+Z; has mean vt, the center of mass is proportional to the time
variable. Since vt + Z; has variance o2t, the standard deviation is oV/¢, so the particle
plume spreads proportional to the square root of time. Setting x = vt in (1.10) shows
that the peak concentration falls like the square root of time. The simple R codes used
to produce the plots in Figures 1.1 and 1.2 will be presented and discussed in Examples
5.1and 5.2, respectively.

Details

The FT f(k) = | 7™ f(x) dx is defined for integrable functions f, since |e=*| = 1.
Hence the pdf of any random variable X has a FT. In fact, the FT f(k) = E[e~'¥*] exists
for all k € R, for any random variable X, whether or not it has a density. The next two
results justify the FT expansion (1.1).

Proposition 1.1. If E[|X|?] exists, then

(~0Ppp = fO0) = —=B[e™], (1.11)

Proof. The first derivative of the FT is

f(k +h) - f(k)
h

_ %I_I%h ( [e k+h)X] -E [e—ikX]) _ Plll_I%IE[gh(X)]

FfO%) =

where g(x) = h™1(e ik+hx _ g-ikxy — p=1(e-ihx _ 1)e-ikx i5 the difference quotient
for the differentiable function k — e~**, so that gn(x) — g(x) = —ixe"** as h — 0.
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Fig. 1.1: Solution to diffusion equation (1.9) at time t = 5.0 with velocity v = 3.0 and variance
2
g°=2.0.
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Fig. 1.2: Solution to diffusion equation (1.9) at times t; = 1.0 (solid line), t; = 2.0 (dotted line), and
t3 = 3.0 (dashed line). The velocity v = 3.0 and variance o2 = 2.0.
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From the geometric interpretation of e as a vector in complex plane, it follows that
le” — 1| < |y| forall y € R. Then

—ihx _

Ign ()| = |——|" le™ ™| < |x|

forall h € Rand all x € R. The Dominated Convergence Theorem states that if gn(x) —
g(x) for all x € R and if |gn(x)| < r(x) for all h and all x € R, and if E[r(X)] is finite,
then E[gn(X)] — E[g(X)] and these expectations exist (e.g., see Durrett [62, Theorem
1.6.7, p. 29]). Since E[|X]|] exists, the dominated convergence theorem with r(x) = |x|
implies that

fP ) = lim Elgn(X)] = E[g(X)] = E[(-iX) e”"].

Set k = O to arrive at (1.11) in the case p = 1. The case p > 1 is similar, using the
fact that gn(x) = hP(e th* — 1)Pe~1kX is the pth order difference quotient for k
e ikx Alternatively, the proof for the case p > 1 can be completed using an induction
argument. o
Proposition 1.2. IfE[|X|P] exists, then the FT of X is

- D (-iky

fk) = z — Wit o(kP) (1.12)

jo T

as k — 0.

Proof. If the FT f(k) is p times differentiable, then the Taylor expansion
. - K2
o) = ZO /U0 + k)
j=

is valid for all k € R. Apply Proposition 1.1 to arrive at (1.12). O

In equation (1.2) we used the fact that
r n
(1 Tt o(l/n)) —e" asn — oo. (1.13)

To verify this, write o(1/n) = €,/n where €, —» 0asn — oo. Note that [r + g,] < 1
for n sufficiently large, and then use the fact that In(1 + z) = z + O(z2) as z — 0. This
notation means that for some § > 0 we have

‘ln(1+z)—z <C

z2

for some constant C > 0, for all |z| < §. Then we can write

ln[(1+r+£")n] =nln[1+r+£"]
n n

=n[r+£" +O<i2)] =r+en+0<1>—>r.
n n n
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Then apply the continuous function exp(z) to both sides to conclude that (1.13) holds.

In (1.3) we use the idea of weak convergence. Suppose that X, is a sequence of
random variables with cdf F,(x) = P[X,, < x], and X is a random variable with cdf
F(x) = P[X < x]. We write X, = X if F,(x) — F(x) for all x € R such that F is
continuous at x. This is equivalent to the condition that E[h(X,)] — E[h(X)] for all
bounded, continuous functions h : R — R. See for example Billingsley [37].

In (1.3) we use the continuity theorem for the Fourier transform. Let fn(k) =
E[e k"] and f(k) = E[e*X]. The Lévy Continuity Theorem [146, Theorem 1.3.6]
implies that X, = X if and only if f,(k) — f(k). More precisely, we have:

Theorem 1.3 (Lévy Continuity Theorem). If X,, X are random variables on R, then
X, = X implies that f,(k) — f(k) for each k € R, uniformly on compact subsets. Con-
versely, if X, is a sequence of random variables such that fn(k) — f(k) foreach k € R,
and the limit f (k) is continuous at k = 0, then f (k) is the FT of some random variable X,
and X, = X.

In (1.6) we used the fact that the FT of f(x) is (ik)f (k). If f' (x) exists and is integrable,
the limits

X 0
Jim f00 = £0) + lim [ £/(odu and lim f00 = £0) - lim_ [ £
0 X

exist. If f is integrable, then these limits must equal zero. Then we can integrate by
parts to get

J e () dx = [ f(0] S+ J ike ™) dx = 0 + (iOF (k). (1.14)

Applying this fact to the function f’ shows that, if f"' is also integrable, then its FT
equals (ik)%f (k), and so

2
(iK)2p(k, ) = J e‘”‘"% px, ) dx. (1.15)

To arrive at (1.6), we inverted the FT (1.5). This can be justified using the following
theorem.

Theorem 1.4 (Fourier inversion theorem). If f |f(x)] dx < oo, then FT f (k) exists. Then
if | If (k)| dk < co, we have

_ 1 ikxf
fo0 = 5= I e () di (116)

forall x € R.

Proof. See [146, Theorem 1.3.7] or Stein and Weiss [208, Corollary 1.21]. O
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Apply Theorem 1.4 to both sides of (1.5) to get

L ikxi* _Lj ikx (312 3
> je atp(k, t)dk = > e"™(ik) p(x, t) dk. (1.17)

By (1.15), the right hand side of (1.17) equals 0%p(x, t)/0x?. In order to prove (1.6), it
suffices to show that
D o ( .
ikx PN ikx 2
—pk k=— k k
je atp(,t)d atje pk,t)d
for any fixed t > 0. Write

eikxﬁ(k’ t+ h) _jj(k’ t)

p dk,

0 ikx 3 —1i j
atje p(k,t)dk—}llll%

where p(k, t) = et Since h — 0, consider h small such that |h| < t/2 (t > Ois fixed
in this argument). Then the mean value theorem yields |1 — e "%’| < |n|k2et¥*/2, and
therefore

—hk?

1-e | 120tk

‘ﬁ(k,t+h)—f9(k, t)\_ e
h =e

Another version of the Dominated Convergence Theorem (e.g., see Rudin [181, Theo-
rem 11.32]) states that if f,(y) — f(y) as n — oo and if |f,,(y)| < g(y) for all n and all
y, where [ g(y) dy exists, then [ f,(y)dy — [ f(y)dy and these integrals exist. Since
for any t > 0, the function k2e~tK/2
convergence theorem implies

is integrable with respect to k, the dominated

0 ikx j ikx 13 jj(k’t"'h)_jj(k’t) j ik 0.
— k k=1]e"1 k=|e"™—=pk k.
atJe plk, fydk = | €™ lim h dic= | e 5plk 0 d
Similar arguments justify (1.8) and (1.9).
To show that (1.9) governs the limit of a random walk with drift, suppose that
Y, Yy, Y5, Y3, ... are iid with mean u; = v = E[Y] and finite variance 02 = y, - y% =
E[(Y — u1)?]. Write

[ct] [ct] [ct]
S =Y Y=Y (¥j-v+ Y v
=1 =1 j=1

and note that the first sum grows like c¢!/? while the second grows like c as ¢ — co.

Hence, in order to get convergence, we must normalize at two scales. Since Y — v has
FT

fo =1-310"k* + o(k?)
as k — 0, the sum of the mean-centered jumps (Y; — v) + --- + (Y,, — v) has FT f(k)",
and then the centered and normalized sum

[ct] [ct]
SOt) = V2 Z(Yf —v)+c! Z %
j=1 j=1



10 — 1 Introduction

has FT

K2 [ct] o
(1 - %02? + o(c‘1)> -e ikeVIell , exp(~ikvt — 1ta*k?)

The limit inverts to a normal density with mean vt and variance o?t. Physically, we
follow a cloud of particles (iid copies of the random walk Sj.) in a moving coordinate
system with origin at x = vt. In this coordinate system, the cloud spreads according to
the diffusion equation. Translating back to the original coordinates, we see a diffusion
with drift.

1.2 Fractional diffusion

The diffusion model presented in Section 1.1 describes random walk limits with fi-
nite variance jumps. In many real world applications, particles follow a heavy-tailed
jump distribution, and a different model emerges. Here we outline the argument for
the simplest case, a Pareto distribution. Additional details are provided at the end of
this section. The formal proof for Pareto jumps will be given in Theorem 3.37. Then in
Theorem 4.5, we will use regular variation to show that the same limit governs a broad
class of random walks whose probability tails fall off like a power law.
As in Section 1.1, the random walk

Shn=Y1+---+Y,

gives the location of a particle after n independent and identically distributed (iid)
jumps. Suppose that the jump variables Y, follow a Pareto distribution, centered to
mean zero: Suppose P[X > x] = Cx™® where C > Oand 1 < a < 2. Then the first
moment y = E[X] exists, but the second moment E[X?] = co. Now take Y, iid with
X — u, so that u; = E[Y,] = 0. Since the variance of Y}, is infinite, the central limit
theorem (1.3) does not apply. Instead, we will see that a different limit occurs, with a
different scaling. For suitably chosen C, the FT of Y, is (see details)

Fk) = 1 + (i) + O(k?) (1.18)

ask — 0.Thesum S, = Y; +---+ Y, has FT f(k)" and the normalized sum n~/4S,
has FT

Fra—1/a\n (ik)a -2/a : (ik)*

f(n=%)" = 1+T+O(n )] —e (1.19)

since 2/a > 1, where the limit
eI _ [e—ikZ]

is the FT of a stable density (see details). The continuity theorem for FT yields the ex-
tended central limit theorem:

nil/“Sn = % EA (1.20)
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The family of stable distributions includes the normal as a special case, when a = 2.
They represent all possible limits in the extended central limit theorem, see Theorem
4.5 for details.

Now we show convergence of the random walk. As ¢ — oo we have

AV [et]
E[e k¢S] = <1 + _(zlz) + O(c’”"‘)) - ellh*

where the limit
el = Ele %) = p(k, t) = je’”"‘p(x, t) dx

is the FT of a stable density. Then the continuity theorem for FT implies
Cil/aS[Ct] = Zt.

Unlike the normal case @ = 2, the stable FT p(k, t) = e!@®* cannot be inverted in
closed form when 1 < a < 2.
Clearly the FT p(k, t) = et@0" solves

dp

—¢ = (%D, 1.21)

Recalling that (ik)"f (k) is the FT of the nth derivative, we define the fractional deriva-
tive d*f(x)/dx* to be the function whose FT is (ik)*f (k) (see details). Then we can in-
vert the FT in (1.21) to see that the stable densities solve a fractional diffusion equation

op 9%

o _°p 1.22
ot ox% (1.22)

The fractional diffusion equation models the spreading of a cloud of particles with a
power-law jump distribution.

The stable pdf p(x, t) is positively skewed, with a heavy power-law tail. In fact, we
have p(x, t) = Ax *1 + o(x % 1) as x — co for some A > 0 depending on C, t, and a,
so that the limit retains the power-law jump distribution (e.g., see Zolotarev [228], p.
143). This is in stark contrast to the traditional CLT, in which the tail behavior of the
individual jumps disappears in the limit.

The fractional diffusion equation (1.22) models super-diffusion. In fact, we have
Zot = c1/2Z, (same distribution) since

E[e ] = p(k, ct) = /M
— et(ikc”“)“ — ﬁ(cl/ak, t) — ]E[efik C1/“Zt]

This property is called self-similarity. The index H = 1/a of self-similarity is often
called the Hurst exponent (e.g., see Embrechts and Maejima [64]). This also implies
that solutions p(x, t) to the fractional diffusion equation (1.22) satisfy a scaling relation

p(x, ct) =c Yep(c V%, t) forallx e Randallt > 0.
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Fig. 1.3: Solution to the fractional diffusion equation (1.23) at time t = 5.0 with velocity v = 2.0 and
dispersion D = 1.0, for a = 1.5.

In particular, the spreading rate is t1/%, and the peak falls at the same rate, which is
faster than the t1/2 rate in the traditional diffusion equation (1.6).
Next we add scale and drift. The FT of vt + DY/%Z; is

Pk, t) = ]E[e—ik(thrDl/“Z[)] _ e—ikvt+Dt(ik)“

which solves
dp . nd -
E = (—lkv + D(lk) )p.

Invert the FT to obtain the fractional diffusion equation with drift:

v _ 0, poP

ot = Vox U ox (.23)

In applications to ground water hydrology, equation (1.23) is also called the frac-
tional advection dispersion equation (FADE), see Benson et al. [29]. Advection is the
displacement of suspended particles in moving water, and dispersion is the parti-
cle spreading caused by particles following different flow paths through a porous
medium. The particle density p(x, t) that solves (1.23) has center of mass x = vt,
and it spreads out from the center of mass at the super-diffusive rate t/% due to
self-similarity.

Figure 1.3 shows a stable pdf that solves the FADE (1.23). Note the skewness and
the heavy right tail. Figure 1.4 shows how the solution evolves in time. Since the limit
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0.00 0.05 0.10 0.15

0 5 10 15 20 25

Fig. 1.4: Solution to fractional diffusion equation (1.23) at times t; = 3.0 (solid line), t; = 5.0 (dotted
line), and t3 = 8.0 (dashed line) with velocity v = 3.0 and dispersion D = 1.0, for a = 1.5.

process is self-similar with index 1/a > 1/2, the plume spreads faster than a tradi-
tional Brownian motion. The R codes used to produce the plots in Figures 1.3 and 1.4
will be presented and discussed in Examples 5.9 and 5.11, respectively.

In ground water hydrology, the FADE (1.23) models concentration of a contami-
nant that is transported along with moving water under the ground. Particles must
find their way through a porous medium consisting of sand, gravel, clay, etc. Some
particles will find a relatively direct path, while others will take a more tortuous route.
This causes dispersion, traditionally modeled by the second derivative term. A frac-
tional derivative indicates a power-law distribution of particle velocities, thought to
be related to a fractal model of the porous medium, see Wheatcraft and Tyler [218].
The plume center of mass moves at a constant rate, modeled by the first derivative
term. Concentration measurements are taken at different points x at the same time
t > 0 to form a histogram, which is then fit to the stable density p(x, t) that solves the
FADE (1.23).

To fit the parameter a, the fact that p(x, t) = Ax *"! is used. Since log p ~ log A —
(a + 1) log x, a log-log plot of the concentration profile should resemble a straight line
with slope —(a + 1) for x large, and this can provide a rough estimate of a. Figure 1.5
shows concentration measurements taken at a distance x meters downstream from the
initial injection point, from an experiment documented in Benson et al. [29]. A tracer
is injected at location x = 0 at time t = 0 and transported downstream by the natural
flow of the ground water. Concentration measurements taken at t = 224 and t = 328
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days after injection were fit to the FADE (1.23) with constant coefficients (black line),
and to the traditional advection dispersion equation (ADE) in (1.9) where D is allowed
to vary with time (grey line). It is commonly noted in hydrological studies that the best
fitting D grows with time like a power law (e.g., see Wheatcraft and Tyler [218]). The
popularity of the fractional ADE is partly due to the fact that it can fit the same plume
at different times using constant coefficients. The fitted stable density has a = 1.1
with v = 0.12 meters per day and D = 0.14 meters® per day. It is thought that a
reflects the heterogeneity of the porous medium, see Clarke et al. [50]. The power law
tail of the stable density is confirmed by the straight line asymptotics on the right hand
side of each plot. The best fitting normal density underestimates concentrations by six
orders of magnitude at the leading (right) edge of the plume. If the plume represents
a pollutant heading towards a municipal water supply well, the ADE would seriously
underestimate the risk of downstream contamination. The stable density that solves
the FADE, on the other hand, captures the super-diffusive spreading and power-law
leading tail observed in the data.

1070 T T 10-0 T
5 %%ma ;
o
102 10— 3
E’qff r 2 ] 0,° ©3
g <]
= 1074} = 1074 o
= =
8 r © plume data 1 K 1 © plume data
TE 10-6F — a-stable 1 = 10-5f — a-stable
£ ~ Gaussian E ~ Gaussian
2 r 1 8 1
Z
10'8 r 1 10—8 b
r a) Snapshot 3 (day #224) 1 I b) Snapshot4 (day #328)
10-10 s s -10 s s
1 10 100 10707 10 100
Longitudinal Distance (meters) Longitudinal Distance (meters)

Fig. 1.5: Concentration measurements from Benson et al. [29], and fitted stable density with a = 1.1.

A more general fractional diffusion equation pertains when random walk jumps
follow a two-sided Pareto distribution. Suppose P[X > x] = pCx * and P[X < —-x] =
qCx*forsome 1 <a<2andO < p, q <1withp +q =1.Then u; = E[X] exists, and
we take (Y,) iid with X — p;. Now for some constant D > 0 depending on a and C we
have (see details)

f(k) = 1+ pD(ik)* + gD(-ik)* + O(k?) (1.24)

and then we get

e RN AV [ct]
Efe ke Slm]:<1+pD(lk) +CqD( ik) +O(C—2/a)>

N et[pD(ik)“+qD(—ik)"‘] — ﬁ(k, t).
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This FT solves i
d_fz = [pD(ik)* + gD(~ik)"] p. (1.25)

Now we define the negative fractional derivative d*f(x)/d(—x)* to be the function
whose FT is (-ik)* f (k). Invert the FT in (1.25) to see that the two-sided stable densities
solve a two-sided fractional diffusion equation

a a
PO pdPNY | p0T P

St S + 30T (1.26)

The random walk limit ¢"¥/4S(;; = Z; is a two-sided stable process. Its densities
solve the fractional diffusion equation (1.26), which therefore models the spreading
of a cloud of particles with power-law jumps in both directions. The weights p and g
represent the relative likelihood of positive or negative jumps. The family of two-sided
stable densities p(x, t) for the limit process Z; spreads at the super-diffusive rate £/,
and has power-law tails in both directions (see details). The skewness 8 = p — q indi-
cates whether the pdfis positively skewed (8 > 0) due to the preponderance of positive
jumps, negatively skewed (8 < 0), or symmetric (8 = 0). The two-sided FADE
op(x,t)  op(x, t) o%p(x, t) 0%p(x, t)

S5t =-v Y +pD XA +gD YT (1.27)

governs the process vt + Z;, the scaling limit of a random walk with mean jump v =
E[Y,] (see details).

In applications to ground water hydrology, concentration profiles show a power-
law leading edge, and we typically find 8 = 1, since fast-moving particles jump down-
stream, as noted by Benson et al. [29]. In a classical study of turbulence by Solomon,
Weeks and Swinney [206], velocity measurements follow a symmetric power-law dis-
tribution with = 0. In a fractional model for invasive species developed by Baeumer,
Kovacs and Meerschaert [16], animals and plants take power law jumps with 8 > 0,
indicating a preference for motion in the direction of new territories . In finance, price
jumps follow a power law with =~ 0, while trading volume follows a power law with
B = 1, see for example Mandelbrot [132]. In medical ultrasound, power law disper-
sal is observed with 8 = 1, see Kelly, McGough and Meerschaert [103]. In river flows,
retention of contaminant particles in river beds and eddy pools causes a power-law
trailing edge in the concentration profile, modeled by a FADE with § = -1, see for
example Deng, Singh and Bengtsson [60]. This fit is controversial, since the random
walk model with 8 = —1 suggests that particles are taking long jumps upstream, see
discussion in Chakraborty, Meerschaert and Lim [47]. The paper [47] also discusses
more advanced statistical methods for fitting a stable pdf to data.

Remark 1.5. The random variable Z with FT

E[e k%] = PP +aD(-ik)"
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is called stable because, if (Y,) are iid with Z, then the FT e"lPPER*+gD(=ik)°] of pl/azy
is also the FT of Y; + --- + Y. It follows that
Yi+---+Y,
nl/a =Z
foralln > 1, i.e., (1.20) holds with Y, replaced by Z,,, and convergence in distribution
strengthened to equality in distribution.

Remark 1.6. The most cited paper of Einstein [63] concerns the connection between
random walks, Brownian motion, and the diffusion equation. Sokolov and Klafter
[205] review the history, and the development of fractional diffusion, based on ran-
dom walks with power law jumps, to address empirical observations of anomalous
diffusion.

Details

A Pareto random variable X satisfies P[X > x] = Cx~* for x > C/%, where C > 0 and
1 < a < 2.1t has cdf

1-Cx* ifx>Cle
FxX)=P[X<x]= (1.28)
0 ifx < Cl/a
and pdf
Cax*1 jfx > cle
fx) = - (1.29)
0 ifx < Ccl/a
The pth moment

up = E[XP] = prf(x) dx
o0
=Ca j xP~1dx
Ci/a
:Ca[xpia]oo —
p-alce a-p
when 0 < p < a. For p > a, the pth moment p,, does not exist, since the integral in
(1.30) diverges at infinity. Hence for 1 < a < 2, the first moment y; exists, but the
second moment y» is undefined.
In this book, we define the fractional power z% of any complex number z = rei? as
2% = r%i% where a > 0,r >0, - < 0 < 71, and e = cos 0 + isin 6.
Proposition 1.7. A Pareto random variable X with pdf (1.29) for some 1 < a < 2 has
FT

crla (1.30)

E[e ] = 1 - ikyy + D(ik)* + O(k*) ask — O. (1.31)
where p is given by (1.30) withp = 1,and D = CI'(2 - a)/(a - 1).
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Proof. Write
(0]
E[e k] = J e Cax=*1dx

Cl/lx
(o]

= J [1-ikx + (e7* -1 + ikx)]Cax~*'dy
Cl/lx

[o0]
=1-ikuy + J (e ™ _ 1 + ikx)Cax™*'dy
0

Cl/a
(e _ 1 4 ikx)Cax™*'dy
0

where y; = C Yag/(a - 1) by (1.30) with p = 1. It follows by an elementary but lengthy
computation (see the proof of Proposition 3.12) that

Ir2-a

s a
1 (ik)

[0
J (e —1 4+ ikx)Cax™*'dx = C
0

when 1 < a < 2. For the remaining integral, a Taylor series expansion shows that

. Jox)?
le"#* _ 1 + ikx| < ( ;) forallx € Rand k € R.

Then

Cl/a Cl/lx

—ikx . —a-1 kz 1-a
I (e7™ -1 +ikx)Cax™*"dy| < > I Cax*~*dy
0 0
_q CYe
_ k_zca X2 a _ k_2 a Cz/a
2 7 |2-a), 22-a

since 1 < a < 2. Then it follows that X has FT (1.31). O

Setting C = (a — 1)/I'(2 - a) and using the Taylor series for e, it follows from (1.31)
that Y = X — pu; has FT

E[e M ¥710) = [1 - ikpy + ()% + O(2)] - [1 + ik + 3 (ikp1)? + 0(3)]
=1+ (ik)* + 0(k?)
which justifies the FT expansion in (1.18).

Inverting the FT (1.21) to arrive at (1.22) also requires

ey O o .
ikx Y o _ ikx »
I e atp(k’ t) dk 3 I e"*p(k, t) dk
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for the FT p(k, t) = ! of a stable density. Write

6 ikx = T ikxﬁ(k,t+h)—ﬁ(k, t)
atje p(k’t)dk‘}limoje n d,
where ik
p(k,t+h)-p(k,t 2y |1 — e .
‘p( ’3 b( )’ _ |et(zk) o ik (132)

Note that |e?| = eRe®@, i = cos(m/2) + isin(7/2), and (ik)* = (isgn(k)|k])* =
|k|*exp(isgn(k)ma/2) = |k|*[cos(rta/2) + isgn(k)sin(ma/2)], where sgn(k) is sign
of k. Then the first term in (1.32) reduces to

t(ik)* — etlkl“ cos(rta/2)

le

where cos (ma/2) < 0, since 1 < a < 2. Also, the third term is
|| = kI*

since |e'?| = 1 for all real 6. To bound the second term, use the Taylor series for e? to
write

<1+ — + =
z 2 3! |z]

Fix t > 0 and consider z = h(ik)* for |h| < —(t/2) cos (ma/2). Then |z| = |h||k|%, and
the mean value theorem implies that

’1 - e Izl |z el

elhllkl“ 1< |h||k|ae—(t/2)cos(ﬂa/2)lk|“
for all |h| < —(t/2) cos (7ma/2). Then the second term in (1.32) is bounded by
1= el Glhllki® _ 1
<
h@k)* |~ |hllk]*
Putting all three terms together, it follows that

< e—(t/2) cos (ma/2)|k|*

h
forall |h| < —(t/2) cos (mat/2). Since the function |k|%e(t/2IKl* cos(na/2) is integrable with
respect to k for any ¢ > 0, the dominated convergence theorem implies that

ﬁ(kyt“' h) _f)(kr t)
h

’f?(k, t+h)-pk,t) < [k|%e(t/DIKI" cos(a/2)

0 ikx = _ ikx 13
35t Ie plk, t)dk = Je ;llll%
Similar arguments justify (1.23) and (1.26).

A two-sided Pareto random variable X with index 1 < a < 2 satisfies P[X > x| =
pCx % and P[X < —x] = gCx % for all x > C/%, where C > 0,and 0 < p, g < 1 with
p +q = 1. Then X has pdf

3
_ ikx -
dk—J’e Sk, 6 dk

pCax~*1  ifx > CcY4,
fx)=40 if —-cYa < x < C/a

gCalx|~t ifx < —CY/,
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Noting that |x| = —x for x < 0, a substitution y = —x along with (1.30) shows that the
nth moment of X is

E[X"] = j x"f(x) dx

oo ~Cl/a
=pCa J X"l dx + gCa I x"(=x)"* 1 dx
Cl/a —00
o0

= pC - i‘ —+4qCa j -1y 1y

Cl/lx
— -1 n Cn/ﬂ @ (1 33)

(p+ D"g)C"" —— :

when O < n < a. For n > a, the nth moment does not exist.
The FT of X follows easily from Proposition 1.7. A change of variables y = —x to-
gether with (1.31) leads to

0o —Cl/a

Ele M) =p j e X Cax=21dx + g j e Ca(—x)"*dx
Cl/a —00
(o)
= p[1-iku + DK + 0()] + g J e Cay a1y
Cl/a
=p[1-ikp+D(ik)* + O(k?)| + q [1 + ikp + D(-ik)* + O(k?)]
=1-(p - q)iku + pD(ik)* + gD(-ik)* + O(k?) (1.34)

where y = CYeg/(a - 1)and D = CI'(2 — a)/(a — 1). Since U1 = -qu = E[X] by
(1.33), it follows from (1.34) that Y = X — y; has FT

E[e™™] = [1 - ikpy + pD(ik)* + gD(-ik)* + O(k)] - [1 + ikpy + O(k?)]
=1+ pD(ik)* + gD(-ik)* + O(k?)

which justifies the FT expansion in (1.24).

The Lévy Continuity Theorem 1.3 shows that the limit e®" in (1.19) is the FT of
some probability measure, since it is continuous at k = 0. In Section 4.5 we will prove
that this probability distribution has a density, using the FT inversion formula (Theo-
rem 1.4).

In Proposition 2.5 we will use the FT inversion formula prove that if f and its
derivatives up to some integer order n > 1 + a exist and are absolutely integrable,
then the fractional derivative d*f(x)/dx® exists, and its FT equals (ik)% f (k).

To show that (1.23) governs the limit of a random walk with drift, take X; iid with
X, where P[X > x] = Cx~* for some 1 < a < 2 and some C > 0. Proposition 1.7 shows
that X; has FT (1.31), and it follows that the FT of X — p is 1 + D(ik)* + O(k?). Take
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Sn = X1 +--- + X, and consider the normalized random walk

[ct] [ct]
¢V Steq - viet) +c et = VY (Xj-v) 4T Y v
j=1 j=1

where v = y; = E[X]. Take FT to get
(ik)a -2/a fet] —ikc 'v[ct] . AN
1+ DT +0(c™'%) -e — exp(—ikvt + Dt(ik)“).

Remark 1.8. The FT expansion (1.18) can also be proven using Tauberian theorems
from Pitman [169]. These Tauberian theorems relate the asymptotic behavior of the
probability tail G(x) = P[Y > x] at infinity to that of the FT at zero. We will write
f(x) ~ g(x) to mean that the ratio f(x)/g(x) — 1. Suppose Y > 0 with G(x) ~ Cx * as
x — oo forsome 1 < a < 2, and let f(k) = E[e~*]. Then the real and imaginary parts
of the FT satisfy

N Vi a
Ref(—k) =1- mG(l/k) + O(k )

n a
2I'(a) cos(ma/2) G(1/k) + ok

as k — 0, by [169, Theorem 1] and [169, Theorem 8], respectively. Putting the real and
imaginary parts together, and using the formula

Imf(-k) =

(~D)% = (e71M/2)& = 71Ma/2 — cog(71at/2) — i sin(ma/2)

we have
A L T 1 1 a
f(=k)=1-Ck 20(a) | sin(ma/2) ~ cos(naj2) | o)
_1- cupetos(ma/2) —isin(ma/2) o(k%)

2 sin(mra/2) cos(ma/2)I(a)

CT[ 31\ & a
=1- W(—lk) + O(k )

as k — 0. This shows that
fk) =1+ D(ik)* + o(k%)

as k — 0, where
Cn
=————>0
I'(a) sin(nta)
since 1 < a < 2. Using Euler’s formula

M@l -a) = ——
sin(rra)
we have cr
D=-Cr1-a)= te-a
a-1

which agrees with Proposition 1.7.



2 Fractional Derivatives

Fractional derivatives were invented by Leibnitz soon after their integer-order cousins.
In this chapter, we develop the main ideas and mathematical techniques for dealing
with fractional derivatives.

2.1 The Griinwald formula

In the first chapter of this book, we defined the fractional derivative d*f(x)/dx“ as the
function with FT (ik)*f (k). Our present goal is to develop a more familiar and intuitive
definition in terms of difference quotients. Given a function f(x), we can define the first
derivative
A _ o F0O -~ fx - )
dx h—0 h
when the limit exists. Higher order derivatives are defined by
a'fx) .. A"f(x)
dxt ilg% hn

where

Af(x) = f(x) - flx - h)
A*f(x) = AAf(x) = Alf(x) - fx - h)]
= f00) = 2f(x = h) + f(x - 2h)
APf(x) = f(x) = 3f(x — h) + 3f(x - 2h) - f(x - 3h)

A0 = Y (7) (-1)fx - jh)

j=0

using the binomial formula: Using the backward shift operator Bf(x) = f(x — h) we can
write

Af(x) = (I - B)f(x)
where If(x) = f(x) is the identity operator; then we have

A™M(x) = (I - B)"fx) = ). (’;) (-BYI"f(x).

j=0

The fractional difference operator

A*f(x) = (I - B)*f(x) = ) ("‘) (-BYftx) =) ("‘) (-1)f(x - jh)
j=o \J j=o \J

DOI110.1515/9783110258165-002
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is also used in time series analysis to model long range correlation. Here

a  T(a+1)

i) JT(a-j+1)
extends the usual definition, since I'(n + 1) = n! for positive integers n. Now we write
the Griinwald-Letnikov finite difference form

df0 _ A0

dx® ~ h—0 h®

21

for the fractional derivative. Our next result shows that this definition agrees with our
original definition of the fractional derivative in terms of Fourier transforms.
Proposition 2.1. For a bounded function f, such that f and its derivatives up to some
order n > 1 + a exist and are absolutely integrable, the Griinwald fractional derivative
(2.1) exists, and its FT is (ik)*f (k).

Proof. The binomial series
o0
1+2%=Y (“) j 2.2)
j=o\J
converges for any complex |z| < 1 and any a > O (e.g., see Hille [89, p. 147]). Equation
(2.12) in the details at the end of this section shows that

3 (“) -1y
j=0I\J

Hence, if f is bounded, the series
(o)

2%00 = Y (‘}") (~1Yf(x - jh)

j=0

< 00.

converges, uniformly on —co < x < co.
Proposition 2.5 in the details at the end of this section shows that d* f(x) /dx* exists
as the function with FT (ik)?*f (k). A substitution y = x — a shows that f(x — a) has FT

| e ayx = [ e 0py) dy

= ek j e fly) dy = e f(k).

Then A%f(x) has FT
J' eikx Ozo: (a> (—1)jf(x —jh)dx = z (a> (-1y j efika(x —jh) dx
=0 ] j=0 J
- i (‘f‘) (-1) e HhF (k)
=\ j

-,

= (1 - e kM f(k).
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The first equality above can be justified using the uniform convergence of the series
A%f(x), and the integrability of each term (e.g., see Rudin [181, Theorem 7.16, p. 151]).
If k # 0, then the FT of A%f(x)/h® is

_ikh \ & M1 _; 1 em2 4. 1\%
h“(ikh)“(L) f(k>=<ik>“(1 [~ ikh + 5 (CIkR)” + ]) Fk)

ikh ikh
o (kR = & (=ikR)? 4\
= (ik) ( T ) f(k)
= (ik)" (1 - 1 (ikh) + ) fk)
— (ik)*f (k)

ash — 0.If k = 0, then obviously (1 — e"*Maf(k) = (ik)%f(k). Hence the FT of
A%f(x)/h* converges pointwise to that of d*f(x)/dx*. Then Proposition 2.6 in the de-
tails at the end of this section shows that (2.1) holds. O
Remark 2.2. A similar argument shows that for any fixed integer p > 0 we have

d*f(x)
Tya = lim A7 Z( )( 1Yfox - - p)h)

which is useful in numerical methods, see for example Meerschaert and Tadjeran

[155].
The negative fractional derivative can be defined by
a*fix) ;
d—x)? lim m b~ Z ( ) (=1)f(x + jh). (2.3)

An argument similar to Proposition 2.1 shows that this expression has FT (-ik)*f (k).
The fractional difference is a discrete convolution with the Griinwald weights

B i(a)  (-1YI(a+1)
Wi =1 (1) TG+ DI@—j+1)
Ya@-1)---(@a-j+1)

I'G+1)
—a(l-a)---(-1-a)
- IrGg+1)

—al'(j — a)

TTi+ DI -a) (24)

using the property I'(x + 1) = xI'(x). Write f(x) ~ g(x) to mean that f(x)/g(x) — 1.
Apply Stirling’s approximation I'(x + 1) ~ V2x x*e ™ as x — oo to get

—a \2a(-a-1)(-a-1yclelG-aD
I'l-a \2mj jle

- -a j_ a-1 <] -—a-1 >j_a_1j—a—1ea+1
ra-a j j

wj ~
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and note that

\/1‘“7.‘1_4
j
(j—a—1>i“_<l_a+1>f <j—a—1>“1
j j j

N e—(tx+1) 1

and

asj — oo. It follows that the Griinwald weights follow a power law asymptotically:

wj ~ 1"(17?0()]._“_1 asj — oo. (2.5)

The Griinwald formula (2.1) gives a concrete interpretation to the fractional deriva-

tive. Suppose that p(x, t) represents the relative concentration of particles in the frac-

tional diffusion equation op/dot = 0*p/0x*. Suppose that 1 < a < 2, so that w; > 0 for
allj > 2. Since

Ap(x,t) _

(o)
7 (Ax)™* Z wjp(x — jAx, t)

j=0

we see that the change in concentration at location x at time ¢ is increased by an
amount w;p(x — jAx, t) that is transported to location x from location x — jAx. Since
w; falls off like a power law j~471, the fraction of particles at any location that moves
j steps to the right follows a power law distribution. This deterministic model is com-
pletely consistent with the random power law model of particle jumps assumed in the
last chapter, leading to the extended central limit theorem, and a stable density that
solves this fractional diffusion equation. This connection between the deterministic
(Euler) picture and the random (Lagrange) picture of diffusion is fundamental.
Remark 2.3. Here we explain the Eulerian picture. We give a physical derivation of
the deterministic model for diffusion, and show how it extends to the fractional case.
Let p(x, t) represent the mass concentration at location x at time ¢. The conservation
of mass law is

op  0oq

ot ox
where g(x, t) is the flux. Consider a small cube of side Ax in three dimensions, with
flow from left to right in the x direction. The flux

(2.6)

mass

flux = ———
area - time

2.7)

at location x is the rate at which mass passes through the face of the cube at location
x. Since the face of the cube has area A = (Ax)? the change in mass in the cube over
time At can be approximated by

AM = q(x, t) AAt — q(x + Ax, t)A At.
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Then the approximate change in concentration is
_AM -[q(x + Ax, t) - q(x, )]AAt _—Aq(x, tHAt

Ap

AAx AAx Ax
and so
Ap  Aq
At~ Ax

which leads to (2.6) in the limit as Ax — 0. See Figure 2.1 for an illustration.

[ J
s~ T z @ -
- 2
. o.%©
e s .
rd 7 .
4 7 .
X X + Dx
i i+1

Fig. 2.1: Eulerian picture for diffusion, from Schumer et al. [195].

The diffusion equation comes from combining the conservation of mass equation
(2.6) with Fick’s Law for the flux

q= —Da (2.8)

which states that particle flux is proportional to the concentration gradient. Fick’s law
is based on empirical observation. If fluid to the left of the point x contains a higher
concentration of dissolved mass than fluid to the right of the point x, then random
motion will send more particles to the right than to the left. In this case, we have
op/ox < 0and g > 0, i.e., the sign of the flux is the opposite of the sign of the concen-
tration gradient. Experiments indicate that flux is generally a linear function of the
gradient. The dispersivity constant D in (2.8) depends on physical parameters such as
temperature (a higher temperature increases D).
The diffusion equation comes from combining (2.6) with (2.8):

o __9 [_DG_P] _p%p

ot ox ox 0x?2
assuming D is a constant independent of x. The fractional diffusion equation with
1 < a < 2 can be derived from a fractional Fick’s Law

- aa—lp
o oxet

(2.9)
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combined with the classical conservation of mass equation
0 0 o« l o
p [ p ] _po'p

ot ox| oxat ox%

where (2.9) can be understood in terms of the Griinwald formula. In the traditional
derivation of Fick’s Law, we consider particle movements between adjacent cubes of
side Ax, as illustrated in Figure 2.1. The fractional Fick’s Law for the flux allows parti-
cles to jump into the box at location x from a box at location x — jAx. The proportion of
particles that make a jump this long drops off as a power of the separation distance.
See Schumer et al. [195] for more details. An alternative derivation uses the traditional
Fick’s Law (2.8) along with a fractional conservation of mass equation

op _ _9"'q
ot oxa-1
which leads to the same fractional diffusion equation
op o [_ a_P] _p%p
ot ox«t 0x

(2.10)

oxe’

see Meerschaert, Mortensen and Wheatcraft [139] for additional details. The physical
interpretation of (2.10) is similar to (2.9), using the Griinwald interpretation of the frac-
tional derivative. Both lead to the same fractional diffusion equation when the disper-
sivity D is a constant. For a combination of positive and negative fractional derivatives,
particles can also jump into the box at location x from a box at location x+jAx. See Fig-
ure 2.2 for an illustration. For the case where D varies with x, see for example Zhang,
Benson, Meerschaert and LaBolle [224]. A more general model of flux as a convolu-
tion was developed by Cushman and Ginn [54]. It was shown in Cushman and Ginn
[55] that this more general model reduces to the fractional diffusion equation when
the convolution is a power law. Note that the physical derivation also explains why we
focusonthecasel < a < 2.

Details

Here we collect some mathematical details needed to check the arguments in this sec-
tion. The gamma function is defined for a > 0 by
(0]
Ia) = j e *x* 1 dx.
0

Note that e*x* 1 ~ x*1 as x — 0+, so that the integral exists. A simple integration

by parts
b b

J u(x)v' (x)dx = u(x)v(x)|Z - I v)u' (x) dx

a a
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Fig. 2.2: Eulerian picture for fractional diffusion, from Schumer et al. [195].

with u = x* shows that

(o)
IMa+1)=[-x"™]) +a j e *x*1dx = al(a)
0

for @ > 0. Now use the formula I'(a + 1) = al'(a) to extend the definition of the gamma
function to non-integer values of @ < 0. For example, I'(-0.7) = I'(0.3)/(-0.7), and
I'(-1.7) =I(-0.7)/(-1.7). Since

F(l)zje’xdx:l
0

it follows that I'(n + 1) = n! Apply the formula I'(a + 1) = al'(a) j times to see that

a\ I'a+1) B al(a) _m_a(a—l)---(a—j+1)
j)] TG+DI(a-j+1) jTa-j+1) I'G+1)

Eventually (j — 1 — a) > O for all j large, and then

ifa -a )
w,~=(—1)’<j)= F(j+1)(1—a)---(]—1—a)

has the same sign for all j large. Since

XTED) ("‘) (-1Y =(1+ (1)) =0 @)
o =

by the binomial formula (2.2), it follows that

(o8]

Z [wj| < oo. (2.12)
j=0
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Since e? = 1 - z + 0(z?), we have for any fixed k + O that

1— e kh\® /1 _[1_ikh+O(h?)] \* 1 ¢
( ikh ) :( ikh ) :(1+§O(h)> o

ash — 0.

Our next goal is to prove that, under certain technical conditions, the fractional
derivative d*f(x)/dx® exists as the function with FT (ik)f (k). This requires the follow-
ing useful lemma.

Lemma 2.4. If f(x) and all of its derivatives up to order n exist and are absolutely inte-
grable, then

. c
If(k)] < T2k (2.13)

forall k € R.

Proof. When k = 0, |f(0)| < J'f); If(x)|dx := Co, and similarly for |k| < 1 we have

2Co

If()] < T”d"’

since 1 + |k|® < 2 in that case. A straightforward extension of the argument for (1.15)
shows that, if f(x) and all of its derivatives up to order n exist and are absolutely inte-
grable, then the FT of the nth derivative f™ (x) equals (ik)"f (k). Then we have

(o)

ﬂmqm*je%Wan,

-0

and it follows that |f(k)| < C1/|k|" where C; = j:)o If™(x)] dx. For |k| > 1 we have

P 2C
Fol < T

since 2|k|™ > 1 + |k|™ in that case. Then by choosing C to be the larger of 2C; or 2Co,
we have that (2.13) holds for all k. O

The classical theory of FT is most clearly stated using the function spaces L (RR) and
L%(R). We give a brief summary here, see Stein and Weiss [208, Sections 1 and 2]
for complete details. A function is in L' (R) if it is absolutely integrable, meaning
that f If(x)|dx < oo. A function is in L?(R) if it is square integrable, meaning that
f If(x)|?dx < co. Theorem 1.4 shows that every f € L'(R) has a FT. Then the FT can
be extended to L2(R) by taking limits. The function space L?(R) is a Hilbert space
with inner product (f, g), = f f(x)g(x) dx, a special kind of Banach space with the
norm |fl, = V{f, /2. Here a +ib = a — ib denotes the complex conjugate. We will
give more details about Banach spaces in Section 3.3. If f € L?(R) then the function
fa(x) = fOI(x| < n)is in LY(R) n L2(R) for any positive integer n. Then the FT f(k)
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is defined as the limit offn(k) in the L? sense, so that ||f — fulo — 0asn — co. The
FT maps L?(R) onto itself, so that every element of L?(R) is also the FT of another
LZ(R) function. Furthermore, the Plancherel Theorem [208, Theorem 2.3] states that
(f,8)> = 27(f, )2, and hence |Ifl, = V27lfl,. Then it follows that [f, - fl, — 0 if
and only if IIfn —f||2 — 0asn — oo.

Proposition 2.5. If f and its derivatives up to some integer order n > 1 + a exist and
are absolutely integrable, then the fractional derivative

dF00 1 i
- J (k)27 (k) dk

-0

exists, and its FT equals (ik)"‘f(k) in L2(R).

Proof. Lemma 2.4 implies that (2.13) holds, and then

Clk|*

[(ik)*f ()| < leln

for all k. Since n > 1 + a, the function (ik)*f(k) € L'(R) n L2(R). Define

g(x) = % j e (i) F (k) dk,  x € R.

By the Plancherel theorem, we deduce that g € L?(R) and its FT (in L?(R)) equals
(ik)2f (k). Hence g(x) = d*f(x)/dx® in L?(R). O

Proposition 2.6. For a bounded function f, such that f and its derivatives up to some
order n > 1 + a exist and are absolutely integrable, the Griinwald fractional difference
quotient gy (x) := A*f(x)/h® converges to the fractional derivative d*f(x)/dx?*, defined
as the function with FT (ik)“f(k), forall x € R.

Proof. It was shown in the proof of Proposition 2.1 that the function g, (x) has FT
_ p—ikh

gn(k) = <1+) Fk) — (ik)%F(k) ash — 0 (2.14)

where the convergence is pointwise. Moreover, by the mean value theorem and the
dominated convergence theorem, (2.14) also holds in L' (R) and L?(RR). Indeed,

1-e k" P ik a7

‘ [(T) - (zm“]f(k) ‘ = |7 e = (il F ()|
< 2|(ik)*f ()|
eL'nlL?
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In the first equality, ¢ is a number between 0 and h.
By the L?-convergence in (2.14), Parseval’s identity implies that g, — g in L? for
some function g € L2. By the inversion formula, we may take g as

g(x) 1= %1 J (i) aF (k) dk

since (ik)“f (k) € L'. By Proposition 2.5, this g is equal to the fractional derivative
d*f(x)/dx*. Now by the pointwise and L®-convergence,

1 N e .
18000 - g0l = 5 jelkX(ghuo—g(k)) dk (2.15)
<2 ||_ G-zl
—% gh— 8111
-0

for any x € Ras h — 0. Note that since gy, is continuous by the uniform convergence
of the series A%f(x) and g is continuous by definition, the equality in (2.15) holds ev-
erywhere. This proves the pointwise convergence. In fact, the convergence is uniform
in x. (Il

Since we define 0%p/0x“ as the function with FT (ik)“p, it is clear that

oa-1 a_p B iaa—lp ~ aap
ox19x ~ ox ox*-1 = Jx«

for any a > 0. Since A%f(x) has FT (1 — e~")2f(k), it is also true that

AN f(x) = AL Af(x) = A%f(x).

2.2 More fractional derivatives

In this section, we develop some alternative integral forms for the fractional derivative.
From equation (2.1) we have

000 _ . A%

OXX  Ax—0 Ax® (2.16)

where -
A%f(x) = Y wif(x - jAx)
j=0
is a discrete convolution with the Griinwald weights w;. Recall from (2.5) that

-a . .
Wj~m]al as ) — oo.
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Since wy = 1 we can write

A%f(x)
Ax«

=1

= (Ax)™® [ fo) + Y wif(x - ij)} .

From the binomial formula (2.2) it follows that Z]?:o w; = 0, see (2.11). Consider the
simplest case O < a < 1. Then it follows from (2.4) that w; < O forall j > 1, and so
Y21 wj = —1. Define b; = —w; for j > 1, so that

Then
A® )
A];(:(() = (Ax)™® Z [f(x) - fx - jAX)] bj

j=1

(]AX) *=1Ax

M8

[f() = fx = jAX)] m—— (

—.
Il
-

[f(x) - fx - y)] ﬁy‘“dy

Ot__,g

which motivates the generator form of the fractional derivative:

d*f(x)

dx®

j F) - fix - y)] =——yaLay, @17)

r (1 0
Integrate by parts with u = f(x) — f(x — y) to get the Caputo form

1
I'l-a)

d*f(x) 1
dx*  I(1-a)

jf( —y)ydy = T Lx-y)yedy.  (218)

Take the derivative outside the integral to get the Riemann-Liouville form

afo0 1 d[
dxd  T(1-a) dx J foc=yyy“dy. (2:19)

[Are these forms equivalent?] These forms are valid for 0 < @ < 1. For1 < a < 2 we
can write the generator form
(o)
dfx) _ a(a-1)

p ! [foc =) = f00 + y£ (0] y=dy. (2.20)

Integrate by parts twice to get the Caputo form for 1 < a < 2:

a‘fo 1
dx* T2 -a)

j dxzf( -y)y'~“dy. (2.21)
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Move the derivative outside to get the Riemann-Liouville form for 1 < a < 2:

das 1 a7
- MEoman | Xy 222
0

In Chapter 3 we will provide a rigorous proof that the generator form satisfies the FT
definition of the fractional derivative. The equivalence of the generator form and the
Caputo form will be discussed in the details at the end of this section. The general
relation between the Caputo and Riemann-Liouville forms will be discussed further
in Section 2.3.

Example 2.7. Let f(x) = e’ for some A > 0, so that f’(x) = Ae™*. Using the Caputo
form for 0 < a < 1, a substitution u = Ay, and the definition of the gamma function,
we get

[y

ArVy~agy

da
dxa [eAX] =

=
[N
&

e My 4dy

=
=
|

&

>
(9]
1
&
Ot——g O——3g O——3

— a-1 _ — 12 Ax
_F(l—a)A I'l-a) =A%

which agrees with the integer order case. For example, we have
dz Ax 2 Ax
W [e ] =A%e

and so forth. Using the Riemann-Liouville form we get

ﬁ [e’b‘] = i TeA(Xy)y ady
dx® dx | I'1-a)
L 0
d [ e}lx e 1
= — -y a
ax | TA-a Je Y dy}
L 0
d [ eAX a-1
_E_F(l—a)/‘ I'l-a)

— % [Aa—le/\x] — Aae/\x
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which agrees with the Caputo. In this case, both forms lead to the same result.

Before we consider our next example, we first develop some equivalent forms. Make a
substitution u = x — y in the Caputo form to get
X
a*f(x) 1 ) a
—_— = - du. 2.2
o - T jf W(x —u)*du (2.23)

—00

The same substitution gives an alternative Riemann-Liouville derivative for 0 < a < 1:

f) 1 d
dx* T -a)dx

I fw)(x —uw)~*du. (2.24)

—00

Example 2.8. For p > 0, define f(x) = x? for x > 0, and f(x) = 0 for x < 0. Then
f'(x) = pxP~1 for x > 0 and f'(x) = 0 for x < 0. Recall the formula for the beta density
X
I a- 1(X y)b 1 d —

0

_L@IB) 4y
I'(a+b)

for a > 0 and b > 0. Then the Caputo form is

— b F(p)r(l (X) p+(1—a)—1
TTA-a)T(p+1-a)

__ pl) XP = I'(p+1) xP-a

" IT(p+1-a) T I(p-a+1)

which agrees with the integer order case. For example, we have

e DR (R Ve
dx? T TI(p-1)
sincel'(p+1)=p(p-DI(p-1). Using the Riemann-Liouville form we get
a“ 1 d
xP D -a
dx“[ I= IrQa - a)dx JY(X Y) dy}
Lo
1 alg
= (p+1)-1 (1-a)-1
T —a) dx J (=) dy]
Lo
__ 1 4 F(p+1)F(1—a)Xp+1fa]
Irl-a)dx| I'(p+2-a)

= M(p+l_a)xp7a — F(p+1) p-a

Tp+2-a Tp-a+1)"
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which again agrees with the Caputo form.
Our next example shows the Caputo and Riemann-Liouville forms need not agree.

Example 2.9. Let f(x) = 1 for x > 0 and f(x) = O for x < 0. Then f'(x) = 0 for x # O,
so the Caputo fractional derivative is zero. In fact, the Caputo fractional derivative
of a constant function is always zero, just like the integer order derivative. But the
Riemann-Liouville derivative is not. For x > 0 and 0 < a < 1, use (2.24) to get

de 1 alg )
Wﬂx)z—l"(l—a)a Jl(X—Y) dY}
1 od [ .
=1"(1—0()& Ju du]
1 d Xt
TTAl-wdx |[1-a
X«
BCEC

Since f(x) = f(x — y) unless y > x > 0, the generator form is

[f(x) - fx = y)] y *ldy

f(X) r(1 m

dx“

—a—-1
[1—]1_(1 )y dy

><'~__,8 Ot—-‘g

__«a [X_] __x*
"TAl-a)| a | Td-oa
the same as the Riemann-Liouville form. Recall that we obtained the Caputo form from

the generator form via integration by parts. In this case, integration by parts with u =
f(x) - f(x - y) in the generator form (2.17) gives

—a—l
![f(X) oY) ey y
- [ 0w -]+ jf(x e
x® y
"Ti-o " Jf( _yF(l 5 Y

so the difference between these forms comes from the boundary terms.
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Details

The generator form (2.17) of the fractional derivative of order 0 < a < 1 is an improper
integral. If f(x) is twice continuously differentiable, then f(x —y) = f(x) - yf' (x) + O(y?)
asy — 0, and hence [f(x) - fx -y)]y*! = O(y%) is integrable at y = 0. If f is
bounded, then [f(x) — f(x - y)] y™* ! = O(y 1"%) as y — oo is also integrable at infin-
ity, so that the generator form of the fractional derivative exists. A similar argument
pertains to the generator form (2.20) when 1 < a < 2.

To derive the Caputo form (2.18) from the generator form (2.17), integrate by parts
in (2.17) with

_ _ _ _ a —a-1
u=fx)-flx-y) and dV—m_a)y dy

which leads to

-y 1 h ' 1 —a
0~ fx =g | Jf (=) sy .
If f(x) is continuously differentiable and bounded, then [f(x) — f(x - y)]y~® = O(y'™%)

asy — Oand [f(x)- f(x-y)]y™® = O(y %) as y — o0, so that the Caputo and generator
forms are equivalent. Many probability density functions f(x) satisfy these conditions.

2.3 The Caputo derivative

The transform method for solving partial differential equations uses the FT for the
space variable x along with the formula

J’ efika’(X) dx = (lk)f(k)

The Laplace transform (LT)

F(s) = I eSU(t) dt (2.25)
0

is usually used for the time variable t, along with the formula
(o)
J et (1) dt = sf(s) - f(0). 2.26)
0

The Laplace transform (2.25) may also be considered as the integral over the entire real
line, where the function f(t) = 0 for t < 0, and then we replace f(0) by f(0+) in (2.26).
See Remark 2.13 for more details. The formula (2.26) differs from the FT analogue be-
cause of the boundary term from integration by parts: Check (2.26) using u = e~5‘ and
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dv = f'(t)dt, which leads to
(o) (o)
J St (t) dt = e ()%, + J seStf(t) dt

0 0
= -e7°f(0) + sf(s),

assuming e 5{f(t) — O ast — oo. Since the FT integrates over the entire real line
—00 < X < 00, the boundary term in that integration by parts vanishes, assuming that
f(x) — 0as |x| —» oo. See Remark 2.13 for additional discussion.

For 0 < a < 1, the Riemann-Liouville fractional derivative D{f{(t) has LT s* f(s),
while the Caputo fractional derivative 07 f(t) has LT s* f (s) - s*~1£(0) (see details at the
end of this section). Check using integration by parts that the LT of f”'(t) is s2f(s) —
sf(0)—f'(0). For 1 < a < 2, D%f(t) has LT s%f(s), while 0%f(t) has LT s%f(s) — s~ £(0) -
s%2f!(0), and so forth (see details). Since the Caputo derivative incorporates the initial
condition in the usual wayj, it is the preferred form of the fractional time derivative in
practical applications.

Example 2.10. Let p > —1 and define f(t) = tP for t > 0. Substitute u = st and use the
definition of the gamma function to see that

f(s) = | e™stt? at

O——g O ——3g

_gp1 J e My D1 gy = sP1(p + 1). (2.27)
0

Then the Riemann-Liouville fractional derivative IDff(t) has LT

Ip+1)

I'p-a+1)

(o]
a
I e [%tp] dt=s"P(p+1) = [s PP -a+ 1)
0

and inverting the LT shows that

& 1y = e L@

dta I'p-a+1)
for p — a > -1, which agrees with Example 2.8. Since f(0) = 0 for p > 0, the Caputo
and Riemann-Liouville derivatives are equal in this case.

(2.28)

Example 2.11. Suppose f(t) = 1 for all t > 0. It is easy to check that f(s) = 1/s. Then
the Caputo fractional derivative of order O < a < 1 has LT s%(1/s) — s* 11 = 0 so that
0{f(t) = 0. The Riemann-Liouville fractional derivative has LT s%(1/s) = 521 g0 that
Dff(t) = t%/T'(1 — a) using (2.27), which agrees with Example 2.9.
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Derivatives are linear operators on some space of functions. We say that f # 0 is an
eigenfunction of the linear operator % provided that % f(t) = Af(t) for some real (or
complex) number A, called the eigenvalue. The function f(t) = e is an eigenfunction
since 4[e!!] = AeM, which is also reflected in the LT:

(o) (o) 1
7 _ —st At _ (A-s)t _
= dt = dt = ——
f(s) J e e J e )

for s > A. Then f'(t) has LT
()~ f0) =5 (25 ) -1 = <2 = 4F0s)
T \s-2 Ts-1 ’
We have used this fact to solve the diffusion equation: From op/ot = 0%p/ox? the FT
yields d% p = —k?P, so that the FT solution is an eigenfunction of d% with eigenvalue
—k?, and hence we can take p = e"‘zt, which inverts to a normal density.
The Mittag-Leffler function is defined by a power series
0 Zj
Eg(z) = — (2.29)
g }ZO I(1+Bj)
that converges absolutely for every complex z. Note that Eg(0) = 1. The Mittag-Leffler
function reduces to the exponential function when 8 = 1. The eigenfunctions of the
Caputo fractional derivative are f(t) = Eg (Ath): Differentiate term-by-term using (2.28)
to see that
o -
B B NP
0:f(t)y=0 -
J0 =0 {Z I+ B

j=0

_ i N FBi+1) 4 g
S TA+B)IBj+1-p)
o) /1]'71

=AY FaTBG-D)

j=1

B0 = Af(b). (2.30)

For a complete and detailed proof, see Mainardi and Gorenflo [129].

Remark 2.12. Another proof uses LT: Use (2.27) to see that f(t) = E ﬁ()ltﬁ ) has LT
i N st . i 5
————s P TBj+ 1) =s" Y (AsTPY
=0 I'(1+Bj) j=0
41 sh-1

= ' —_ =
1-AsB8  sP-2

(2.31)

when sf > |A|. Then a’f f(t) has LT

1 28-1 -1 -1
sﬂ(sﬁ )—sﬂll—sﬁ sh (sﬁ—/\):/‘<sﬁ )

sh-A T sPoA sh-A
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Invert the LT to see that af f(t) = Af(t).

Eigenfunctions of Caputo fractional derivatives are useful for solving time-fractional
diffusion equations. Starting from

s _po
atp(x’ t) = Dmp(x’ t)

take FT to get
3/ p(k, ) = -DK>p(k, t)

which shows that p(k, t) is an eigenfunction of af with eigenvalue —Dk?. Then
p(k, t) = Eg([-Di*]tF)

and in order to solve this time-fractional diffusion equation, we need to invert this FT.
In the next section, we will solve this problem, and we will also develop a stochastic
interpretation for time-fractional diffusion. [Recall that space-fractional diffusion re-
flects power law jumps in space. What random process do you think is reflected in a
time-fractional diffusion?]

Details

In this section, we have used the uniqueness theorem for LT: If f(t) and g(t) are con-
tinuous, and if f(s) = g(s) for all s > sq, then f(t) = g(t) for all t > 0, see for example
Feller [68, p. 433].

In Remark 2.12 we took the LT of the infinite series (2.31) term-by term. This can be
justified as follows. Theorem 8.1in Rudin [181] states that if the power series 3%, cju/
converges for |u| < R, then Z}fo Cj w converges uniformly on |u| < R—eforany0 < € <
R. Then, since the power series (2.29) converges for all z, for any fixed s > 0, A € R,
and f > 0, a substitution u = t# shows that the series

S (Atﬂ)j —-st _ —stoo (Atﬂ)j
Lo ¢ LT

converges uniformly in ¢ € [0, x] for any real number x > 0. Next we apply [181, The-
orem 7.16]: If a sequence of functions f,(t) is integrable on [a, b] and converges to f(t)
uniformly on t € [a, b], then f{(t) is integrable and

b b
[ o ae=tim [fuoa
Define ,
S (Atﬁ)] —st

O =2 i+ )
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and .
R afy
‘;numf

and apply these two theorems to get

X oo (/\t 7St ) X
er(“ﬁ) dt_b[f(t)dt

j=0

f(t)

X
= lim [ futoydt
0

j=0
0 X
_ ZI (Ath) sty
) T+ Bj)
Now let x — oo to get
Te ay ""j‘ Ay
—_—Q0 e dt = lim —_—0 e s dt. 2.32
j};m +B)) HX’ZO I + Bj) 32
0 0

It remains to show that the limit on the right hand side of (2.32) can be taken inside the
sum. Theorem 7.10 in [181] states that, if |gj(x)| < C; for all x and all j, and if Y Cj < oo,
then Zj gj(x) converges uniformly in x. Fix s > O such that sP > |A| and define

o[
&) Jr(l A

and

Ty
C}—Jme dt.

Since |gj(x)| < Cj and
-1

sB- 1|

'M8

< 00,
j=0

it follows that 2}9’;’0 gj(x) converges uniformly in x. Lastly, Theorem 7.11 in [181] implies
that if h,(x) — h(x) uniformly in x, and if h,(x) — D,, as x — oo for all n, then

Jim, Jim, hn0) = Jim, Jim, (0.
Then with

nr Ay
hy r dt
(x) = g&u ;Jnnmf
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and
h(x) = i(x) = J e-Stdt
(x) };g}( ) ,Zl e B})
0
it follows that
lim lim hy(x) = lim ijf(}lt—ﬁ)je“dt
X—oon x—»oo] i Ira +ﬁ])

Jim, Jim, ()
= N TM e_Stdt
S T +p)) '
0
This completes the proof of term-by-term integration of the series in Remark 2.12.
We now derive the expression for the LT of the Caputo fractional derivative of order
0 < a < 1. For a function f(x) defined on x > 0, the Caputo fractional derivative is
defined by

0xflx) =

1 a
2.
eRr jf (- )y edy, (239
which is equivalent to (2.18) with f(x) = 0 for x < 0. Assuming that e=*f'(x — y)y™
is integrable as a function of two variables, x and y, substitute x — y = z, change the
order of integration, and apply (2.27) to get

1 OO—sxxl —a _ 1 ooiaoo sxet
F(l—a)(,!’e Jf(x—)/)y dydx_l‘(l—a)(!y yje ' (x —y)dx dy

— —sy,,—a —-sz gl
F(1—a)!e y dy!e f'(2)dz

= 5% (sf(s) - f(0))
= s (s) - s*'(0).

To derive the expression for the LT of the Riemann-Liouville fractional derivative,
note that for a function f(x) defined on x > 0 the Riemann-Liouville fractional derivative
(2.19) reduces to

X
1 d —a
— - dy. 2.
1o Jf(x y)y “dy. (2.34)
0

Dyf(x) =

To compute its LT, integrate by parts to get

1 0O—sx if _ —a _
F(l—a)!e <dX0f(X vy idy |dx=1 +1
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where

1 r ”
Il=m {esxif(X—Y)yadY} =0
x=0

assuming f(x) is bounded, and

—~
)
|

flx - y)y *dy dx

:
,_.
Q
2
®,

e f(x - y)dx dy

|
|

%]

Il
:!
)_\
8,
'_-8 OTS O—3

po:
fu=
|
<
=

(]
e Vy %dy x J e *f(z)dz
0

=s S‘“f(s) = s%f(s)

assuming e 5*f(x — y)y % is integrable. It follows that the Caputo and Riemann-
Liouville fractional derivatives of order O < a < 1 are related by

7!1

0% f(x) = DEf(x) - f(0) ——— -

7(1

1 d|f B
:—F(l_a)alijf(X—Y)y d)/jl f(O)F(l a) (235)

Some authors use the last line of (2.35) as the definition of the Caputo fractional deriva-
tive, since it exists for a broader class of functions (e.g., see Kochubei [105]).

Remark 2.13. This remark explains the connection between Fourier and Laplace
transforms in more detail, and introduces the Fourier-Stieltjes transform and the weak
derivative. Suppose that f(t) is a real-valued function defined for ¢t > 0, and extend
to the entire real line by setting f(t) = 0 when t < 0. Then the two-sided Laplace

transform
(o)

F(s) = je‘“f(t)dt - J eSULt) dt

-0

agrees with the definition (2.25). If f'(¢) exists at every t > 0, then we can write

I e stf! (t)dt—hmJ’ e St (1) dt

f (s) -

( s)e S!f(t) dt}

f(O+) (2.36)
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using integration by parts with u = e3¢ and dv = f'(t) dt. This formula reduces to
(2.26) when f{(t) is continuous from the right at ¢t = 0.

We have noted previously that f(t) has FT (ik)f (k). This was proven in the details
at the end of Section 1.1, assuming that f’(t) exists for all t € R and f, f' are integrable.
These conditions do not hold in the present case, since f’(t) may be undefined at t = 0.
In fact, let us suppose that f(0) # 0, so that f(t) is not even continuous at t = 0. The
usual interpretation of the FT in this case is the Fourier-Stieltjes transform, using the
idea of a weak derivative: Suppose that f(t) is a right-continuous function of bounded
variation, so that f(t) can be written as the difference of two monotone nondecreasing
functions, f(t) = f1(t) - f>(t) where fi(t) < fi(t') whenever t < t/, fori = 1, 2. Then
we can define a Borel measure y on R such that u(a, b] = f(b) - f(a), and write the
Lebesgue-Stieltjes integral fg(t)f(dt) = f g(t)u(dt) for any suitable Borel measurable
function g(t). The Lebesgue integral is a standard construction in analysis and prob-
ability (e.g., see [35, 62, 180]). A brief review of Lebesgue integrals, Lebesgue-Stieltjes
integrals, and their connection to Riemann integrals will be included in the details
at the end of Section 7.9. Now we can interpret the FT of the derivative as a Fourier-
Stieltjes transform

j e k3 f(t) dt = I e kA dr). 2.37)

If the traditional first derivative f'(t) exists for all t € R, then we have 0.f(t) dt =
f(dt) as an equivalence of measures, but the Fourier-Stieltjes transform also exists for
functions with jumps. The canonical example is the Heaviside function f(t) = H(t) :=
I(t > 0), so that H(t) = O when t < 0, and H(t) = 1 when t > 0. Here u is a point mass
att =0and

J‘eiiktatf(t) dt = je—iktf(dt) = e’ikOH{O} =1

for all k € R. In functional analysis, it is common to write 9:f(t) = 6(¢) in this case,
where §(t) is the Dirac delta function. The Dirac delta function is a distribution, or
generalized function, defined as a linear operator on a suitable space of test functions
g(t) by the formula

jg(t)sm dt = g(0),

another notation for the Lebesgue-Stieltjes integral f g(t)of(t) dt = f g(t)f(dt) when
f(t) = H(t) and o.f(t) = 8(t). The generalized function 0.f(t) = 6(t) is also called the
weak (or distributional) derivative of the Heaviside function f(t) = H(t). Now apply the
integration by parts formula for functions F, G of bounded variation with no common
points of discontinuity (e.g., see [85, Theorem 19.3.13]):

b b
JF(t)G(dt) - F(b)G(b) - F(a)G(a) - j G(OF(dD).

a a

Define F(t) = e~ and G(t) = f(t), and note that both are functions of bounded vari-
ation on any finite interval [a, b], with no common points of discontinuity, since F(t)
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is continuous. Then

b b
I e KUy f(t) dt = j e ik dr)

b

= e b f(py _ e ikaf(q) — J(_ik)e‘”‘tf(t) dat.

a

Suppose that f(t) —» 0ast — oo. Since f(t) = O for t < 0, we can take limitsasa — —co
and b — oo to conclude that

j e k3 f() dt = (il (k). (2.38)

This extends the usual FT formula, using the weak derivative. This notation is com-
monly used in the physics literature. Recall that we are assuming f(t) = O for ¢t < O,
f(0) # 0, f is continuous from the right, of bounded variation, and f'(t) exists in the
traditional sense forall ¢t > 0. Then in the sense of distributions, we can use the physics
notation to write

0 t<O0
of(t) = 1f(0)6(t) t=0
1 t>0
and so we have
j e Ky, f(t) it = 0 + j e KF(0) 6(¢) dt + Je’”“f’(t)dt
-0 —00 0

=0 + e"0f(0) + [ikf (k) - f(0)]
= ikf (k).

In the third term, we have used integration by parts in exactly the same manner as
(2.36). Indeed, this integral may be viewed as the LT of f'(t) evaluated at s = ik. In
some applications, it is quite natural to consider Laplace transforms where s is a com-
plex number (e.g., see Arendt, Batty, Hieber and Neubrander [8]). In summary, the
difference between the formulas for the FT and the LT of the first derivative reflects
the fact that these two transforms interpret the first derivative in a different manner at
the boundary point t = 0.

2.4 Time-fractional diffusion

The simplest time-fractional diffusion equation

B 02
0;p(x, t) = Dﬁp(x, t) (2.39)
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employs a Caputo fractional derivative (2.33) of order 0 < 8 < 1. We will solve this
fractional partial differential equation using the Fourier-Laplace transform (FLT):

[celNve) (o)
pk,s) = J J e Ste ™ p(x, t) dx dt = I e Sk, t) dt.
0 —oco 0

To illustrate the method, first consider the traditional Brownian motion solution

1
px,t) = —me"‘z/(“” (2.40)

to the diffusion equation dp/dt = d2p/dx2. Take FT in (2.40) to get p(k, t) = e X't and
then take LT to get

o0 (] 1
p(k, s) = I eSte Xt gt = Je’(s”‘z)tdt =——
plk.s) s+ k2
0 0

forall s > 0. Note that p(k, 0) = 1 for all k, reflecting the fact that the Brownian motion
B(t) = 0 with probability one when t = 0. Rewrite in the form

sp(k, ) -1 = -k*p(k,s)
and invert the LT to get
d
—pk, t) = -I2p(k, t).
G000 = —KB(k, 1
Then invert the FT to recover the diffusion equation

i (x,t) = a_z (x, 1) (2.41)
otV = 5P b '

Now we apply the FLT method to the time-fractional diffusion equation (2.39).
Take FT to get
3/ p(k, ) = -Dk>p(k, t)

and assume the point source initial condition p(k, 0) = 1. Take LT to get

sPp(k, s) - sP' = —-DK*p(k, s) (2.42)
and rearrange to get
5 (1 s (2.43)
S = e -

then invert using (2.31) to get
p(k, t) = Eg(~Dk*tP).

In order to invert this FT, we will need a stochastic model for time-fractional diffusion.
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Remark 2.14. The time-fractional diffusion equation (2.39) can also be written in
terms of the Riemann-Liouville fractional derivative lDf . Recall that ID/ti f(t) has LT
sPf(s). Recall (2.27), and substitute p = —p to see that s?~1 is the LT of ¢ #/I'(1 - p).
Invert the LT in (2.42) to get

ﬁ “ t~ 2
D;p(k,t) - ——— = -Dk“p(k, t
¢ Dk, t) T =p) bk, t)
and then invert the FT to arrive at
Do, = D2 b, 6y 4+ —L0600) Q.44)
tp ’ - axz p ’ F(l — ﬁ) . B

Here 6(x) is the Dirac delta function, whose Fourier transform S(k) = 1 (see the de-
tails at the end of this section). Equation (2.44) is the fractional kinetic equation for
Hamiltonian chaos introduced by Zaslavsky [222] in the physics literature. The math-
ematical study of (2.44) was initiated by Kochubei [105, 106] and Schneider and Wyss
[192].

Now we will outline the stochastic model for time-fractional diffusion. Additional de-
tails and precise mathematical proofs will be provided later in Chapter 4 of this book.
The random walk S(n) = Y1 +--- + Y}, gives the location of a particle after n iid jumps.
Now suppose that the nth jump occurs at time T, = J1 + --- + J,, where the iid waiting
times J, > O between jumps have a power law probability tail P[J,, > t] = Bt™? for
t large, with 0 < 8 < 1 and B > 0. For suitable choice of B, an argument similar to
Section 1.2 shows that
Cil/ﬂT[Ct] = Dy

where the limit process Dy is stable with index 8, and LT
EleP] = e = g(s, 1),

where q(u, t) is the density of D;. Since

d
a- _ _Bz
dtqw,o s7q(s, t)

this density solves

0t 0= 2 g
at q ’ - auﬁ q ’
using the Riemann-Liouville fractional derivative. Let

Nie=max{n=0:T, <t}

denote the number of jumps by time ¢ > 0. The continuous time random walk (CTRW)
S(N¢) gives the particle location at time t. These are inverse processes: {N; > n} =
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{T, < t}, and in fact, {N; > u} = {T,7 < t} where [u] is the smallest integer n > u. The
inverse process has an inverse weak limit:

CiﬁNCt = Et

where {E; < u} = {D, > t}. We can define E; = inf{u > 0 : D, > t}, the first passage
time of D, above the level u > 0. The scaling c/#D; = D.; in distribution implies the
inverse scaling cPE; = E in distribution. The CTRW scaling limit as the time scale
c—> oois

cPRS(Nep) = (cP)y2S(cP cPNep) = (cP)1/2S(cP Er) = B(Ey)

a time-changed Brownian motion. Since
o0
P[E; < u] = P[Dy > t] = Jq(w, u) dw
t
the inner process E; has density

t
h(u, t) = diuIP[Et <ul= diu |:1 - j q(w, u) dw}
0

with LT
- d o 1.
h(u, $) = - [s7'q(s, w)]
_ _i [S—le—usﬁ] _ Sﬂ—le—us/’
using the fact that integration corresponds to multiplication by s~! in LT space. Since

B(E;) = B(u) where u = E;isindependent of x = B(u), a simple conditioning argument
shows that the process B(E¢) has density

m(x, t) = Jp(x, u)h(u, t)du = Z P(B(u) = x|E¢ = u)IP(E; = u).
0 u

Take FLT (x — kand t — s) to get

(0] (o] Sﬁ—l
Ak, s) = | e PR sh-Leus" gy - gB-1 Je—u(sﬂ+Dk2) du=—>
(k. 5) I sP + Dk?
0 0
which agrees with (2.43). This shows that the limit density m(x, t) solves the time-
fractional diffusion equation (2.39). Also note that r(k, t) = E ﬁ([—DkZ]tﬁ).
The CTRW model provides a physical explanation for fractional diffusion. A power
law jump distribution with P[Y,, > x] = Cx~% leads to a fractional derivative in space
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Fig. 2.3: Solution to time-fractional diffusion equation (2.39) attime t = 0.1 with 8 = 0.75 and
dispersion D = 1.0

0%/9x% of the same order. A power law waiting time distribution P[J, > t] = Bx#
leads to a fractional time derivative a’f of the same order. Long power-law jumps re-
flect a heavy tailed velocity distribution, which allows particles to make occasional
long jumps, leading to anomalous super-diffusion. Long waiting times model particle
sticking and trapping, leading to anomalous sub-diffusion:

B(Ec() = B(cPE;) = P2 B(Ey).

Since 8 < 1, the density of this process spreads slower than a Brownian motion. Fig-
ure 2.3 plots a typical density m(x, t) for the process B(E;). As compared to a normal
density, this curve has a sharper peak, and heavier tails. The R code used to produce
Figure 2.3 will be discussed in Example 5.13.

Remark 2.15. Continuous time random walks were proposed by Montroll and Weiss
[160], and developed further by Scher and Lax [190], Klafter and Silbey [104], and Hil-
fer and Anton [86]. An interesting CTRW model for the migration of cancer cells was
presented in Fedotov and Iomin [67]. See Berkowitz, Cortis, Dentz and Scher [31] for a
review of continuous time random walks in hydrology. Scalas [188] reviews applica-
tions of the CTRW model in finance. Schumer and Jerolmack [196] develop an interest-
ing CTRW model for sediment deposition in the geological record.
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Details

To prove the inverse scaling, recall that D, = ¢/2D, and write

P[E; < u] = P[Dy > ct] = P[c™'D, > t]
=P[(cP)PDy > ] = P[D gy > ]
= P[E; < ¢ Pu] = P[cPE, < u]

so that E¢; = cPE;.
To prove the inverse limit, recall that ¢~1/# Ticn = Drand {N¢ > u} = {Tpy < t}
and write

Plc PNt < ul = P[Ngr < Pul = P[Tes, > ct]
=Pl Tyepyy 2 t] = PUP) P T pyy = t] - P[Dy > t] = P[E; < u]

so that c PN = E;.

The Dirac delta function §(x) was introduced in Remark 2.13. It is a generalized
function, or distribution, defined for suitable test functions g(t) (e.g., bounded con-
tinuous functions) by j g(x)6(x) dx = g(0). One way to understand equation (2.44) is
that p(x, t) is a weak solution, sometimes called a distributional solution, to the differ-
ential equation, meaning that

62 t*ﬁ
JDfp(x, t)g(x) dx = JDQP(X’ D8(x) dx + j I(1-p)

for suitable test functions g(x). This functional analysis construction is equivalent to
using cumulative distribution functions and Fourier-Stieltjes transforms. Let

6(x)g(x) dx

X

P(x, t) = j PO, 6) dy

—00

be the cumulative distribution function of a Brownian motion B(t) with pdf p(x, t)
given by (2.40). Then P(x, t) is the unique solution to the diffusion equation

gP(x t) = a—zp(x t) (2.45)
ot T T ax2T )

with initial condition P(x, 0) = I(x > 0), the Heaviside function. To see this, apply the
Fourier-Stieltjes transform

Pk, t) = j e P(dx, ¢)
on both sides of equation (2.45) to get

%P(k, t) = (ik)2P(k, t) = —-k*P(k, t)
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with initial condition P(k, 0) = [ e”™*P(dx, 0) = 1 forall k € R, since P(dx, 0) is a
point mass at x = 0, i.e., the probability distribution of B(0). Taking derivatives with
respect to x on both sides of (2.45) recovers the diffusion equation (2.41) with the Dirac
delta function initial condition p(x, 0) = §(x). Since

I ek p(dx, t) = I e " p(x, t) dx

forall t > 0, these Fourier transform calculations are completely equivalent. Hence,
equation (2.44) is equivalent to

DPP(x, t) = Da—zP(x O+ —  Hk
e ox2 r1-p)

where p(x, t) = 0xP(x, t), and H(x) = I(x > 0) is the Heaviside function.
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3 Stable Limit Distributions

In this chapter, we develop the fundamental mathematical tools for fractional diffu-
sion. The Fourier transform of a stable law is computed from the Lévy representation
for infinitely divisible laws. The extended central limit theorem for a random walk
with power law jumps follows from the convergence criteria for triangular arrays. The
theory of semigroups leads naturally to the generator form of the fractional derivative.

3.1 Infinitely divisible laws

Infinitely divisible laws are a class of probability distributions that includes the normal
and stable laws. The Lévy representation for infinitely divisible laws is the basis for
both the stable FT, and the generator form of the fractional derivative. Recall that the
generator form of the fractional derivative is

(e9]

a0 @
- J 00~ fox = y)) sy ly G1)
forO<a<1,or
a*f) [ Loqa@-1)
T = | =)= 00+ yf 0] F5 oy ay 6.2
(0]

for 1 < a < 2. The stable FT p(k, t) = P Jeads to the space-fractional diffusion
equation op/dot = Do%p/ox*. How do these forms connect? The answer lies in some
deep mathematical theory, which we now begin to develop.

We start by establishing some notation. Given a random variable Y, we define the
cumulative distribution function (cdf) F(x) = P[Y < x], the probability density func-
tion (pdf) f(y) = F'(y), and the probability measure u(a, b] = F(b) - F(a) =Pla< Y <
b]. Wewrite Y ~ y or Y = F, and we will also write X =~ Y if two random variables X, Y
have the same distribution. The characteristic function

ji(k) = ]E[eikY] - Jeikxy(dx) — JeikxF(dX) — Ieika(X) dx =f(—k)

is related to the Fourier transform (FT) by an obvious change of sign. Characteristic
functions with e** are used in probability, because they simplify the formula (1.11) for
moments. Fourier transforms with e~%** are used in differential equations, because
they simplify the formula (1.14) for derivatives. See the details and the end of this sec-
tion for more information.

We say that (the distribution of) Y is infinitely divisible if Y = X; + --- + X, for
every positive integer n, where (X,) are independent and identically distributed (iid)

DOI110.1515/9783110258165-003
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random variables. If X, = u,, then we also have
‘ﬂ(k) — ]E[eikY] — IE[eik(X1+---+Xn)] — IE[eikX1] . ]E[eikX,,)] — ‘ﬂn(k)n

since X1, ..., X, are independent.

Example3.1. If Y =~ N(a, 0%) (normal with mean a and variance ¢2), then ji(k) =
exp(ika + 202k?). If we take fin(k) = exp(ik(a/n) + 3(0?/n)k?) then clearly fi(k) =
fin(k)" so Y is infinitely divisible. In fact ¥ = X1 +-- - + X;, where X; = N(a/n, 0% /n) are
iid. The sum of independent normal random variables is also normal, the means add,
and the variances add.

Example 3.2. If Y is Poisson with mean A, then P[Y = j] = u{j} = e i/j! forj =
0,1,2,...and

(o)
0 = [ ep(dn) = Y. e WLy =)
j=0
_ i ik e—AA_j
j=0 It
00 (1 oikyj
= e’/‘ (Ae—|)
o F

= exp(-A) exp()leik) = exp()l[e”‘ -1])

s0 ji(k) = jin(k)" where jin(k) = exp((A/n)[e - 1]). The sum of independent Poisson
random variables is also Poisson, and the means add.

Example 3.3. A compound Poisson random variable Y = Wy +--- + Wy = Sy isa
random sum, where S, = Wy +--- + Wy, (W) are iid with probability measure w(dy),
and N has a Poisson distribution with mean A, independent of (W;). Then

F(y) =P[Y <y] = P[Sn <]

= Z P[Sy < y|N = j]P[N = j]

j=0
3 j
=) P[Sj < y]e’A),l—|.
j=0 s
Then Y has characteristic function
o'} X A/v
o = Y akye =
j=0 A
o 1~ .
o avw ey
=) ji
j=0
—A (k)

=e e = M@-1]



3.1 Infinitely divisible laws = 53

Take jin(k) = eA/MI@00-1] tg see that Y is infinitely divisible. The sum of independent
compound Poisson random variables with the same jump distribution are also com-
pound Poisson.

To motivate what comes next, write the compound Poisson characteristic function

1l
@
»
o
Lo |
—
m~
=3
=
|
[
~
-~
£
QU
=
~——

= exp (I (e -1) qb(dx))

where the Lévy measure ¢p(dx) = Aw(dx). This is also called the jump intensity. The
random variable Y = W; +-- -+ Wy is the accumulation of a random number of jumps.
The number of these jumps that lie in any Borel set B is Poisson with mean ¢(B) =
A w(B). To see this, note that w(B) = P[W,, € B] and split the Poisson process of jumps
into two parts, depending on whether or not the jump lies in B. A general theorem
on Poisson processes (e.g., see Ross [179, Proposition 5.2]) shows that an independent
splitting produces two independent Poisson processes, and then the number of jumps
that lie in B follows a Poisson with mean ¢(B) = A w(B).

The Lévy representation gives the general form of the characteristic function for
an infinitely divisible law. This form reflects the normal and compound Poisson cases.
We say that a o-finite Borel measure ¢(dy) on {y : y # 0} is a Lévy measure if ¢{y :
lyl > R} < co and

y2¢(dy) < oo (3.3)
0<|y|<R

for all R > 0. See the details at the end of this section for more information.

Theorem 3.4 (Lévy representation). A random variable Y = u is infinitely divisible if
and only if its characteristic function ji(k) = E[e?kY] = e¥(0 where

. i iky
Y(k) = ika - 3k’b + j (e ky _q - Tty ) ¢(dy) (3.4)

for some a € R, b > 0, and some Lévy measure ¢(dy). This Lévy representation y =~
la, b, ¢] is unique.

Proof. The proof is based on a compound Poisson approximation, see Meerschaert
and Scheffler [146, Theorem 3.1.11]. O

Example 3.5. If Y =~ N(a, 02) then Theorem 3.4 holds with b = 02 and ¢ = 0.
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Example 3.6. If Y is compound Poisson, then Theorem 3.4 holds with b = 0, ¢(dy) =
Aw(dy), and

_ y
a-/\j T+y? w(dy).

To check this, write
iky
1+y?

Y(k) = ik)lj 4 w(dy) + j <e”‘y -1-

= )rw(dy)

- Aj e a(dy) -1 =A[@dk) - 1].
Note that the integral expression for a exists, since the integrand is bounded.

The next result shows that every infinitely divisible law is essentially compound Pois-
son. Suppose that Y, is a random variable with cdf F(x) and probability measure p,
for each positive integer n. We say that Y,, = Y (convergence in distribution, some-
times called convergence in law, or weak convergence) if F,(x) — F(x) forall x € R
such that F(x+) = F(x-). In view of the continuity theorem for FT (see Theorem 1.3),
this is equivalent to ji, (k) — ji(k) for every k € R.

Proposition 3.7. Every infinitely divisible law is the weak limit of compound Poisson
laws.

Proof. Use the Lévy Representation Theorem 3.4 to write ji(k) = e?® where (3.4)
holds. Then ji(k) = [fi,(k)]" where ji,(k) = e#®/", This shows that ¥ = X; +--- + X,,
where the iid summands (X,;) = p,. Now define Y, = X; + --- + Xy where N is Pois-
son with mean n. Then Y}, is compound Poisson with characteristic function v, (k) =
exp(n[jin(k) — 1]). Fix k € R and write

2
-1~ (1 290+ 3 (900) -+ ) =1 = Lpikr 00

n

so that n[fin(k) — 1] = (k) + O(n~1). Then (k) = exp(P(k) + O(n™1)) — exp(¥(k)) =
ji(k) forall k € R, so v, = u. |

The compound Poisson approximation gives a concrete interpretation of the Lévy mea-
sure. Suppose that y = [0, 0, ¢] so that

ji(k) = exp “ (e”‘y -1- 1i_l:);,2 ) ¢(dy)] .

Define

iky
1+y?

Vn(k) = exp I <eiky -1-

) $(dy)

lyl>1/n

= exp </1n J (e”‘y - 1) wn(dy) - ikan>
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where

A = j d(dy) = ply : Iyl > n1)

lyl>1/n
wB =2t [ @) =AeBaly s> )
lyl>1/n,yeB
an = J Y ¢(dy).
1+y2
lyl>1/n

Then v, =~ Y, + a, a shifted compound Poisson where Y, = Wy +--- + Wy, (W) = w,
is iid, and N is Poisson with mean A,, independent of (W,,). The Lévy Representation
Theorem 3.4 implies that V,,(k) — e¥® = ji(k), so v, = u. Every infinitely divisible
law with no normal component can be approximated by such a compound Poisson,
the sum of a random number of jumps. The Lévy measure controls both the number
and size of the jumps.

Details

The Lebesgue-Stieltjes integral and the distributional derivative were introduced
briefly in Remark 2.13. Here we provide more detail, with an emphasis on probability
distributions. The cumulative distribution function F(x) = P[Y < x] is monotone
nondecreasing and continuous from the right, and it follows that there exists a Borel
measure y such that u(a, b] = F(b) - F(a) for all a < b in R. If the pdf f(x) = F'(x)
exists, then we can define the probability measure

b
u(a,b]=Pla<¥Y<b]= jf(x) dx,

a

and the characteristic function
o = [ e*fo dx.

If the random variable Y has atoms, i.e., if P[Y = xi] > O for some real numbers x;,
then F(xy) > F(xx—) and the cumulative distribution function is not continuous, so it
is certainly not differentiable. Then the pdf cannot exist at every x € R. In this case,
the characteristic function

Ak = B[e*Y] = J el (dx) = J M F(dx)

is defined using the Lebesgue integral with respect to the probability measure y, or
equivalently, the Lebesgue-Stieltjes integral with respect to the cumulative distribu-
tion function F(x). If the atoms of Y (i.e., the discontinuity points of the cumulative
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distribution function F(x)) are isolated, then we may also write the pdf of Y using
physics notation. For example, if Y is a Poisson random variable with mean A, then
P[Y =j] = u{j} = e*A/jl forj = 0,1, 2, ..., and we can use physics notation to write

f) = 0xF(x) = ) e*}.—, 80x - j)
j=0 :

where 0,F(x) is the weak or distributional derivative of F(x). This is a completely
rigorous alternative notation for the pdf. Readers of this book who are more famil-
iar with the physics notation may consider the Lebesgue integral f et y(dx) or the
Lebesgue-Stieltjes integral [ e’**F(dx) as an alternative notation for | e™**f(x) dx, with
the understanding that the pdf f(x) may contain Dirac delta function terms to repre-
sent atoms of the probability distribution. In a similar manner, readers who are more
familiar with the physics notation may interpret the Lévy measure as ¢(dy) = ¢(y)dy
where the function ¢(y) is integrable over {y : |y| > R} and the function y?¢(y)
is integrable over {0 < |y| < R}. It is possible that the Lévy measure ¢(dy) con-
tains atoms. For example, a Poisson random variable with mean A has Lévy mea-
sure ¢(dy) = A6(y — 1) dy. For readers who are familiar with Lebesgue integrals and
Lebesgue-Stieltjes integrals, it is worth while to learn the alternative notation, since
it is commonly used without explanation in the physics literature. This notation also
appears frequently in the literature on partial differential equations.

IfX ~pand Y = vareindependent then P[X € A,Y € B] = P[X € A]P[Y € B] =
U(A)v(B) is the joint distribution of (X, Y), so the characteristic function of X + Y is
[ 0] = [ ekcp(dv(dy) = [ e*u(dx) [ ehrv(dy) = povk).

Since the integrand in (3.4) is bounded, the integral exists over {y : |y| > R}. To
show that the integral exists over {y : O < |y| < R} for any k € R, use (3.3) along with
iky

eiky_l_—
1+y?

. ik
= @~ 1—iky) + <iky - 1'+—’;2> = f(y) + ikg(y)

where f(y) = O(y?) as y — 0 by a Taylor series approximation, and

y _yd+y)-y y?

= = = 0@y’ 0.
1+y? 1+y? 1+y? »7) asy—

sy)=y-

Since ¢ is a Lévy measure,

y>¢(dy) < oo,
O<|y|<R

and
e <R [ vy <co.
0o<|yl<R 0o<|yl<R
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3.2 Stable characteristic functions

Here we compute the characteristic function of a stable law, using the Lévy represen-
tation. First we need to develop some alternative forms.

Theorem 3.8. Suppose Y =~ u is infinitely divisible with characteristic function ji(k) =
e¥® and (3.4) holds. Then we can also write ji(k) = ¥ where

Po(k) = ikag - 1k?b + J (e — 1 — ikyI(ly| < B)) p(dy) (3.5)

for any R > 0, for some unique aoy depending on R and a. Furthermore:
(@ If
lylp(dy) < oo (3.6)
0o<|yl<R

then we can also write ji(k) = e¥1(X) where

Y100 = ikas - 3k2b + [ (™ - 1) gdy) (37)
for some unique a, depending on agy; and
(b) If
J lylg(dy) < co (3.8)
lyI>R

then we can also write ji(k) = e¥2%) where
o (k) = ikas — 1k2b + I (e — 1 iky) (dy) (3.9)
for some unique a, depending on ay.

Proof. The integral
_ y _
8o = J ( T+y2 yI(lyl < R)) ¢(dy)

exists, since the integrand is bounded and O(y3) as y — 0. If we take ap = a - 8o, then
Y(k) = Po(k). If (3.7) holds, then Yy (k) = 1 (k), where

a; =daop — I yo(dy).
O<|y|<R
If (3.9) holds, then 1o(k) = ¥, (k), where
a =aop + j yo(dy).
lyI>R

Uniqueness follows from Theorem 3.4. O
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We now define a one-sided stable law u to be an infinitely divisible law with Lévy rep-
resentation [a, 0, ¢] where a € R and

Cay=*1dy fory>0

dy) = )
¢(dy) {0 (3.10)

fory<o0

for some 0 < a < 2. We call a the index of that stable law. Note that (3.10) is a Lévy
measure since

by : Iyl > R) = j ¢(dy) = [ Cay-*1dy = CR
R

xt__‘8

and
R

y2p(dy) = I Cay'™*dy =
0<|y|<R 0

Ca

RZ—D{
2-«a

are both finite for any R > 0.
Example 3.9. Suppose Y = u is a one-sided stable law stable with index 0 < a < 1.
Since

R
- Ca
Yig(dy) = [ cayedy = T RIe
0

o<lyl<R

is finite, we can use Theorem 3.8 (a) to write
(o)
k) = e¥1® = exp [ikal + I (eiky - 1) Cay“ldy] . (3.11)
0

We want to evaluate this integral.

Proposition 3.10. When O < a < 1, the stable characteristic function (3.11) with a; = 0
can be written in the form

ji(k) = E[e'*Y] = exp [-CI(1 - a)(-ik)"] . (3.12)

Proof. We follow the proof in Feller [68], see also [146, Lemma 7.3.7]. We will approxi-
mate the integral

I(a) = J (e -1)ay*dy
0

by another integral

(o)
I(a) = j (e(ik‘s)y - 1) ay~*dy
0
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for s > 0. Integrate by parts with u = e*=5)Y — 1 to see that

I(a) = [(e("kfs)y - 1) (—y*"‘)];O + (ik - s) J elik=slyy-agy (3.13)
0

and note that the boundary terms vanish, since e~ — 1 = 0(y) as y — 0. The
characteristic function of a gamma pdf is

T o b ik\ @
Ky _~ _,,a-1,-by — _
Ie @ ¢ W (1 b)
0

fora>0and b > 0.Seta-1=-aand b = s to see that

_ . a-1
Is(a) = (ik - s)F(l1 @) <1 - %> =-T(1-a)(s-ik)“
si«a S
for s > 0. Apply the dominated convergence theorem to see that Is(a) — I(a)ass — O.
This shows that
I(a) = -T(1 - a)(-ik)* (3.14)

and then (3.12) follows. O

The FT of this stable law is E[e~*Y] = ji(~k) = exp [-CI(1 - a)(ik)*]. Given any in-
finitely divisible law u with characteristic function ji(k) = e?®, we can define a Lévy
process Z; such that E[e!k%] = e®%® for all t > 0. A Lévy process Z; is infinitely di-
visible, with Zy = 0, Z;,s — Z; = Zs for all s, t > O (stationary increments), and Z;
independent of Z;,s — Z; for all s, t > O (independent increments). See Section 4.3 for
more details. Note that Z; = [ta, tb, t¢] since
iky

1+y?

tp(k) = ikta - 1K2th + J (efky _1- ) th(dy).
Taking u as above, the stable Lévy process Z; has FT p(k, t) = E[e~k%4] = -Dtib*
where D = CI'(1 — a) > 0. Then

d . N
Ep(k, t) = -D(ik)*p(k, t).

Invert the FT to see that p(x, t) solves the fractional diffusion equation

a

0 0
&P(X, t) = —DWP(X, t).

Note that in this case (0 < a < 1) there is a minus sign on the right-hand side.

Example 3.11. Now suppose that Y =~ u is a one-sided stable law stable with index
1 < a < 2.Since
Ca

j Yip(dy) = Tc‘ay'“dy - =
R

Rl—a
lyI>R
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is finite, we can use Theorem 3.8 (b) to write

k) = e2(0 = exp [ikaz +

o——3

(e -1 -iky) Cay“ldy] . (3.15)

Proposition 3.12. When 1 < a < 2, the stable characteristic function (3.15) with a, = 0
can be written in the form

(k) = Ele™] = exp | ¢

(k)" ] (3.16)

Proof. The proof is similar to Proposition 3.10. Write

J(a) = J (e™ -1 -iky)ay™*dy
0
and -
Js@ = [ (97 -1 - (ik - 9)y) ay~*dy
0

for s > 0. Integrate by parts with u = e(k=s) _

terms vanish (see details) and

1 — (ik - s)y to see that the boundary

(o)
Js(a) = (ik - s j (e 1) y~%ay
0
(o)
101: fj elik=s)y _ (a 1)y @ D-1gy (3.17)
0

where 0 < a - 1 < 1. Then we can apply the calculation in the proof of Proposition
3.10 to see that

Js(a) =

=S
—Is(a-1)

r(z a) (s - i

—(a-1)(s —ik)* ] =

for s > 0. Then dominated convergence theorem implies

F(Z a)

Js(a) = J(a) = (-ik)*

ass — 0. O

Taking u as above, the stable Lévy process Z; with Z; =~ p has FT p(k, t) = E[e” k%] =
ePti* where D = CI'(2 — a)/(a — 1) > 0. Then

d . s
Ep(k, t) = D(ik)*p(k, t)
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which leads to the fractional diffusion equation

a

P, t).

0
—px,t)=D
atp(x )

Note that in this case (1 < a < 2) there is no minus sign on the right-hand side.

Details

The Dominated Convergence Theorem (DCT) (e.g., see Rudin [181, Theorem 11.32])
states that if f,(y) — f(y) for all y and if |f,(y)| < g(y) for all n and all y, where
| &(y) dy exists, then [ fu(y)dy — [ f(y) dy and these integrals exist. Write

I(@) = | (e~ 1) ay-*tdy

o—3 Ol—g

(e™Y cos(ky) — 1) ay *tdy +i J (e sin(ky)) ay"*dy.
0

Since |e(=5)Y — 1] < 2, both integrands are bounded by C;y~%! for all y > 0. To
establish an integrable bound near zero, apply the mean value theorem on [0, y] for
O<y<1toget

le™Y cos(ky) — 1| < e™%|s cos(ky) + ksin(ky)|y < (k| + s)y

Since s — 0, eventually s < 1, and with C, = |k| + 1, |e™SY cos(ky) — 1| < C,y. Note
that k is fixed in this argument. Similarly

le™ sin(ky)| < Cay,
so both integrands are also bounded by C,y ay~*"1 = C3y~% for 0 < y < 1. Define

C3y @ for0<y<1,and
s() = 1
Ciy @ fory > 1.

Then f;o g(y) dy exists, and the dominated convergence theorem applies to the real
and imaginary parts of the integral, which shows that Is(a) — I(a). It is also possible
to apply the DCT directly to the complex-valued integrand.

A similar bound shows that the boundary terms in (3.13) vanish, since:

|(e(ik—s)y -1) (-y’“)' <2y™® 50 asy — oo;and
|(e(ik—s)y _ 1) (_y*“)| <2Cy"* -0 asy— 0.
The boundary terms in (3.17) vanish since, for fixed s > 0 and k € R,
|(e®9 -1 - (ik - s)y) (-y )| < C4y*™* - 0 asy — co;and
|(e(’k )y —(lk—S)y)( -y "‘)|<C5y 50 asy—O0.
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3.3 Semigroups

The theory of semigroups allows an elegant treatment of fractional diffusion equa-
tions as ordinary differential equations on a space of functions. It also explains the
generator form of the fractional derivative. A semigroup is a family of linear operators
on a Banach space. A Banach space B is a complete normed vector space. That is, if
fn € BisaCauchy sequence in this vector space, such that |f,, — f| = 0asm, n — oo,
then there exists some f € B such that ||f, — fl » 0as n — oo in the Banach space
norm. In this section, we will use some basic results on semigroups. For more on the
general theory of semigroups, see [8, 90, 165].

Example 3.13. The Banach space B = C(IR) consists of bounded continuous functions
f+ R - R with the norm |f] = sup{|f(x)| : x € R}. The space B = Co(R) consists of
continuous functions with f(x) — 0 as |x| — oo, with the same norm.

Example 3.14. The Banach space L? consists of finite variance random variables X
with the norm || X|| = VE[X2]. We will use this space in the proofs of Section 7.9. Some
authors write L?(Q, P) to emphasize that this is a space of random variables on the
sample space Q with probability measure P.

Example 3.15. The Banach space L?(R) consists of functions f : R — R such that
[Ifx)IPdx < oo, with the norm |Ifl, = ([ If(x)[Pdx)}/? for 0 < p < oco. The most
common choices are p = 1 and p = 2. The Sobolev space WXP(R) consists of all
functions such that f and all of its derivatives fU) up to order k exist and are in LP(R),

with the norm
X 1/p
Wlk,p = (Z IfY ||f;> .

j=0

A family of linear operators {T; : t > 0} on a Banach space B is called a semigroup if
Tof = fforallf € B,and T,s = T;Ts (the composition of these two operators). We say
that T; is bounded if, for each t > 0, there exists some M; > 0 such that || T¢f] < M¢|f]l
for all f € B. We say that T is strongly continuous if |T¢f — f| — Oforall f € B. A
strongly continuous, bounded semigroup is also called a Cy semigroup.

The generator of the semigroup T is a linear operator defined by

Tef(x) - Tof(X).

- (3.8)

Lf(x) = im

This is the abstract derivative of the semigroup evaluated at t = 0. Note that the limit
in (3.18) is taken in the Banach space norm. For example, when B = Co(R) we require

that
D Tef(x) — Tof(x)

-Lf(x)] -0 ast—0, (3.19)
xeR t-0
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and then (3.18) also holds for each x € R. If T; is a Co semigroup, then the generator
(3.18) exists, and its domain

Dom(L) = {f € B : Lf exists }

is a dense subset of B, i.e., for any f € B there exists a sequence f,, € Dom(L) such that
Ifn = Al = 0, see Pazy [165, Corollary 1.2.5].

Theorem 3.16. If T; is a Co semigroup on the Banach space B, then the function q(t) =
T:f solves the Cauchy problem

d

79=149: 900 = f (3.20)
for any f € Dom(L).
Proof. See, for example, Pazy [165, Theorem 1.2.4]. O

In our applications, the Banach space B is typically a space of functions, like Co(RR) or
LP(R). Then we can write Theorem 3.16 in a more concrete form: If T; is a Cg semigroup
on the Banach space of functions B, then q(x, t) = T¢f(x) solves the Cauchy problem

%q(x, t) =Lqg(x, t); q(x,0)=fx), (3.21)

for any f € Dom(L). If L = 0%/0x?, then (3.21) is the diffusion equation, and (3.20)
represents this partial differential equation as an ordinary differential equation on
some suitable space of functions.

Given a Lévy process {Z; : t > 0}, we define a family of linear operators

Tef(x) = E[f(x - Z)] (3.22)

for t > 0, for suitable functions f(x). The next result shows that (3.22) defines a Co
semigroup on the Banach space Co(RR), and gives an explicit form of the generator in
terms of the Lévy representation.

Theorem 3.17. Suppose that Z; is a Lévy process, and that E[e*?1] = %) where (k)
is given by (3.4). Then (3.22) defines a Co semigroup on Co(R) with generator

yf' (x)
1+y?

L) = ~af @+ 1o + [ (Fe - - s+ L Y gy, )
The domain Dom(L) contains all f suchthat f, ', f"' € Co(R). If we also have f, f', "' ¢
LY(R), then Y(~k)f (k) is the FT of Lf(x).

Proof. See Sato [187, Theorem 31.5] for the proof that (3.22) defines a Co semigroup on
Co(R) with generator (3.23). Hille and Phillips [90, Theorem 23.14.2] proved that Lf(x)
has FT (-k)f (k) when f, f', f"" € LX(R). O
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Remark 3.18. In this remark, we sketch the main ideas in the proof of Theorem 3.17.
Strong continuity of the semigroup (3.22) on Co(R) follows from the fact that Z; = Z =
0. The semigroup property T;.s = T;Ts follows from the fact that Z; has stationary inde-
pendent increments (see details). The generator formula (3.23) comes from a FT inver-
sion: Suppose {Z; : t > 0} is a Lévy process with FT p(k, t) = E[e~*4] = exp(t)(-k)).
If Z; has pdf p(x, t), then we have

1) = | foc - Yp: 0 dy (3.24)
a convolution of the two functions. We define the convolution
£ 800 = [ for-yigw) dy

and we note that the FT converts convolutions to products: The FT of fx g is F[f=g](k) =
f (k)g(k) (see details). If f(x) is a probability density, and if X ~ f(x) is independent of
Zs, then X + Z; = Tf(x), since the pdf of a sum of independent random variables is
a convolution of their respective densities. We can think of X as the initial particle
location, with pdf f(x). Then T.f(x) is the pdf of particle location at time t > 0, with
Tof(x) = f(x). Since the FT of a convolution is a product, it follows from (3.22) that
T¢f(x) has FT e“/’(’k)f (k). Then for suitable functions f we can pass the FT inside the
limit and write

. eYERf - f(k)
A0 = i —— "5

[T+ tp(=k) + Sk + -
lim
t—0 t

1-17. )
]f(k) =P (=k)f (k).

We call (k) the Fourier symbol of the generator L. Use the Lévy representation (3.5)
to write

. . . ) ik .
W00 = -aioF 00 + §(Ho2b7 + [ (e -1+ o )Fdopiay.
Then invert this FT using the fact that
I e X fix - y)dx = e M f k) (3.25)

to arrive at (3.23). The condition f, f, f"" € L1(R) is required to show that the FT of
Lf(x) exists.

Remark 3.19. In this remark, we outline the main idea behind the proof of Theorem
3.16, for the special case of an infinitely divisible semigroup. Take FT in (3.22) to get

gk, ) = e “Ofk); gk, 0) = f(k).
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Compute
0. .
5740, 0) = Pk, 0

and invert the FT to arrive at (3.21). Note that the domain Dom(L) of the generator (3.23)
on the space L1(IR) consists of all functions f € L1(R) such that h(k) = p(-k)f (k) is
the FT of some function h € L1 (R), see Baeumer and Meerschaert [18, Theorem 2.2].

Now we illustrate the semigroup machinery with some familiar examples.

Example 3.20. If Z; =~ N(0, 2Dt) then

ﬁt(k) — e—tDk2 — etl/)(k)

with Fourier symbol {(-k) = D(ik)%. The generator can be obtained by inverting
Y(-k)f (k) = D(ik)2f (k), so that L = Dd?/dx? in this case. The Cauchy problem is:

0 oty =D 2 gt g 0) = f0)

at q ’ - axz q ’ ’ q ’ - .

Its solution is

q(x, t) = Tf(x) = j O - y)p(y, ) dy

where

p(,t) = . exp (—y—z) .

VanDt 4Dt

If the initial particle location is a random variable X with pdf f(x), independent of Z;,
then the Brownian motion with a random initial location X + Z; has pdf T«f(x). This
is a Markov process: The pdf of the displacement (X + Zy,s) — (X + Z¢) = Zpos — Zy is
independent of the past history of the process {Z, : 0 <u < t}.

Example 3.21. If Z; = tv for some constant velocity v then
Tef00) = E[f(x = Z)] = f(x - vt),

the shift semigroup. Its generator is

fx —vt) - fix)

10 =y 20

v._ oo

v vf (x).

Here ji;(k) = E[ekt] = et so that (k) = ikv, and then y(~k) = —v(ik), so that
L = -va/ox.Itis easy to check that g(x, t) = f(x — vt) solves dg/dt = —voq/ox.

Example 3.22. If Z; = N(vt, 0%t) is a Brownian motion with drift, take a = v, b = 62,
and ¢ = 0 in (3.23) to see that the density g(x, t) of X + Z; solves
0

—qx t)——vi (x t)+1026—2 (x,t) = Lq(x, t)
ot 10V = Ve I U 0 5@ e U= LAt
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with initial condition g(x, 0) = f(x). This diffusion equation with drift comes from the
sum of two semigroups. The semigroups commute, so the generators add.

Theorem 3.17 gives an explicit form for the generator of an infinitely divisible semi-
group. Now we apply this result to explain the generator form of the fractional deriva-
tive. In order to apply Theorem 3.17 to stable semigroups, it is convenient to develop
some alternative forms of the generator. The next result is the semigroup analogue of
Theorem 3.8.

Theorem 3.23. Suppose that Z; is a Lévy process, and that E[e?1] = e?®) where (k)
is given by (3.4). Then we can also write the generator (3.23) in the form

Lf(x) = —aof'(x) + 3bf"' (x) + j (fx = y) = f00 + yf OI(lyl < R)) p(dy)  (3.26)

for any R > 0, for some unique ao depending on R and a. Furthermore:
(a) If (3.6) holds, then we can also write

LFOX) = —arf' () + Lbf"(x) + j (Fix - y) - () b(dy) (3.27)

for some unique a, depending on ag; and
(b) If (3.8) holds, then we can also write

L) = -aof 00+ 300 + [ (fix =) - fo0 + 9 00) () G:28)

for some unique a, depending on ay.

Proof. The proof is very similar to Theorem 3.8. Since the integral

o= [ (127 - < B) giay)

exists, we can take ag = a — 8¢. If (3.6) holds, take

a; =dao — j yo(dy).
0<|y|<R
If (3.8) holds, take

a =ap+ I yo(dy).
lyI>R
O

Example 3.24. Let Z; be a stable Lévy process with index O < a < 1, such that Z; has
the one-sided stable characteristic function (3.11) with a; = 0. Then it follows from
(3.27) that the generator of this semigroup is
(o]
L0 = [ (Fx - ) = fo) Cay~dy.

0
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Proposition 3.10 shows that i(—k) = —CI'(1 - a)(ik)* is the Fourier symbol of this one-
sided stable semigroup. If we take C = 1/I'(1 — a), then this shows that L = —0%/0x*,
using the generator form (2.17) of the fractional derivative for 0 < a < 1. Note the
minus sign in the generator in this case. A result of Hille and Phillips [90, Theorem
23.15.2] implies that this generator exists for all f € L'(0, co) such that f(0) = 0 and
f' € L1(0, 0o). This strengthens the result in Proposition 2.1, since it implies that the
fractional derivative d®f/dx® of order O < a < 1 exists whenever the first derivative f’
exists.

Example 3.25. Let Z; be a stable Lévy process with index 1 < a < 2, such that Z; has
the one-sided stable characteristic function (3.15) with a, = 0. Then it follows from
(3.28) that the generator of this semigroup is

L0 = [ (For =) - f00 + yf' 09) Cay~*dy.
0

Proposition 3.12 shows that

Ir2-a

Pk = =

(ik)*

is the Fourier symbol of this one-sided stable semigroup. If we take C = (a—1)/I'(2-a),
then this shows that L = 0%/0x?%, using the generator form (2.20) of the fractional
derivative of order 1 < a < 2. Note the positive sign in the generator in this case.
Theorem 3.17 shows that this fractional derivative exists when f, f’, f" € Co(R), which
strengthens the result in Proposition 2.1, since it implies that the fractional derivative
d*f/dx® of order 1 < a < 2 exists whenever the second derivative f'’ exists.

Details

A substitution z = x — y shows that the FT of f « g is

T eikx < Tf(x - y)g(y) dy) dx = T e k&) Tf(Z)g(y) dy dz

= j e **f(z) dz j e Mg(y) dy
= f()g(k).

The proof of the semigroup property T¢,s = T;Ts for (3.22) uses a conditioning
argument. Since Z; is a Lévy process, (Zi+s — Z¢) = Zs, and (Zy,s — Z¢) is independent
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of Z;. Then we can write

Tesf(x) = E[f(X = Zt15)]
= E[E[f(X — {(Zt+s — Zt) + Z})| Z4]]

- j E[f(x - {Zs + YDIp(, £) dy
- le[f(x Y- Z)lpW, O dy
- j Tof(x - y)p(y, t) dy

= E[Tsf(x - Z1)] = T Tsf(x). (3.29)

This is a special case of the Chapman-Kolmogorov equation for Markov processes.

3.4 Poisson approximation

In order to motivate the proof of the extended central limit theorem, by the method
of triangular arrays, we show here how the stable laws emerge as weak limits of com-
pound Poisson random variables with Pareto (power law) jumps.

Example 3.26. Suppose that Y is a one-sided stable random variable with character-
istic function ji(k) = e¥®, where

W(k) = —CT(1 - a)(-ik)® = J (€™ - 1) Cay-*1dy
0

for some 0 < a < 1, using Proposition 3.10. We will approximate Y by an infinitely
divisible random variable Y, with characteristic function E[e'¥Y"] = ¢¥»(0) where
o0
Pn(k) = I (eiky - 1) Cay *ldy.
1/n

Define
(o)
(o)
An = J Cay *ldy = [ - Cy‘“] =Cn®
1/n
1/n
and write
Yn(k) = Ay J (e -1) wn(dy)
where

wn(dy) = A, Cay™ Iy > 1/n)dy = n%ay *I(y > 1/n) dy

is a probability measure. This is a special case of the Pareto distribution, originally
invented to model the distribution of incomes. The general Pareto distribution can be
defined by setting P[X > x] = Cx~%for x > CY/* where C, a are positive constants.
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Take (W) iid with distribution w, so that
o0
o0
P[W, >x] = jn”"ay’“’ldy = [n’“(—y"")] = Ax¢
X
X

forall x > AY/® = 1/n. Write
Yald) = Ao [ (€% = 1) @a(dy) = Anl@n(dy) - 1]

to see that Y,, is compound Poisson, in view of Example 3.3.Infact Y, = Wy +---+ Wy
where (W},) are iid Pareto with P[W,, > x] = Ax~* and N is Poisson with mean A,, =
Cn® independent of (W,). Since the integral (k) exists, we certainly have i, (k) —
(k) for each fixed k € R, and then ji (k) = e¥"® — e¥® = fi(k)as n — oo. This
proves that Y, = Y.

Hence a stable law is essentially a compound Poisson with power law jumps. The
mean number of jumps A, = Cn* — oo as the minimum jump size 1/n — 0, so that
the jump intensity ¢,(dy) = A, w,(dy) increases without bound to the Lévy measure
¢ of the stable law. This means that the stable law represents the accumulation of an
infinite number of power law jumps. For any n, it combines a finite number of jumps
of size greater than 1/n with an infinite number of jumps of size less than 1/n.

We now define the general two-sided stable law y with index 0 < a < 2 to be an in-
finitely divisible law with Lévy representation [a, O, ¢], where a € R and
pCay=*1dy fory>0,and
$(dy) = ot (3.30)
qCaly|“*dy fory<oO.

where p, g > 0 with p + g = 1. This is a Lévy measure since

C
Bly:l>R=CR and | y'g(dy) - 3R>
0<|yl<R
are both finite for any R > 0.
Example 3.27. Consider a two-sided stable random variable Y with index 0 < a < 1.

Since

R

- Ca _,_

lylp(dy) = ICay “dy = le ‘
0<lyl<R 0
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is finite, we can apply Theorem 3.8 (a). Suppose that Y is centered so that a; = 0 in
(3.7). Then we can write ji(k) = E[ekY] = e¥®) where

Wi = [ (e~ 1) gdy)

0

o——3

=p | (™ -1)Cay*tdy+q I (e -1) Ca(-y)*dy
=—pCI'(1 - a)(-ik)* + q J (e*"k" - 1) Cax *tdx
0
=-—pCr(1 - a)(-ik)* - gCr(1 - a)(ik)* (3.31)

using a substitution x = —y and Proposition 3.10.
Define Y, = u, where ji,, (k) = e¥»® with

o= [ ("~ 1) pan.

lyI>1/n

Let
Mo = j (dy) = Cn®
lyl>1/n

and wy(dy) = A, I(ly| > 1/n) ¢(dy). Take (Wy) = wy, iid so that
P(W, >x] =pAx* and P[W, < -x] =qgAx™*

forallx > AY* = 1/n. Then Y, = W1 +---+ Wy where N is Poisson with mean A, = Cn®%
independent of (W,). Again we have Y,, = Y, which shows that the two-sided stable is
also the accumulation of power law jumps, including a finite number of jumps larger
than 1/n and an infinite number of very small jumps. The constants p and g balance
the positive and negative jumps.

The two-sided stable law decomposes into independent positive and negative
parts: Use (3.31) to write Y (k) = py. (k) + qip_ (k) where

Yol = [ (" - 1) Cay*tdy = ~Cr(L - a)-ik",
0
0
(k) = J (6™ — 1) Caly|*dy = ~CI(1 - a)(ik)".

Then ji(k) = e?® = eP¥+(])ea¥-() which shows that Y = Y*+Y~ a sum of two indepen-
dent stable laws. We can also write Y, = Y + Y;, a sum of two independent compound
Poisson, the first with only positive jumps, and the second with only negative jumps.
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The generator form of the negative fractional derivative comes inverting the FT for the
symbol 1_(-k): Use the fact that [ e=*f(x +y) dx = e} (k) to see that
o0

Y- (-lof (k) = I (e (k) - F(h)) Cay™dy
0
is the FT of

j (Flx +y) - f(x)) Cay ™% Ldy.
0

Take C = 1/T'(1 - a) to get

df0) 1 a
e rIC)

= T - (-k)f (k)]

B r(1a- ) I (fo) ~ fx+y) y~*tdy (3.32)

0

for 0 < a < 1. Formula (3.32) also follows from (3.27) and a simple change of variables.
Suppose that Z; is a two-sided stable Lévy motion with Z; = Y. Then p(k, t) =

E[e k2] = oY1) with y(~k) = —pD(ik)* — gD(-ik)* and D = CI'(1 — @) > 0. Then
dp(k,t . g a A
YD~ popik, ) = DBk, )~ DK ik,

which inverts to the two-sided fractional diffusion equation
a a
op(x, t) _ _pr pe.0 0P, 0)

ot PYCHE i Yae T
for 0 < a < 1. The positive fractional derivative codes positive power law jumps, and
the negative fractional derivative corresponds to the negative power law jumps.

3.5 Shifted Poisson approximation

Here we develop the Poisson approximation for stable laws with index 1 < a < 2. In
this case, the Poisson approximation involves a shift.

Example 3.28. Suppose that Y is one-sided stable with characteristic function ji(k) =
E[ekY] = ¥ where

Y00 = [ (% - 1~ iky) g(ay)
= J (e -1 -iky) Cay™*'dy
0

I'2-a)
a-1

C (-ik)*
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for 1 < a < 2, using Proposition 3.12. Let Y, be infinitely divisible with characteristic
function ji, (k) = e¥»® where

(o)

PYn(k) = j (e™ -1 -iky) Cay™*'dy
1/n

= [ ("~ 1~ iky) gu(dy)

and ¢n,(dy) = I(y > 1/n) ¢(dy) is the Lévy measure of this infinitely divisible law.
Define

o0
A = jqbn(dy) - j Cay~®ldy = Cn®
1/n

so that wy(dy) = A;' ¢,(dy) is a probability measure. Take (W;) iid with distribution
wy and write

Yn(k) = Ay I (eiky -1- iky) wy(dy) = Ay I (eiky - 1) wy(dy) - ikay

where a, = A, fywn(dy) = AyE[W;]. Here P[W; > x] = Ax™* with A = n™* so that

yl—a ]oo Aa

1-a -

na—l
1/n a— 1

(o)
E(Wj] = J yAay*'dy = [Aa
1/n

is finite for all n for 1 < a < 2. Then Y, (k) = A, [w(k) — 1] - ikay so Yy, is shifted
compound Poisson: Take N Poisson with mean A,, independent of (W;), and note that

exp(Yn(k)) = exp(An[@(k) — 1] - ikay) = E[ exp (ik[W1 +--- + Wy — an])]

sothat Y, = Wy +--- + Wy — a,. Note that

aC
a_

a-1

Ap=Cn®* - co and an = \E[Wj] = 1n — 00

so that both the mean number of jumps and the shift tend to infinity as the trunca-
tion threshold 1/n — 0. Since P[W; > x] = Ax™* the stable random variable Y is
essentially the (compensated) sum of power law jumps. The compensator adjusts the
random sum of power law jumps to mean zero. As the threshold shrinks to zero, the
number of jumps increases to infinity, and their accumulated mean a,, also increases
to infinity, but the compensated sum (the shifted compound Poisson) converges to an
a-stable limit.

Let Z; be a stable Lévy process with Z; = Y. Then Z; = [0, 0, t¢] in the alternative Lévy
representation (3.9). The Lévy process Z} = [0, O, t¢h,] with Z] = Y, is a compound
Poisson process with power law jumps, centered to mean zero. In fact we can write

Z?Z Wi+ + Wy — tan
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where N(t) is a Poisson process with rate A,,. The Poisson process N(t) is a Lévy process
whose Lévy measure is a point mass ¢,{1} = A,. Then E[N(t)] = A,t and a standard
conditioning argument shows that the compound Poisson process (a random sum)
has mean

E[Wy +--- + Wx(n] = E[IN(O]E[W;] = tap.

Example 3.29. A general two-sided stable random variable Y with 1 < a@ < 2 has
Lévy measure (3.30). Then it follows from Proposition 3.12 and a change of variables
that E[e'*Y] = e¥® where

W00 = [ (% - 1 iky) g(dy)

LCET PV (L)

=pC
p a-1 a-1

(+ik)*. (3.33)

If Z; is a stable Lévy motion with Z; = Y then p(k,t) = E[e k4] = ¥k Take
D = CIr(2 - a)/(a — 1) and write p(k, t) = exp[pDt(ik)* + gDt(-ik)*]. Then

dp(k, t)
dt

which inverts to the two-sided fractional diffusion equation

=P(-lp(k, t) = pD(ik)*p(k, t) + gD(-ik)*p(k, t)

op(x,t) 0%px,t) 0°p(x, t)

ot PP oxa T

for 1 < a < 2. As in the case O < a < 1, the positive fractional derivative comes from
the positive power law jumps, and the negative fractional derivative corresponds to
the negative jumps.

Example 3.29 illustrates the reason for the positive coefficients in the fractional diffu-
sion equation for 1 < a < 2, and the negative coefficients for 0 < @ < 1. This comes
from the change of sign in the stable characteristic function. One can also note that
the log-characteristic function (k) should have a negative real part, since the char-
acteristic function e¥® remains bounded for all real k. Since (+ik)* has a positive real
part for 0 < a < 1, and a negative real part for 1 < a < 2, the negative sign in the case
0 < a < 1is necessary to make the real part of (k) negative.

We have now connected the coefficients a and D in the fractional diffusion equa-
tion with the parameters of the Pareto law. The order of the fractional derivative equals
the power law index a, and the fractional dispersivity

Cf1l-a) forO<a<1,and

Ir2-a)
a_

D =

C forl<a<?2.

These relations can be useful for simulating sample paths of a stable Lévy process
using the compound Poisson approximation. A histogram of particle locations at time
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t > 0 will approximate the solution to the corresponding fractional diffusion equation.
This is the method of particle tracking, see for example Zhang, Benson, Meerschaert
and Scheffler [223].
The two-sided stable law is a sum of independent components, segregating the
positive and negative jumps. Write (k) = py. (k) + qip_(k) where
(o]
Y, (k) = J (e -1 -iky) Cay*'dy=C

0
0

Y_(k) = J (e”‘y 1ky) Caly|™*tdy=C
-0
Then Y = Y* + Y~ a sum of two independent stable laws. Take C = (a — 1)/I'(2 — @)
to get Y_(-k) = (-ik)* the Fourier symbol of the negative fractional derivative. Invert
the FT to obtain the generator form of the negative fractional derivative in the case
1 < a < 2: A change of variables shows that

r(z a)( s

( )( e

P_(k) = J (e7™ -1+ iky) Cay™*'dy.
0
Use [ ef(x +y)dx = et f(k) to get
a*“fxX) 1., . ap
W = (1K) f ()]

! [ j (e™f (k) ~F (k) ~ ikyf (K)) Cay™*"dy
0

(9]

j (FOc +9) - 00 -y (0)y 1 dy. (3.34)
0

a(a 1)
TT2-a)

Note that f(x+y) = f(x)+yf' (x)+0(y?) by a Taylor series expansion, so that this integral
converges at y = 0 if f is sufficiently smooth. Formula (3.34) can also be derived from
(3.28) by a change of variables.

Details

In the one-sided case, the shifted compound Poisson process Z} = S(N(t)) - ta, where
S(n) = W1+---+ Wy isarandom walk. Since N(t) is Poisson with mean ¢A,, independent
of S(n), the random sum S(N(¢t)) has mean

E [S(N(6)] = ZIE [SGIN(E) = j1PIN(8) = j]

—.
o

I
M8

JE[W]P[N(t) = j]

~.
]
o

= E[W]tA, = tan
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so that E[Z}] = 0.
In the two-sided case we have

P jcbn(dy) - j (dy)
lyl>1/n
-1/n

o0
- jpc‘ay'“‘ldw j gCalyl*dy
/n

1 -0

(o)
=(p+q) J Cay *ldy = Cn®
1/n

and the probability measure

_ n%pay ®ldy fory>1/n,and
wn(dy) = Anlfl)n(d)’) = _ —aei
n~%*qaly| **dy fory<-1/n.

Then

a

o0
P[W, > x] = wn(x, 00) = I n~“pay=%ldy = pAx~
X

—-X [ee]
P[W, < -x] = I n~%gqaly|*ldy = J n~%qay % ldy = gAx*
X

=00
where A = n~@ for all n. Again Y, = Y since [ (e”‘y -1- iky) ¢(dy) exists. Here

-1/n

o0
E[Wj] = I ypAay *tdy + I yqAaly™tdy = (p - q)
1/n

Aa na—l
a-1

—00

so that E[W;] = 0if p = g. In this case, the compensator a, = 0, and the compound
Poisson approximation converges without centering.

3.6 Triangular arrays

This section develops the general theory of triangular arrays, which is the fundamen-
tal tool used to prove the extended central limit theorem for stable laws. Recall that Y
is infinitely divisible if for every positive integer n we can write Y = X1 + - + Xy @
sum of iid random variables. A triangular array of random variables is a set

Xnjij=1,...,kpsn=1,2,3,...} (3.35)

where Xp1, ..., Xuk, are independent for eachn > 1, and k;, — coas n — oo. Then
the row sum
Sn=Xn1 +- + Xnk,
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is a sum of independent random variables. We will make the usual assumption that

lim sup P[|Xn|>¢e] =0 foralle>O0. (3.36)
=009 ¢jck,
This condition ensures that every summand is asymptotically negligible. A general
result [146, Theorem 3.2.14] states that Y is infinitely divisibleifand only if S,—a, = Y
for some triangular array that satisfies (3.36) and some sequence (ay).
Example 3.30. Take (W,) iid with E[W,] = 0 and E[W2] = 02 < co. Then

1
_W‘:
ovn

forms a triangular array with k,, = n, and the row sums S, = Y = N(0, 1). Note that
Xyj areiid for 1 < j < n, but the distribution of X,,; depends on n.

Xnj = 1<j<n

Example 3.31. Take (W,) iid with E[W,] = 0 and E[W2] = 02 < co. Then
Xpj=n"?W;: 1<j<[nt]

forms a triangular array with k,, = [nt], and the row sums S, = Y = N(0, ¢°t). In
other words, S, = B(t) for any single t > 0, where B(t) is a Brownian motion.

Example 3.32. Take (W) iid with u = E[W,] # 0 and E[(W, - u)?] = 62 < co. Then

1 1 .
an:—(Wj—y)+Hy: 1<j<[nt]

Vn

forms a triangular array with k, = [nt], and the row sums

% 1 ["z” [nt]
Sn=) Xnj=—= ) (W;—pu)+ —pu = B(t) + ut
j=1 A= "

a Brownian motion with drift, where B(t) = N(0, ot). Note that two scales are neces-
sary here: We must divide the mean by n and the deviation from the mean by +/n to
represent both terms in the limit.

The proof the extended central limit theorem with normal or stable limits depends on
the convergence theory for triangular arrays. Define the truncated random variables

an if |Xn]'| <R; and

XR = XpiI(| Xyl < R) =
mj SRR 0 if Xyl >R

We say that a sequence of o-finite Borel measures ¢,(dy) — ¢(dy) on{y : y # 0}
if ¢,(B) — ¢(B) for any Borel set B that is bounded away from zero, and such that
¢(0B) = 0. This is called vague convergence. In Section 3.4 we defined a sequence of
compound Poisson random variables whose Lévy measures ¢, converged vaguely to
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the Lévy measure ¢ of a stable law. See the details at the end of this section for more
discussion.

Theorem 3.33 (Triangular array convergence). Given a triangular array (3.35) such
that (3.36) holds, there exists a random variable Y and a sequence (a,) such that
Sn — ap = Yifand only if:

kn
@) Z P[Xy; € dy] — ¢(dy) for some o-finite Borel measure on{y : y # O}; and
j=1

kn kn
e el T e e
(ii) lgl%llTHsgp;Var[an] = g%hrmltgfi; Var[X;] = b > 0.

In this case, Y is infinitely divisible with Lévy representation [a, b, ¢], where a depends
on the choice of centering constants (a,). We can take

kn
an = ) E[XK] (337)
j=1

for any R > 0 such that ¢{y : |y| = R} = 0, and then E[e¥Y] = e¥o(®) where
Pok) = ~1k2b + J (6™ — 1 - ikyI(ly| < B)) p(dy). (3.38)

That is, (3.5) holds with ag = 0.
Proof. This is a special case of [146, Theorem 3.2.2]. O

Remark 3.34. To establish vague convergence condition (i), it suffices to show

kn kn
Y P[Xy; >yl - $(y,00) and Y P[Xy; < -y] = p(-c0,-y) (339)
j=1 j=1

for every y > 0 such that ¢{y} = ¢p{-y} = 0. The centering constants a, in (3.37) and
the log characteristic function (k) both depend on the choice of R > 0. If the Lévy
measure has a density, as is the case for stable laws, then any R > 0 may be used, since
we always have ¢p{R} = ¢{-R} = 0. To establish the truncated variance condition (ii),
it is of course sufficient to show that

K
lim lim ' Var[X%] = b. (340)
j=1

£—0 N—00 4

Remark 3.35. The proof of Theorem 3.33 is based on a Poisson approximation. First
we approximate S, =~ Sy where N is Poisson with mean k,, independent from the tri-
angular array elements. Then we use the converge criteria for infinitely divisible laws.
Suppose Yy, = [an, by, ppland Y = [a, b, ¢] in terms of the Lévy representation. Then
Y, = Y ifand only if (k) — (k) for each k, i.e., the log characteristic functions
converge [146, Lemma 3.1.10]. Write
iky
1+y2

foy, k) =e™ -1 -
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and note that y — f(y, k) is a bounded continuous function such that
fiy, k) = -1k?y* + 0(y*) asy -0

for any fixed k. Now it is not hard to show that
| ftodutdy) = | sty
lyl>€ lyl>e

whenever ¢{|y| = €} = 0, which must be true for almost every € > 0. Then

lim lim [ forga(dy) = lim | fonlo(dy) = [ fiv. 9gay)

£—0Nn—00
lyl>e lyl>e

since f y2I(0 < |y| < €) ¢(dy) exists for a Lévy measure. To handle the the remaining
part of the integral term in the Lévy representation for ,, (k) we write

lim lim -3+ [ S0 00gn(@)

£—0Nn—00
O<|yl<e

~lim lim | -1icb, -3 [y gutdy) | =-1Kb

£—0 n—o00
O<|yl<e
provided that
. . 2 _
lll% nlggo b, + j y ¢n(dy) | = b. (3.41)
O<lyl<e

Then it can be shown that Y,, = Y if and only if (3.41) holds along with a, — a and
¢n — ¢, see [146, Theorem 3.1.16]. The proof of Theorem 3.33 uses these ideas, along
with some delicate centering arguments.

Here we prove the traditional central limit theorem with iid summands, to illustrate
the use of Theorem 3.33.

Theorem 3.36 (Central Limit Theorem). Suppose that (W) are iid and that pu; =
E[W,] and pu, = E[W?2] exist. Then

Wit ot W, —
L1 T Ly = N0, 0?) (3.42)
nl/2
where 0% = py - pi.
Proof. Define a triangular array with row elements X,; = n-1/2 Wjforj=1,...,n

Then condition (3.36) holds (see details), and then in order to prove that S, —a, = Y
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normal, it suffices to check conditions (i) and (ii) in Theorem 3.33. For condition (i) we
have for each € > O that

=~

P[|Xyj| > €] = nP[|In" Y2 W;| > ]
1

.
]

= nP[|W;| > n'/?¢]
= nE[I(|Wj| > n'/?¢)]

N2
snIE[( W; ) I(|Wj|>nl/ze)]

ni/2¢

= e 2E [W?I(Wj| > n'?g)| — 0

as n — oo, since u, = E[W?] exists. Then (i) holds with ¢ = 0.
Condition (ii) in this case is a form of the Lindeberg Condition. Write

ke
}; Var[Xg;] = n{E[(X5)?] - E [Xij]z}

= nE[(n P W) I(n P Wy < €)] - nE [n P Wil 2wy < )]
= E[W2I(W)| < n'e)] - E[WI(Wj| < n'e)]” — pz — 13

since the first and second moments exist. Then Theorem 3.33 shows that S, — a, =

Y = [a, b,0] where b = u; - y% = 02 = Var(Y). This shows that Y is normal. From

(3.37) we get

kn
an = ) E[XK] = nE [n" P WiI(Wj| < n'/?R)]
j=1

=n'2 {p, - E[W;I(W;| > n'/2R)]}
where
|n1/2]E [W}I(”/V]l > nl/ZR)]l < nl/ZIE [|W1|I(|VV]| > nl/ZR)]
74
v 1w (Y5 rqwrg > ni2
<n'’E [|Wj|(n1/2R>I(IW,| >n R)]
= R'E[W/I(W;j| > n'/>R)] - 0

since i, exists. This shows that a, — n*/?u; — 0 and then we have S, - n'/?u; =
Sy — an + (ay — n'/?u1) = Y. Then (3.42) follows. O

Details

Theorem 3.33 uses the concept of vague convergence: We say that a sequence of o-finite
Borel measures ¢,,(dy) — ¢(dy) on{y : y # 0} if ¢p,(B) — ¢(B) for any Borel set B
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that is bounded away from zero, and such that ¢(0B) = 0. Here 0B is the topological
boundary of the set B, defined as the closure of B (the intersection of all closed sets
that contain B) minus the interior of B (the union of all open sets contained in B). The
Borel measure is a standard tool in real analysis and probability (e.g., see [35, 62, 180]).
In the physics notation introduced in the details at the end of Section 3.1, we noted that
a Lévy density can often be interpreted in terms of generalized functions, with Dirac
delta function terms to represents atoms in the Lévy measure. Readers who are more
comfortable with the physics notation may interpret the vague convergence ¢, — ¢
to mean that, if ¢, (dy) = ¢n(y) dy and ¢(dy) = ¢(y) dy, then

b

b
n(a, b) = j bu(y)dy — j é()dy = p(a, b)

a

forall0 < a < bora < b < 0 such that ¢(y) has no Dirac delta function terms at
the points a, b, i.e., ¢{a} = ¢p{b} = 0. Stable distributions all have Lévy densities ¢(y)
with no Dirac delta function terms. However, these Lévy measures are not finite, since
f;o ¢(y)dy = coor ff)oo ¢(y) dy = co. In this case, the Lévy measure is called o-finite
because it assigns finite measure to the sets {y : |y| > 1/n}, and the set {y : y # 0} is
the countable union of these.

If X is any random variable, then the distribution of X is tight, meaning that

P[X|>r] -0 asr — co. (3.43)

Equation (3.43) follows by a simple application of the dominated convergence theo-
rem. It follows that
P[|Xy| > €] = P[|Wj| > n'/%e] -0

as n — oo, so that condition (3.36) holds.

3.7 One-sided stable limits

Here we prove that one-sided stable laws with Lévy measure (3.10) are the limits for
sums of iid Pareto jumps. We also specify a convenient centering.

Theorem 3.37. Suppose that (W) are iid and positive with P[W,, > x] = Cx~% for all
x> CY% forsome C > 0and 0 < a < 2. Then

nVE WL+ + W) —a, =Y (3.44)

for some sequence (ay,), where Y is a one-sided stable law with Lévy representation
[a, 0, ¢], and the Lévy measure is given by (3.10). If 0 < a < 1, we can choose a, = 0,
and then (3.12) holds. If 1 < a < 2, we can choose a, = nl’l/“yl where u; = E[W,],
and then (3.16) holds.
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Proof. Define a triangular array X,; = n-1/a Wjforj=1,...,n. Then condition (3.36)
holds (see details), and we just need to check the convergence criteria (i) and (ii) from
Theorem 3.33. For y > O we have

n

M»

P[Xyj > y] = nP[n VW; > y]
1

.
]

= nP[W; > n*/%y]
=nC(n'%y)“ = cy @

whenever nl/?y > C1/% aswell as

P[Xy, < -y] = 0.
1

oz

]

Then (i) holds with ¢(y, co) = Cy *forally > 0, and ¢p(—c0, 0) = 0. This is equivalent
to (3.10). Note that O < a < 2 is required here, so that ¢(dy) is a Lévy measure:

R
I I,
2—-a

R
2 _ 2 —a-1 _
jy¢(dy)—!yCay dy—[ v 2oa

lyIsR

For any € > 0 we have, whenever n is sufficiently large to make n'/%¢ > C/2, that
K, X
2 2
0< ) Var[X]=n {E [(x)?] - B[X5)] } < nE [(X))?]
j=1

= nE[(n” VW) I(In"V*Wj| < e)]
=n'2ME[WI (W] < n'/%)]

n'/%e
=nl-2/a I y2Cay t%dy
Cl/a
1 a nl/lxg
=npl-2/e [Ca—y ]
2-a]cia
_ pi-2acy e S (S e
2-a 2-a
_ pl-2/a Ca [nz/a—1£2—a _ C2/a—1]
2—-a
_ g2« Ca _ n1—2/aLC2/ﬂ ~ gkﬂﬂ (3.45)

2—-a 2—-a 2—-a

asn — oo, since 1 — 2/a < 0. Then we have

k
2 Ca
lim li Var[Xt.] < lime? *—"_ =
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since 2 — a > 0, so that (ii) holds with b = 0. This proves that S, — a, = Y holds
for some sequence (ay), where Sy, = Xp1 + -+ + Xpp = n YW, +--- + Wy) is the row
sum of this triangular array, and Yy is infinitely divisible with Lévy measure ¢ and no
normal component.

Suppose that 0 < a < 1. Theorem 3.33 shows that, if we choose (a;) according to
(3.37), then E[eikYo] = e¥o(K) where

bolk) = [ (€% = 1~ ikyIyl < B)) d(dy)

= [ (e 1) gay) - i [ yry! < Rigpcay)
=-CI'(1 - a)(-ik)* — ika (3.46)

by Proposition 3.10, where we can take

R 1-a 1R Ca
a= ijay*“’ldy =Ca [ Y ] = —_R!"¢ (3.47)
l-a], 1-a
0
for any R > 0, since ¢ has a density. Write
kn
an = ) B[XK] = nE [nV*WiI(n Y *Wj| < R)]
j=1
n'/®R
_ pl-la j y Cay~2dy
Cl/a
_ nl*l/aca (nl/aR)l—tx ~ (Cl/a)l—a
l-a 1-a
— iRl-ﬂ _ nl—l/aicl/a N ﬂRl—“ —a (3.48)
l1-a l1-a l1-«a

asn — oo, since 1 — 1/a < 0 in this case.

Let Y be a one-sided stable law with characteristic function exp[-CI'(1-a)(-ik)*],
sothat Y — a = Y, in view of (3.46). Since a, —a — Owealsohave S, —a =S, —a, +
(an — a) = Yy, and then we alsohave S, = S, —a +a = Yy +a = Y. Hence we can
take a, = 0 in this case, and then the limit has characteristic function (3.12).

Suppose that 1 < a < 2. Theorem 3.33 shows that, if we choose (a,) according to
(3.37), then E[eikYo] = e¥o(®) where

Yolk) = [ (e - 1 - ikyI(lyl < B)) b(dy)

= [ (e~ 1~ iky) idy) + ik [ yryl > Ropiy)

I2-a)

=0

(-ik)* + ika (3.49)
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by Proposition 3.12, where we can choose

R (3.50)

o 1-a 1
_ —a-1 _ Yy _ Ca
a—}!yCay dy_ca[l—aL_—a—l

for any R > 0, since ¢ has a density. Using (3.48) we have
Ca

n = 7= aRl‘“ - nl‘l/“ﬁcl/“ =—a+n"Vay, (3.51)
since
@« yl—a o
u1 = E[Wy,] = j y Cay™'"dy = [Ca ]
1-a] .

Cl/lx C

_ Ca (Cl/a)l—a — a Cl/a (3 52)
a-1 a-1 )

exists in this case.
Let Y = Y, — a, so that Y has characteristic function (3.16). Since S,, - a, = Yo
and ay, + a = Y%y, it follows that S, —n'"Y%u; =S, —apn-a= Yo-a=Y. O

Remark 3.38. Theorem 3.37 shows that no centering is needed to get convergence
when 0 < a < 1, and when 1 < a < 2 we can center to zero expectation. The stable
limits in this case will be called centered stable. When 1 < a < 2, it is not hard to
check that a centered stable law has mean zero, by differentiating the characteristic
function. See the details at the end of this section.

Details

Since W; is tight for any fixed j, so that (3.43) holds with X = Wj, it follows that
P[|Xy| > €] = P[|Wj| > n/%] - 0

as n — oo, so that condition (3.36) holds.
If Y is centered stable with index 1 < a < 2, then ji(k) = e?® where (k) =
[ (e -1 - iky) ¢(dy). Then

d . . i
E,u(k) = ¥ J iy (e’ky - 1) ¢(dy)

where the integrand is O(y?) asy — 0, and O(y) as y — 09, so that the integral exists.
Using the general fact that % 1(0) = i E[Y]if E[|Y]] < oo (see Proposition 1.1), it follows
that IE[Y] = O in this case. The same argument shows that E[Y] = a, for any infinitely
divisible law that satisfies condition (3.8) in Theorem 3.8, see [146, Remark 3.1.15].
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3.8 Two-sided stable limits

We prove that general two-sided stable laws are the limits for Pareto random walks
that allow both positive and negative jumps. Centering is unnecessary whenO < a < 1,
and we can center to mean zerowhen 1 < a < 2.

Theorem 3.39. Suppose (W) are iid with P[W,, > x] = pCx ® and P[W, < —-x] =
gCx= for all x > CY* forsome C > 0 and O < a < 2, and some p, q > O such that
p+q=1.Then

nYE W+ W) —an = Y (3.53)

for some sequence (a,), where Y is a stable law with Lévy representation [a, O, ¢], and
the Lévy measure ¢ is given by (3.30). If0 < a < 1, we can choose a,, = 0, and then Y
has characteristic function

ju(k) = E[e!*Y] = exp [ - pCT(1 — a)(—ik)® — qCI (1 — a)(ik)®]. (3.54)

If1 < a < 2, we can choose a, = nl‘l/“yl where yy = E[W,], and then Y has charac-
teristic function

Ir-a)
a-1

Ir-a)
a-1

ji(k) = E[e*Y] = exp | pC (-ik)* + gqC (ik)“] . (3.55)

Proof. The proofis similar to Theorem 3.37. Use the triangular array Xp; = n-l/a W; for
j=1,...,n,sothat condition (3.36) holds. For any y > O we have

ke _
z P[X,; > y] = nP[W; > n1/%y] = an(nl/“y) “=pcy
i-1

-,

and

=~

P[Xnj < -y] = nP[W; < -n'/%y] = qCy™@
1

J
whenever n'/%y > €'/, Then condition (i) from Theorem 3.33 holds with Py, 00) =
Cpy~* and ¢(—co, —y) = Cqy~* for all y > 0. This is equivalent to (3.30). Note that the

condition (3.3) for a Lévy measure requires 0 < a < 2.
For any € > 0, for all n is sufficiently large, we have

ki
0 < ) Var[X%] < nE [(X5)’]
j=1

= n'E [ WX I(Wj| < n'/%)]

2-a Ca _pl-2/a a c2la . g2 Ca

- 2-a 2-a 2-a
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as n — oo, by exactly the same argument as the one-sided case (see the proof of The-
orem 3.37), since the distribution of Wﬁ is the same. It follows that condition (ii) from
Theorem 3.33 holds with b = 0. Then the centered row sums S,, — a, = Y, where Y,
is infinitely divisible with no normal component, and Lévy measure (3.30).

Suppose that 0 < a < 1. Theorem 3.33 implies that, if the norming sequence (ay)
is chosen according to (3.37), then E[ek¥o] = e%o(k) where

Yotk = [ (e -1 - ikyl(lyl < B)) p(dy)
= [ (e~ 1) gty - ik [ y1ty1 < RIg(ay)

= -pCIr(1 - a)(-ik)* - qCI'(1 - a)(ik)* - ika
by (3.31). Here

a= [ yiyl < ()
R 0
I ypCay *'dy + j y qCa(-y)*'dy = %(p - Q)R (3.56)
0 -R

which reduces to (3.47) if p = 1. Theorem 3.33 shows that we can choose

ko
an = ) E[X3] = nE [0V WI(Wjl < n'/*R)]
j=1

nl/aR 7cl/a
ntte jpray‘l‘“dw j y qCaly|™~*dy

Cl/lx ,nl/lxR

1/ [p ( (nileR)-e  (cleta )
1-a 1-a

( (nl/th)l—a (Cl/a)l—tx ) ]
a— q a—

1-a 1-a

Ca -
— 1_a(p—CI)R1 a _ 1 l/a(p q) Cl/D{

Ca

P-@R ™ =a (3.57)

—

as n — oo, since 1 — 1/a < 0 in this case.
Define Y = Y, + a. Since a,, — a it follows that S;, = Yo + a = Y. Hence we can
choose ay, = 0 in this case, and then the limit has characteristic function (3.54).
Suppose that 1 < a < 2. If (3.37) holds, then E[et¥Y0] = e¥o(K) where

Yotk = [ (e - 1~ ikyI(lyl < B)) (dy)
= [ (e~ 1~ ky) edy) + ik [ yry > Ry
=pCF(az "‘)( 0% + cr(2 "‘)(zk) + ika (3.58)
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by (3.33), where

a

[y > Ry

0 -R C

= Jpray‘“‘ldy + J yqCa(-y)*'dy = a—_al(p - @R
R -0

for some arbitrary fixed R > 0. Using (3.57) we have

_ Ca 1-a 1-1/a X qja _ 1-1/a
a"_l—a(p q)R n (p q)l_aC =-a+n U1 (3.59)
since
o) —cla
=EWi =p | yCaydy+q | yCat-yy-dy
Cl/a —00

_ﬂ _ 1/ay1-a _ _ L 1/a
- =P - € = (p-q)—=C

exists in this case.
Define Y = Y, —a. Since a, +a = n'~Y/%y; it follows that S, —-n*"Y%y; = Yo-a =
Y, and the limit Y has characteristic function (3.55). O

Remark 3.40. Theorem 3.39 shows that no centering is needed to get convergence
when 0 < a < 1, and when 1 < a < 2 we can center to zero expectation (see the
details at the end of Section 3.7). The stable limits in this case will be called centered
stable.

Now we extend the convergence in Theorem 3.39 to process limits. The next result
shows that a random walk with power law jumps, suitably centered, converges to an
a-stable Lévy motion. If 0 < a < 1, then no centering is needed. If 1 < a < 2, we can
center to zero expectation.

Theorem 3.41. Suppose (W) are iid with P[W, > x] = pCx~® and P[W, < —-x] =
gCx~% for all x > CY/ for some C > 0 and O < a < 2, and some p, q > O such that
p+q=1.

(a) If0 < a < 1, then
[nt]

nVey W= Z; (3.60)
j=1
for all t > 0, where
E[e*%] = exp [ - tpCT(1 - a)(=ik)* - tqCT(1 - a)(ik)*]; (3.61)

(b) If1 < a < 2, then u;, = E[W,] exists and

(nt]
VN (W - ) = Zg (3.62)
j=1
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forall t > 0, where

Ir2-a

E[eik%] = tpC
[e™] =exp |tp -1

(-ik)* + tqC i) |. (3.63)

Ir2-a
a—-1

Proof. If 0 < a < 1, then Theorem 3.39 shows that n-1/2S(n) = Y, where the random
walk S(n) = Wy +--- + Wy, and the limit Y has characteristic function (3.54). Let ji,(k)
be the characteristic function of n=1/# W;, so that ji,(k)" — ji(k) forall k € R. Then we
have

(0 = (o™ " (i (3.64)

for any ¢ > 0, and (3.60) follows, where the limit Z; has characteristic function u(k)‘,
so that (3.61) also holds.

If1 < a < 2, then Theorem 3.39 shows that n-1/2S(n) - n'~Y/%y; = Y, where the
limit Y has characteristic function (3.55). Letting 1, (k) be the characteristic function
of n‘l/“(Wj — M1), it follows that ji, (k)" — ji(k) for all k € R. Again (3.64) holds, and
then (3.62) follows, where the limit Z; has characteristic function (3.63). O

Theorem 3.41 relates the parameters of a Pareto random walk to the FT of the limit
process, an a-stable Lévy motion Z;. For example, in the case 1 < a < 2 we have
pk, t) = E[e k%] = exp [tpD(ik)* + tgD(-ik)*], where D = CI'(2 - a)/(a — 1). Then

op(x, t) _ Dbap(x, t) Db“p(x, t)

ot PYCHE P YR

and we can see that the weights p, g on the positive and negative fractional derivatives
come from the relative probability of large jumps in the positive or negative directions.
This is consistent with our earlier conclusions, based on the Poisson approximation.

Remark 3.42. It is also possible to prove Theorem 3.41 directly. We illustrate the proof
in the case 0 < a < 1and p = 1. Define a triangular array X,j = n~Y/4W; for j =

1, ..., [nt]. Then condition (i) from Theorem 3.33 holds since:
& [ni]
Y PXyj >yl = [nt]P[n VW > y] = = nP[w; > n/%y] - tCy=%; and

=1

ke
Y P[Xpj < -y] = [nt]P[n*Wj < —y] — 0.
j=1

Condition (ii) holds since

kn
0< Y Varlx$] < [nt]E [ (XE,?] = %
=1

nE [(X%)*] - o.
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Then S, -an = Z?, where the limit Z? is infinitely divisible with no normal component
and Lévy measure t¢(dy), with ¢ given by (3.10). If (3.37) holds, then

E[e*®] = exp H (e — 1 - ikyI(yl < R)) t¢(dy)]
= exp U (e”‘y - 1) td(dy) - ikta]

where a is given by (3.47). Since

k,
. e
an =Y E[X%] = nE[XR] = —[’;] [—1 LRI e ac”ﬂ] — ta
j=1

asn — oo, we can let Z; = Z° — ta, and it follows that (3.60) holds, where E[e/**(] =
exp “ (e”‘y - 1) t¢(dy)] . Then (3.61) follows from Proposition 3.10.

Remark 3.43. The convergence arguments in Theorem 3.41 shed some light on the
structure of the limit process Z;. This topic will be covered systematically in Chapter 4.
Under the assumptions of this theorem, suppose that (3.60) holds for some 0 < a < 1,
orsome 1 < a < 2 with E[W,] = 0. Given s, t > 0, write S, = n"Y%(Wy +---+ W,) and
note that Syy(t+s)) = Zt+s. We also have

Sin(e+s)) = Stnt) + (Sint+s)) = Sine))

[nt] [n(t+s)]
=nla Z W]' +nle z W]'
j=1 j=[nt]+1

= Zt + (ZHS - Zt)

since the two sums are independent. This shows that Z;, s = Z¢+(Z¢,s—Z¢) a sum of two
independent increments. Since the second sum is identically distributed with Sy, it
also shows that Z;,s — Z; = Zs, i.e., the distribution of the increments is stationary. In
general, we define a Lévy process Z; as an infinitely divisible process with stationary
independent increments. Assuming Z; has characteristic function ji(k)! = et s
not sufficient to make Z; a Lévy process. For example, take Z =~ N(0, 2) and define
Z; = t1/2Z Then Z; has characteristic function e~**, but Z, does not have independent
increments.



4 Continuous Time Random Walks

We begin this chapter by refining the stable limit theory from Chapter 3. We intro-
duce regular variation as a technical tool to describe the full range of random walks
attracted to a normal or stable limit. This shows that fractional diffusion is a robust
model. Then we extend to the continuous time random walk (CTRW) by imposing a
random waiting time between random walk jumps. The CTRW is studied as a random
walk in space-time, which is then reduced to a time-changed process in space, using
the fundamental ideas of Skorokhod. Finally, we develop the space-time fractional
diffusion equations that govern CTRW scaling limits.

4.1 Regular variation

Regular variation is a technical tool that formalizes the idea of power law asymptotics.
The necessary and sufficient conditions for the central limit to hold, even in the case
of a normal limit, are written in terms of regular variation. Suppose that (W) are iid
random variables, and Y is a random variable that is not degenerate (i.e., there is no
constant y such that P[Y = y] = 1). We want to know when

anWi+---+Wy)-bp,=Y (4.0)

for some a, > 0 and b, € R.
Suppose that R : [A, co) — (0, co) is Borel measurable, for some A > 0. We say
that R(x) varies regularly with index p, and we write R € RV(p), if

R(Ax)

- AP
lim RGO AP forall A > 0. (4.2)

Then R(Ax) ~ APR(x), so that R(x) behaves like a power law as x — co. If p = 0 we
also say that R(x) is slowly varying. We say that a sequence of positive real numbers
(ap) is regularly varying with index p, and we write (a,) € RV(p), if

. ap
lim ZAn
n—-oo  ap

=A? forallA>o0.

Example 4.1. The function R(x) = x” log x is regularly varying with index p. The func-
tion R(x) = x *[2 + cos x] is not regularly varying, because R(Ax)/R(x) oscillates too
fast to approach a limit as x — oo. The function R(x) = log x is slowly varying. If
R(x) € RV(p), then L(x) = x"PR(x) is slowly varying.

Remark 4.2. If a sequence of positive real numbers (ay,) is regularly varying with in-
dex p, then the function R(x) = ajy varies regularly with the same index. Conversely,
if a function R(x) varies regularly with index p, then the sequence a,, = R(n) varies

DOI110.1515/9783110258165-004
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regularly with the same index. The proof is surprisingly delicate, see Meerschaert and
Scheffler [146, Theorem 4.2.9].
Let W be identically distributed with W,, and define

Uy (x) = EIW2I(W| < x)] and Vo(x) = P[|W] > x] (4.3)
the truncated second moment and tail of W.
Example 4.3. Suppose that Vo(x) = P[W > x] = x* for some a > 0, for all x > 1.

Then W has cdf F(x) = P[W < x] = 1 - x ® and pdf f(x) = ax * ! forx > 1. For { > a
we define the truncated moment

Ur(x) = BIWSI(W < x)] = j%f(y) dy
1

(_

S [x(‘“—1]~ 2 yi-a

(-a (-a

as x — oo. Then U¢(x) — coasx — oo, i.e., E[W¢] does not exist. For 0 < n < awe
define the tail moment

X
—a— a _
:J“y{ “ldy= 25 [ “J
1

Vy(0) = E[WUW > x)] = j YUf(y) dy

o0
X
so that V;(x) — 0 as x — oco. Combine to obtain the Karamata relation:

as x — oo. (4.4)

X$TMV(x)  {-a
Ur(x) a-n

Theorem 4.4 (Karamata Theorem). Suppose W is a random variable such that Uy (x) =

E[|[WII(|W| < x)] and Vy(x) = E[|W]TI(|W]| > x)] exist.

(a) If Ug(x) isRV(p), thenp = { — a = O for some a, and (4.4) holds;

(b) If Vy(x) isRV(p), then p = 1 — a < O for some &, and (4.4) holds;

(c) If (4.4) holds for some a € (1, {], then U¢(x) is RV({ - a);

(d) If (4.4) holds for some a € [n, (), then Vy(x) is RV(n — a).

Proof. This is a special case of [146, Theorem 5.3.11]. See also Feller [68, VIII.8]. The
proof uses integration by parts to relate U; to Vy, along with some hard analysis. [
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We say that W belongs to the domain of attraction of Y, and we write W € DOA(Y),
if (4.1) holds for some a, > 0 and b, € R, where (W},) are iid with W, and Y is
nondegenerate. The following theorem gives necessary and sufficient conditions for
W e DOA(Y) in terms of regular variation. It also proves that normal and stable laws
are the only possible limits. The proof is based on Theorem 3.33, the convergence crite-
ria for triangular arrays. It uses regular variation together with the Karamata Theorem
4.4 to compare the tail (condition (i) of Theorem 3.33) and the truncated second mo-
ment (condition (ii) of Theorem 3.33). The first part of the theorem, regarding normal
limits, will be proved in this section. The second part, regarding stable limits, will be
proven in Section 4.2.

Theorem 4.5 (Extended Central Limit Theorem). If W € DOA(Y) then Y is either nor-

mal, or stable with index 0 < a < 2, and:

(a) IfY is normal, then W € DOA(Y) if and only if U, (x) is slowly varying;

(b) IfY is stable with index 0 < a < 2, then W € DOA(Y) if and only if Vo(x) is regularly
varying with index —a and

lim P[W > x]

Jm = =p forsomeO<p<l1. (4.5)

Proof of Theorem 4.5 (a). Suppose that (W;) are iid with W and that U,(x) is slowly
varying. Then p; = E[W] exists (see Proposition 4.14 in the details at the end of this
section). If E[W?] < co, we have already proven in Theorem 3.36 that (4.1) holds. Oth-
erwise if E[W?] = oo, then U,(x) — 0o as x — oco. Choose a, — 0 such that

na2U(a,') —» 0> >0 (4.6)

(see Corollary 4.13 at the end of this section for an explicit construction). Define a tri-
angular array with row elements X,; = a,W; forj = 1, ..., n. Then condition (3.36)
holds (see details), and so it suffices to check conditions (i) and (ii) from Theorem 3.33.
Condition (i): Apply Theorem 4.4 (a) with { = 2, n = 0, and p = O to see that the
Karamata equation (4.4) holds with a« = 2. Then
kn
Y P[|Xyjl > €] = nP[la, Wj| > €]
j=1

-,

=nVy(a,'e)
_ (a3'e)*Vo(az'e)

U (ay'e)
2

2 -naiU,(a,'e)
—0-e2.0
since X2 Vo(x)/Uz(x) — (2 — @)/a = 0 by (4.4), and

Uz (ayte) 2

2 -1 2 -1
na;U,(a,"€) = na,Us(a,”) - o -1
no 2 no 2 Us(ayn")
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by (4.6), and the fact that U, (x&)/U,(x) — 1 as x — co. This shows that (i) holds with
¢i{x:|x| >e}=0foralle >0, i.e., ¢ =0, the zero measure.

Condition(ii): Since U,(a,') — oo it follows from (4.6) that na? — 0. Then with
Xfu. = Xyjl[|Xyjl < €] we have

ko

Z Var[X;;] = nE[(X)*] - nB[X;]?

= = nE[(an W)’ I(lap W] < €)] - nE[a, WI(|la, W] < €)]°
= naiUy(a,'e) - naZE[WI(|W| < a,'e)]?

~naiU,(a,'e) — o (4.7)

since E[WI(|W| < a,'¢e)] — u1 by the dominated convergence theorem, and na2 — 0.
Then it follows from Theorem 3.33 that (4.1) holds with Y normal.

Since the direct half of Theorem 4.5(a) is our main interest, we only sketch the
proof of the converse, highlighting the role of regular variation arguments. Suppose
that (4.1) holds with Y normal. Assume for now that y; = E[W] = 0. Then conditions
(i) and (ii) hold from Theorem 3.33. Writing (ii) as in (4.7) it follows that

na’U,(a,'e) - na2U(a,'e)? — o® = Var(Y). (4.8)

If (4.1) holds with Y nondegenerate, a simple argument using characteristic functions
[146, Lemma 3.3.3] shows that a, — 0. Then a dominated convergence argument
yields Uy(a,'e) = E[WI(W| < az'e)] — up = 0. A similar argument shows that
Uy(ay'e) = E[W2I(|W| < a,'e)] — E[W?], where 0 < E[W?] < co since W is not
degenerate. It follows that Uy (a;;'€)? = o(Uz(a;'€)) as n — oo, and then (4.8) yields
nazU,(a,'e) — o2 forall € > 0. Then an argument similar to the first part of the proof
of Proposition 4.15 in the next section shows that x 2 U, (x) varies regularly with index
-2, and it follows that U, is slowly varying. See Feller [68, XVIL5] or [146, Theorem
8.1.11] for complete details.

Finally, if (4.1) holds with Y normal, then a convergence of types argument [146,
Theorem 8.1.5] shows that (ay) is RV(-1/2), and then it follows from condition (ii)
and a regular variation estimate [146, Proposition 8.1.6] that u; = E[W] exists, so the
assumption y1 = O entails no loss of generality: Simply replace W; by W; — 1, which
changes the shift b,,. O

Corollary 4.6. We can choose by, = nanp1 in (4.1) when Y is normal.

Proof. Thiswas already proven in Theorem 3.36, in the case E[W?] < co.In the general
case, Theorem 3.33 implies that we can take

ki
bn = ) E[X5] = nEla, WI(lanW| < R)] = na,E[WI(W| < a;'R)] ~ nanp
j=1

since E[WI(|W| < a,;'R)] — u; as n — co. O
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Remark 4.7. For finite variance jumps, we can take a, = n~'/2 in (4.1). For infinite
variance jumps and Y normal, Corollary 4.13 in the details at the end of this section
shows that the sequence (a,) is RV(-1/2). Then we can write a, = n~'/2¢, where
(€y) is slowly varying. Now Proposition 4.9 together with Remark 4.2 show that for any
€ > 0, for some ng > 0 we have

né<e, <nt (4.9

for all n > ng. In other words, the norming constants a, — 0 about as fast as n~1/2

when Y is normal.

Details

Since W; is tight for any fixed j, so that (3.43) holds with X = Wj, it follows that
P[X, > €] = P[|Wj| > a;'e] - 0,

since a, — 0 as n — oo, so that condition (3.36) holds.

The theory of regular variation is simpler for monotone functions. We will restrict
to this case, since it suffices for all our applications. The next four results remain true
if we remove the assumption that R(x) is monotone, but the proofs are significantly
harder, see Seneta [197, Theorem 1.1 and Section 1.5].

Proposition 4.8. If R(x) is monotone and R(x) € RV(p) for somep > 0, then R(x) — co
as x — oo.

Proof. Fix some A > 1 large and note that for all § > 0 small, there exists some xg > 0
such that

R(Ax)
RGO >AP1-6)>1

for all x > xg. Given x > xo, we can write x = (A"x, for some unique nonnegative
integer n = n, and some unique real number { = {; € [1, ). Then
R _ R@"Xo) _ RGA'x0) RA'xo) | Rkxo)
R(xo)  R(xo0)  R(A"xq) R(A"1xq)  R(xo) ~

tends to infinity as x — oco. O

-9

Proposition 4.9. If R(x) is monotone and R(x) € RV(p), then for any € > 0, for some
Xo > 0 we have
xP8 < R(x) < xP*¢ (4.10)

forall x > xg.
Proof. The function x"*¢R(x) is RV(¢), so it tends to infinity as x — oo by Proposition

4.8. This proves that x~¢ < R(x) for all large x. The proof of the upper bound is similar.
O
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Theorem 4.10 (Uniform Convergence Theorem). Suppose R(x)is monotone and R(x) €
RV(p). Then for any sequence A,, — A > 0, and any sequence x, — oo, we have

R(Anxy)
R()

i (4.11)
asn — oo.

Proof. Since A, —» Aasn — oo, forany § > 0 such that A — § > 0, there exists some
nog > Osuchthat A -6 < A, < A+ 6 forall n > ng. If R is monotone nondecreasing,

write
R(xn(A - 6)) < R(xnAp) < R(xn (A + 6))

R(xn) = R(xn) = R(x)
The left-hand side of the above inequality converges to (A — §)P, and the right-hand
side converges to (A + 6)°. Since § > 0 can be made arbitrarily small, it follows that
(4.11) holds. The proof for R monotone nonincreasing is similar. O

Remark 4.11. The condition that (4.11) holds forallA, — A > Oand all x, — oois
equivalent to the condition that (4.2) holds uniformly on compact subsets of A > 0.
Theorem 4.10 is usually stated in terms of uniform convergence on compact sets, e.g.,
see Seneta [197, Theorem 1.1]. The proof is much harder when R is not monotone.

Proposition 4.12. If R(x) is monotone and R(x) € RV(p) for some p > O, then there
exists a sequence r, — oo such that R(r,) ~ nas n — oo. In that case, the sequence
(rn) varies regularly with index 1/p.

Proof. Define r, = inf{x > 0 : R(x) > n}, which exists because R(x) — oo by Proposi-
tion 4.8. Since R is monotone, r, < rp;1, So the limit of r, as n — oo exists. This limit
cannot be finite: If r, — r < 0o, then r, < rforalln, so R(r + 1) > R(r, + 1) > n by
definition of r,. Then R(r + 1) = oo, which is a contradiction. Therefore r,, — co as
n — oo. Since R is monotone, R(r, + €,) > nforany ¢, | 0, and R(r, — €,) < n. Write

R(ry) R(ry) < R(rn)
R(ry + &) n ~ R(rn—¢&n)

and apply Theorem 4.10 with A, = (r, + €,)/rn — 1 to see that

R(rp)  R(rp)
R(ry + €n) N R(Ayry)

asn — oo. A similar argument shows that the right-hand side tends to the same limit,
and then it follows that R(r,) ~ n.
It remains to show that the sequence (r,) varies regularly with index 1/p. Since
R(ry) ~ n, and since R is RV(p) and monotone, it follows from Theorem 4.10 that
R(rnxn)  R(rn) R(rpxn)

= — x?  whenever x, — x > 0. (4.12)
n n  R(rp)
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Define x,, = rjanry," for some fixed A > 0, and write

R(rnxn) _ M_n] R(rany)

n n [An] —~A

Then a simple proof by contradiction shows that x, — A'/?: If any subsequence (x,)
of (xy) satisfies x,» — 0, then (4.12) implies that R(rp xn)/n’ — 0; if xr — oo, then
R(rpxp)/n' = oco;and if xp — b # AYP, then R(rpxy)/n’ — bP + A. O

Corollary 4.13. If U,(x) is slowly varying, then (4.6) holds for some a, — 0, and (ay)
is RV(-1/2).

Proof. If U, is slowly varying, then R(x) = 0%x?/U,(x) is RV(2). Apply Proposition
4.12 to obtain a sequence r, = a;' in RV(1/2) such that 6?a2U,(a;') ~ n, which is
equivalent to (4.6). O

Proposition 4.14. If U, (x) is slowly varying, then IE[W] exists.

Proof. Apply Karamata (4.4) to see that x2Vy(x)/U(x) — (2 — a«)/a = 0. Then for
some xo > 0 we have Vo (x) < x"2U,(x) for all x > x¢. Given any € > 0, Proposition 4.9
implies that Vo(x) < x572 for all x > xg. Write

E[|W|] = I PIIW| > x] dx = I Vo(x) dx < xo + Jdex < o0
0 0 Xo

forany0 < € < 1. O

4.2 Stable Central Limit Theorem

In this section, we will prove part (b) of Theorem 4.5, the necessary and sufficient con-
ditions for the central limit theorem (4.1) to hold when Y is not normal. We say W is
regularly varying if

nPla,W e dy] - ¢(dy) asn — oo (4.13)
for some a, — 0 and some o-finite Borel measure ¢ on {y # 0} which is not the zero

measure. The vague convergence in (4.13) is the same as for condition (i) in Theorem
3.33, the convergence criteria for triangular arrays.

Proposition 4.15. Suppose that W is regularly varying and (4.13) holds. Then:
(a) Forsome a > 0 we have

—-a-1
b(dy) = {pCay dy fory>0 (414)

qCaly|™*tdy fory<o0
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forsome C > 0 and some p,q > Owithp +q = 1;
(b) The sequence (ay) is RV(-1/a), that is,

A[an) N A—l/a
Aan

asn — oo (4.15)

forall A > 0;
(c) The tail Vo(x) = P[|W] > x] is RV(-a) and the tail balance condition (4.5) holds.
Conversely, these two conditions imply W is regularly varying and (4.13) holds.

See details at the end of this section for proof. When Proposition 4.15 holds, we will
also say that W is RV(-a).

Proof of Theorem 4.5 (b). In view of Proposition 4.15 (c), it suffices to show that (4.1)
holds with Y nonnormal if and only if W is RV(-a). Suppose that (W;) are iid with W,
and that W is RV(-a) for some 0 < a < 2. Define a triangular array with row elements
Xnj=anWjforj=1,...,n Then condition (3.36) holds (see details), and so in order
to show that (4.1) holds, it suffices to check the convergence criteria (i) and (ii) for
triangular arrays in Theorem 3.33. Proposition 4.15 (a) along with (4.13) shows that (i)
holds, where ¢ is given by the formula (4.14). Since O < a < 2, it is not hard to check
that ¢ is a Lévy measure. For condition (ii) we apply the Karamata Theorem 4.4 to see

that
X2Vo(x) 2-a
—

U, (x) a

so that U, (x) ~ ax?Vo(x)/(2 — a) as x — co. Then

as x — o0

kn
0 < ) Var[X§] < nE[(X))’]
= nazE[W?I(la, W| < ¢)]
= naiU,(a,'e)

a
2
~na

"2 -«

j=1

(azte)? Volayte)

a o -1
——e nVp(a, ¢
7 _« 0( n )

2

o

= nP[la,W| > €]
2-«a
2a ea . _,
= 5Pl lvl> e =S—Ce

so that
K

o . . P
lli%hinjgpj:zl VarlX;] < lim 5 Ce" =0

This proves that (4.1) holds, where Y has Lévy representation [0, 0, ¢]. Then it follows
from Proposition 4.15 (a) that Y is stable with index a.
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Conversely, if (4.1) holds where Y is nonnormal, the triangular array convergence
condition (i) shows that (4.13) holds, where ¢ is not the zero measure. Then W is
RV(-a), and since ¢ is a Lévy measure, it is easy to check that 0 < a < 2. O

The next result provides specific details about the centering constants and limit dis-
tribution in the stable case.

Proposition 4.16. Suppose that (4.1) holds, where Y is stable with index 0 < a < 2 and

Lévy measure (4.14).

(a) If0 < a < 1, we can take b, = 0, and then the limit Y is centered stable with
characteristic function

]E[eikY] = exp (_Cr(l _ a)[p(_lk)a + q(lk)a]); (4.16)

(b) If1 < a < 2, we can take b, = na,E[W], and then the limit Y is centered stable
with mean zero and characteristic function

E[ekY] = exp( ixz @) [p(-ik)* + q(lk)“]) (4.17)

Proof. We illustrate the proof in the special case where W > 0, so that p = 1. For the
general case, see [146, Theorem 8.2.7]. Suppose that a,(Wy +--- + Wy,) = b, = Y1.1In
case (a), by exactly the same argument as for the Pareto (see Proposition 3.10), we get

Ele™"] = exp [ [ (€™ - 1)g(dy) - ik [ yI(yl < Rp(y)
=exp [-CI(1 - a)(-ik)* - ikb]

where
Rl lX

b= j y(dy) =
lyl<R

By Karamata (4.4) we have U; (x) ~ axVy(x)/(1 - a). The centering constants are given
by

kn
by = ) E[XR] = Z E[XpI(1Xnj| < R)]
j=1 j=1

na,E[WI(|W| < a,'R)]
na,Uj(a,'R)

a,'RVy(a,'R)

a
~nan1_

Ra Ra
T PllanWl > R] - =— iyl > R} =

since ¢{|y| > R} = CR™*. Define Y = Y; + b. Then a,(W; +---+ W) = Y, and the limit
is centered stable, i.e., stable with characteristic function given by (4.16).
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In case (b), by exactly the same argument as for the Pareto (see Proposition 3.12),
we get

Ble] = exp j iky _ —iky>¢<dy>+ikjy1(|y|>R>¢<dy>
[CF(Z Q)

(-ik)* + ikb]

where Ca
b= [ yewy - SR

lyI>R
From Karamata (4.4) we get
xVix) 2-a X2Vo(x) 2-a
— and —
Uz (x) a-1 U, (x) a

so that
Vi(x) ~

—a _ a
— X LU, (x) ~ _1xV0(x).

The centering constants are

b, = na, E[WI(la,W| < R)]
= nay {u1 - E(WI(W| > a;'R)]}

= nauyp; - na,Vi(a,'R)

~ Nanpy — nan a il a,'RVy(a,'R)

Ra
=Ndnpy = —— lan[IanWI > R]
Ra
~napus - ——Pilyl > =nappy —
a—1¢{| | > R} b

since ¢{|y| > R} = CR™*. Define Y = Y; — b. Then

n
An(Wy + -+ + W) — nanpy = an Y (W; - E[Wj]) = Y.
j=1

This limit Y is centered stable, with characteristic function (4.17), and Remark 3.40
shows that E[Y] = 0. O

Remark 4.17. The convergence (4.1) extends to random walk limits. If
aa(Wi+---+Wy)-b, =27

where Z, is normal or stable, then we also have convergence of the characteristic func-
tions

fn(l)" — fi(k) = e¥®
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where i, is the distribution of a, W — n~1by, and u is the distribution of the infinitely
divisible random variable Z;. It follows easily that

fn(0™) = (fa (™)™ — £

for any t > 0, which means that

nt
an(Wyi +-- + Wng) - % by, = Z; (4.18)

foranyt > 0. Thelimit Z; is a Lévy process, see Section 4.3 for more details. If0 < a < 1,
then Proposition 4.16 (a) shows that we can take b, = 0.If 1 < a < 2, then Proposition
4.16 (b) shows that we can take b,, = na,E[W] where a,, — 0, and Corollary 4.6 shows
that the same is true when a = 2. In the case 1 < a < 2, equation (4.18) can also be

written in the form
[nt]

ay Z (Wj-v) = Z;
j=1

where v = E[W]. Using two scales leads to a Lévy process with drift:

[nt] [nt]
an Z (Wj—v)+n? Z V= Zo+ vt (4.19)
j=1 j=1

since [nt]/n — t. Two different scales are required here since a, — 0 at a different
rate than n~! when a # 1.

Remark 4.18. Some authors use a different centering in Remark 4.17. Suppose that
(4.18) holds where Z; is either normal, or stable with index 1 < a < 2, so that E[W]
exists. Then

28y, — th,
n

= <nt—T[nt]> b, < <%)nan1E[W] = ayE[W] — 0.
Now it follows from (4.18) that
an(Wy + -+ Wpy) — thy = Z; (4.20)

foranyt > 0.

Details

Proof of Proposition 4.15. First we will prove part (c). Suppose that W is regularly vary-
ing and (4.13) holds. Define B = {y : |y| > x} and G(x) = ¢»(B), and apply (4.13) to see
that

nVo(a,'x) = nPla, W € B] - ¢(B) = G(x) (4.21)
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as n — oo for all x such that G(x+) = G(x-). Since ¢ is not the zero measure, we
have G(x) > O for some x > 0. Since G(x) is monotone, it has at most a countable
number of discontinuities. Without loss of generality, we may assume that x = 1isa
continuity point, with C = G(1) > 0. Define n = n(x) = inf{n > 0 : a;il > x} so that

ay! <x < ayl,.Then

nVo(aglr) < Vo(rx) < nVO(agilr)
nVo(a,';) = Vo) = nVy(ayh)

where n
— (n+1)Vo(a,l,

if r is a continuity point of G. Define ¢(r) = G(r)/G(1). Let n — oo to see that

nVo(a,1,1) = r) — G(r)

Vo(rx)
=00 Vo(x)

o(r) (4.22)
if r is a continuity point. If r, A, and rA are continuity points, we can take the limit as
x — oo on both sides of the equation

Vo(rAx) _ Vo(rAx) Vo(rx)
Vox) — Vo(rx) Vo(x)

to see that ¢(rA) = p(r)e(A). It follows that ¢(r) = r” for some p € R (see Seneta [197,
Lemma 1.6]), and then G(r) = Cr°. Hence every r > 0 is a continuity point, so (4.22)
holds for every r > 0. Since G(r) — 0asr — oo, p < 0. Then Vj varies regularly with
index p = —a for some a > 0. Now write

nV,(a,") PRAC nv.(a,.,)
nVo(a,t,) = Vo) = nVo(ay')

and let x — oo (which means that n = n(x) — oo as well) to see that the tail balance
condition (4.5) holds withp = ¢p{y : y > 1}/¢p{y : |y| > 1},sothat0 < p < 1.
Conversely, suppose that Vy(x) is RV(-a) and (4.5) holds. Apply Proposition 4.12
with R(x) = C/Vy(x) to obtain a sequence r,, such that R(r,) ~ n. Define a, = r;;! so
that nVy(ay,!) = nP[la,W| > 1] — C > 0. Since a,* = r, — o0, it follows from (4.2)
that
nVo(a,'x)
_—
nVo(ay')
for all x > 0. Using (4.5) it follows that nPP[a, W > x] ~ npP[|la,W| > x] — pCx % and
similarly for the left tail. This is sufficient to prove that (4.13) holds with ¢ given by
(4.14), which proves part (c) and also part (a). Proposition 4.12 also implies that (r,)
varies regularly with index 1/a. Then (a,) varies regularly with index —1/a so that
(4.15) holds, which proves part (b). This concludes the proof. O

nP(la, W| > x] = nVy(a,'x) = nVo(a,') Cx¢
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If WisRV(-a) forsome O < a < 2, then (a,)is RV(-1/a). Then Proposition 4.9 together
with Remark 4.2 imply that a,, — 0. Since Wj is tight for any fixed j, so that (3.43) holds
with X = Wj, it follows that

P Xyl > €] = P[|Wj| > a,"e] — O,

so that condition (3.36) holds.

4.3 Continuous time random walks

In a continuous time random walk (CTRW), we assume a random waiting time be-
tween particle jumps. Let S(n) = Y; + --- + Y, be a random walk with iid particle
jumps. Define another random walk T(n) = J; + --- + J, where J,, > 0 are iid waiting
times between particle jumps, so that a particle arrives at location S(n) at time T(n).
Here we also suppose that (Y},) are independent of (J,,), so the CTRW is uncoupled. Let

N(t) =max{n >0: T(n) < t}

denote the number of particle jumps by time ¢ > 0, where T(0) = 0. Then the CTRW
S(N(t)) is the particle location at time ¢ > 0. Our goal is to determine the limit process
for this CTRW. Then in Section 4.5, we will derive the governing equation of the CTRW
limit.

Since T(n) is a random walk, its limit distribution can be obtained as we did for
S(n). Suppose that Y, are iid with Y, and that Y € DOA(A) where A is either normal,
or stable with index O < a < 2. Then

a,S(n)-b, = A (4.23)

for some a, > 0 and b, real. Suppose that b, = 0, e.g., assume that E[Y] = 0 in the
case 1 < a < 2. Then Remark 4.17 shows that we also get random walk convergence

anS([nt]) = A(t) (4.24)

where the limit A(t) is a Brownian motion, or an a-stable Lévy motion. Suppose J,, are
iid with J, and J € DOA(D). If E[]] exists, then the renewal theorem (e.g., see Durrett
[62, Theorem 2.4.6]) shows that N(t)/t — A = 1/E[J] with probability one as t — oco.
That is, N(t) =~ At for t large. The proof of this fact is a simple application of the strong
law of large numbers. Then

a,S(N(nt)) = A(At)

and the effect of the waiting times is just a change of scale (see details). However, if
E[J] = 0o, the CTRW behaves quite differently.

Suppose that ] € DOA(D) where D is S-stable with 0 < 8 < 1. For example, we
could take P[J > t] = BtP for some B > 0. Then Proposition 4.16 (a) shows that
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cnTp = D for some ¢, — 0, and Remark 4.17 shows that the random walk converges:
cnT([nt]) = D(t) (4.25)

where D(t) is called a f-stable subordinator. Since every J,, > 0, D(t) is a one-sided
stable with p = 1 and g = 0. Also, if 0 < t; < t,, then ¢, T([nt1]) < ¢, T([nt;,]) forall n,
which shows that the limit D(¢,) < D(t»), i.e., the process D(t) is increasing. In fact,
we have

cnT([nt2]) = cnT([nt1]) + cn(T([nt2]) - T([nt1]))

[nti] [nt>]
=cy ) Jj+cn Y Jj=D(t1)+[D(t;) - D(t1)]
j=1 j=[nti]+1

and since the sums are independent, the process D(t) has independent increments.
Take weak limits on both sides of

[nt,] [nty]-[ntq]
Cn Z Jj=cn z Ji

j=[nt1]+1 j=1

to see that D(t,) — D(t1) = D(t, — t1), i.e., the process D(t) has stationary increments. A
process {D(t) : t > 0} with stationary, independent increments is called a Lévy process.
(A subordinator is a Lévy process with nondecreasing sample paths.) Usually we also
assume that D(0) = 0 with probability one, which is certainly true here. Clearly a Lévy
process is infinitely divisible, since D(t) = D(t/n) + [D(2t/n) — D(t/n)] + --- + [D(t) -
D((n - 1)t/n)] is a sum of n iid random variables. Hence the FT of D = D(1) can be
written as E[e~ikP] = %~ with Fourier symbol y(~k) from the Lévy representation
(3.4), and then D(t) has FT e/ for all t > 0. See Sato [187] or Applebaum [7] for
more information on Lévy processes.

The random walk T(n) and the renewal process N(t) are inverses: Obviously we
have {N(t) > n} = {T(n) < t}, which formalizes the fact that there are at least n jumps
by time ¢, if and only if the nth jump occurs by time t. In fact, we also have {N(t) >
u}l = {T(Jul) < t} where [u] is the smallest integer n > u. The idea of inverse processes
can be used, along with the random walk limit for T(n), to get the limit behavior of the
renewal process N(t). For ease of notation, we specialize to the case ¢, = n"*/E. The
general argument uses the fact that (c,) € RV(-1/8) and asymptotic inverses. Using
(4.25) we have

P[N(ct) < cPu]
= P[T([cPul) > ct]
=P[c ' T([cPul) > t]
= P[(cP)yMPT([cPul) > 1)
— P[D(u) > t] (4.26)

PlcPN(ct) < u] =
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forall t > 0, since every stable law has a density (we will prove this in Section 4.5).
Define the inverse stable subordinator

E(t) =inf{u > 0: D(u) > t} (4.27)

which is also the first passage time of the process D(t). It is not hard to check that D, E
are inverses, with {E(t) < u} = {D(u) > t}. Since the inverse stable subordinator E(t)
also has a density (we will also prove this in Section 4.5), we have

P[D(u) > t] = P[D(u) > t] = P[E(t) < u] = P[E(t) < u].

Then it follows from (4.26) that c #N(ct) = E(t). Since (J,) is independent of (Yy,), we
also have
(C_l/“S([Ct]), C_ﬁN(Ct)) = (A(t), E(t))

for each t > 0. To simplify notation, we assume a, = n~1/% here. To proceed further,
we need to introduce some ideas about stochastic process convergence.
Finite dimensional convergence: Given 0 < t; < t; < -+ < t, < oo we want to
show that
(c7Yes([ct1]), ..., HS([cty])) = (A(t1), ..., Altn)). (4.28)

To check this, define t5 = 0 and S(0) = 0 and note that

[cti]
cMaS(leti])) - S (et ) = VY T = Alt) - Alti)
j=lcti-1]+1
fork=1,...,n, and since the sums are all independent, we also have

(cVes((cte]) - cVS([ctr1]) stk =1,...,n) = (A(ty) - A(tx1) : k=1,...,n)

weak convergence of these n dimensional random vectors. To prove (4.28) we will use
the following fundamental result on weak convergence:

Theorem 4.19 (Continuous Mapping Theorem). If X, = X as ¢ — oo and f(x) is con-
tinuous, then f(X.) = f(X) as ¢ — oo.

Proof. See for example Billingsley [36]. O
Define f(x1, ..., xn) = (X1, X1 + X2, ..., X1 + -+ + Xy) SO that f is continuous, with

f(cYes([ety]) - cYaS([ctr1]) sk =1,...,n) = (cV2S([cty]) : k=1,...,n)

and
f(A(ty) —A(tk-1) : k=1,...,n)=(A(ty) : k=1,...,n).

Apply Theorem 4.19 to see that (4.28) holds in the sense of finite dimensional distri-
butions. In Section 4.4, we will extend this result to obtain stochastic process conver-
gence.
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Next we consider the waiting times. Given 0 < t; < t; < -+- < t, < oo and real
numbers usq, ..., U, We can write

lP(c‘ﬁN(ctk) <up:k=1,...,n)=P(N(cty) < Pu k=1, ,n)
(T([cﬁuk] Y>ctr k=1, ..,n)
=P((PYyVET(cPurl) >ty 1 k=1,...,n)
P(D(ug) > tx: k=1,...,n)

=P(E(ty) <ux:k=1,...,n)

—

which proves that c#N(ct) = E(t) in the sense of finite dimensional distributions.
Since (J,) is independent of (Y},), we also have

(c‘l/“S([ct]), c‘ﬁN(ct)) = (A(D), E(1))
in the sense of finite dimensional distributions.

Remark 4.20. Proposition 4.16 (a) shows that if 0 < @ < 1 we can always choose
b, = 0. If a = 1, we can always choose b, = 0 if the distribution of W is symmetric.
Corollary 4.6 and Proposition 4.16 (b) show that we can always choose b, = 0if 1 <
a < 2 and E[W] = 0. Suppose that 1 < a < 2 and v = E[W] # 0. Then Remark 4.17
shows that

an(Siny — [ntlv) + n7 [nt]v = A(t)

asn — oo for any t > 0, where the limit A(t) = Z; + vt is a Brownian motion with drift
in the case @ = 2, or a stable Lévy motion with drift in the case 1 < a < 2. It is not
hard to show, arguing as in (4.28), that we also get convergence in the sense of finite
dimensional distributions in this case.

Details

Suppose that (4.24) holds with b, = 0, and that N(nt)/n — At almost surelyasn — oo.
Then a transfer theorem from Becker-Kern, Meerschaert and Scheffler [25, Proposition
4.1] implies that

a,S(N(nt)) = a,S(n - N(nt)/n) = A(At) asn — oo

for any t > 0. An alternative proof uses the Continuous Mapping Theorem 4.19: Since
the waiting times J, are independent of the jumps Y,,, we also have joint convergence
(apS([nt]), N(nt)/n) = (A(t), At). Extend to joint convergence in the Skorokhod space
[0, co) using (4.29) in the next section, and mimic the proof of (4.32).
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4.4 Convergence in Skorokhod space

We want to understand CTRW convergence, and the limit process, in terms of sam-
ple paths. These sample paths represent particle traces in the diffusion model. Let
ID[0, co) denote the set of real-valued functions x : [0, co) — R which are continuous
from the right:

lim x(t + €) = x(t),

-0+

with left-hand limits:
lim x(t - €) = x(t-).
-0+

In some literature these are called cadlag functions, an acronym for the French phrase,
“continue a droite, limite a gauche,” which means “continuous on the right, with lim-
its on the left.” We would like to show that c"2/2S([ct]) = A(t) in the space D0, co0),
and likewise for the waiting times. Then we will use the Continuous Mapping Theorem
4.19 to get the CTRW process limit.

Weak convergence theory requires a topology on the space ID[0, co), suitable for
stochastic process convergence. In other words, we need to say what it means for a
sample path x,(t) to be close to x(t). The obvious choice is to require x,(t) — x(t)
for all t, but this excludes the possibility that x,(t) has a jump at the point t — &, for
some £, — 0 and x(t) has a jump of the same size at t. For this reason, Skorokhod
introduced his (J;) topology: In this topology, x,(t) — x(t) in D[0, T] if for some in-
creasing continuous functions A, : [0, T] — [0, T] such that 1,,(0) = 0, A,,(T) = T,
and

lim sup [A,(t) -t =0,
=00 o<t<T
we have
lim sup [x(t) — x,(A,(t))] = O.
=00 o<t<T
Then we say that x,,(t) — x(t)inID[0, oco) if x,(t) — x(t) inID[0, T] for every continuity
point T > 0 of x(t). This topology is useful if the processes have isolated jumps, as in
a random walk. In fact, Skorokhod [201] proved that if Y € DOA(A) and (4.23) holds,
then
a,S([nt]) - th, = A(t) in IDJ[O, co) (4.29)

with this topology. This strengthens (4.20). The Skorokhod M; topology (see details)
is a bit more flexible. It allows multiple jumps of x,(t) to coalesce into a single jump
of x(t) in the limit. For a beautiful description, and additional discussion, see Avram
and Taqqu [12].

Theorem 3 in Bingham [38] states that if:
(a) X,(t) = X(t) in the sense of finite dimensional distributions;
(b) X(t) is continuous in probability; and
(c) X,(t)is monotone,
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then X, (t) = X(t) in the space ID[0, co) with the Skorokhod (J;) topology. We say that
X(t) is continuous in probability if

P[|X(t,) - X(t)] >e] -0 asn — oo

for all € > 0, whenever t, — t. Since the sample paths of the stable subordinator
D(u) are strictly increasing, it follows from (4.27) that the sample paths of E(t) are
continuous, and hence E(t) is continuous in probability. Since sample paths of the
process N(t) are monotone nondecreasing, it follows that

¢ PN(ct) = E(t) in DI0, 00). (4.30)

Suppose a, = n~'/% to ease notation, and suppose that the random walk jumps

are centered so that b, = 0. Since (Y,) and (J,,) are independent, it follows from (4.29)
and (4.30) that
(c7M4S([ct]), cPN(ct)) = (A(t), E(D)) (4.31)

in the product space in ID[0, co) x ID[0, co). From here it is hard to prove CTRW con-
vergence in the J; topology. But Theorem 13.2.4 in Whitt [219] shows that x(y(t)) is a
continuous mapping from ID[0, co) x ID[0, co) to ID[0, co) with the M; topology, so
long as u = y(t) is strictly increasing whenever x(u) + x(u-), i.e., when u is a jump
point of x.

In order to apply this to the CTRW limit, we need to know that u = E(t) is a point of
increase whenever A(u) # A(u-). Since the constant intervals of u = E(t) correspond
to the jumps of the inverse process t = D(u), this is equivalent to the condition that
A(u) and D(u) have no simultaneous jumps. This follows from the fact that A(u) and
D(u) are independent (see details). Then, since x.(u) = c~/2S([cu]) = x(u) = A(u)
and y.(t) = cBN(ct) = y(t) = E(t) jointly in ID[0, co) x D[0, c0), it follows from (4.31)
and the Continuous Mapping Theorem 4.19 that

cPlaS(N([ct])) = (cP)y1/2S(cP cPN([ct]) = xes(yc(t)) = x(y(0) = A(Ey)  (4.32)

as ¢ — oo, in the space ID[0, co) with the M; topology. The convergence (4.32) also
holds in the J; topology, but the proof is more delicate, see Straka and Henry [210,
Theorem 3.6].

Recall that A(ct) = c/®A(¢t) forall c > O and t > 0. It is not hard to extend to
finite dimensional distributions, using the fact that A(t) has independent increments.
A process with this scaling property for finite dimensional distributions is called self-
similar with index 1/a, see for example Embrechts and Maejima [64]. Since D(t) is also
stable, the processes D(t) is self-similar with index 1/5. We have noted previously that
{E(t) < u} = {D(u) = t}. In fact, we also have

{E(ty) curVk=1,...,nt={D(up) 2txyvk=1,...,n}

forany0 < t; < t < --- < tp < oo and real numbers u, ..., u,. It follows that
E(t) is self-similar with index S. Then, since A(u) and E(t) are independent, the CTRW
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limit process A(E(t)) is self-similar with index 8/a. This index codes the rate at which
a plume of particles spreads away from their center of mass.

Remark 4.21. Suppose 1 < a < 2 and thatv = E[W] # 0, and suppose that a, = n~1/@
to ease notation. Then another continuous mapping argument along with (4.29) shows

that
[ct] [ct]

MY (Wj-v)+ct Y v= A (4.33)
j=1 j=1
as ¢ — oo, in the space ID[0, co) with the J; topology, where A'(t) = A(t) + vtis a
Brownian motion with drift in the case a = 2, or a stable Lévy motion with drift in the
case 1 < a < 2. Then (4.31) extends to

(cV%(S([ct]) - [ct]v) + c L ctlv, P N(ct)) = (A'(t), E(1)) (4.34)
and (4.32) extends to

cPIa(S(N([ct])) - N([ct])V) + c IN([ct])v = A (E)). (4.35)

Details

Suppose that t > r > 0. In Section 4.5, we will prove that every stable law has a density.
Since D(t) — D(r) is identically distributed with D(t — r), and D(t — r) has a density,
D(t - r) > 0and D(t) > D(r) with probability one, i.e., the process D(t) is strictly
increasing.

Since D is strictly increasing, if D(u) > t, then D(y) > t for all y > u, so that
E(t) < u.Since D is right-continuous, if D(u) < t, then D(y) < tforall y > u sufficiently
close to u, so E(t) > u. This proves that {E(t) < u} = {D(u) > t}.

The Skorokhod M; topology is defined as follows: The graph of a function x(t) in
ID[O, T] is the set {(t, x(t)) : 0 < t < T}. The completed graph also contains the points
{px(t)+(1-p)x(t-) : 0 < p < 1}, so that it becomes a connected compact subset of R x
[0, T]. A parametric representation (u(s), r(s)) is a continuous function that maps the
interval s € [0, 1] onto the completed graph, such that u(s) is an increasing function
from [0, 1] onto [0, T]. Then x,, — xinID[O0, T] with the M; topology if and only if there
exists a parametric representation (u(s), r(s)) of x(t) and parametric representations
(Un(s), rn(s)) of x,(t) such that

lim sup [[un(s) — u(s)| + [rn(s) - r(s)|] = 0.

Also x,(t) — x(t) in D[O, oo0) if x,,(t) — x(t) in D[O, T] for every T > O that is a point
of continuity of x(t). See Whitt [219] for additional discussion.

Since the stable Lévy processes A(u) and D(u) are independent, they have no si-
multaneous jumps. This follows from consideration of the two dimensional Lévy pro-
cess (A(u), D(u)). The Lévy Representation Theorem 6.8 in dimension d > 1 will be
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discussed in Chapter 6. Remark 6.19 shows that every jump of the two dimensional
Lévy process (A(u), D(u)) lies on one of the coordinate axes. Then it follows from the
Lévy-Itd6 Decomposition Theorem [187, Theorem 19.2] that every jump of (A(u), D(u))
lies on one of the coordinate axes, i.e., A(u) and D(u) have no simultaneous jumps

The full proof of the CTRW limit depends on asymptotic inverses. Suppose that
anS(n) = A (centered jumps) and b, T(n) = D. Define b(c) = by for ¢ > 0, and note
that 1/b € RV(1/B). The asymptotic inverse b(c) = inf{x > 0 : b(x) < c 1} of 1/b is
regularly varying with index 8, and b(b(c)) ~ 1/c, see Seneta [197, p. 21]. The proof is
similar to Proposition 4.12. Write

P[b(c)"'N(ct) < u] = P[N(ct) < b(c)u]
= P[T([b(c)ul) > ct]
=P[c I T(h(c)ul) > t]
~ P[b(b(c)T([b(c)ul) > t]
— P[D(u) > t] = P[E(t) < u].

Extend to finite dimensional convergence as before, and then to ID[0, co). Use inde-
pendence to get joint convergence

(anS([ct)), b(c)'N(ct)) = (A(b), E(t))

in D[0, co) x DIO0, 0o). Define a(c) = aj and A(c) = a(b(c)), and apply Whitt [219,
Theorem 13.2.4] along with continuous mapping to get

A(S)S(N([ct])) = a(b(c)S(b(c) b(c) *N([ct])) = A(E;)

in the M; topology. For complete details, see Meerschaert and Scheffler [151, Theorem
4.2]. For J; convergence, see Henry and Straka [210].

4.5 CTRW governing equations

In Section 4.4, we showed that the CTRW limit is A(E(t)). The outer process x = A(u) is
an a-stable Lévy motion with index O < a < 2, the long-time limit of the random walk
of particle jumps. The inner process u = E(t) is the inverse of a 8-stable subordinator
D(t) with index 0 < B < 1, the limit of the random walk of waiting times. If a = 2,
then A(u) is a Brownian motion. In this section, we develop the fractional diffusion
equation that governs the probability densities of the CTRW limit.

First note that x = A(u) has a density function p(x, u) for all u > 0. This follows
by the Fourier inversion formula

(o)
px,u) = % J e™p(k, u) dk (4.36)
(o)
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from Theorem 1.4. Since A(u) is the limit of a CTRW with centered jumps, it follows
from Corollary 4.6 and Proposition 4.16 that the FT of A(u) is

Dk, u) = E[e" W] = exp (Du[p(ik)* + q(-ik)*]), (4.37)

where D > 0if1 < a < 2,and D < 0if 0 < a < 1. A computation using complex
exponential functions (see details) shows that [p(k, u)| < exp(-Dou|k|%), where Dy >
Ofor1 < a < 2,and also for 0 < a < 1. Then it follows that p(k, u) is absolutely
integrable for all u > 0, and so (4.36) implies that x = A(u) has a density.

Since t = D(u) is also stable, it has a density g(¢, u) for all u > 0. Write

) t
PIE(D) < u] = P[D() > ] = Jg(r, wydr=1- Jg(r, u) dr
t 0
which implies that u = E(t) has a density
t
hou, £) = -2 J g(ru)d (4.38)
0

forallu > O and t > 0. Then a conditioning argument gives the density m(x, t) of
x = A(E(t)):

P[A(E(t)) < x] = E[P[A(E(t)) < x|E(D]]

P[A(u) < x|E(t) = u]Pg(p(du)

Ot——3 O ——3

P[A(u) < x]h(u, t) du
so that

- JlP[A(u ) < x]h(u, ) d

0
4
dx

P[A(u) < x]h(u, t)du

p(x, Wh(u, t) du. (4.39)

o_,g o——3

(In the details at the end of this section, we will prove that the derivative can be taken
inside the integral in (4.39).) Heuristically, we write

P[A(E(t)) = x] = Z]P[A(u) = x]P[E(t) = u].
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Recall from (4.37) that p(k, u) = e“»% where the Fourier symbol of the stable
law x = A(u) is Y(=k) = D[p(ik)* + q(-ik)*]. Take derivatives to get

diu Pk, u) = P(=k)e™¥ 0 = D[p(ik)* + q(-ik)*] p(k, u)

and note that p(k, 0) = 1. Inverting the FT shows that the density p(x, u) of the outer
process x = A(u) solves the space-fractional diffusion equation

9 (x,u) =D a—a (x,u)+D a—a (x, u) (4.40)

u? oW = PP abX T3 S0eP '
with the Dirac delta function initial condition p(x, 0) = §(x). The distribution function
P(x, u) = P[A(u) < x] solves the same space-fractional diffusion equation

a a

%P(x, u) = Dp %P(X, u) + DqﬁP(x, u)
with the Heaviside function initial condition: P(x, 0) = H(x) = I(x > 0). This is related
to the fact that 6(x) = o,H(x) in terms of weak or distributional derivatives. See the
details at the end of Section 3.1 for more information.
Since t = D(u) is the limit of a random walk with positive jumps, it follows from
Proposition 4.16 (a) that D(u) is one-sided stable with characteristic function

E[e!*®)] = exp [-Bul(1 - B)(~ik)f],

where B > 0 depends on the sequence of norming constants ¢y, in (4.25). If the norming
constants c, are chosen so that B = 1/I'(1 — ), then E[eiP®] = exp(-u(-ik)P) for
0 < B < 1 (see details). Then the Laplace transform

(o)
g(s,u) = j e Stg(t, u) dt = E[e~sPW] = g5’ (4.41)
0

forallu > 0 and all s > 0. There are two ways to make this rigorous. One is to develop
the theory of positive infinitely divisible laws using Laplace transforms, see for exam-
ple Sato [187]. The other is to prove the Laplace transform g(s, u) exists for complex s,
see Zolotarev [228]. See the details at the end of this section for more information.
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Then the density (4.38) of u = E(t) has LT

R, s) = j e~Sth(u, £) dt
0

00 t
—|est < diu jg(r, u)dr) dt
0

¢
e st I g(r, u)drdt
0

g(r, u) <j e Stdt) dr

Il
[SYS—

S

||
a.
< |Q-
Ot——g O ——g O ——3

= % g(r,w)s te"sdr
_ _% [S—le—usﬂ]
= s lgheus’ = gh-lgus’ (4.42)

and the density (4.39) of x = A(E(t)) has FLT

m(k, s) eSte ™ m(x, t) dx dt

J e Ste ’”‘XJ’ (x, wh(u, t) du dx dt

[ [
Le p(x, u) ) <Je th(u, t)dt)

uz/)(fk)sﬂfle—usﬂ du

O'_,g o——3 ov_.g Ot—g

(o]
1 J’ e U YR gy = 5 (4.43)
0

by Fubini, using the fact that [p(k, u)] = [e“?C9| < exp(-Doulk|%) (see details).
Rewrite (4.43) in the form

sPm(k, s) - sB~1 = (-kym(k, s)
and note that m(k, 0) = E[e k4(EO)] = 1 since A(0) = E(0) = 0. Invert the LT to get

Pk, ) = p(-kym(k, t)
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where af is the Caputo fractional derivative. Then invert the FT to see that the density
m(x, t) of the CTRW limit process x = A(E(t)) solves the space-time fractional diffusion

equation
a

g _pp 2t o
oym(x,t)=Dp 55 m(x, t) + Dq ST m(x, t). (4.44)

If the Lévy measure of A = A(1) is given by (4.14) (e.g, for Pareto jumps P[Y > y] ~
pCy~%and P[Y < -y] ~ gCy~* with a, = n"Y% in (4.1)) , then the fractional dispersiv-
ity constant:

-CIr1-a) ifo<a<i;
D= cfe-a

ifl<a<?2.
If « = 2, then A(u) is normal with mean zero and variance 2Du, since
p(k, u) = E[e'*™)] = exp(Du(ik)?) = exp(-102k?)

with 02 = 2Du. We have developed the space-time fractional diffusion equation (4.44)
from the extended central limit theorem, and connected the parameters of this equa-
tion to those of the continuous time random walk. The fractional derivative in space
codes power law jumps, leading to anomalous super-diffusion. The fractional deriva-
tive in time models power law waiting times, leading to anomalous sub-diffusion. The
CTRW combines both effects. For example, if a = 28, then the limit A(E(t)) has the
same scaling as a Brownian motion.

For practical applications, we would like to explicitly compute solutions to the
space-time fractional diffusion equation (4.44). We know that the point source solu-
tion with constant coefficients is an integral (4.39) involving the density p(x, u) of a
stable Lévy motion, and the density h(u, t) of an inverse stable subordinator. Since
we know an explicit formula for p(k, u), in principle we can use the FT inversion for-
mula (4.36) to compute p(x, u). In practice, this is a hard integral! But it does reduce to
“nicer” forms that are easier to numerically integrate. Nolan [163] has developed fast
and accurate computer codes to compute the stable density, see his personal web page
for more information. There are also R codes, based on the same ideas. We demon-
strate these codes in Section 5.1.

As for the inverse stable density, recall that t = D(u) has a density g(t, u) with FT

(o)
gk, u) = j e~ Kg(t, u) dt = E[eKPW)] = e u(b’ (4.45)
0
and it follows that D(u) = u/D(1). To check this, write

]E[e—ik ul/ﬂD(l)] _ ]E[e—i(kulfﬂ)pu)] - o~ Wiku'P _ —u(ik)f _ IE[e—ikD(u)].
Let gg(t) = g(t, 1) be the density of D = D(1), a standard stable subordinator. Then

D(u) has density
g(t,u) = uPgpuPt)
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by a simple change of variables (or just differentiate P[u'/ BD < t]). Write
P[E(t) < u] = P[D(u) > t]
=PufD > ¢
=P[D > tu VA
=P[(D/t)P < u] (4.46)

which shows that E(t) =~ (D/t)? forall t > 0. Differentiate (4.46) to see that u = E(t)
has density (see details)

h(u, t) = éu’l’l/ﬁgﬁ(tu’l/ﬁ). (4.47)

Then (4.39) becomes
T t
m(x, t) = jp(x, u)ﬁu_l_l/ﬁgﬁ(tu_l/ﬁ) du
0

and we can compute this explicitly using existing codes for the stable density. An al-
ternative form can be obtained by substituting r = tu~1/B_ which leads to

(o)

mx, t) = jp(x, (t/1)gp(r) dr. (4.48)
0]

Remark 4.22. The waiting time process t = D(u) has a density g(t,u) with FT
&(k, u) = e “0” and hence

d
Sl - _(il\B3
dug(k, u) = —(ik)’g(k, u).

Invert the FT to see that g(¢, u) solves the fractional partial differential equation

) oP
ag(t, u) = —ﬂg(t, u)

using the Riemann-Liouville derivative. Note that here the roles of space and time are
reversed. The inverse stable process u = E(t) has a density h(u, t) with LT h(u, s) =
sP-leus" and FLT

sh-1

sB + ik’

(o) (o)
hk,s) = I e Up(u, s)du = J eikugh-1o-us gy _
0 0

Rewrite in the form
sPh(k, s) - sP~1 = —ikh(k, s)

and invert to see that this density solves

P, 6) = -2 haw, b), (4.49)
ou
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using the Caputo derivative in time. This is a degenerate case of the CTRW with Y,, = 1.
Then x = A(u) = u (the shift semigroup), E[e~k4®)] = e=iku_and (k) = ik. It is also
possible to derive the CTRW governing equation (4.44) from (4.49), together with (4.39)
and (4.40). If we wish to interpret (4.49) as a differential equation on u € R then, since
the function u — h(u, t) has a jump at the point u = 0, the derivative oh/du must
be interpreted as a weak derivative, as in Remark 2.13. For an alternative derivation of
the governing equation for h(u, t) using LT in both variables, and the explicit form of
the limit h(0+, t), see Hahn, Kobayashi, and Umarov [82]. An explicit formula for the
moments of E(t) was given by Piryatinska, Saichev and Woyczynski [168]. For a recent
survey on the inverse stable subordinator, see Meerschaert and Straka [154].

Remark 4.23. In Remark 4.21 we showed that, when the random walk jumps have a
finite mean in the case 1 < a < 2, the CTRW scaling limit is A’ (E(t)). The outer process
x = A'(u) is a Brownian motion with drift in the case a = 2, or a stable Lévy motion
with drift in the case 1 < a < 2. When 1 < a < 2, the probability densities p(x, u) of
A’ (u) solve the space-fractional diffusion equation with drift

o o

0
P06 W) +Dg3 =

d d d
ap(x, u) = —vap(x, u) +Dp p(x, u) (4.50)

ox«
and the probability densities m(x, t) of the CTRW limit process A’(E(t)) solve the
space-time fractional equation

o a

0 0 0
a/:m(x, t) = —va m(x, t) + mem(x, t) + qum(x, t). (4.51)
If « = 2 then the same equations apply, and in particular, the probability densities
of the process A’(E(t)), a Brownian motion with drift where the time variable is re-
placed by an independent inverse stable subordinator, solve the time-fractional diffu-
sion equation with drift

B 0 02
oymx, t) = -v—m(x, t) + Dmm(x, t). (4.52)

o0x

Remark 4.24. Thereis an interesting connection between the CTRW scaling limit pro-
cess A(E(t)) in the normal case a = 2, and iterated Brownian motion. Given a Brownian
motion A(t), take another independent Brownian motion B(t) and consider the sub-
ordinated process A(|B(t)|). Allouba and Zheng [4] and Burdzy [43] develop governing
equations and other properties of this process. Baeumer, Meerschaert and Nane [20]
show that the process A(E(t)) with 8 = 1/2 has the same governing equation and the
same one dimensional distributions. This is related to the fact that the first passage
times of a Brownian motion are stable with index § = 1/2. Some related results for
subordinated Brownian motion in a bounded domain are included in Meerschaert,
Nane and Vellaisamy [140].
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Details

Define the signum function sgn(k) = +1 for k > 0 and sgn(k) = -1 for k < 0. Write
(ik)* = (isgn(k)|k])¥ = |k|*eissntoma/2 — |k|%[cos 6 + isgn (k) sin 6] where 6 = ma/2.
Then (ik)* = a + ib where a = |k|* cos 6. A similar argument shows that (-ik)* =
|k|%e~1s8n()8 — |k|%[cos O — i sgn(k) sin O]. Then p(ik)* + q(-ik)® is a complex number
with real part equal to (p + q)|k|* cos 6 = |k|* cos(ra/2). Hence

|p(k, w)| = | exp (Du[p(ik)* + q(~ik)*])| = exp(Dulk|* cos(ma/2)) = e Doulk"  (4,53)

where Dy = -D cos(rta/2) > 0: D < O and cos(na/2) > OwhenO < a < 1;and D > 0
and cos(ma/2) < Owhen1l < a < 2.
Differentiation inside the integral in (4.39) is justified as follows. Consider y > 0
(the case y < 0 is treated similarly). Since
P ) = LpAw) < x]
dx
we have

(o0)

m(x,t) = JIP[A(u) < x]h(u, t)du = i I I p(v, u)dv h(u, t)du.
0 0 —oco

4
dx dx

Write the last expression as a difference quotient, and simplify to get

[o'e) xX+y
m(x, t) = ;11%1 <y‘1 j pW, u)dv> h(u, t) du.

0 X

It follows from (4.36) and (4.53) that

xX+y

(o]
1
y I p(vyuydv|< sup |p(v,u)| < =— J Ip(k, w)| dk
% velx,x+y] 2 o
1 (o]
< =— J e Doulkl® g .= Co < 00
2n
(o]

since Doy > 0. Then

o'} X+y (o'}
J y! J p(v, 1) dv| hu, ) du < JCoh(u, t)du = Co,
0 X 0

and the dominated convergence theorem justifies differentiation under the integral.
The justification for the differentiation under the integral in the derivation of the
LT of E(t) in (4.42) is similar. Write
t

hmje_stjg(r,u +y) - g(r, u) drdt,
y—0 y

0
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and

17 17 ,

- = ikr 5 _ ikr ,—u(ik)
g(r,u) > J e g(k, u)dk > J e'“e dk

=00 -0
so that - ,
—y(ik
‘g(r,uﬂ/)—g(r, wl_ 1 J e |1 -] ik,
y S 2 ) Iyl

Note that [e~4(1)"| = eIkl costn/2) with cos(np/2) > O since 0 < B < 1, and apply the
mean value theorem to see that

|1 - ek _ ebkeostabr) g

Iyl a Iyl

< |Kk[Bew/ DIk cos(np/2)

if |y| < u/2, which holds eventually since y — 0, and u > 0 is fixed in this argument.
It follows that

’g(r, u+y)-gr,u)

[ee]
) j |k|P -1/ cosnBl2) g ;= € < oo

0

1
S_
2m

for any r > 0. Therefore

t

Te_st j ’g(r, u+ y; -g(ru)

(o)
1

drdt < — j e 5y dt < oo,
2n

0

and the argument can be completed using the dominated convergence theorem.

Suppose ¢, T, = D where T,, = J; +--- + J,, and J,, are iid with J € DOA(D). If D
has Lévy measure ¢(r, co) = Br# concentrated on the positive real line (e.g., if P[J >
t] = Bt® and ¢, = n~1/F), then Proposition 4.16 shows that E[e!*P] = exp(-BI'(1 -
B)(~ik)B). Define a new set of norming constants ¢, = [BI'(1-8)]~'/Ac, (this reduces to
[nBI(1-B)]~'/F in the case of Pareto jumps) and note that &, T, = [BI'(1-f)]"/AD =
D. Write

Ele™*?] = B[P PIP) = exp(-BI(1 - B)(-ik[BI(1 - B VAF) = e 1

which shows that the limit is a standard stable subordinator.

For positive random variables, it is possible to develop an alternative theory of
infinitely divisible laws based on Laplace transforms, see for example Sato [187]. The
theory is similar to what was presented in Section 3.1, using Laplace transforms in-
stead of characteristic functions. Since a positive random variable cannot have a nor-
mal distribution, the Lévy representation takes the simplified form E[e 5] = e¥(),
where s > 0 and

W(s) = —as + j (€% - 1) p(dy) (4.54)
0
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for some a > 0, and some Lévy measure ¢p(dy). This Lévy representation is unique.
The Lévy measure ¢(dy) on {y : y > 0} satisfies ¢(R, co) < co and

R
Jy¢(dy) < 00 (4.55)
0

for all R > 0. A computation very similar to Proposition 3.10 shows that a centered
one-sided stable law with Lévy measure (3.10) has Laplace symbol

P(s) = I (e™ - 1) Cay™*tdy = -CI'(1 - a)s" (4.56)
0

forO < a < 1.If C = 1/I'(1 - a) we get a standard stable subordinator with Laplace
transform E[eSY] = exp(-s%).

One way to connect these two theories of infinitely divisible laws is to view the
Laplace transform as a function of a complex variable. The Laplace transform

(o)
eus’ — j e Stg(t, u)dt (4.57)
0

exists for any s = ik + y with k real and y > 0, see Zolotarev [228, Lemma 2.2.1].
Hence we can substitute s = ik into the formula (4.57) for the LT of the positive random
variable D(u), to get the corresponding FT formula (4.45).

To show that (4.47) holds, write P[E(t) < u] = P[D > tu '/F] = 1 - Gp(tu™'/P)
where Gg(u) is the cdf of D, so that

d
gplu) = EG/S(U)-
Then
h(t, u) = i[1 ~ Gp(tu V)]
’ du B
d

_ -1/8y L 14 -1/B

gp(tu )du[tu ]

which reduces to (4.47).
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5 Computations in R

In this chapter, we demonstrate computer codes that the reader can use to simulate
random walks and their stochastic process limits, as well as the corresponding proba-
bility densities. These densities solve the fractional diffusion equations that are a main
focus of this book.

5.1 R codes for fractional diffusion

The R programming language is a sophisticated and useful platform for probability
and statistics [171]. This freely available open source code can be downloaded and
installed on a wide variety of Unix, Windows, and Apple computer systems. See www.
r-project.org for additional details. Once you have installed R on your computer, the
easiest way to run a program is to type the code into a plain text file (or download), cut
and paste the entire program into the R console window, and press the “Enter” key.

D=1.0

v=3.0

t=5.0

mu=v*t

sigma=sqrt (24Dx*t)

x = seq(mu-4*sigma, mu+d*sigma, O.1*sigma)
density=dnorm(x, mean = mu, sd = sigma)
plot(x,density,type="1",1lwd=3)

Fig. 5.1: R code to plot solutions to the traditional diffusion equation with drift (5.1) at time t = 5.0
with velocity v = 3.0 and dispersion D = 1.0.

Example 5.1. The simple R code listed in Figure 5.1 plots the solution p(x, t) to the
traditional diffusion equation with drift

9 (x t)——vi (x l‘)+Da—2 (x, t) (5.1)
otP TV PR U B P '

for any time t > 0, with drift velocity v € R and dispersion D > 0. This code uses the
fact that the solution to (5.1) is a normal pdf with mean u = vt and standard deviation
0 = V2Dt for any t > 0. The R function dnorm produces a normal density with a spec-
ified mean and standard deviation. Efficient R code is based on vector mathematics.
The vector x is a sequence of numbers from p—40 to y+40 inincrements of 0.1¢0. If you
type x into the R console window after running the code in Figure 5.1, and press the

DOI110.1515/9783110258165-005



120 — 5 ComputationsinR

“Enter” key, you will see this vector of n = 81 numbers. The command dnorm takes the
vector x as input, and outputs a vector density consisting of the normal pdf at each
value of the input vector. The command plot displays the points (x[i], density[i])
fori = 1,2,...,n and connects them with a curved line (graph type="1"). Figure
5.2 shows the output from running the R code in Figure 5.1. The same graph was also
displayed as Figure 1.1 in Chapter 1. To obtain plots for other values of the input pa-
rameters D, v, and t, edit the file containing the source code, cut and paste this edited
code back into the R console window, and press the “Enter” key.

a
-
S
©
> 2
2
£ 3
g —
° X
o 4
IS
o
(3._
© I T T T I

Fig. 5.2: Result of running the R code in Figure 5.1.

To save the output in the R graphics window, right-click and select a format for the
graphics file (e.g., postscript). Production of this book used the freely available BIgX
package for mathematical typesetting, with encapsulated postscript (eps) graphics.
See www.latex-project.org for more details, documentation, instructions on how to
download and install BIgX on your computer, and helpful examples.

Example 5.2. The next example compares the solution to the diffusion equation with
drift (5.1) at different times t1, t,, t3 > 0. The code in Figure 5.3 is very similar to Figure
5.1, repeated for each value of the time variable. The R command 1ines adds another
curve to an existing graph. Figure 5.4 shows the graphical output. The same graph
was also displayed as Figure 1.2. A good way to learn R is to start by running the same
program listed here, and checking that the output is identical. Then modify the code
slightly (e.g., change one of the input variables, or add a fourth curve) and check to
see that the output is reasonable. This will also help build your intuition about the
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D=1.0

v=3.0

t1=1.0

mu=v*tl

sigma=sqrt (2*D*t1)

x = seq(mu-4*sigma, mu+l0*sigma, 0.1l*sigma)
density=dnorm(x, mean = mu, sd = sigma)
plot(x,density,type="1",1lwd=3)

t2=2.0

mu=v*t?2

sigma=sqrt (2*D*t2)

x2 = seq(mu-4*sigma, mutd*sigma, 0.1l*sigma)
density=dnorm(x2, mean = mu, sd = sigma)
lines(x2,density,lty="dotted",1lwd=3)

t3=3.0

mu=v*t3

sigma=sqrt (2*D*t3)

x3 = seq(mu-4*sigma, mutd*sigma, 0.1l*sigma)
density=dnorm(x3, mean = mu, sd = sigma)
lines(x3,density,lty="dashed",1lwd=3)

Fig. 5.3: R code to compare solutions to the traditional diffusion equation with drift (5.1) at times
t; = 1.0 (solid line), t, = 2.0 (dotted line), and t3 = 3.0 (dashed line). The velocity v = 3.0 and
dispersion D = 1.0.

underlying diffusion model. For example, you should be able to predict and check the
result of changing the input parameter v.

Our next goal is to plot solutions to the fractional diffusion equation. This requires us
to plot a stable density. There are existing R codes to plot stable densities, but they rely
on an alternative parametrization, popularized by Samorodnitsky and Taqqu [185].
Recall that the signum function sgn(k) = +1 for k > 0 and sgn(k) = -1 for k < O.

Proposition 5.3. The characteristic function of a general stable randomvariable Y with
Lévy representation [a, 0, ¢] and Lévy measure (3.30) with index 0 < a < 2, a # 1 can
be written in the form
ikyy _ T RT 4 S na
E[e'™'] = exp [lky o’k (1 iff sgn(k) tan( 3 ))] (5.2)
whereu =a, =p - q, and

0"=C

fre-a cos (ﬂ) . (5.3)

1-a 2
In this case, we will write Y = S4(B, 0, p).
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density
0.10
!

0.00
1

Fig. 5.4: Result of running the R code in Figure 5.3, displaying solutions to equation (5.1) at times
t; = 1.0 (solid line), t, = 2.0 (dotted line), and t3 = 3.0 (dashed line). The velocity v = 3.0 and
dispersion D = 1.0.

Proof. 1f0 < a < 1, then it follows from Example 3.27 that
E[eXY] = exp [ika + pA(-ik)* + qA(ik)*] (5.4)

where A = -CI'(1 —a) < 0.If 1 < a < 2, then it follows from Example 3.29 that (5.4)
holds with A = CI'2 - a)/(a¢ — 1) > 0. Since I'2 — a) = (1 — a)I'(1 — a), we can also
write A = C['(2 - a)/(a - 1) in the case 0 < a < 1. Use ' = cos 0 + isin O for 6 € R to
write
(ik)* = (k)"

— |k|aeisgn(k)ﬂa/2

= |k|%[ cos(mra/2) + i sgn(k) sin(ra/2)]

= |k|* cos(ma/2)[1 + i sgn(k) tan(ra/2)]. (5.5)

Then (-ik)* = |k|* cos(ta/2)[1 - i sgn(k) tan(rra/2)] and so

PA(-ik)* + qA(ik)* = pAlk|* cos(ma/2)[1 - isgn(k) tan(ma/2)]
+ qA|k|* cos(mma/2)[1 + i sgn(k) tan(ra/2)]
= A cos(rat/2)|k|*[1 - i(p - q) sgn(k) tan(ma/2)] (5.6)

and (5.2) follows. Note that the parameter ¢ > 0 for 0 < @ < 1 and for 1 < a < 2, since
1 — a and cos(rra/2) both change sign at a = 1. O

Remark 5.4. It is not hard to check, using characteristic functions, that if ¥ =
Sa(B,1,0)then oY+u = S4(B, 0, u). Hence o is a scale parameter, and y is a centering
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parameter. Some authors call Y = S,(B, 1, 0) a standard stable law. There are several
additional parameterizations for stable laws. The seminal book of Zolotarev [228] lays
out several useful parameterizations. The parametrization in Nolan [163] makes the
density f(y) a smooth function of all four parameters. The problem is that e — eik
as a — 1, and this limit is the characteristic function of a point mass.

Remark 5.5. If a = 2 then (5.2) also holds. Then Y = N(u, 20?) and the skewness f is
irrelevant, since tan(rra/2) = 0 in this case. If a = 1 then a formula somewhat different
than (5.2) holds, since tan(ra/2) is undefined. The characteristic function of a general
stable random variable Y with Lévy representation [a, 0, ¢p] and Lévy measure (3.30)
with index @ = 1 can be written in the form

E[e'*Y] = exp [iky - 0% k| (1 + iﬁ(%) sgn(k) In |t|>] (5.7)
where y =a,f =p-gq,and
o =C. g’ (5.8)

see Meerschaert and Scheffler [146, Theorem 7.3.5] for complete details.

Remark 5.6. In Section 4.5 we defined the standard stable subordinator as the stable
law with characteristic function f(k) = exp(-(-ik)*) when O < a < 1. In Proposition
5.3 we can take u = 0, 8 = 1, and ¢* = cos(rra/2).

library(stabledist)

x = seq(-5, 10, 0.1)

density = dstable(x, alpha=1.5, beta=1.0, gamma=1.0, delta=0.0, pm=1)
plot(x,density,type="1")

grid()

Fig. 5.5: R code to plot a standard centered stable density with characteristic function (5.2), where
#=0.0,0=1.0,a=1.5and B =1.0.

Example 5.7. The R code in Figure 5.5 plots a stable density f(y) for any values of the
tail index a € (0, 2], skewness 8 € [-1, 1], scale ¢ > 0, and center y € (-0, 00). It re-
lies on the dstable command from the R package stabledist, a freely available pack-
age of R codes for financial engineering and computational finance. See [221] for more
details. You need to install the stabledist package on your R platform before you
run the code in Figure 5.5. First try Packages > Load packagetoseeif stabledistis
available. If not, then use Packages > Install package (s)and selecta convenient
site for download to your computer. The calculation of the stable density behind the
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dstable command uses the sophisticated method of Nolan [163] to numerically com-
pute the inverse Fourier transform. The option pm=1 specifies the Samorodnitsky and
Taqqu parameterization (5.2). The parameters alpha and beta are as in equation (5.2).
The scale parameter gamma is 0, and delta is the center y, for this parametrization.
Figure 5.6 shows the output from running the R code in Figure 5.5. Here we have set
u=0.0,0=1.0,a=1.5,and f = 1.0 to get a standard stable pdf that is totally posi-
tively skewed. This pdf represents the limit distribution of sums of iid positive jumps
with power law tails Vo(x) = P[W > x] = Cx~* or, more generally, when Vy(x) is
RV(-a) and the right tail dominates.

0.20
|

density
0.10
I

0.00
|

-5 0 5 10

Fig. 5.6: Result of running the R code in Figure 5.5, a standard stable pdf with characteristic function
(5.2), where g = 0.0, 0 = 1.0, a = 1.5, and B = 1.0.

In order to plot solutions to the fractional diffusion equation

9 (x t)——vi x,t)+D o x,t)+D o (x,t) (5.9)
otP U = TV P D B S P T3P :

for 1 < a < 2, we need to convert to the parametrization of Proposition 5.3.

Proposition 5.8. The solution p(x, t) to the space-fractional diffusion equation (5.9)
withindex 1 < a < 2is Sg(B, 0, u) with u = vt, B = p — q, and ¢* = Dt| cos(rta/2)|.

Proof. 1t follows from Example 3.29 that the point source solution p(x, t) to (5.9) has
characteristic function p(-k, t) = exp [ikvt + pDt(-ik)* + gDt(ik)*]. Write

pDt(-ik)* + gDt(ik)* = Dt cos(ma/2)|k|*[1 - i(p — q) sgn(k) tan(rra/2)]

by an argument similar to Proposition 5.8. Now compare (5.2). O
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Example 5.9. The R code in Figure 5.7 plots the solution to the space-fractional dif-
fusion equation (5.9) for any time t > 0, with drift velocity v € R, dispersion D > 0,
index 1 < a < 2,and O < g < 1. In this case, we have set t = 5.0 with velocity v = 2.0
and dispersion D = 1.0, for a = 1.5 and g = O (totally positively skewed). The output
of this code was displayed in Figure 1.3.

library(stabledist)

D=1.0

v=2.0

a=1.5

q=0.0

t=5.0

mu=v*t

pi=3.1415927

g=(D*t*abs (cos(pi*a/2)))~(1/a)
b=1-2%q

x = seq(mu-5*g, mutb*g, 0.1xg)
p=dstable(x, alpha=a, beta=b, gamma = g, delta = mu, pm=1)
plot(x,p,type="1",1wud=3)

Fig. 5.7: R code to plot the solution p(x, t) to the space-fractional diffusion equation (5.9) at time
t = 5.0 with velocity v = 2.0 and dispersion D = 1.0, fora = 1.5 and g = 0.

Remark 5.10. It follows from Example 3.27 that the solution to the fractional diffusion
equation

a a

0 0 0 0
EP(X, t) = —vap(x, t) - DPWP(Xy t) - DQWP()Q t) (5.10)

for 0 < a < 1 has characteristic function p(-k, t) = exp [ikvt — pDt(-ik)* — qDt(ik)*].
The only difference is a change of sign from D to —D (we assume that D > 0). Then
an argument similar to Proposition 5.8 shows that p(x, t) is S4(B, 0, 1) with the same
parameters as for the case 1 < a < 2,i.e.,, u = vt, B = p — q, and ¢® = Dt| cos(ra/2)|.
Hence the R code in Figure 5.7 can also be used to solve the fractional diffusion equa-
tion (5.10) in the case 0 < a < 1.

Example 5.11. The R code in Figure 5.8 compares the solution to the space-fractional
diffusion equation (5.9) at times t1, t;, t3 > 0, with drift velocity v € R, dispersion
D > 0,index1 < a < 2,and O < g < 1. The output of this code was displayed in Figure
1.4. It compares the solution at times ¢; = 3.0, t; = 5.0, and t3 = 8.0 with velocity
v = 3.0 and dispersion D = 1.0, for a = 1.5 and q = O (positive skew). This is an
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library(stabledist)

D=1.0

v=3.0

a=1.5

q=0.0

t1=3.0

t2=5.0

t3=8.0

pi=3.1415927

b=1-2x%q

mul=v*tl

gl=(D*t1l*abs(cos(pi*a/2)))~(1/a)

x = seq(mul-5%gl, mul+10*gl, 0.1xgl)

p=dstable(x, alpha=a, beta=b, gamma = gl, delta = mul, pm=1)
plot(x,p,type="1",1wd=3)

mu2=v*xt?2

g2=(D*t2+*abs(cos(pi*a/2)))~(1/a)

p2=dstable(x, alpha=a, beta=b, gamma = g2, delta = mu2, pm=1)
lines(x,p2,lty="dotted",1lwd=3)

mu3=v*t3

g3=(D*t3+*abs(cos(pi*a/2)))~(1/a)

p3=dstable(x, alpha=a, beta=b, gamma = g3, delta = mu3, pm=1)
lines(x,p3,1lty="dashed",1lwd=3)

Fig. 5.8: R code to compare solutions p(x, t) to the space-fractional diffusion equation (5.9) at times
t1 = 3.0, t; = 5.0, and t3 = 8.0 with velocity v = 3.0 and dispersion D = 1.0,fora =1.5and g =0

illustration of anomalous super-diffusion. The pdf spreads from its center of mass like
t1/1-5 which is faster than the ¢!/2 spreading for a traditional diffusion.

Example 5.12. The R code in Figure 5.9 plots the density of a stable subordinator Y
with characteristic function E[exp(ikY)] = exp(-(-ik)*) for O < a < 1, using Remark
5.6 and the parametrization (5.2). Note that the Laplace transform of the density of Y is
E[exp(-sY)] = exp(-s%). Figure 5.10 plots the density of the stable subordinator with
index a = 0.75. Note that this density is always supported on the positive real line.

Example 5.13. The R code in Figure 5.11 plots the solution to the time-fractional dif-

fusion equation
2

B 0
o, p(x, t) = Dﬁp(x, t) (5.11)
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library(stabledist)
x = seq(0, 5, 0.01)
a=0.75

pi=3.1415927
g=(cos(pi*a/2))~(1/a)

density = dstable(x, alpha=a, beta=1.0, gamma=g, delta=0, pm=1)
plot(x,density,type="1")

grid()

Fig. 5.9: R code to plot the pdf of a standard stable subordinator with index a € (0, 1).
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Fig. 5.10: Result of running the R code in Figure 5.9, pdf of a standard stable subordinator with index
a=0.75.

for any time t > 0, with a Caputo derivative of order 0 < 8 < 1, and dispersion D > 0.
This is a special case of (4.44) with a = 2. It represents the scaling limit of a CTRW with
mean zero jumps in the domain of attraction of a normal law (e.g., mean zero finite
variance jumps), separated by power law waiting times with index . The solution to
(5.11) is the pdf of A(E(t)), where A(t) is a Brownian motion, and E(t) is an inverse
stable subordinator. The R code in Figure 5.11 is based on the formula (4.39) where
p(x, u) is the pdf of A(u) and h(u, t) is the pdf of E(¢). In the code, we use the fact that
p(x, u) is normal with mean zero and variance 2Du along with the alternative form

m(x, t) = | p(x, (t/r)P)g(r) dr (5.12)

o—

where g(r) is a the standard stable subordinator pdf, see (4.48). This form is convenient
for computations, because the pdf g(r) can be calculated once, and used over and over
for every value of the time t > 0. Since we have an analytical formula for the normal
density, computing p(x, (t/ r)#) is a simple matter. The integral in (5.12) is evaluated
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library(stabledist)
dr=0.5
r=seq(dr,5000.0,dr)
b=0.75
pi=3.1415927
g=(cos(pi*b/2))~(1/b)
h=dstable(r, alpha = b, beta = 1.0, gamma = g, delta = 0, pm=1)
D=1.0
mcall <- function(y,t) {
sum(dnorm(y, mean = 0.0, sd =sqrt(D*(t/r) b) )*hxdr)
}
x=seq(-5.0,5.0,0.1); m=x; t=0.1
for (i in 1:length(x)){
m[il=mcall (x[i],t)}
plot(x,m,type="1")

Fig. 5.11: R code to plot the solution to the time-fractional diffusion equation (5.11) for any time t > 0.
Here 3 =0.75and D = 1.0.

numerically by a simple Euler (rectangle) approximation. Figure 5.12 shows the output
for time t = 0.1 with 8 = 0.75 and dispersion D = 1.0. Note the sharp peak at x =
0, which is typical of the time-fractional diffusion profile. This same plot was shown
previously as Figure 2.3.

Example 5.14. The R code in Figure 5.14 compares the solution to the time-fractional
diffusion equation (5.11) at times t4, t,, t3 > 0, with fractional derivative of order 0 <
B < 1 and dispersion D > 0. Figure 5.13 compares the solution at times t; = 0.1,
t, = 0.3, and t3 = 0.8 with § = 0.75 and dispersion D = 1.0. This plot illustrates
anomalous sub-diffusion. The limit process A(E(t)) is self-similar with Hurst index
B/2 < 1/2, so the solution spreads at a slower rate than a traditional diffusion.

5.2 Sample path simulations

This section introduces R codes to simulate the sample paths of stochastic processes,
including random walks, Brownian motion, stable Lévy motion, CTRW, and CTRW lim-
its. First we will simulate one dimensional processes, then we will explore the prop-
erties of two dimensional sample paths. The limit theory for two or more dimensions
will be presented in Chapter 6.
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Fig. 5.12: Result of running the R code in Figure 5.11, the solution to time-fractional diffusion equa-
tion (5.11) at time t = 0.1 with B = 0.75 and dispersion D = 1.0
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Fig. 5.13: Solution to time-fractional diffusion equation (5.11) at times t; = 0.1 (solid line), t, = 0.3
(dotted line), and t3 = 0.8 (dashed line) with B = 0.75 and dispersion D = 1.0.
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library(stabledist)
dr=0.5; b=0.75; D=1.0; pi=3.1415927; g=(cos(pi*b/2))~(1/b)
r=seq(dr,5000.0,dr)
h=dstable(r, alpha = b, beta = 1.0, gamma = g, delta = 0, pm=1)
mcall <- function(y,t) {

sum(dnorm(y, mean = 0.0, sd =sqrt(D*(t/r)” b) )*hxdr)

s
x=seq(-5.0,5.0,0.1)
m=x; t1=0.1

for (i in 1:length(x)){
m[il=mcall(x[i],t1)}
plot(x,m,type="1")
t2=0.3

m2=x

for (i in 1:length(x)){
m2[i]=mcall(x[i],t2)}
lines(x,m2,1lty="dotted")
t3=0.8

m3=x

for (i in 1:length(x)){
m3[il=mcall(x[i],t3)}
lines(x,m3,1lty="dashed")

Fig. 5.14: R code to compare solutions to the time-fractional diffusion equation (5.11) at times at
times t; = 0.1,t; = 0.3,and t3 = 0.8. Here = 0.75 and D = 1.0.

Example 5.15. We showed in Example 3.31 that a random walk S(n) = Wy +--- + Wy,
with iid mean zero finite variance jumps converges to a Brownian motion A(t). In fact
we have ¢~ 1/25([ct]) = A(t) in D[0, co) with the Skorokhod J; topology (e.g., see
Billingsley [37]). To illustrate this sample path convergence, we will use R to simu-
late a random walk. Figure 5.15 lists the R code to simulate a random walk whose iid
jumps are uniform on the interval [-1, 1]. Since these jumps have mean zero and fi-
nite variance, the simulated random walk converges to a Brownian motion in the scal-
ing limit. The runif command in R produces a vector of (iid) uniform random vari-
ates. The cumsum command returns the cumulative sum of a vector, i.e., given a vector
[W; :i=1,...,n]itreturns the vector with ith entry S(i) = W1 + --- + W;. Then the
plot shows the points [(i, S(i)) : i = 1, ..., n] connected by straight line segments.
Figure 5.16 shows a typical output from running the R code in Figure 5.15. Since this
Monte Carlo simulation involves random numbers, every run produces a different pic-
ture. However, these pictures all have similar features. Each plot can be considered
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t=seq(1:100)

W=runif (t, min=-1, max=1)
S=cumsum (W)
plot(t,S,type="1")

Fig. 5.15: R code to simulate a random walk with iid uniform [-1, 1] jumps.

0 20 40 60 80 100

Fig. 5.16: Simulated random walk, the result of running the R code in Figure 5.15.

as a graphical representation of the path followed by a randomly selected particle.
Running the same R simulation over and over shows paths of different particles.

One way to illustrate convergence to a Brownian motion is to vary the length of
the random walk in the R code from Figure 5.15. Just change t=seq(1:100) to, say,
t=seq(1:10) and then t=seq(1:50) and so forth. Once the sequence length is large
enough, increasing it further does not significantly effect the general appearance of
the graphical output. Of course the axis lengths will change. In fact, you can check
that the scale on the vertical axis is roughly the square root of the horizontal scale.

Example 5.16. Figure 5.17 lists the R code to simulate a Brownian motion. In fact, we
approximate the Brownian motion by a random walk with iid N(O, 1) jumps. Then
S(n) =~ N(0O, n) approximates a standard Brownian motion A(t). The approximation
A(t) = S([t]) is exact when t is an integer, and the graph interpolates between these
points. Since our simulation uses 1000 points, the difference between the exact and
simulated sample path is indistinguishable to the human eye. Figure 5.18 shows a typ-

I

14
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t=seq(1:1000)

W=rnorm(t, mean=0, sd=1.0)
A=cumsum (W)
plot(t,A,type="1")

Fig. 5.17: R code to simulate a standard Brownian motion.
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Fig. 5.18: Simulated Brownian motion, the result of running the R code in Figure 5.17.

ical output from running the R code in Figure 5.17. Running the same code over and
over will generate statistically identical but individually distinct sample paths of a
diffusing particle following a Brownian motion.

The sample paths of a Brownian motion have many interesting properties. The
sample paths are (with probability one in the space ID[0, co)) everywhere continuous,
but nowhere differentiable. They do not have bounded variation over finite intervals,
i.e., the length of the path {(t, A(t)) : a < t < b} is infinite. More specifically, if we
subdivide the path into smaller increments and join these points by straight lines, the
total length of these lines tends to infinity as the mesh of the partition tends to zero.

In fact, the graph is a (random) fractal of dimension d = 3/2. Fractals are sets
whose dimension is not an integer. There are several notions of dimension (Hausdorff
dimension, packing dimension, etc.) but the easiest to explain is the box dimension.
Suppose that it requires C(n) boxes of size 1/n to cover a set. If there is a number

log C(n)

d= lim —=>——
n—co logn
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then we call d the box dimension. For example, it takes C(n) = Ln boxes to cover a
line of length L, so that d = 1. It takes C(n) = Vn? to cover a cube of volume V, so
the cube has dimension d = 3. The proof that the graph of a Brownian motion has
(almost surely) dimension d = 3/2 requires some deep analysis, e.g., see Falconer [65,
Theorem 16.4].

One interesting property of fractals is self-similarity (or self-affinity) which means,
essentially, that zooming in or out on the graph produces a similar shape. For our
sample path simulations, we can illustrate self-similarity by increasing the length of
the simulated Brownian motion (i.e., change t=seq(1:1000) to t=seq(1:10000))or
longer). The resulting graphs are more or less indistinguishable.

It is often overlooked that Brownian motion and the diffusion equation provide an
approximate model for diffusing particles. The theory of relativity puts an upper bound
on the distance a particle can travel in a finite time, but the normal pdf is positive on
the entire real line. A real physical particle in the physical world cannot trace a path
of unbounded variation (infinite length) in finite time. A real particle has a velocity,
but the sample path of a Brownian motion does not, since the derivative is undefined.
(It has, in some sense, an infinite speed.) From the point of view of probability, we
understand that Brownian motion and the resulting diffusion equation are merely an
approximation, valid at late time (after many particle jumps have accumulated). In the
real world, the random walk is the fundamental physical model, and the limit process
is a very useful approximation.

If you go back now to the simulation in Figure 5.15 and extend the length of the se-
quence of jumps simulated (i.e., change t=seq(1:100) to t=seq(1:1000)) or longer)
you can see that the random walk becomes indistinguishable from a Brownian mo-
tion. If you change the distribution of the random walk jumps (e.g., change runif (t,
min=-1, max=1) torunif (t, min=-5, max=5) or even to a different mean zero finite
variance distribution) then the same effect persists. This illustrates the random walk
convergence to a Brownian motion in a very concrete way.

Example 5.17. Figure 5.19 provides the R code to simulate a random walk with iid
Pareto jumps. The simulation uses the fact that if W has cdf F(y) = P[W < y] then
W = F~Y(U) where U is uniform on [0, 1]. This is easy to check:

P[F(U) <yl = P[U < F(y)] = F(y).

See Press et al. [170, Chapter 7] for more details. Applying this idea to a Pareto with
P[W > x] = Cx~* we have

PHU/C) Y > x] =P[U < Cx™%] = Cx

for x > CY* which shows that (U/C)~/® has a Pareto distribution, when U is uniform
on [0, 1]. Using (3.52) we see that the Pareto has mean y; = CY%q/(a—1)when a > 1.
The code simulates a random walk with iid Pareto jumps, corrected to mean zero. Then
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C=1.0

alpha=1.5

t=seq(1:100)

U=runif (t)

Y=(U/C) "~ (-1/alpha)-(alpha/(alpha-1))*C~(1/alpha)
S=cumsum(Y)

plot(t,S,type="1")

Fig. 5.19: R code to simulate a random walk with iid Pareto jumps.
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Fig.5.20: Simulated random walk with Pareto jumps, the result of running the R code in Figure 5.19.

cYas([ct]) = A(t), a mean zero a-stable Lévy motion (see Section 4.4). Figure 5.20
shows a typical output from running the R code in Figure 5.19. The overall negative drift
compensates for the occasional large positive jumps. For a Paretowith O < a < 2, these
jumps persist in the long-time scaling limit. To check this, change the length of the
simulated sequence and note that, unlike the finite variance random walk simulated
previously, the large positive jumps remain prominent at any length scale.

To understand why this happens, consider the compound Poisson approximation.
We have S, = Xp1 + -+ + Xun = A = A(1) stable where X,; = a, W; are the rescaled
random walk jumps. We can take a,, = n~/% in the Pareto case. Since nP[a, W; >R] —
¢(R, 00) = CR™“ is the mean number of jumps of size greater than R, the probability
of any one jump exceeding this threshold is approximately n~'CR~¢, but since there
are n independent jumps, the probability of at least one of those jumps exceeding the
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threshold is approximately
CR*\" -a
1—(1— - ) ~1-e R <~ CcR™

for R > 0 sufficiently large. Furthermore, this is the probability that at least one jump
W; exceeds n'/2R, which is comparable to the total sum since S(n) ~ n'/*A. Hence
the largest jump is comparable to the entire sum. Since nlP[a, W; > R] — O for finite
variance jumps, the largest jump there is a negligible part of the sum. This is one main
distinguishing property of heavy tailed random walks.

C=1.0

alpha=1.5

p=0.3

t=seq(1:100)

U=runif (t)

Y=(U/C) "~ (-1/alpha)-(alpha/(alpha-1))*C~(1/alpha)
V=runif (t)

for (i in 1:length(t)){
if (V[il>p) Y[il=-Y[i]l}
S=cumsum(Y)
plot(t,S,type="1")

Fig. 5.21: R code to simulate a random walk with iid power law jumps.

Example 5.18. Figure 5.21 provides the R code to simulate a random walk with iid
power law jumps. The code is similar to Figure 5.19. First we simulate iid Pareto jumps
(W,,) and correct to mean zero. Then we adjust by drawing a random number U uni-
form on [0, 1] and changing the sign of this jump, to give a negative jump, with prob-
ability g = 1 — p. The resulting code simulates a random walk with iid power law
jumps, corrected to mean zero, as in Theorem 3.41. Then ¢~/%S([ct]) = A(t), a mean
zero a-stable Lévy motion with both positive and negative jumps. Figure 5.22 shows a
typical output from running the R code in Figure 5.21. The sample path contains occa-
sional large jumps, which can be either positive or negative. Again, if we lengthen the
random walk sequence, we eventually get to the point where the resulting graphs are
insensitive to the overall length of the simulation. This illustrates the convergence to
a self-similar limit process.

Example 5.19. The R code in Figure 5.23 simulates a symmetric stable Lévy motion.
The simulated process is actually a random walk with iid stable jumps, using the R
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Fig. 5.22: Simulated random walk with power law jumps, the result of running the R code in Figure
5.21.

command rstable to generate a vector of iid stable random variates. This command
is also part of the stabledist package introduced in Example 5.7. Figure 5.24 shows a
typical sample path, obtained by running the R code in Figure 5.23. Note the occasional
large jumps. Since we simulate a stable Lévy motion with § = p—q = Owehavep = 1/2
and g = 1/2, i.e., the large jumps are equally likely to be positive or negative. Since we
set u = delta = 0, the process is compensated to mean zero.

The graph of a stable Lévy motion with index 1 < a < 2 is also a random fractal,
with dimension d = 2 - 1/a, see Falconer [65, Section 16.3]. This extends the result
mentioned in Example 5.16 for Brownian motion, where d = 2 — 1/2. The fractal di-
mension describes the “roughness” of the particle traces. As a decreases from 2 to 1,
the sample paths become smoother.

Example 5.20. The R code in Figure 5.25 simulates a continuous time random walk
(CTRW) with iid Pareto waiting times and iid power law jumps. The method for simu-
lating the jumps is the same as in Example 5.18. The method for simulating the waiting
times is the same as Example 5.17. The CTRW is actually a random walk in space-time,
i.e., a two-dimensional random walk in which the horizontal axis represents elapsed
time, and the vertical axis represents the spatial location. Hence the R code is quite
similar to what we have seen before. The only difference is that we plot the cumulative
sum S(i) of the jumps against the cumulative sum T(i) of the waiting times, rather than
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library(stabledist)

t=seq(1:1000)

Y=rstable(t, alpha = 1.5, beta = 0.0, gamma=1.0, delta=0.0, pm=1)
A=cumsum(Y)

plot(t,A,type="1")

Fig. 5.23: R code to simulate a stable Lévy motion.
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Fig. 5.24: Simulated stable Lévy motion, the result of running the R code in Figure 5.23.

plotting S(i) versus i. Figure 5.26 shows a typical sample path, obtained by running the
R code in Figure 5.25. Note the long jumps in space, and also the long jumps in time.
Both will persist in the scaling limit, as the simulated sequence gets longer. Eventually,
the character of the simulated sample paths becomes insensitive to the length of the
sequence, an illustration of the CTRW limit (4.32). If we replace the simulated jumps
by iid mean zero finite variance jumps as in Example 5.15, the outer process A(t) in the
scaling limit is a Brownian motion. In this case, the jumps in space disappear in the
limit. If we replace the Pareto waiting times by some positive iid random variables with
finite mean (e.g., use runif (t, min=0, max=1)) then the resulting sample paths very
closely resemble those from Example 5.18, as we discussed in Section 4.3. The CTRW
sample paths represents particle traces, in which a particle can stick at some point for
arandom period before the next jump. If the waiting time pdf has a sufficiently heavy
tail, this significantly affects the movement of particles over the long term.
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C=1.0; alpha=1.5; p=0.3; B=1.0; beta=0.8
t=seq(1:1000)
U=runif (t)
Y=(U/C)~(-1/alpha)-(alpha/(alpha-1))*C~(1/alpha)
V=runif (t)
for (i in 1:length(t)){
if (V[il>p) Y[il=-Y[il}
S=cumsum (Y)
U=runif (t)
J=(U/B)~(-1/beta)
T=cumsum(J)
plot(T,S,type="1")

Fig. 5.25: R code to simulate a continuous time random walk (CTRW).
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Fig. 5.26: Simulated CTRW, the result of running the R code in Figure 5.25.
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library(stabledist)

a=1.5

skew=0.0

b=0.8

t=seq(1:1000)
Y=rstable(t,alpha=a, beta=skew)
A=cumsum(Y)

pi=3.1415927
g=(cos(pi*b/2))~(-1/b)
J=rstable(t, alpha=b, beta=1.0, gamma=g, delta=0, pm=1)
T=cumsum(J)

plot(T,A,type="1")

Fig. 5.27: R code to simulate the CTRW scaling limit process.
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Fig. 5.28: Simulated CTRW limit, the result of running the R code in Figure 5.27.
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Example 5.21. The R code in Figure 5.27 simulates the CTRW scaling limit process
A(E(t)) from (4.32). Figure 5.28 shows a typical sample path, obtained by running the
R code in Figure 5.27. The outer process x = A(u) is symmetric stable with index a =
1.5 and the inner process u = E(t) is the inverse of a standard stable subordinator
t = D(u) with index 8 = 0.8. Actually the simulation approximates this process by
a CTRW with stable particle jumps, and stable waiting times. Note that the graph of
(t, A(E(t)) is essentially the same as the graph of (D(u), A(u)), since E(D(u)) = u for
all u > 0. The only difference is that the horizontal jumps in the graph of (D(u), A(u))
are connected by a continuous line in the graph of (t, A(E(t)), see Meerschaert, Nane
and Xiao [143] for additional details. Since R code connects the plotted points with a
continuous line, the resulting graph is approximate only in terms of the discretization
of the Lévy processes: The code simulates the two independent Lévy processes A(u)
and D(u) using random walks with iid stable jumps, as in Example 5.19. Note that the
limit process retains the long jumps in both space and time. Some results on the fractal
dimension of the CTRW limit process are contained in [143].

We conclude this section with two examples that illustrate the sample paths of vector-
valued stochastic processes. From a physics point of view, it is quite natural to consider
particle traces in two or three dimensions, since the real world is not one dimensional.
Furthermore, we have already seen that the CTRW is fundamentally a random walk in
two dimensions (one space and one time). Vector random walks, their limit processes,
and their governing equations will be developed in Chapter 6.

t=seq(1:5000)

X=rnorm(t, mean=0, sd=1.0)
Al=cumsum(X)

Y=rnorm(t, mean=0, sd=1.0)
A2=cumsum(Y)

plot (A1,A2,type="1")

Fig. 5.29: R code to simulate a two dimensional Brownian motion.

Example 5.22. Figure 5.29 shows the R code to simulate a Brownian motion in two
dimensions. The code is a simple modification of Example 5.16. The two dimensional
Brownian motion is A(t) = (A1(t), A, (t)) where A, (t) and A,(t) are two independent
one dimensional Brownian motions. A vector Brownian motion is the scaling limit of a
random walk with vector jumps, when the iid jumps have mean zero and finite second
moments. Figure 5.30 shows a typical sample path. The sample path of a Brownian
motion in R4 for d > 2 is a random fractal with dimension two.
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Fig. 5.30: Simulated Brownian motion in two dimensions, the result of running the R code in Figure
5.29.

Example 5.23. The R code in Figure 5.31 simulates a two dimensional stable Lévy
motion with index a = 1.8. The code is a simple modification of Example 5.19. This
process is the scaling limit of a vector random walk with iid Pareto jumps in each co-
ordinate. Figure 5.32 shows a typical sample path. In contrast to Brownian motion, the
sample path of a vector stable Lévy motion shows occasional large jumps. The sample
path of an a-stable Lévy motion in R for d > 2 is a random fractal with dimension a,
extending the result for Brownian motion (see Blumenthal and Getoor [39] and Meer-
schaert and Xiao [156, Theorem 3.2]). Hence we can see that the power law index, the
order of the fractional derivative, and the fractal dimension are all the same. The two
dimensional stable Lévy motion is A(t) = (A1(t), A (t)) where A, () and A, (t) are two

library(stabledist)

t=seq(1:5000)

X=rstable(t, alpha = 1.8, beta = 0.0, gamma=1.0, delta=0.0, pm=1)
Al=cumsum(X)

Y=rstable(t, alpha = 1.8, beta = 0.0, gamma=1.0, delta=0.0, pm=1)
A2=cumsum (Y)

plot(A1,A2,type="1")

Fig. 5.31: R code to simulate a two dimensional stable Lévy motion.
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Fig. 5.32: Simulated stable Lévy motion in two dimensions, the result of running the R code in Figure
5.31.

independent one dimensional stable Lévy motions. If we take the index a1 of A1(t) to
be different than the index a; of the second component A,(t), the resulting process is
called an operator stable Lévy motion. Operator stable Lévy motions are scaling limits
of a vector random walk when the power law index of the Pareto jump pdf depends
on the coordinate. It is a simple matter to simulate an operator stable Lévy motion,
by editing the index alpha in the code. For more information on simulating operator
stable sample paths, and additional examples, see Cohen et al. [51].



6 Vector Fractional Diffusion

Since many applied problems require a more realistic model in a 2-dimensional or
3-dimensional physical space, this chapter extends the fractional diffusion model de-
veloped in previous chapters to a vector setting.

6.1 Vector random walks

Suppose that (X,,) and (Y,) are two independent sequences of iid random variables.
The two dimensional random walk with coordinates S, = X; +--- + X, and R, =
Y, +--- + Y, represents the position of a particle in the (x, y) plane after n jumps.
Suppose that E[X,] = E[Y,] = 0 and E[X2] = E[Y2] = 2D for some constant D > 0.
Then it follows from Example 3.31 that

28,4 =2 and nY?Rpg = W;

where Z; and W; are two independent Brownian motions. In vector notation, we have

S V4

-1/2 [nt] t

n = (6.1)
(R[nt]> <Wt>

as n — oo. The limit process in (6.1) is a two dimensional Brownian motion with in-
dependent components. A typical sample path was shown in Figure 5.30. If p1 (x, t) is
the pdf of Z; and p, (y, t) is the pdf of W, then the vector limit has a pdf
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This is an isotropic diffusion equation. Figure 6.1 shows level sets of the isotropic pdf
(6.2). It was produced using the R code in Figure 6.11, listed at the end of this chapter.
Since the density p(x, y, t) only depends on x? + y2, the level sets are circles, and the
pdfis rotationally symmetric. This means that the diffusion looks the same in any or-
thogonal coordinate system centered at the origin. Because Z; is isotropic, any rotation
and/or reflection in Figure 5.30 produces an equally likely sample path.

Fig. 6.1: Level sets of the solution (6.2) to the isotropic diffusion equation (6.3) at time t = 1 with
dispersivity parameter D = 2.

To develop a more general, anisotropic diffusion equation, suppose that the two
independent random walks have E[X,] = E[Y,] = 0but E[X2] = 2D; > Oand E[Y2] =
2D, > 0. Then a very similar argument shows that (6.1) holds and the limit has pdf
p(x,y, t) that solves

i(x t)—Da—z(x t)+Da—2(X t) (6.4)
atp ayy = laxzp ayy Zayzp yya . .

Here we have

efx2 /4D1t 1 e—y2 /4Dt

1
\/47'[D1t \/47'[D2t

px,y,t) =

47t~/D1D> 4t\D; Dy /|’ )



6.1 Vectorrandom walks = 145

Figure 6.2 shows level sets of the anisotropic pdf (6.5). Now the level sets are ellipses,
whose principal axes are the x and y coordinates, so there is a preferred coordinate sys-
tem. Figure 6.2 was produced using the R code in Figure 6.12 at the end of this chapter.

Fig. 6.2: Level sets of the solution (6.5) to the anisotropic diffusion equation (6.4) at time t = 1 with
dispersivity parameters D; =2 and D, = 1/2.

For vector random walks, it is natural to adopt a vector coordinate system. Given
an m x n matrix

ayp - Qin
A= : : = [aj]
am1 -+ dmn
we define the transpose
a -+ dm
A’ = [aji] =
Ain - Amn

The transpose of the column vector (a d x 1 matrix)

X1

Xd
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is the row vector x’ = (x4, ..., x4). The inner product
Y1 d
xoy=xy=@y,....x|  |=Y xy;
j=1
Yd

for two column vectors of the same dimension is defined by matrix multiplication.
Then x - y = y - x. The outer product

X1 X1X1 -+ X1X4g
x = ¢ | (X1s...,Xq) =
Xd XaX1 -+ XdXd

is a matrix, while the inner product is a scalar.
Given a d-dimensional random vector

X,
X = .
Xa
we define the mean vector
E[X1] M1
E[X] = : =| : |=ue RY,
E[X4] Ma

and the covariance matrix (using the outer product)
Q = Cov(X) = E[(X - )X - u)']
E[(X1 —pu)X1 —p)] - E[(X1 - pu1)(Xa — pa)l

E[(Xg - pa)(X1 —pu1)] -+ E[(Xa - ua)Xa - ua)l

a d x d matrix whose jj entry is the variance of X;, and whose ij entry for i # j is the
covariance of X; and X;.

Now we can extend the simple arguments of Chapter 1 to the vector case. Later in
this chapter, we will provide a more general treatment based on the theory of infinitely
divisible random vectors and triangular arrays. Let X = (X4, ..., X4)’ be a random
vector in RY with cumulative distribution function (cdf)

F(x)=F(x1,...,xq) =P[X1 <x1,...,Xq <xq] =P[X < x].
Then F(x) = u{y € RY ; y < x} where y < x means that y; < x; foralli=1,2,...,d.If
the cdf F(x) is differentiable, then the probability density function (pdf)

0 0

f(X)Zf(Xl,...,Xd)Z a_)fl.“a—XdF(Xl"”’Xd)
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and the probability measure

u(B)=P[XeB] = J F(dx) = j fx)dx.

xeB xeB

The characteristic function
(k) = ElekX] = J el (dx) = J el F(dx)
so that, if the pdf f(x) exists, then its Fourier transform (FT) is given by
Fito = [ e5f0) dx = -

Suppose that the d-dimensional random vector X has a pdf f(x) = f(x1, ..., xq) and
write the FT of X in the form

Filo = Bl = [ e dx
- J(l—ik-x+%(—ik-x)2+---)f(x)dx
= l—ik-,u—%Jk'xx'kf(x)dx+---

where k is a column vector with k' = (kq, ..., kq). If the random vector X has mean
E[X] = 0 and covariance Q = E[XX'] = fxx’ f(x) dx then

fl)=1- KEXXTk+--=1-1KQk+--

is the FT of X. If (X,,) are iid with X, then the vector sum S, = X; +---+ X, has FTf(k)”
and the rescaled sum n~'/2S, has FT

] 1K' Qk "
O e L (66)
which shows that
nl2s, >y 6.7)

where the limit has FT exp(—%k’ Qk). The limit Y is a multidimensional Gaussian pdf
with mean zero and covariance matrix Q. Its probability density function is

g00) = 2m)" Y2 | det(Q)I/? exp [-3x'Q x|

where det(Q) is the determinant of the matrix Q, see details at the end of this section
for more information.

Next, consider a vector random walk Sns) = X1 +- - - + X[ns Where (X,) are iid with
u = E[X,] = 0 and Cov(X,) = E[X,X},] = 2D is invertible. Then the rescaled random
walk n~1/2S ) has FT

_ K'Dk

N [nt]
flk/vm)int! = (1 +> — exp(-k'Dtk)
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and the Lévy Continuity Theorem (see details) yields
n 28,4 = Z;. (6.8)
If p(x, t) is the pdf of Z; then
Pk, t) = exp(~k'Dtk) = exp[(ik)' Dt(ik)], (6.9)

which solves p
Eﬁ(k, t) = (ik)' D(ik)p (k, t).

Invert the FT to see that p(x, t) solves
0
ap(x, t) =V -DVp(x, t), (6.10)

the vector diffusion equation in natural vector notation. Here we use x'y = x -y, the
fact that (ik)f (k) is the FT of

0
a_xlf(xlr LS ’Xd)
Vi(x) = : ,
0
a_de(Xl’ oo de)
and the fact that (ik) - F(k) is the FT of V - F(x) when F(x) = (fi(x), ..., fs(x)) isa
vector-valued function of the vector x = (x1, ..., xq)' (see details). Inverting the FT in
(6.9) shows that
p(x, t) = (4rt)"Y? | det(D)|"V/? exp [—%X'D’lx] ,

see details at the end of this section.
We can also add a drift: The process Z; + vt has FT

pk, t) = E[e"k(Vi+20] = exp(~ik - vt — k' Dtk), (6.11)

which solves p
Eﬁ(k, t) = [-ik - v + (i)' D(ik)] p(k, ).

Invert the FT to get the vector diffusion equation with drift

0

&p(x, t) =-v-Vp(x, t) + V-DVp(x, t). (6.12)
Inverting (6.11) shows that

p(x, t) = (4mt)"Y? | det(D)| V2 exp —%(x —vt)' D (x-vt)|, (6.13)
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see details at the end of this section.

Remark 6.1. The geometry of the solution (6.13) is determined by the structure of the
dispersion tensor D. For simplicity, suppose that the drift velocity v = 0. Since D is sym-
metric and positive definite, there is an orthonormal basis of eigenvectors b; ..., bg
with corresponding eigenvalues a; such that Db; = a;b; for 1 <i < d. Forany x € R4
we can write x = Z}‘il xjbj where x; = x - bj. Note that

0 if i #j;

-1

b;Dilb]' = b;a;lb]‘ = a;l(bi - bj) = {a ifio
4 =]J.

Then

TN

xX'Dx = ( Xib,'),Dfl( iijj)
i=1 j=1

XinbI{D_lb]'

1}
N
M=a

I
=
~.

Il
=

1}
M=~
R

"L

<

~ N

I
=

and then (6.13) reduces to

4 1 & x?
p(x, 0) = (4nt)" [l‘[ai”z] exp [‘E > a—i] .

i=1 i=1

The level sets of this pdf are ellipsoids

2 2
X X
_1+...+_d:C
a aq

whose principal axes are the eigenvector coordinates b1, ..., bgq. The level sets are
widest in the direction of the eigenvector with the largest eigenvalue. Recall that 2D is
also the covariance matrix of the random walk jumps X,,. You can check (e.g., using
Lagrange multipliers) that this eigenvector maximizes the variance E[(X,, - 6)?] over
all unit vectors ||0]| = 1.

Remark 6.2. The Gaussian limit in (6.7) depends on the choice of norming. Assume
as before that (X,,) are iid with mean E[X,] = 0 and covariance matrix Q = E[X,,X],].
If A is any matrix, then

n n
(n?4) Y Xj=n"12 Y AX; = AY = N(0, AQA")
j=1 j=1
since the iid random vectors AX, have covariance matrix AQA’. Hence n~1/24 is an-
other suitable sequence of norming operators. (We could also apply the Continuous
Mapping Theorem 4.19: If n~1/2S,, = Y, then A(n"1/2S,,) = AY.) If we choose A so that
A’QA = I (see details), then Z = AY = N(0, I). Since Sy, is a vector, matrix norming is
quite natural.
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Remark 6.3. We say that the d x d matrix U is orthogonal if U"! = U’. It is easy to
check that UZ = Z for U orthogonal and Z =~ N(O, I): Just note that UZ has FT

E[e ] = B[] = exp[-$(U'K)'(U'M)] = exp[-3 k' UU'K] = exp[-$[IkI°]

using the fact that U'U = U~1U = I. We say that the orthogonal matrix U is a sym-
metry of Z. Geometrically, orthogonal matrices U are the norm-preserving coordinate
changes, i.e., rotations and reflections. Suppose that S,, = X; +- - -+ X}, isarandom walk
whose iid jumps satisfy E[X,] = 0 and E[X2] = I, so that n~'/2S,, = Z =~ N(0, I). If Uy,
are orthogonal, then we also have n~1/2U,,S,, = Z, so that n-1/2U,, is another suitable
sequence of norming matrices. To check this, use FT and the fact that the orthogo-
nal matrices form a compact set. For any subsequence, there is a further subsequence
U, — U along which the FT of n~1/2U,,S, converges:

JUK IR

n
" . ) — exp(-3k'UU'K) = exp(-3IIkII*).

fon 2ot = (1 -
Since the every subsequence has a further subsequence that converges to the same
limit, the Lévy Continuity Theorem implies that n-/2U,S, = Y.IfI, — I, a simi-
lar argument shows that n-*/2U,I,S, = Z. For more information on symmetry, and
the permissible sequences of norming operators, see Meerschaert and Scheffler [146,
Section 2.3].

Details

In (6.3) we used the fact that the FT of 9f(x, y)/dx is (ik)f (k, €), and the FT of 0f(x, y)/dy
is (i)f (k, ). The proof is a direct application of the corresponding one dimensional
formula (1.14). For example, suppose that f(x, y) is integrable, and that of(x, y)/oy
exists and is integrable. Then (1.14) implies

J e’”ya%f(x, y)dy = (ie) J e f(x,y) dy
for each x, and then - -
]9 ]9 e*"k"e*"eyaiyf(x, y)dy dx = ]9 e i (ip) T e 9f(x,y)dy dx
= (i0f (k, 0).

If of(x, y)/0x also exists and is integrable, then it follows that the vector-valued func-
tion Vf(x, y) = (3f(x, y)/0x, of (x, y)/oy)" has FT ((ik)f (k, €), (ié)f (k, £))'. Note that, for
a vector-valued function F(x, y) = (f(x, y), g(x, y))', we define the FT

o= | T ()
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where
fk, €) = J J e e~ Wf(x, y) dy dx
gk, ) = J J e e~ g(x, y) dy dx.

Now extending to R? in vector notation shows that (ik)f (k) is the FT of the gradient
vector Vf(x).

In (6.10) we use the fact that (ik) - F(k) is the FT of V - F(x), when F(x) =
(fi(x), ..., fa(x))" is a vector-valued function of the vector x = (x1, ..., xq)'. Write

ik Q)
(ik)-F(y = : :
ikq fa(k)

and note that ikjf,-(k) is the FT of ofj(x)/oxj forall j = 1, 2, ..., d. Then (ik) - F(k) is

the FT of
0/0x1 fix)

& ofi(x) _

ox; =V F(x).

= d/oxa) \fa)

In (6.7) we use the Lévy continuity theorem for the vector Fourier transform. The
statement of this theorem is exactly the same as for random variables. Suppose that
Xy, X are random vectors on RY. Let f,(k) = E[e***r] and f(k) = E[e~'*X]. The Lévy
Continuity Theorem [146, Theorem 1.3.6] states that X, = X ifand only if f,,(k) — f(k).
More precisely, X, = X implies that fn(k) — f (k) for each k € RY, uniformly on
compact subsets. Conversely, if X,, is a sequence of random vectors such that f,(k) —
f (k) for each k € RY, and the limit f (k) is continuous at k = 0, then f(k) is the FT of
some X, and X,, = X.

The general solution to the diffusion equation (6.12) comes from inverting the FT
to obtain a normal density. Since the limit in (6.6) is continuous at k = 0, the Lévy
continuity theorem implies that it is the FT of some random vector Y, i.e., we have
Ele Y] = exp(-1k'Qk). Using the general fact that (AB)' = B'A’ for vectors and
matrices, it is easy to see that the covariance matrix is symmetric: Q' = E[(XX")'] =
E[(X")'(X)'] = E[XX'] = Q. The covariance matrix is also non-negative definite: For
any vector a € RY we have a'Qa = E[a'XX'a] = E[(a - X)?] > 0. Of course it is
possible that X is supported on some lower dimensional subspace of R¢ and, to avoid
this, we will assume that Q is positive definite, meaning that a’Qa > 0 when a # 0.
This is equivalent to assuming that the distribution of X is not concentrated on some
lower dimensional affine subspace, i.e., thereisno a # 0 such that X-a is almost surely
constant. In this case, we say that the distribution of X is full. Then a deep result from
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linear algebra (the Principal Axis Theorem, e.g., see Curtis [53, Theorem 31.9]) implies
that Q has an orthonormal basis of eigenvectors v+, . .., vq such that |[vi||> = v; - v; = 1
and v; - v; = 0 fori # j, with Qv; = A;v; for some eigenvalues A; > 0.

For any vectors x, y € RY and any d x d matrix A we have x-Ay = x'Ay = (A'x)'y =
A'x - y. Define A to be the unique matrix (linear operator) such that Av; = /1171/ zvi
foreveryi = 1,2,...,d. Note that v; - Av; = Ai_l/z and v; - Av; = O for i # j. Then
A'vi-vi=v;-Av; = )l;l/z foralli=1,2,...,d,and A’v;-vj = O forj # i. It follows that
Alvi = ;Pv;foralli = 1,2,...,d. Then AQA'v; = v; foralli = 1,2, ..., d. Since
V1, ..., vq forms a basis for RY, it follows that AQA’ = I, the d x d identity matrix.
Then the FT of Z = AY is

Flk)=E [e—ik-Z] -E [e—ik-AY]
-E [e—iA’k-Y]
=exp[-3(4"k)'QA"K]
= exp [—%k’AQA’k] 4
= exp [-3k'Tk] = exp [-3 (k] + -+ + k)| = l_le’kf/2
j=1

which inverts to

d
1 2p —d2 ,-lzl?2
flz) = e 5% = 2m) e
111 V2m

the density of random vector in R? with iid N(0, 1) components. This pdf is isotropic,
since it only depends on z through its norm ||z||. The pdf of Y comes from a change of
variables z = Ay with dz = det(A) dy, so that for any Borel set B < R? we have

P[Y € B =P[A™'Z € B] = P[Z € AB]
- | frdz= | faydercaray

z€AB AyeAB

where det(4) = /111/ 2 ---A;l/ 2 is the determinant (product of the eigenvalues) of the
matrix A. This shows that the random vector limit Y in (6.6) has pdf

f(Ay)det(A) = (271)~U? det(A)e~ AV AN/
= (2m)" Y2 |det(Q)|""? exp [-3Y'Q""Y] (6.14)
since A’A = Q71, which is easy to check, and two basic facts about determinants:

det(A) = det(A’) and det(AB) = det(A) det(B) (e.g., see Curtis [53]). Since the limit Z;
in (6.8) has FT exp(-k' Dtk), we can set Q = 2Dt in (6.14) to see that Z; has pdf

px, t) = (4rt)"Y2 | det(D)|"V/? exp [—%X’D_IX]

using the fact that det(2¢tD) = (2t) det(D). Another change of variables shows that
Z: + vt has pdf (6.13) with FT p(k, t) = exp(-ikvt — k' Dtk). This shows that the pdf
(6.13) solves the vector diffusion equation with drift (6.12).



6.2 Vector random walks with heavy tails = 153

6.2 Vector random walks with heavy tails

Suppose that (X,) and (Y,) are two independent sequences of zero mean iid random
variables with heavy tails, such that

n V%S = Z, and nVPRpg = W,

where S, = X3 +---+ X, Ry = Y1 +--- + Yy, and Z;, W; are independent stable Lévy
motions with index a, € (1, 2). In vector notation, we have

n*”“S[nt] Z;
6.15
(nl/ﬁR[nt] = Wt ( )
as n — oo. Figure 5.32 shows a typical sample path of the vector limit process in (6.15)

in the case a = = 1.8. Since the limit has independent components, it follows im-
mediately from Theorem 3.41 that this process has a pdf p(x, y, t) with FT

ﬁ(ky et = J J e—ikxe—ifyp(x, Vs t) dy dx = etl/]l(_k)et'pz(—e)
where
P1(k) = p1D1(~ik)* + q1D1(ik)* and $1(€) = p2Dy(~i)P + g2 D, (i0)

for some D; > 0 and some p;, g; > 0 with p; + g; = 1. Then

d
Eﬁ(ky er t) = [ll)l(_k) + l/)Z(_e)]ﬁ(ka e’ t)

and inverting the FT shows that p(x, y, t) solves the two dimensional fractional diffu-
sion equation

a

0 o4 0
&P(X, y,t) =p1D1 WP(X, ¥, t) + q1D1 WP(X, Y, t)

a:y)ﬁp(x, Y, b). (6.16)
The fractional partial differential equation (6.16) governs the densities of a two dimen-
sional operator stable Lévy motion. If & = B, then this reduces to a two dimensional
stable Lévy motion. For a = B = 2, equation (6.16) reduces to the two dimensional
diffusion equation (6.3), whose solutions are rotationally symmetric (isotropic). The
geometry for two dimensional stable Lévy motions is more complicated.

The solution p(x, y, t) to the two dimensional diffusion equation (6.3) has FT

OB
+p2D,—p(x,y,t) + q2D>
oyb

p(k, €, t) = exp [-Dt(k* + £%)] .

The rotational symmetry of solutions comes from the fact that the FT only depends
on (k, ) through k? + €2 which is rotationally invariant. Even if we assume a = B,
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D1 = D,, and p; = q; in (6.16), we only get a rotationally symmetric solution in the
special case a = 2. It follows from Proposition 5.8 that

Dk, e, t) = exp [D1t cos(ma/2)(|k|* + |[€]7)] .

The term |k|* + |€|* is not rotationally symmetric unless « = 2, making Brownian
motion a very special case of a stable Lévy motion. Figure 6.3 shows level sets of
the solution p(x, y, t) to the two dimensional fractional diffusion equation (6.16) with
a =f = 1.2 and p; = g;. There is a clear anisotropy here, and a preferred coordinate
system. The R code for Figure 6.3 is listed Figure 6.13 at the end of this chapter.

Fig. 6.3: Level sets of the solution p(x, y, t) to the two dimensional fractional diffusion equation
(6.16) at time t = 5 with parametersa =8 =1.2,D; =D, =0.5,and p; = p, = g1 = g2 = 1/2.

The general d-dimensional random walk S;, = X; +--- + X, is a sum of iid random
vectors. Suppose that (X,,) are iid with X, and assume that X is full, i.e., there is no
a + 0 such that X - a is almost surely constant. If there exist linear operators on R<
(i.e., d x d matrices) A, and vectors b, € R? such that A,S, - b, = Y, we say that
X belongs to the generalized domain of attraction of Y, and we write X € GDOA(Y). In
the special case of scalar norming A, = a,I for some real numbers a, > 0, we say that
X belongs to the domain of attraction of Y, and we write X € DOA(Y).

Example 6.4. Suppose that X = (X4, ..., Xy)' has independent components, where
each X; € DOA(Y;) for some stable random variables Y; with index a; € (0, 2]. For ease
of notation, suppose that the norming constants are of the form n~/% for each com-
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ponent. (In the general case, the norming sequence is RV(-1/a;).) Define the diagonal
norming operators

nil/al 0 0 v 0
0 n-1/a: 0 0
Ap = 0 0 nlw : .
0 0 0 nVYa

and note that, since A, S, — b, has independent components,

Yy
-b,=>Y= :
Yq
Remark 4.17 implies random walk convergence: A,Sins — thn = Z; where Z; = Y.
In view of Proposition 4.16, if all 1 < a; < 2, we can take b, = nA,E[X], and if all
0 < a; < 1, we can set b, = 0. The ith component of the limit process Z; is a stable

Lévy motion with index a;, and pdf p;(x;, t). Since these components are independent,
Z;¢ has pdf

d
pOGt) =p(x1, ..., xa, ) = [ [ pitxi, )
i=1
a product of one dimensional stable densities. Suppose all 1 < a; < 2. Then p(x, t)
has FT

plk, t) = E[e7®%] = exp (t [h1(-k1) + -+ + Pa(-ka)] )

where ¥;(kj) = pjDj(-ik;)% + q;D;(ik;)% for each 1 < j < d, for some D; > 0 and some
Dj, qj = O with p; + g; = 1. Then

@ btk 0= [ (k) +-+- + pa(ka)ok,

and inverting the FT shows that p(x, t) solves the d-dimensional fractional diffusion
equation

d

0 oY
ap(Xy t) = }:zl [p)D) 3(x )a —p(x, )+ QJD) 3(—x

a

SCayaPe D) (617)

The fractional partial differential equation (6.17) governs the probability densities of
a d-dimensional operator stable Lévy motion, whose components are independent
stable Lévy motions with indices a1, ..., aq. Ifall aj = a and all D; = D and all p; =
gj = 1/2, then it follows from Proposition 5.8 that

d
Pk, t) = exp [Dtcos(na/Z) y |k,-|“].
j=1
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These solutions are not rotationally symmetric, since the sum Zl‘-il |kj|* is rotationally
invariant only when a = 2.

Example 6.5. Suppose that B(¢) is a Brownian motion in R? such that E [e~*B(0] =
exp [-k'tQk]. Then B(t) = N(0, 2tQ). Let D; be a standard stable subordinator with
pdf g(u, t) such that

(o)
(s, t) = E [e*SD‘] = I eSUg(u, t)du = e’
0

for some 0 < B < 1, asin (4.41). Define Z; = B(D;) for t > 0. This subordinated process
has FT

plk,t) =E [eiik'zt] =E [e’ik'B(Dt)]

]E[e—ikB(Dz)lDt = u]g(u, t)du
E[e *BW]g(u, t) du

~(KQhug(y ) dy = etk QY (6.18)

Il
Ot——g O——g O ——3g

e

forall t > 0. Suppose for example that Q = ¢!/ for some ¢ > 0. Then the subordinated
process Z; has characteristic function

b=k, t) = E[e*%] = e-telkl?? _ otp(0)

where the Fourier symbol (k) = —c|/k|* with « = 2. This is the isotropic stable Lévy
motion in RY with index 0 < a < 2, a natural extension of a standard, rotationally
symmetric Brownian motion.

The fractional Laplacian operator Af is defined by specifying that AAf(x) has FT
—||k||2ﬁ]C (k) for suitable functions f(x). If § = 1, this reduces to the usual Laplacian
Af(x) = V - Vf(x), whose FT is (ik) - (ik)f (k) = —||k||*f (k). The subordinated process Z;
from Example 6.5, in the special case Q = c}#I, has a FT p(k, t) = eIkl that solves

d . .
2pPUe 0 = ~clkI?p(i, o).
Invert to obtain the isotropic vector fractional diffusion equation
2 ptx, ) = cafpix, (619

for 0 < B < 1. When B8 = 1, this reduces to the vector diffusion equation (6.10) with
D = cI. Since the FT is rotationally symmetric, the solutions of (6.19) are invariant
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under rotations and reflections. The pdf in (6.18) has elliptical symmetry. Solutions
to (6.17) in the case p; = gq; are symmetric with respect to reflection across the ith
coordinate axis. For 0 < a < 2, there are three distinct Fourier symbols

—IkN® # (hn)® + - + (k@) # —lka]® =+~ = |kal®

which are all equal in the case a = 2. These symbols give rise to three different Lévy
processes, corresponding to three different stable limits, when 0 < a < 2. See the
details at the end of this section for more information.

The stable Lévy process with Fourier symbol 1 (k) = (ik1)*+- - -+(ik4)% is the limit
of random walks whose jumps have iid components consisting of only positive power
law jumps. The process with Fourier symbol y, (k) = —|k1|* - - - - — |kg|® is the limit of
random walks whose jumps have iid components consisting of symmetric power law
jumps. The isotropic stable process constructed in Example 6.5 will be shown to arise
as the limit of a random walk with iid spherically symmetric power law jumps. Take
X = RO where P[R > r] = Cr % and 0 is uniformly distributed over the unit sphere.
We will show in Section 6.4 that n~/%(X{ + --- + X;,) = Z; when (X, are iid with
X. In the case of finite second moments, a random walk with spherically symmetric
jumps gives the same limit as a random walk whose jumps have iid (one-dimensional)
symmetric components. In the case of heavy tails, these two limits are different. In the
next section, we will build the necessary machinery of infinitely divisible laws and
triangular arrays, to make these statements rigorous.

Details

Recall from Remark 6.3 that U is orthogonal if U~ = U’. Then
1Ux|1? = (Ux)"(Ux) = x"U'Ux = X' U Ux = X' Ix = |x|?

so that the linear transformation x — Ux preserves the Euclidean norm. If X is a
random vector on R? with FT f(k) = E[e *%] and A is a d x d matrix then, since
k-AX = A’k - X, the transformed random vector AX has FT

]E[e—ikAX] _ ]E[e—iA’k-X] =f(A’k).

The solution to (6.19) has FT p(k, t) = E[e~*%] = exp [~tc||k|??]. If U is orthogonal,
thensois U' = U~1, and it follows that UZ; has the same FT p(U'k, t) = exp [—tcllkllzﬂ]
as Z;. This proves that UZ; =~ Z;, so that every orthogonal transformation (every rota-
tion and reflection) is a symmetry of this process.

The process Z; in (6.18) is elliptically symmetric. Apply the construction in Section
6.1 to obtain a matrix A such that AQA’ = I. Then the process AZ; has FT

f)(A'k, f) = e—t((A’k)’Q(A’k))ﬂ _ e—t(k’AQA’k)/’ _ e—t(k’Ik)ﬂ _ efz||k||2/3
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so that UAZ; = AZ; for every orthogonal U. It follows that A"1UAZ; =~ Z; so that
A"1UA is a symmetry of Z; for every orthogonal U. The level sets of the pdf are ellip-
soids whose principal axes are the eigenvectors of A (i.e., the eigenvectors of Q). More
information on symmetries for stable and operator stable laws can be found in Cohen,
Meerschaert and Rosifiski [51], see also [146, Section 7.2] and references therein.

Solutions of (6.17) with p; = g; are symmetric with respect to the linear transfor-
mation (X1, ..., Xjy ..., Xa) = (X1,..., =X, ..., Xq)since Y;(k;) = P;(-k;). However,
they are not spherically or elliptically symmetric.

6.3 Triangular arrays of random vectors

In this section, we begin to develop the general theory of fractional diffusion in multi-
ple dimensions, starting with the Lévy representation for infinitely divisible laws. We
say that a random vector Y is infinitely divisibleif Y = X; +- - -+ X}, for every positive in-
teger n, where (X,) are independent and identically distributed (iid) random vectors.
If X, = uy, then this is equivalent to ji(k) = i, (k).

Example 6.6. If Y = N(a, Q) (normal with mean a and covariance matrix Q), then
ji(k) = exp(ik - a - 3k’ Qk). Take jin(k) = exp(ik - n"ra - 1k'(n"1Q)k) to see that Y is
infinitely divisible, the sum of n iid N(n~'a, n~1Q) random vectors.

Example 6.7. A compound Poisson random vector Y = Wy +---+ Wy = Syisarandom
sum, where S, = Wy +- -+ Wy, (W}) = w(dy) areiid random vectors, and N is Poisson
with E[N] = A, independent of (W;). Then

F(y) =P[Y <y] = P[Sy <]

= Z P[Sy < y|N = j]P[N = j]
j=0

= ZIP[S, < y]e"‘—.
j=0

Then Y has characteristic function
ik = 3 el
j=0 J!

[Aw(k
Z

_ o) e/\w(k) _ e/uw(k)—u_
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Take jin (k) = eM/MI@00-1 to see that Y is infinitely divisible. This argument is identical
to Example 3.3, using vector notation. Continuing as in Section 3.1, write

ji(k) = @011 — exp </1 ” e**w(dx) - 1])
= exp </1 U (eik"‘ - l) w(dX)D
= exp <J (eik"‘ - 1) ¢(dx))

where the Lévy measure ¢p(dx) = A w(dx) (jump intensity) controls the number and
size of jumps that make up the random sum. In particular, ¢(B) is the expected num-
ber of jumps in B for any Borel set B bounded away from zero.

A Lévy measure ¢(dy) on R is a o-finite Borel measure such that

Ilyl*¢(dy) <o and @iy : llyl > R} < o0 (6.20)
o<IylI<R

for all R > 0. The next theorem extends the Lévy representation from Theorem 3.4 to
random vectors.

Theorem 6.8 (Lévy representation for random vectors). A random vector Y = p on
R is infinitely divisible if and only if its characteristic function ji(k) = E[e'kY] = e¥®)
where .

ik-y

k =ik-a—lk’Qk+J<e”"y—1—7
v 2 T+ P

) éiay (621
for some a € R%, some symmetric nonnegative definite matrix Q, and some Lévy mea-
sure ¢(dy). This Lévy representation u = [a, Q, ¢] is unique.

Proof. The proof is based on a compound Poisson approximation, see Meerschaert
and Scheffler [146, Theorem 3.1.11]. O

Example 6.9. If Y =~ N(a, Q) then Theorem 6.8 holds with Y = [a, Q, O].

Example 6.10. If Y is compound Poisson, then Theorem 6.8 holds with Y = [a, O, ¢],
where ¢(dy) = Aw(dy), and

y

a= | o #an-

The Lévy representation (6.21) is a natural extension of the one dimensional formula

(3.4). Note that the Lévy representation implies that any infinitely divisible law can be

written as a sum of two independent components, one Gaussian, and one Poissonian.
In a triangular array of random vectors {X,; : j=1,...,k;sn =1,2,3,...} the

row sums Sy = Xp1 + --- + Xnk, have independent summands for each n > 1, and
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kn — ocoasn — oo. A general result [146, Theorem 3.2.14] states that Y is infinitely
divisible if and only if S,, — a, = Y for some a, € R? and some triangular array that
satisfies

11m sup P[||X,ll >¢€] =0 foralle > 0. (6.22)

0 1<j<kn

Define the truncated random vectors Xﬁi = XnjI(|IX4jll < R) and recall that a sequence
of o-finite Borel measures ¢,(dy) — ¢(dy) on{y : y # 0} if ¢p,(B) — ¢(B) for any
Borel set B bounded away from zero such that ¢(0B) = 0 (vague convergence). The
next result extends Theorem 3.33 to random vectors.

Theorem 6.11 (Triangular array convergence for random vectors). Given a triangular
array such that (6.22) holds, there exists a random vector Y such that S,, — a, = Y for
some a, € R if and only if:

kn
) z P[Xy; € dy] — ¢(dy) for some o-finite Borel measure on{y : y + 0}; and
j=1

kn ke
iy s e e i eq
(ii) llj})hglsogpj; Cov[Xy;] = ll_r’%hgggfj; Cov[X};1 = Q

In this case, Y is infinitely divisible with Lévy representation [a, Q, ¢], where a € R4
depends on the centering sequence (a,). We can take

kn
an = ) E[X}] (6.23)
j=1

for any R > 0O such that ¢{y : |ly| = R} = 0, and then E[ekY] = e¥o(0 where
Wo(k) = —1k'Qk + J (e —1—ik-yI(lyl < R)) p(dy). (6.24)

Proof. The proof follows the same ideas as the one dimensional case, using a Pois-
son approximation. The main ideas (see details) are similar to Remark 3.35. For the
complete proof, see [146, Theorem 3.2.2]. O

Remark 6.12. To establish vague convergence (i), it suffices to show

M»

P[Xyj € Al — ¢(A) (6.25)
1

.
1l

for sets of the form A = {t0 : t > r, 6 € B} where r > 0 and B is a Borel subset of the
unit sphere S = {y € R? : |ly| = 1}. Both (6.23) and (6.24) depend on the choice of
R > 0. If the Lévy measure has a density, then any R > 0 may be used. To establish
condition (ii), it is sufficient to show that

lim lim sup k' Q,k = llm llm 1nfk Q.k = kK'Qk (6.26)

-0 n—oo
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for all k € RY, where

ke
Qn = ) Cov(X)).

j=1

As anillustration, we prove the vector central limit theorem in the case of finite second
moments.

Theorem 6.13 (Vector Central Limit Theorem). Suppose that (W) are iid and that y =
E[Wy] and Q = E[(W,, — u)(Wy, — u)'] exist. Then

n-12 i(wf -u) = Y =N(©, Q). (6.27)
j=1

Proof. The proofis quite similar to Theorem 3.36, extending to vector notation. Define
the triangular array row elements X,; = n-1/2 W;forj=1,...,n Then condition (6.22)
holds (see details), and so it suffices to check conditions (i) and (ii) in Theorem 6.11.
For condition (i) we have for each € > 0 that

kn
Y PlIXyil > €] = nP[n" V2| W] > ]

j=1
! = nP[|Wj| > n'/2¢]

nN2
< nE [(M> 1w > nl/zs)]

nt2e
= e 2E [IW;IPIQW;] > n*?e)] — 0

as n — oo, since E[[|W,|?] exists (see details). Then (i) holds with ¢ = 0.
As for condition (ii), use the general fact that Cov(X) = E[XX'] - E[X]E[X]' (see
details) to write

3 conty) e[ (05) ()] - x5 15
= nE [(n" 2 W) (V2 W) I(In 2 Wy < )]
—nE [ PWiI(In 2 Wil < )] E [ 2 wi(in 2wyl < o))
= E[W;WjI(IWj]| < n'/¢)]
- E[WI(wjl < n'2e)] E[W;1QW;l < n/2e)]’
— E[W;W]] - E[W;] E[W;]' = Cov(W)) = Q
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asn — oo. Then Theorem 6.11 implies that S, —a, = Y = [a, Q, 0] = N(a, Q) for some
a € R4, Since ¢ = 0, for any R > 0 we can take

kn
an = ) E[XR] = nE [n" P WiI(|Wj|l < n'/?R)]
j=1

=n'? {u-E[W;I(1W;] > n'/?R)|}
where u = E[W;] and

[n*2E[WiIw;1 > 0 2B | < n'2E [IW; 1AW > n'/2R)]
1/2 : Wil : 1/2
< n2E 1)) (572 ) 10w > 2Ry

= RE[IW;I*I(1W;]l > n'/>R)| — 0
since E[||Wy|?] exists. This shows that a, — n'/?u — 0, and then (6.27) follows. [

Corollary 6.14. Suppose (W) are iid and p = E[W,] and Q = E[(W, — u)(W, — u)’]

exist. Then
[nt]

n-1/2 Z(Wf - 1) = Zr = N(O, tQ). (6.28)
j=1

forallt > 0.

Proof. The proof is essentially identical to Theorem 3.41. Theorem 6.13 shows that
(6.28) holds for t = 1, with Z; = Y. Let jin(k) be the characteristic function of n~1/2(W;-
), so that ji, (k)" — ji(k) = E[e*Y] for all k € R?. Then we also have

fin ()" = (i (™)™ S (i)t

for any t > 0, which shows that (6.28) holds for any ¢ > 0. O

Details

If X is any random vector, then the distribution of X is tight, meaning that
P[|X|| >r] = 0 asr — oo. (6.29)

Equation (6.29) follows by a simple application of the dominated convergence theo-
rem. It follows that
P[| Xyl > €] = P[|Wj]l > n'/%e] - 0

as n — oo, so that condition (6.22) holds.
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If X is a random vector with y = E[X] then

Q=Cov(X) =E[(X - )X - )’

=E[XX - puX' - Xp' +pp'|

=E[XX']| - pE[X) - E[X]p' +pp'

=E[XX'] - pp' —pp' + pp’ = E[XX'] - !
which we used in the proof of Theorem 6.13.

Let u; denote the ith coordinate of the mean vector p = E[X] and let Q;; = E[(X; -

ui)(Xj — pj)'] denote the ij entry of the covariance matrix Q = Cov(X). The proof of
Theorem 6.13 also used the fact that, in this case,

BIXP] = B[]+ 2] = 3 (Quv i)

d
=1

1

exists, since the mean and covariance matrix exist.
The proof of Theorem 6.11 uses a compound Poisson approximation S,, ~ Sy where
N is Poisson with E[N] = k. We sketch the main ideas here. For the complete proof,
see [146, Theorem 3.2.2]. Let ji(k) = e¥® = E[e*Y] and let jin(k) = e¥») be the
characteristic function of the appropriately shifted compound Poisson random vector
SN = [bn, Qn, ¢n]. Then u,, = pifand onlyif (k) — (k) [146, Lemma 3.1.10]. Write
v d) = ey -1 - ——2
Ty 1+ 1yI2
and note that y — f(y, k) is a bounded continuous function such that
f, k) =-3(k-y)* +O((k-y)*) asy—0
for any fixed k. If condition (i) holds, then it is not hard to show that
| fotoguian) > [ v ioey
llyll>€ lyl>e

whenever ¢{|ly|l = €} = 0, which must be true for almost every € > 0. Then

lim lim [ . Koga(dy) = lim [ iy, 0p(@) = [ for oopiay)

£—0Q n—oo
lyl>¢e llyll>¢e

since f IvII2I(0 < |lyll < €) ¢(dy) exists for a Lévy measure. Now observe that

lim lim | -1K'Quk + J £, K)pn(dy)

£—-0n—oo
O<llyll<e

~lim lim | -1K'Quk-1 [ Kyykga(dy) | = -3k 0k
O<llyll<e



164 —— 6 Vector Fractional Diffusion

whenever

lim lim | Q. + I Y dn(dy) | = Q. (6.30)

£—0 N—00
O<llyll<e

Then it can be shown that Sy — a,, = Y for suitable a, € R? if this condition holds.
Note that
)/)/’d)n(d)/) = kn]E[XniX;U'I("Xni” <g)]
O<llyll<e
is the un-centered covariance matrix of the truncated row element. This leads to con-
dition (ii). Finally, argue that convergence of the random sum implies convergence
without the Poisson randomization [146, Theorem 3.2.12].

As in the one variable case, some alternative forms of the Lévy representation
(6.21) are also useful.

Theorem 6.15. Suppose Y = u is infinitely divisible with characteristic function ji(k) =
e?® and (6.21) holds. Then we can also write ji(k) = e%® where

Wolk) = ik-ao - §K'Qk+ [ (™~ 1-ik-yIUyI <R) $(dy) (63D
for any R > 0, for some unique ao depending on R and a. Furthermore:
(@ If

lyllé(dy) < oo (6.32)
0<|y|<R

then we can also write ji(k) = e¥1% where

Y100 = ik-ar - $KQk+ [ ("7 - 1) p(dy) 6.33)
for some unique a, depending on ag; and
(b) If
| wig@n <o (6.34)
lyI>R

then we can also write ji(k) = e¥>(% where
Y200 = ik- @y - 1K' Qk+ [ (% - 1~ ikc-y) g(dy) (6:39)
for some unique a, depending on ay.

Proof. The proof is similar to Theorem 3.8. The integral

[y
o= | (15~ < B)) b(@y)
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exists, since the integrand is bounded and O(||ly|?) as y — 0. If we take ag = a - 8o,
then (k) = Yo (k). If (6.32) holds, then Yy (k) = 14 (k), where

a; =daop— I yo(dy).
O<llyl<R
If (6.34) holds, then (k) = Y, (k), where
ap =daop + j yo(dy).
llyl>R

Uniqueness follows from Theorem 6.8. O

Remark 6.16. It can be shown by differentiating the characteristic function that
E[Y] = a, for any infinitely divisible law that satisfies condition (6.34) in Theorem
6.15, see [146, Remark 3.1.15] for details.

6.4 Stable random vectors

Stable random vectors are the weak limits of random walks with power law jumps.
Each jump is of the form X = WO, where P[W > r] = Cr “* for some C > 0 and
some 0 < a < 2, and O is a random unit vector. The distribution of the stable limit is
determined, up to centering, by C, a, and the distribution of 6.

Theorem 6.17. Suppose X, = W, 0, are iid random vectors in R with P[W,, > 1] =
Cr~%iid Pareto for some O < a < 2, and 0, are iid random unit vectors with probability
measure M(d6), independent of (Wy,). Then

rrl/"‘(X1 +etXp)—ap=>Y (6.36)
for some ay, € R4, where Y is infinitely divisible with Lévy representation [a, 0, ¢p] and
¢{td : t > 1,60 € B} = Cr “M(B) (6.37)

for any r > 0 and any Borel subset B of the unit sphere. If 0 < a < 1, we can choose
an = 0, and then the limit Y is centered stable with characteristic function

E[ei*Y] = exp | ~CT(1 - ) j (~ik - 9)*M(d) | - (638)
l61=1

If1 < a < 2, we can choose a, = n*~Y2E[X,], and then the limit Y is centered stable
with mean zero and characteristic function

Ir-a) . «
P ] (-ik - 0)*M(do) | . (6.39)

l61=1

Ele*Y] =exp | C
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Proof. Consider a triangular array X,j = n"1/¢X; for 1 < j < n = ky. Condition (6.22)
holds (see details), and so we only need to check conditions (i) and (ii) from Theorem
6.11, see also Remark 6.12. For condition (i) it suffices to prove that (6.25) holds for
A = {tf : t > r,0 € B}, where B is a Borel subset of the unit sphere. For n sufficiently
large we have

%IP[X,U € A] = nP[n VX, € A)

=t = nP[n"YW;0; € A]
= nP[n"V“W; > r, ; € B]
= nP[W; > n'/*r]P[6; € B]
=nC(n'*r)"*M(B) = Cr *M(B)

which shows that (i) holds with the Lévy measure (6.37).
To prove condition (ii), write

K Quk = nk' Cov(Xy)k = nVar(k - X;)

nE [(k- X5,)’]

nE [(n” Y W)2I(Wj| < n'/%e)(6; - k)?]

nE [(n” Ve W)2I(W;j| < n'/%e)| E[(6; - k)*]
n' R [W (W) < n/%)] k|2

- (g e ) (6.40)

by (3.45) and the fact that (k - 8)? < ||k||? for any unit vector ||8] = 1. It follows that

~.

IA

IA

Ca a
lim lim sup k' Q,k < lim lim (eH— - n1*2/“—c2/“> k12
£—0 noco £—0 N—00 2-a 2-a

. 2a_Ca 2

= Hme g k7 =0

since0 < @ < 2,sothat1 - 2/a < 0and 2 — a > 0. Then Theorem 6.11 implies
that S, — a, = Yo holds for some sequence (ay), where S, = n™V/%(X; + --- + X,,),
Yo = [a, 0, ¢], and (6.37) holds.

Suppose 0 < a < 1. It follows from (6.37) that the Lévy measure
d(dy) = aCr~*"'drM(d6) (6.41)

in polar coordinates y = r@ with r > 0 and ||| = 1 (see details), so we can choose (ay)
according to (6.23) for any R > 0. Then E[eik'Yo] = e%o(0) where

voto= | [ (%70~ 1~ ik- ror(1rol < R)) aCr -t dri(de)
l6l=1 0
- J Y(k, O)M(dO) (6.42)

l61=1
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using (3.46), where

bk, 6) = [ (40"~ 1~ ic- O)r1(r < B)) acr*Ldr
0

=-CI(1 - a)(-ik - 0)* — (ik - O)a (6.43)

and a is given by (3.47). It follows that

o(k) = ~CI(1 - a) j (ik - 0)2M(d6) — ik - b
[61=1

where
b-a J OM(d0) = ——R'"* E[6)].
l61=1

Then Y = Yy + b is a centered stable random vector with characteristic function (6.38).
Use (6.23) along with (3.48) to write

ki
an = ) E[XK] = nE [nV*W;I(W;| < n'/*R)] E[6)]
j=1

- [ﬂRH - nH/“Lc”“] E6)] » X RICEO]=b  (644)
1-«a 1-«a 1-a
asn — oo, since 1 — 1/a < 0 in this case. Then S, - b = S, —a, + (ap, — b) = Yy, so
Shn=S,-b+b = Yy+b =Y. Hence we can take a, = 0 in this case, and then the
limit has characteristic function (6.38).
Now suppose that 1 < a < 2. Theorem 6.11 shows that, if we choose (a,) according
to (6.23), then E[elkYo] = e¥o() where (6.42) holds with

Yk, 0) =C (-ik - 0)* + (ik - B)a (6.45)

F(2 a)
a-

by (3.49), where a is given by (3.50). It follows that

Yo(k) =C

fe-o j (=ik - 0)“M(d6) + ik - b
a-1

lol=1

where

_ R v
b= aE[6]] = R “E[6)].

Then Y = Yy - b is a centered stable random vector with characteristic function (6.39).
Using (6.44) we have

Ca
1-a

an = R4 - n1*1/“1+"ac1/“ E[6;] = -b + n"Vay (6.46)
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where
u = E[X;] = E[W;] E[6]] = %c”“ E[6]] (6.47)

by (3.52). Since S, — ay, = Yo and a, + b = n'~Y9y, it follows that S, — n'~1/%y =
Sn—an—-b = Yo - b = Y. Hence we can take a, = n'"V*E[X;] in this case, and
then the limit has characteristic function (6.39). Then it follows from Remark 6.16 that
E[Y] = 0. O

Proposition 6.18. The characteristic function of a general stable random vector Y with
Lévy measure (6.37) and index O < a < 2, « # 1 can be written in the form

Ele*Y] = exp | ik - p - j 16- k1 (1 - isgn(6 - k) tan (?))A(d@) (6.48)
l61=1
with center y and spectral measure

A(dO) = cr(l2 —9)

cos ( % ) M(do). (6.49)

In this case, we will write Y = Sy (A, ).

Proof. If 1 < a < 2, then (6.39) implies

Ele*Y] =exp | A J (—ik - 0)*M(dO) (6.50)
l61=1

with A = CI'2 - a)/(a-1).If0 < a < 1, then (6.38) implies that (6.50) holds with
A=-CI1l-a)=CI2-a)/(a-1). Now use (5.5) to write

Ele*Y] =exp | A I |k - 0]% cos(mrat/2)[1 — i sgn(k - O) tan(a/2)|M(dB) |  (6.51)
=

ol=1

so that Y + u satisfies (6.48) and (6.49) holds. O

Remark 6.19. The spectral measure A(d6) in (6.49) is an arbitrary positive finite Borel
measure on the unit sphere, since both 1 — @ and cos (1a/2) change sign ata = 1. In
one dimension, we have A{+1} = po® and A{-1} = go® where the skewness 8 =p — g
in the notation of Proposition 5.3. The spectral measure plays a role similar to the co-
variance matrix, i.e., it controls the dependence of the components of the stable ran-
domvector Y = (Yy, ..., Yy) . If A(d0) is a discrete measure that only assigns positive
weight to the coordinate axes, then it follows easily from (6.50) that Y1, ..., Y, are
independent. In fact, Yy, ..., Y4 are independent if and only if A is concentrated on
the coordinate axes, see Meerschaert and Scheffler [147, Lemma 2.3].
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Remark 6.20. If a = 2, then (6.48) reduces to the characteristic function of a normal
random vector Y =~ N(u, Q) where the covariance matrix

Q=2 J 00' M(d0). 6.52)
l1el=1

The characteristic function of a general stable random vector Y with Lévy measure
(6.37) and index a = 1 can be written in the form

E[e*Y] = exp | ik - p - I |9-k|<1+i(%)sgn(@-k)lan-kl)A(dG) 6.53)
[6l=1

with center y and spectral measure
Ad0) = ¢ (5) M(do). (6.54)

These formulas (6.48) and (6.53) describe the entire class of limit distributions for sums
of iid random vectors with scalar norming, see [146, Theorem 7.3.16].

Theorem 6.21. Suppose X, = W,0, are iid random vectors with P[W, > r] = Cr ¢
forsome 0 < a < 2, and O, are iid with probability measure M(d6) on the unit sphere,
independent of W,

(a) If0 < a < 1, then
[nt]

n VN X = Z; (6.55)
j=1

forallt > 0, where

E[e”] =exp | -tD | (-ik-6)M(d6) (6.56)
leli=1

andD = CI'(1 - a);
(b) If1 < a<2,then u = E[X,] exists and

[nt]

n-la Z(Xj —W) =7, (6.57)
j=1
forallt > 0, where
E[e*%] = exp | tD j (—ik - 6)*M(d6) (6.58)
lle1=1

andD = CI'(2 - a)/(a - 1).
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Proof. The proof is essentially identical to Theorem 3.41. For example, in the case 0 <
a < 1, Theorem 6.17 shows (6.55) and (6.56) hold for t = 1, with Z; = Y. Let ji,,(k) be
the characteristic function of n~/4X;, so that ji, (k)" — fji(k) = E[e*Y] for all k € RY.
Then we also have

()" = (1 (™)™ ™ — (i)t

for any t > 0, which shows that (6.55) and (6.56) hold for any ¢ > 0. O

Details

Since X; = W;0; is tight for any fixed j, so that (6.29) holds with X = X;, it follows that
P Xyl > €] = P[IX;] > n'/%] -0

asn — oo, so that condition (6.22) holds.
In (6.40) we used the fact that

X5, = n AW 01(In VW65 < €) = nT VA WSI(IWG| < n'/e)6;

since ||©;] = 1. We also used the general fact that, if Q = Cov(X) = E[(X - u)(X - p)']
with y = E[X], then E[k - X] = k - y and

k' Qk = E[K'(X - w)(X - w)'k] = E[(k - (X - p))?] = Var[k - X]

for any fixed k € RY.
To establish (6.41), write A = {t6 : t > r, 8 € B} and note that

J aCt-o=1dtM(dO) = j aCt-a-1dt j M(d6) = Cr°M(B).
r

tocA 6eB

This is sufficient to prove (6.41) since sets of this form determine the measure ¢.

6.5 Vector fractional diffusion equation

Theorem 6.21 shows that a vector random walk with power law jumps converges to a
vector stable Lévy motion Z;. Suppose 1 < a < 2. Then (6.58) shows that the pdf p(x, t)
of Z; has FT

bk, t) = exp | ¢D I (ik - 6)*M(d6)
[I6l=1
and then
2 ik = p(hpik, (659)
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where the Fourier symbol

W(-k) =D j (ik - 0)*M(d6). (6.60)
l61=1

Equation (6.59) represents the FT of the equation
0
&p(X, t) = Lp(X, t)

where the generator Lf(x) has FT l/)(—k)f (k). We would like to understand the meaning
of this generator in terms of fractional derivatives.

First we consider the FT (ik - 0)%f (k). If « = 1, then (ik - 0)f (k) = (ik)f (k) - @ is the
FT of the directional derivative (use the chain rule)

d
]Dﬂf(x) = Ef(x + t9)|t=0
d
= Eﬂxl +t01, ..., Xa +t04)|,_o

0 0
= a—xlf(x +t0)0; +--- + a—de(x +1t0)0,

t=0

=Vf(x)- 0 (6.61)

defined for any unit vector 8 € R9. We will define the fractional directional derivative
Dyf(x) to be the function with FT (ik - 6)* f(k). 1t is not hard to check (see details)
that IDgf(x) is the (positive Riemann-Liouville) fractional derivative of the function
t — f(x + t0) evaluated at t = 0.

Takee; = (1,0,...,0), e, =(0,1,0,...,0), and so forth, the standard coordi-
nate vectors. If 0 = ej, then k - e; = kj and

a

DESO) = ~2—fxr, - ., Xa)

a(X j)
is the fractional partial derivative in this coordinate. Now define
v flx) = I DEF(x)M(d). (6.62)
lo1=1

Then DV, f(x) has FT Y(=k)f (k), where the Fourier symbol y(~k) is given by (6.60),
see details at the end of this section. Inverting the FT in (6.59) shows that the density
p(x, t) of Z; solves the vector fractional diffusion equation

0
3P0 0 = DVyp(x, t) (6.63)
for 1 < a < 2. Next we add a drift: For v € R9 the FT of vt + Z; is

P, ) = E[e 02| —exp| ik-ve+De [ (ik-6)°M(do)
l61=1
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Then

Eﬁ(k,t)z —ik-v+D J (ik - 0)*M(dO) |p(k,t). (6.64)
l61=1

Inverting the FT in (6.64) shows that the density p(x, t) of vt + Z; solves the vector
fractional diffusion equation with drift

%p(x, t) =-v-Vp(x, t) + DVp(x, t) (6.65)

for 1 < a < 2. This equation was introduced in Meerschaert, Benson and Baeumer
[137]. It was originally applied to describe the movement of contaminant particles in
ground water in a heterogeneous aquifer by Schumer et al. [194]. It has also been ap-
plied by Cushman and Moroni [56] to model particle traces in a laboratory setting. If
0 < a < 1, then (6.65) governs vt + Z; with D < 0.

Example 6.22. Suppose that M{e;} = 1/d forj = 1,...,d where ey, ... e, are the
standard coordinate vectors. Then

d d
| k- oyaan - Z(zk et = d Y (iky)"

l61=1 B

since kj = k - e;. Then
Vaf) =d 12 S0x )af(X)
Xj

and the vector fractional diffusion equation

a

0
p(x, t) = Do Z SoEP 0 (6.66)
Xj

with Dy = D/d governs the scaling limit Z; of a random walk with Pareto jumps evenly
scattered over the positive coordinate axes. Here the components of Z; are iid a-stable
Lévy motions that are totally positively skewed (p = 1 and g = 0, so that the skewness
B = 1). Figure 6.4 shows a typical solution on R? in the case a = 1.3, obtained us-
ing a small modification of the R code from Figure 6.13: Set a1=1.3, a2=1.3, q1=0.0,
q2=0.0, and t=2.0. The mean of the pdf in Figure 6.4 is zero, but the mode is shifted
into the negative, to balance the heavy positive tail.
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-1 0 1

x1

Fig. 6.4: Level sets of the solution p(x, t) to the fractional diffusion equation (6.66) in dimension
d=2attimet=2witha=1.3and Dy =0.5.

Example 6.23. Suppose that M(d0) = M(-d0) (origin symmetric) forall |@|| = 1. Then
it follows using (5.6) with p = g = 1/2 that

(ik-0)°M(d6) = [ (ik-6)2M(-ao)
61=1 [6=1
(—ik - 6)°M(d6)
16l=1
[L(ik- 0)% + 1(-ik - 0)"]M(d6)
61=1
- cos(na/2) J Ik - 61°M(d).

l61=1

For example, if M{e;} = M{-e;} = 1/(2d) forforj=1,...,d then

d
j (ik - 6)*M(d6) = Z 3k + 3(-ik;)*] = d ™" cos(na/2) ) |k;|*
lol=1 j=1
and (6.63) reduces to

a a

d
ap(x t) Z[ S P 0+

0
300" 37 ~—— P t)] (6.67)
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where D, = D/(2d). Some authors define the fractional Laplacian in one dimension,
df(x)/d|x|%, as the inverse FT of —|k|*f (k). This is also called the Riesz fractional deriva-
tive. Then we can rewrite (6.67) in the form

a

d L 0
5¢P0 8 =Do ,Zl PETA (6.68)

where Dy = —D cos(ta/2)/d. Equation (6.67) governs the scaling limit Z; of a random
walk with Pareto jumps evenly scattered over the positive and negative coordinate
axes. The components of Z; are iid symmetric a-stable Lévy motions. A typical solution
was graphed in Figure 6.3.

Example 6.24. Suppose that M(d) is uniform over the unit sphere ||8] = 1. Write
k = pw in polar coordinates with p > 0 and ||w| = 1. Then

I (ik - 0)*M(d6) = cos(rra/2) j Ik - 6]*M(d6)

l6l=1 l6l=1
= cos(mma/2)p*” j |w - 0|*M(dO)
l61=1
= Bp“ = BJ k||

where
B = cos(nia/2) |w - 6|1*M(dO)
len

= cos(rta/2) |611*M(dO)
lel

1

1

by symmetry, since the integral in the first line does not depend on choice of w, so that
we can set w = e;. Note that B is a constant that only depends on a and the dimension
d,withB>0forO<a<1l1landB < O0for1 < a < 2. Now (6.59) becomes

d . .

Ep(k, t) = DB|k|*p(k, t).
If 1 < a < 2 then this inverts to

0 al2

ap(x, t) = D3A™*p(x, t),

a version of (6.19) with ¢ = D3 = -BD > 0, involving the fractional Laplacian of order
B = a/2.The case 0 < a < 1 leads to the same differential equation, with D3 = BD >
0. This isotropic vector fractional diffusion equation governs the scaling limit Z; of a
random walk with power law jumps, whose angle is evenly scattered over the entire
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unit sphere. The components of Z; are symmetric a-stable Lévy motions, but they are
not independent. This is clear because the FT

d
—7k- — a _ |
lE[e lkZ[] —e tDs||k| + | |e tDs|k;|
j=1

and the quantity on the right-hand side is the product of the FT of the components.

It is instructive to contrast the normal case a = 2 with the stable case 1 < a < 2. If
a = 2 then

D I (ik - 0)*M(d6) = —D J K'06' kM(d6) = -k Qk
l1el=1 161=1

where the dispersion tensor Q = D f 0 6’ M(d6). Then (6.63) reduces to the vector dif-
fusion equation

%p()ﬁ t) =V-QVp(x, t). (6.69)

This equation governs the scaling limit Z; of a random walk whose jumps have finite
second moments, see Corollary 6.14. The dispersion tensor Q controls particle spread-
ing, see Remark 6.1. This also reflects the jump distribution: The longest jumps tend
to be in the direction of the eigenvector corresponding to the largest eigenvalue of the
matrix Q. If Q = cI, then (6.63) reduces to the isotropic diffusion equation

%p(x, t) = cAp(x, t) (6.70)

since V - V = A. Here Z; is an isotropic Brownian motion. If the jump distribution is
spherically symmetric, or if the jumps have iid symmetric components, or if the jumps
have iid positive components (corrected to mean zero), then we get the same limit
process, since all three types of jumps have the same covariance matrix. This stands
in direct contrast to the stable case, where these three types of random walks lead to
three different limits.

Remark 6.25. Please note that V§, is an extension of the common (abuse of) notation
V2 = V.V = A, so that Vi f(x) is scalar-valued. The operator VY, is an asymmetric
version of the fractional Laplacian, not a fractional gradient vector.
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Details

Fix ||0] = 1 and define g(t) = f(x + t0) for t € R. Then the positive Riemann-Liouville
fractional derivative of order O < a < 1 is given by the generator form

d®g(t) 1

— _ _ —a-1
it " Td-a) (g(t) — gt =] ar“"dr

= — _ —a-1
“Ti-w [f(x + t0) — f(x + (t = 1O)] ar *"dr. (6.71)

Ot——3g O——3

A simple substitution y = x — a shows that f(x — a) has FT
J e Xf(x — a) dx = j e~k Df(y) dy = e7ikaf (k).

Use this fact to show that the last expression in (6.71) for t = 0 has FT

(9]

1 £ —ik-r —a- : af
m!f(k)[l—e k0] o=y = (ik - 0)*F (k)

using (3.14):

(0]
I(a) = j (e™ -1)ay™*tdy = -I'(1 - a)(-ik)".
0
The proof for 1 < a < 2 is similar.
A rigorous proof of the generator form (6.62) for the vector fractional derivative
Vi f(x) relies on the theory of semigroups and generators. The following result is the
vector version of Theorem 3.17.

Theorem 6.26. Suppose that Z; is a Lévy process on R4, and that E[e'*%1] = e¥®)
where (k) is given by (6.21). Then Tf(x) = E[f(x — Z;)] defines a Cy semigroup on
Co(R?) with generator

y - Vf(x)
1+ |yl

Lf(x) = —a - Vf(x) + 3V - QVf(x) + j (f(x -y) = fo + ) o(dy). (6.72)
If f and all its partial derivatives up to order two are elements of Co(RY), then f ¢
Dom(L). If f and all its partial derivatives up to order two are also elements of L*(RY),
then Y(-k)f (k) is the FT of Lf(x).

Proof. The proofis essentially identical to the one variable case presented in Theorem
3.17, see Sato [187, Theorem 31.5] and Hille and Phillips [90, Theorem 23.14.2]. O

As in the one variable case, there are some alternative forms of the generator. The next
result extends Theorem 3.23.
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Theorem 6.27. Suppose that Z; is a Lévy process on RY, and that E[e!k?1] = e¥®
where (k) is given by (6.21). Then we can also write the generator (6.72) in the form

Lf(x) = —ao - V(x) + 3V - QVf(x)
+ [ Gtx=y) = 0 +y - 0TI < R)h(dy) 673)

for any R > 0, for some unique ao depending on R and a. Furthermore:
(a) If (6.32) holds, then we can also write

LFO) = —a1 - VF() + 3V - QU + j (fx-y) - fo0)p(dy)  (6.74)

for some unique a, depending on agy; and
(b) If (6.34) holds, then we can also write

Lf(x) = —az - VA(x) + 3V - QVf(x)
+ [ (=)= 00 +y - 0) i) 675)

for some unique a, depending on ay.

Proof. The proof is very similar to Theorem 6.15. In view of Theorem 6.26, we know
that the generator formula (6.72) holds. Since the integral

y
o= [ (120 -vua ||sR)) (dy)
0 L yI(ly ¢(dy
exists, we can take ag = a - 8p, and then (6.73) follows. If (6.32) holds, the integral
ay=aop-— J yo(dy)
0<lyl<R
exists, and then (6.74) follows from (6.73). If condition (6.34) holds, then
ap =daop + J y$(dy)
lyI>R

exists, and (6.75) follows from (6.73). O

Example 6.28. Suppose that Z; is centered stable with index 0 < a < 1 and char-
acteristic function (6.38). Use (6.74) to write the generator the corresponding stable
semigroup in the form

Lf(x) = j (Fix - y) - () b(dy)

where ¢(dy) is given by (6.41). Make a change of variable y = r to see that
Lf(x) = j j (Fx = 16) — f(x)) aCr~*"'drM(d).
l6l=1 0

If we take C = 1/I'(1 — a), then this shows that Lf(x) = —V]”‘Mf(x).
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Example 6.29. Suppose that Z; is centered stable with index 1 < a < 2 and charac-
teristic function (6.39). Use Theorem 6.27 (b) to write the generator in the form

LX) = j (Fix — y) - ) + y - V) (dy)

where ¢(dy) is given by (6.41). A change of variable y = rf leads to

LX) = J j (Fx — 18) — f(x) + 16 - f(x)) aCr-o~1 drM(d6).
6]=1 O

If we take C = (a — 1)/I'(2 — ), then Lf(x) = Vf‘wf(x).

6.6 Operator stable laws

Suppose that (X,,) are iid with some full random vector X on R<. Recall from Section
6.2 that X € GDOA(Y) if
ApSp—-bp =Y (6.76)

for some linear operators A, and vectors b,. In this case, we say that Y is operator
stable. If A, = a,I for some a, > 0, then Y is stable with index a € (0, 2].

Example 6.30. Ifthe components of X are independent Pareto random variables with
different indices a; € (0, 1), Example 6.4 shows that (6.76) holds with b, = 0 and

n—l/al 0
An — diag(nfl/lxl e, n*l/lxd) = .
0 n—l/ad
and furthermore,
AnSiny = Z(1) (6.77)

where the limit Z(t) is an operator stable Lévy motion with independent components,
and Z(1) = Y. The pdf p(x, t) of Z(t) has FT

d
plk,t) =E [e—ik-zu)] = exp [—t z Dj(ik,-)“i] .
j=1

This pdf p(x, t) solves the vector fractional diffusion equation

2 pir 6= 3 | -0 2 pix, (6.78)
otm ]ax?‘i ’ )

j=1 j

for some D; > 0. Since the pdf

d
po, ) = [[pitx, 0
j=1
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is the product of stable densities with different indices a;, the right tail x; — p(x, t)
falls off at a different rate ~ x; ¥ in each coordinate. Figure 6.5 shows level sets of a
typical solution p(x, t) in R?> with a; = 0.8 and a, = 0.6, obtained using the R code
from Figure 6.14 at the end of this chapter.

Fig. 6.5: Level sets of the solution p(x, t) to the fractional diffusion equation (6.78) attime t = 3 in
dimension d = 2, with a1 = 0.8, o = 0.6, and D, = D, = 0.5.

The scaling also varies with the coordinate. In fact, the operator stable Lévy mo-
tion Z(t) has operator scaling

Z(ct) = cBz(t) (6.79)
where the scaling matrix
1/&1 0
B =diag(1/a1,...,1/ag) =
0 1/ag
and we define the matrix power
cl/a 0

cB = diag(c¥%, ..., cV/w) =

0 cl/aa
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To check this, let
Z1 (1)

Z(t) =
Zq(t)

and recall that each component is self-similar with Zj(ct) = cliz ;(t) forall ¢ > 0 and
t > 0. Then

Zy(ct) Vi Zy(t) cl/a 0 A0
Z(ct) = : = : = i =Bz,
Zg(ct) cVeaz,(t) 0 cl/ea )\ Zy(t)

Remark 6.31. The random walk convergence (6.77) extends easily to finite dimen-
sional distributions. The argument is essentially identical to (4.28). The operator scal-
ing (6.79) also holds in the sense of finite dimensional distributions, i.e., for any 0 <
ti <t; <--- <ty < 0o we have

(Z(ct1), ..., Z(ctn)) = (cBZ(t1), . . ., BZ(ty)).

To see this, note that Z(cty) - Z(cti-1) = Z(c(tx — tie1)) = cBZ(tx — ty_1) since Z(¢t) has
stationary increments. Since Z(t) has independent increments, it follows that

(Z(cty) - Z(cty-1) : k=1,...,n) = (BlZ(ty) - Z(tre1)] : k=1, ..., n)

and then apply the Continuous Mapping Theorem 4.19. Then Z(t) is operator self-
similar with exponent B. For more on operator self-similar processes, see Embrechts
and Maejima [64].

Remark 6.32. The random walk convergence (6.77) also extends to convergence in
the Skorokhod space. Let D([0, c0), R?) denote the set of real-valued functions x :
[0, c0) — R? which are continuous from the right with left-hand limits. Equip with the
Skorokhod J; topology, defined exactly as in Section 4.4. Then we also have A, S[ns =
Z(t) in D([0, co), R?) with this topology, see [146, Theorem 4.1] for complete details.

To proceed further, we need to introduce some additional notation. The matrix expo-
nential is defined by

00 n 2

A A
exp(A)=Z—|:I+A+?+--- (6.80)
= nl !

for any d x d matrix A. The matrix power is defined by

(log 1)
2!

t" =exp(Alogt)=1+Alogt+ AZ 4. (6.81)

forany t > 0.
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Example 6.33. If
A = diag(a, b) = (g 0)

b
then
at o
A" = di nopny _
diag(a™, b™) (0 b”)
and
1 0 a 0\ 1 (a> 0
eXp(A)z(o 1)+<0 b)+i(o b2)+‘”
(1+a+a®/2!+--- 0 _(e* O
B 0 1+b+b2/21+---) \0 eb)’
Then

4 ~ alogt 0 _fetlst 0\ [(t* 0
t—exp(Alogt)_epr 0 blogt)| \ 0o eblst)"\o ¢b)°

More generally, if A = diag(as, ..., aq), then t4 = diag(t%, ..., t%). Some typical
orbits t — t4x for different unit vectors x are shown as solid lines in Figure 6.6. Each
orbit intersects the unit circle (dashed line) exactly once at the point t = 1. The R code
for plotting these orbits is shown in Figure 6.15 at the end of this chapter.

x2
0

x1

Fig. 6.6: Eight orbits t +— tAx from Example 6.33 with @ = 0.7 and b = 1.2 grow out from the origin
as tincreases. Each orbit intersects the unit circle (dashed line) at t = 1 when x is a unit vector.
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Example 6.34. Suppose that

S R R R

where D = al is a diagonal matrix, and DN = ND. It is not hard to check, using the def-
inition of the matrix exponential, that DN = ND implies exp(N + D) = exp(N) exp(D).
The matrix N is a nilpotent matrix, i.e., Nk = 0 for any sufficiently large integer k > 0.

In fact we have
N2 - 0 1\/0 1 _ 00
0 0/\0 O 00

so that N¥ = 0 for all k > 1. Then

tN=I+Nlogt+0+---= 10 " 0 logt _ 1 logt

and tP = diag(¢?, t9) = t9] so that

A t* 0)(1 logt\_(t* t*logt
o t*J\o 1 0 t* )
Some typical orbits t4x are shown as solid lines in Figure 6.7. Each orbit t4x with x # 0

passes through the unit circle (dashed line) exactly once. The R code for plotting these
orbits is shown in Figure 6.16 at the end of this chapter.

Example 6.35. Suppose that

a -1
A=(1 a>=D+Q

where D = al is a diagonal matrix,

is skew-symmetric, and DQ = QD. Write
- (0 -1\(0 -1\_(-1 ©
“\1 o/\1 o) \o -1
; (-1 0\[/0o -1\ _
(3 5)0 5)-
4 (0 1\(0 -1\ _ 0
(5 )5 )0 1)
Q°=Q'Q=Q
Q°=0Q'Q*=@’
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Fig. 6.7: Six orbits t — t4x from Example 6.34 with a = 0.5 grow out from the origin as t increases.
Each orbit intersects the unit circle (dashed line) exactly once at the point t = 1 when x is a unit
vector.

and so forth, so that

expe = (1 O)uc(© N (1 o), (0 1),
Pl =10 1 1 0 21\ 0 -1/ 3'\-1 o0

(1=c2t+ A+ —c+3[31-C /54
“\e-c3/31+c%/5 4 1-c?/21+ 4!+

cosc -sinc
(s )
sinc cosc
the rotation matrix that rotates each vector x = (rcos 0, rsin 8)' counterclockwise by
an angle c: Rqx = (rcos(c + 0), rsin(c + 0))'. Then t? = exp(Qlogt) = Riog t and

A _ t“ 0 R _ t?cos(logt) -t%sin(logt)
0 ta) st = | qa sin(logt) t%cos(logt) /°

The orhits tAx are counter-clockwise spirals, see Figure 6.8. The R code for plotting
these orbits is shown in Figure 6.17 at the end of this chapter.

Remark 6.36. The computations in Examples 6.33-6.35 can be extended to explicitly
compute the matrix power t4 for any d x d matrix A, using the Jordan decomposition,
see [146, Section 2.2]. The matrix exponential is also important in the theory of linear
differential equations. The vector differential equation x’ = Ax; x(0) = xo hasa unique



184 —— 6 Vector Fractional Diffusion

Fig. 6.8: Four orbits t — tAx from Example 6.35 with @ = 0.5 grow out from the origin as t increases.
Each orbit intersects the unit circle (dashed line) exactly once at t = 1 when x is a unit vector.

solution x(t) = exp(At)xop, so the orbits t — exp(At)xo are the solution curves for
this system of linear differential equations (e.g., see Hirsch and Smale [91]). The orbits
s — sfxg trace out the same curves with a different parametrization ¢ = log s.

Theorem 6.17 showed that a-stable random vectors are random walk limits with jumps
of the form X = WO, where W is a Pareto random variable with tail index a, and @
is a random unit vector. Operator stable random vectors are limits of random walks
with a more general jump distribution that allows the tail index a to vary with the
coordinate. Let B = diag(1/a4, ..., 1/ay) for some a; € (0, 2). That is, B is a diagonal
matrix whose eigenvalues A; = 1/a; > 1/2.If all @; € (1, 2) then every eigenvalue
A€ (1/2,1).

Suppose P[W > r] = Cr! is a Pareto random variable with index a = 1, and

0 =(04,...,0y) isarandom unit vector with distribution M(d#@), independent of W.
Write
Wi/ 0 04
X=w5e= : (6.82)
0 wl/ad 04

and note that P[W/2 > r] = P[W > r*] = Cr % so that the ith diagonal entry in the
matrix WP is a Pareto random variable with index a;. Note also that these entries are
not independent!
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Take (X,,) iid with X = WB0O in (6.82), and let S, = X1 + - -- + X,,. In Section 6.7, we
will prove that X € GDOA(Y) and (6.76) holds for some b, € R4, and in fact

nB8s,-b, =Y. (6.83)

This operator stable limit Y has Lévy representation [a, 0, ¢], where a depends on
the choice of centering b, and the Lévy measure ¢ reflects the operator scaling. Next
we will compute this Lévy measure, using condition (i) of Theorem 6.11. The proof of
condition (ii) is more complicated, and will be deferred to Section 6.7.

To establish the vague convergence condition (i) in Theorem 6.11, it suffices to
show

kn
Y P[Xyj € U] - ¢(U) (6.84)
j=1

for sets of the form U = {tB0 : t > 1,0 € V} where r > 0 and V is a Borel subset of the
unit sphere. A substitution s = nt shows that

nBU ={nPt®0:t>r,0 eV}
={nt)BO:t>r,0eV}
={sBO:s/n>r,0cV}

={sPO:s>nr,0 eV}
Then for n sufficiently large we have
nP[n8X e U] = nP[X e nBU]
= nIP[WB@ € nBU]
=nP[W > nr, @ € V] = nC(nr) "' M(V) = Cr 1 M(V).
This proves that condition (i) holds with
PitP0:t>1,0 € Vy=CriM©). (6.85)

Example 6.37. If wetake a; = --- = ag = a € (0, 2) in (6.82), then B = (1/a)l and
WBO = wl/a@, where W/ is a Pareto random variable with index a. Then Theorem
6.17 applies to show that (6.83) holds, where the a-stable random vector Y in the limit
has Lévy measure (6.37). Substitute s = % in (6.85) to see that

PitO:t>1,0 eV} =p{(tP0:t>1,0 €V}
=p{sBO:sV% 51,0 eV}
= p{sBO:s>r% 0 V)= Cr*)IM(V) = CreM(V).

Hence the operator stable Lévy measure (6.85) reduces to the stable Lévy measure
(6.37) when the exponent B is a scalar multiple of the identity.
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Example 6.38. Suppose that P[0 = ej] =1/dforj=1,...,d, whereey,...,eqare
the standard coordinate vectors. Since tPe; = /% e; for all ¢ > 0, it follows from (6.85)
that ¢ is concentrated on the positive coordinate axes. A substitution s = t% yields

pitej: t > 1} = p{(t)BO: t > 1)
= pisBO:s>1%,0 € V} = CriM(e;).

Then it follows from the Lévy representation (6.21) that E[eik'Y] = e?(® where

d ; ik - rej
Y(k) =ik-a+ Z J <e””ei -1- e ) Cajr%~tdrM(e;)
j=1

d . ikr d
=y [ikjaj +d? j (e’kf’ -1- m) Cajr_“f_ldf] =Y bjlkj).
j=1 j=1

Note that the jth component of Y has characteristic function E[ei¥i] = E[elk(erV)],
Then Y has independent stable components Y; = e; - Y with index «; and Fourier
symbol ;(-k;).

Remark 6.39. The formula (6.85) implies that ¢ has operator scaling:
cp(dy) = p(cBdy) forallc > 0. (6.86)

To see this, substitute s = t/c to get

d(cBU) = p{cBtBO:t>1,0c V)
= p{(t/c)BO:t>1,0 W}
= ¢{sBG :s>r/c,0 e Vi=Cr/c) tM(V) = cp(U).

In fact, it is easy to check that the operator scaling relation (6.86) is equivalent to (6.85)
with CM(V) = ¢p{tB0:t>1,0 € V}.

Remark 6.40. We have noted previously in (6.41) that the stable Lévy measure
¢(dy) = aCr*1drM(d0) in polar coordinates y = rf with r > 0 and |0 = 1.
The operator stable Lévy measure can be written in a similar manner

¢(dy) = Cr2drM(d6) (6.87)

where y = rB0 for some r > 0 and ||6]| = 1. These are called the Jurek coordinates, see
Jurek and Mason [100]. For these coordinates to make sense, the function r — |rfx]|
must be strictly increasing for all x # 0. Then there is a unique unit vector 8 such
that x = r26 for some unique r > 0. This can be accomplished with a specific non-
Euclidean norm [146, Lemma 6.1.5]. For the usual Euclidean norm in R?, r — |[rBx]| is
always strictly increasing in the coordinate system that puts B in Jordan form, see [146,
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Fig. 6.9: Jurek coordinates x = r86 inthe case B = diag(0.7, 1.2). Dashed lines show the sets
r=1/2,1,2.

Remark 6.1.6]. This was the case in Examples 6.33-6.35, since all those matrices are in
canonical Jordan form. The Jurek coordinates are illustrated in Figure 6.9. The R code
for plotting these orbits is shown in Figure 6.18 at the end of this chapter. Since ¢ is the
jump intensity, the Jurek coordinates describe particle jumps in a curved coordinate
system with operator scaling. They reduce to the usual polar coordinate system if B =
1.

Remark 6.41. The operator scaling of the Lévy measure can also be visualized using
Figure 6.9. Suppose C = 1 in (6.85), so that the exterior of the unit circle S in Figure
6.9 has ¢-measure equal to 1. The exterior of the larger dashed curve is the set {t?9 :
t > 2,0 e S}, so (6.85) implies that it has ¢-measure 1/2. The exterior of the smaller
dashed curve is the set {30 : t > 1/2, 0 € S}, so it has ¢-measure 2.

Remark 6.42. The name operator stable comes from a paper of Sharpe [198]. Expo-
nents and symmetries of operator stable laws were characterized by Holmes, Hudson
and Mason [92]. Hudson, Jurek and Veeh [93] showed that there is some exponent that
commutes with every symmetry.
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6.7 Operator regular variation

In this section, we show that operator stable laws with no normal component are the
weak limits of random walks with operator scaling power law jumps of the form X =
WZE0. The following result extends Theorem 6.17 to operator stable limits.

Theorem 6.43. Suppose that B is a d x d matrix whose eigenvalues A; = aj + ib; all
have real part aj > 1/2. Suppose X, = Wﬁ@n where (W,,) are iid with P[W,, > r] = Cr!
for some C > 0, and O, are iid random unit vectors with probability measure M(d0),
independent of (Wy,). Then

nBXy++X)-apn =Y (6.88)

for some a, € RY, where Y is infinitely divisible with Lévy representation [a, 0, ¢] and
Lévy measure (6.85).

The proof of Theorem 6.43 requires some regular variation tools. We say that a random
vector X varies regularly if

nP[A,X € dy] — ¢(dy) asn — oo (6.89)

where A, is invertible, [|A,|| — O, and ¢ is a o-finite Borel measure on {y # 0} that
is not concentrated on any lower dimensional subspace. The next result is the vector
version of Proposition 4.15.

Proposition 6.44. Suppose that X varies regularly, so that (6.89) holds. Then:

(a) The limit measure ¢(dy) satisfies (6.85) for some B whose eigenvalues all have pos-
itive real part;

(b) The sequence (A,) can be chosen to be RV(-B), that is,

ApmA,t 5 A8 asn— oo (6.90)
forallA > 0.

Proof. This is [146, Theorem 6.1.24]. O

In the situation of Proposition 6.44, we say that (the probability distribution of) X
varies regularly with exponent B, and we write X € RV(B). The matrix norming in
(6.89) is critical, as it allows the tails of X to fall off at a different power law rate in
different directions. For more information on regularly varying probability measures,
see [146, Chapter 6].

Proof of Theorem 6.43. Condition (i) of Theorem 6.11 was already established in Sec-
tion 6.6. The proof of condition (ii) uses a vector version of the Karamata Theorem 4.4.
Define the truncated moments and tail moments

Ug(r,0) = E[IX- 61°I(1X - 6] < )]
Vy(r, 0) = E[1X - 6]UI(X - 6] > 1)] (6.91)
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and note that these are just the truncated and tail moments of the one dimensional
projection X - 6. Order the eigenvalues A; = g; + ibj so that a; < --- < aq. Then [146,
Theorem 6.3.4] shows that

Vo(r, 8) =P[|X- 0] > 1]

is uniformly R-O varying: For any § > O there exist 0 < m < M < oo and ro > O such
that

mA~6-1a < w < MASYad  forall A >1 (6.92)
VO(rr 9)

forany r > rp and any [|6] = 1. Now define a; = 1/aj so that @y > --- > a4. Then we

also have
roa cPX-0] > <P (6.93)

for all r > 0 sufficiently large. Since every a; > 1/2, we also have a; € (0, 2).
Suppose U; and V;, exist. Then the vector Karamata theorem [146, Theorem 6.3.8]
implies that, if V}; is uniformly R-O varying, then for some C > 0 and ro > O we have

SV, (r, 6)

Uc(r, 6) >C forallr>rgandall ||@] = 1. (6.94)

In order to prove condition (ii), fix k € R? and write k = p9 for some p > 0 and
[|9] = 1. Then
nVar [k : (n’BX)E)] <nE [{k . (n’BX)g)}z]
=nE [(k-n"2X)?I(In"BX| < ¢)]
<nE[(k-n"BX)°I(In"PX - 9] < o))
=nE[(k-n"X)’I(In"2X - k| < &1)]
where g1 = pe. It is not hard to check, using the definition of the matrix exponential,
that (¢8)' = tB'. Write n"8'k = r,,0,, where r, > 0 and |0, = 1, and recall the general
fact that x - Ay = A'x - y. Then
nE (k- n"BX)2I(In"BX - k| < e1)] = nE [(n"Fk- X)21(X - n7F k| < &1)]
= NE [(rn6n - X)*I(|rn6p - X| < £1)]
= nrRE[1X - 0n°I(1X - 6nl < 1 €1)]

=nriUs(ry,teq, 6n).
Now apply (6.94) to see that

nral,(ryter, 0,) < nraC(rte1)* Vo (ryter, On)
= Cle2nVo(ryter, 6n)
Vo(ryter, On)

=Cle2 nVo(rit, 0
Lol On) = et o)
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where
nVo(ryt, 6n) = nP[|X - 0, > 1,1
=nP[|X - r,0,] > 1]
=nP[|X-n Bkl > 1]
=nP[In"BX - k| > 1]
=nP[n X ¢ U] - ¢(U)
with U = {y : |y - k| > 1}. Since every eigenvalue of B has positive real part, it follows

from [146, Theorem 2.2.4] that r;! — co as n — oo. Then (6.92) implies that for any
6 > 0 we have

Vo(rpler, On) _ Vo(rpler, On)
Vo(rat, 0n)  Vo(er*(e11nt), 6n)

1 1\6+a
< —(&7 1
—(e1")

for all n sufficiently large, where a; = 1/a; € (0, 2). Then we have
ST (m-Bye ; -1,.2 l —6-ay _
lli%hﬁnjgpnvar [k (n™°X) )] < lli%C g1 p(U) - £ =0

which proves condition (ii). Then Theorem 6.11 implies that (6.88) holds for some a,, €
R?, where Y is infinitely divisible with Lévy representation [a, 0, ¢] and Lévy measure
(6.85). O

Remark 6.45. If every eigenvalue of B has real part a; > 1, then every a; < 1, and we
can set a, = O in (6.88). In this case, the limit has characteristic function E[e'*Y] =
e¥® with

k) = I (e — 1) p(dy) = j T(efk'f“g - 1) Cr-2dr M(d6). (6.95)
l61=1 0

If every eigenvalue of B has real part a; € (1/2, 1), then every a; € (1, 2), and we can
set a, = nE[n~8X] in (6.88) (if E[X] = 0, we can set a, = 0). In this case, the limit has
characteristic function E[e*Y] = e¥® with

(k) = j ey 1 ik-y) p(dy)

Y

J (eik~759 -1-ik- rBG) Cr_zdI’M(de)
lel=1 o

and E[Y] = 0. The proof is similar to Theorem 6.17, using vector regular variation, see
[146, Theorem 8.2.7].

Remark 6.46. Suppose that (6.88) holds with a,, = 0. Then an argument very similar
to Theorem 6.21 shows that we also get random walk convergence

n’BS[nt] =1 Zt
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where Z; is an operator stable Lévy motion with Z; = Y. Suppose that every a; > 1.

Then
Pk, t) = E[e 4] = eVC0

where (k) is given by (6.95). It follows that

d. 0 )
2900 = [ (%7 =1) bl 0 p(dy)
which inverts to

0
P06 = [ [POc-3,6) - p(x, 0] $(dy)

[ [poc- 16,0 - pex. 0] cr2dr mcdo).
[6l=1 0

If we define the generalized fractional derivative

vE flx) = I I [£00) - fox - r26)] r-2dr M(d6)
6]=1 O

using (6.74), then we can write (6.96) in the form

0
5P 0 = -CVEp(x, b).

(6.96)

(6.97)

This generalized fractional diffusion equation governs the densities of operator stable
Lévy motions with no normal component. If B = (1/a)I, then (6.96) reduces to the
vector fractional diffusion equation (6.63) that governs a vector stable Lévy motion:

Substitute s = r1/® to get

VBp(x, t) = [p(x, t) - p(x - rt/e, t)] r~2dr M(d6)

—

I
=

Il
O 8 O——mQ3 O——2

lel

[p(x, t) - p(x — 50, t)] (s*)2as* ds M(db)

2
Il
_

[p(x, t) — p(x - s6, t)] as~* 1 ds M(d6)
l61=1

=I'(1-a)Vyp(x,t).

When all a; € (1/2, 1), the generalized fractional derivative is defined by

vE flx) = J J [Fx - 16) = fx) + 120 - ()| r-2dr M(d6)
I6l=1 O

(6.98)
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using Theorem 6.27 (b), and the generalized fractional diffusion equation

0
PO = CVEp(x, 0)

governs the densities of an operator stable Lévy motion with this exponent B.

6.8 Generalized domains of attraction

Recall from Section 6.2 that X € GDOA(Y) if
ApSp-bp =Y (6.99)

for some linear operators A,, and vectors b,,. Here S, = X1 +---+X, and (X,) areiid with
some full random vector X on R?. In this case, we say that Y is operator stable. The
necessary and sufficient conditions for X € GDOA(Y) are written in terms of regular
variation. Recall from Section 6.7 that X € RV(B) if and only if

nP[A,X € dy] - ¢(dy) asn — oo (6.100)

where
ApmA;t > B foralld >0 (6.101)

for some linear operator B whose eigenvalues all have positive real part. Then we also
have
cp(dy) = p(cBdy) forallc > 0. (6.102)

The next result extends Theorem 4.5 to random vectors. It also shows that the limits
of power law random walks in Theorem 6.43 cover all possible limits in (6.99) when Y
has no normal component.

Theorem 6.47 (Generalized CLT for Random Vectors). If X € GDOA(Y), then Y is in-
finitely divisible with Lévy representation [a, Q, ¢].
(a) IfY is normal and E[X] = O, then X € GDOA(Y) and (6.99) holds for some b, € R4
if and only if
nF(A)kn) — k'Qk forallk, — k+0 (6.103)

where F(k) = E[|X - k|2 I(|X - k| < 1)];

(b) IfY hasno normal component, then X € GDOA(Y) and (6.99) holds for some b,, € R%
if and only if X € RV(B) for some B whose eigenvalues all have real part a; > 1/2,
and (6.100) holds.

Proof. Define the triangular array row elements X,; = A,Xj forj = 1,...,n. Then
condition (6.22) holds (see details). If X € RV(B) for some B whose eigenvalues all have
real part a; > 1/2, then condition (i) from Theorem 6.11 holds, since this condition
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is identical to (6.100). The proof of condition (ii) is exactly the same as Theorem 6.43,
using A, in place of n~B. Conversely, if X ¢ GDOA(Y) and Y has no normal component,
it follows from condition (i) in Theorem 6.11 that X € RV(B) and (6.102) holds. Since ¢
is a Lévy measure, (6.20) holds, and a simple estimate (a special case of [146, Lemma
7.1.7]) shows that every eigenvalue of B has real part a; > 1/2.

The proof of part (a) is similar to Theorem 4.5, using the vector Karamata theorem.
Condition (6.103) is equivalent to condition (ii) from Theorem 6.11 when condition (i)
holds with ¢ = 0, and the vector Karamata theorem is used to show that condition (i)
holds with ¢ = 0, see [146, Theorem 8.1.3]. O

Remark 6.48. The convergence criterion (6.103) in Theorem 6.47 (a) can also be
stated in terms of regular variation. A real-valued (Borel measurable) function F(x) =
F(xq, ..., xq) on R? varies regularly at x = 0 if

nF(Ly'xy) —» @(x) >0 forallx, — x+0 (6.104)

where
LpmLy,' = A8 forallA>0 (6.105)

for some linear operator B whose eigenvalues all have negative real part. Then we also
write F € RVy(B). In this case, [146, Proposition 5.1.2] implies that

cop(x) = p(cBx) forallc>o0. (6.106)

If Y isnormal and E[X] = 0, then [146, Theorem 8.1.3] shows that (6.99) holds for some
b, € R?if and only if F € RV(~(1/2)I). In this case, (6.104) holds with L;;' = A’ and
(k) = k'Qk, so that B = —(1/2)I, see [146, Corollary 8.1.8]. If we assume only that
(6.104) holds for some sequence of invertible linear operators L, such that |L,| — O,
then we can always choose L, to be regularly varying, such that (6.105) holds, under
some mild technical conditions, see [146, Theorem 5.2.16].

Remark 6.49. When Y is normal, X € GDOA(Y) implies that p = E[X] exists. The
proof uses vector regular variation, see [146, Theorem 8.1.6]. In this case, we can ap-
ply Theorem 6.47 to the centered random vector X — [E[X], and F(k) is the truncated
variance. Hence the assumption [E[X] = O entails no loss of generality. In fact, X ¢
GDOA(Y) with Y normal implies that every one dimensional projection X - 6 belongs
to the domain of attraction of a one dimensional normal law, see [146, Corollary 8.1.12].

Remark 6.50. If F € RVy(-(1/2)]) and (6.103) holds, then [146, Theorem 5.3.4] implies
that the truncated second moment U, (r, 0) = E [|X - 012I(X - 0] < r)] is slowly varying,
uniformly in [|@] = 1. That is, we have
U, (Ar, 6;)
Us(r, 6y)
forall A > 0 and all 6, — 6. Hahn and Klass [81] characterize the normal GDOA in
terms of uniform slow variation of the truncated second moment.

—1 asr— oo
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If A, = a,I in (6.99) then we say that X belongs to the domain of attraction of Y and
we write X € DOA(Y).

Remark 6.51. If X € DOA(Y) and Y = [a, O, ¢p] then (6.101) reduces to
apma,' — 7Y% forallA >0 (6.107)

for some a € (0, 2), since B = (1/a)I for some (1/a) > 1/2. Then a, is RV(-1/a) as in
the case of random variables. Of course this must be true, for if (6.99) holds with 4,, =
anl, then every one dimensional projection X - 8 belongs to the domain of attraction
of the random variable Y - 6 with the same sequence of norming constants.

The next result extends Theorem 4.5 to random vectors with the same power law tail
behavior in every coordinate. It also shows that the scalar-normed limits of power law
random walks in Theorem 6.17 cover all possible limits when X € DOA(Y) and Y has
no normal component. This verifies that Proposition 6.18 describes all stable random
vectors withindex 0 < a < 2, a # 1.

Theorem 6.52. If X € DOA(Y), then Y is either normal, or stable with some index 0 <
a < 2,and:
(a) IfY is normal, then pu = E[X] exists and X € DOA(Y) if and only if

nF(ayky,) — kK'Qk forallk, — k+0 (6.108)

where F(k) = E[|(X - p) - kI*I(|(X - p) - k| < 1)];
(b) IfY is stable, then X € DOA(Y) and (6.99) holds with A, = a,l for some b, € R? if

and only if V(r) = P[|X|| > r] is regularly varying with index —a, and
PlIXI >, & €Dl AD)

—
V(r) A(S)

for some o-finite Borel measure A(d6) on the unit sphere. Then Y = S,(A, u) in the
notation of Proposition 6.18, for some u € R? depending on (ay).

(6.109)

Pl € DIIXI > 1] =

Proof. Part (a) follows using Remark 6.49 and applying Theorem 6.47 (a) to X — p. Part
(b) follows from Theorem 6.47 (b) with B = (1/a)I. With this exponent, it follows from
(6.102) and Remark 6.39 that

PitY%0: t>1,0 € Vi =r1AV) (6.110)

for all r > 0 and all Borel subsets V of the unit sphere, where the spectral measure
A(V) = p{r6 : r > 1, 0 € V}. Substitute s = t1/* to see that
P{sO:s>r,0 €V} =r"AV). (6.111)

Then Proposition 6.18 shows that Y = Sy(A, p). A regular variation argument shows
that (6.109) is equivalent to (6.100) with A, = a,I and limit measure (6.111). The argu-
ment is similar to Proposition 4.15, see [146, Theorem 8.2.18]. O
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Remark 6.53. When X € GDOA(Y) and Y is normal, we can always choose A, in (6.99)
to be regularly varying with index —(1/2)I, as noted in Remark 6.48. Then we can also
write A, = n~1/2G,, where (G,) is slowly varying, so that G(1, G;* — I'asn — oo forall
A > 0. If we write G, x = 1,0, for r, > 0 and ||6,]| = 1, then r,, is slowly varying, and 6,
is very slowly varying, i.e., each coordinate of 0.~ is slowly varying. Roughly speaking
G, x grows like log n, and rotates like log log n. The same is true for X € GDOA(Y)and Y
stable, except that we write A, = n~Y/%G,,. For more details, see [146, Corollary 8.1.14].
Hahn and Klass [80, 81] provide examples to show that the GDOA of a spherically
symmetric normal or stable law is strictly larger than the DOA, i.e., there exist X such
that the convergence (6.99) requires operator norming.

Suppose X € GDOA(Y) and take (Y,) iid with Y. The term operator stable comes from
the fact [146, Theorem 7.2.1] that for all n, for some b,, € R4, we have

Yi++Y,=nPY +b, (6.112)

where B is any exponent of Y. That is, (6.99) holds with S, = Y; + -+ + Y, A, = n5,
and convergence in distribution is replaced by the stronger condition of equality in
distribution. If Y =~ N(a, Q), we can take B = (1/2)I. If Y is stable, then (6.112) holds
with B = (1/a)I. If Y is operator stable with no normal component and (6.102) holds,
then (6.112) holds with the same exponent B [146, Corollary 8.2.11]. Exponents need
not be unique, because of symmetry. For example, it follows by a computation similar
to Example 6.35 that B = (1/2)I + Q is an exponent of Y = N(a, cI) for any skew-
symmetric matrix Q. The exact relation between exponents and symmetries is given
in [146, Theorem 7.2.11].

Example 6.54. A general operator stable law can have both a normal component and
a non-normal Poissonian component. For example, suppose X € GDOA(Y) and X has
independent components, which are either Pareto with tail index 0 < a < 2, or have
a finite variance. Then it follows from Theorems 3.36 and 3.37 that (6.99) holds with
A, = diag(n™V/*1, ..., n"1/%) where a; = 2 for the finite variance components, and
a; € (0, 2) for the heavy tailed components. Make a simple change of coordinates so
that a; > ... > ag. Then we can write the norming operator in block-diagonal form

Al
P
0 A2
with A2 = diag(n~'/%»+1, ..., n"Y%)and A} = n"/2I,,, where I, is the m x m identity
matrix. The limit ¥ = (Y1, Y?)’ where Y! is an m dimensional normal random vector
on a subspace of R%, Y2 is a d — m dimensional operator stable random vector with no

normal component on another subspace, and the intersection of these two subspaces
is the single point x = 0. The exponent of this operator stable random vector is

1
B B 02
0O B
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Fig. 6.10: Level sets of the solution p(x, t) to the fractional diffusion equation (6.113) at time t = 1 in
dimension d = 2, with a1 = 2.0, 0, = 1.4,and Dy = D, = 1.

where B! = (1/2)I,, and B? = diag(1/@m+1, . - - » 1/@4). The density p(x, t) of the corre-
sponding operator stable Lévy process Z; = (Z tl, Zf)’ with Z; = Y solves the fractional
diffusion equation

d
p(x t) = Z [ = p(x t)] (6.113)
j=1 X
wherea; = 2for1 =1,2,...,m,0 < a; < 2fori > m,D; < 0for0 < a; < 1, and
D; > 0for 1 < a; < 2 (here we assume a; # 1). Figure 6.10 shows level sets of a typical
solution p(x, t) in R? with a; = 2.0 and a, = 1.4, obtained using the R code from
Figure 6.19.

The spectral decomposition takes Example 6.54 one step further. Suppose that Y is
operator stable with exponent B and (6.112) holds. Theorem 7.2.1 in [146] shows that
every eigenvalue A; = a; + ib; of the exponent B has real part a; > 1/2. Make a change
of coordinates so that a; < --- < ay and write

Bl

BP

where p is the number of distinct values of a;, every eigenvalue of the m; x m; matrix
B’ has real part aj, and my +-- -+ m,, = d. Projecting (6.112) onto m;j-dimensional sub-
spaces shows that Y = (Y7, ..., Y?)', where each component Y/ is an mj-dimensional
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operator stable random vector with exponent B/, see [146, Theorem 7.2.9]. Since every
eigenvalue of B/ has the same real part aj, we say that the operator stable law Y is
spectrally simple.

Furthermore, [146, Theorem 8.3.24] shows that we can take

A}
Ay =
Ah

in these coordinates, where every A’, is RV(~B/). Then X = (X', ..., X?)' and we can
apply Theorem 6.47 (a) to the normal component. Theorem 6.47 (b) describes each
spectrally simple operator stable component, and (6.93) implies that the tails of X’
fall off like r~% where a; = a}.‘1 € (0, 2). The tails of a spectrally simple operator sta-
ble law need not be regularly varying, but they are R-O varying with the same upper
and lower tail index, see [146, Theorem 6.4.15] for complete details. It follows from the
Lévy representation (3.4) that the normal component is independent of the remaining
components. The dependence of the remaining non-normal spectrally simple opera-
tor stable components is coded through the Lévy measure.

Suppose that (6.99) holds with b,, = 0. Then it follows as in the proof of Theorem
6.21 that we also get random walk convergence

Ans[nt] = Zt

where Z; is an operator stable Lévy motion with Z; = Y. If every a; > 1, then the
density p(x, t) of Z; solves the operator scaling fractional diffusion equation

d
5P 0 = CVEp(x, ) (6.114)

for some C < 0, where the generalized fractional derivative Vf,[ is given by (6.97). If
every a; € (1/2, 1), then p(x, t) solves (6.114) for some C > 0, with Vﬁ given by (6.98).
Add a drift to see that the density p(x, t) of vt + Z; solves the generalized fractional
advection-dispersion equation (GADE)

%p(x, t) =-v-Vp(x, t) + CVEp(x, 0). (6.115)

Applications of operator stable laws and the GADE will be discussed in Section 7.12.
Details

Since X; is tight for any fixed j, equation (6.29) holds with X = X;. Write
P[|Xnjll > €] = P[IAnX;ll > €] = P[IXj]l € A" Be]

where the set B, = {x € R? : ||x| > &}. If X € GDOA(Y) and Y is full, then a simple
argument with characteristic functions (a special case of [146, Lemma 3.3.3]) shows
that [An] — Oasn — oo. Since ||x| = [AnA; x| < IAnll 1A, x], it follows that
lA; x| > £/ Anl — oo for all x € B, and then it follows that condition (6.22) holds.
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library(lattice)
x = seq(-2,2,.01)
y = seq(-2,2,.01)

u <- dnorm(x, mean = 0.0, sd = 2.0)
v <- dnorm(x, mean = 0.0, sd = 2.0)
r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(x=x, y=y)

grid$z <- r

levelplot(z~x*y, grid, cuts = 8,
region=FALSE, contour=TRUE, labels=FALSE)

Fig. 6.11: R code to plot the isotropic two dimensional Gaussian density with independent compo-
nents in Figure 6.1.

library(lattice)
x = seq(-2,2,.01)
y = seq(-2,2,.01)

u <- dnorm(x, mean = 0.0, sd = 2.0)
v <- dnorm(x, mean = 0.0, sd = 1.0)
r <- as.vector(outer(u, v, FUN = "x"))

grid <- expand.grid(x=x, y=y)

grid$z <- r

levelplot(z~x*y, grid, cuts = 8,
region=FALSE, contour=TRUE, labels=FALSE)

Fig. 6.12: R code to plot the anisotropic two dimensional Gaussian density with independent compo-
nents in Figure 6.2.
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library(lattice)
library(stabledist)

D1=0.5 ; D2=0.5

v1=0.0 ; v2=0.0

al=1.2 ; a2=1.2

ql1=0.5 ; q2=0.5

t=5.0

mul=vil*t ; mu2=v2x*t

pi=3.14156927
gl=(Dlxt*abs(cos(pi*al/2)))~(1/al)
g2=(D2xt*abs (cos(pi*a2/2)))~ (1/a2)
bl=1-2xql ; b2=1-2%q2

x = seq(-2,2,.01)

= seq(-2,2,.01)

dstable(x, alpha=al, beta=bl, gamma = gi, delta

mul, pm=1)
= dstable(y, alpha=a2, beta=b2, gamma = g2, delta = mu2, pm=1)

H < e <
1]

= as.vector(outer(u, v, FUN = "*x"))

grid = expand.grid(x=x, y=y)

grid$z = r

levelplot(z~x*y, grid, cuts = 8, region=FALSE,
contour=TRUE, labels=FALSE)

Fig. 6.13: R code to plot level curves of the solution p(x, y, t) to the two dimensional fractional diffu-
sion equation (6.16) shown in Figure 6.3.
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library(lattice)

library(stabledist)

D1=0.5 ; D2=0.5

v1=0.0 ; v2=0.0

al=0.8 ; a2=0.6

q1=0.0 ; q2=0.0

t=3.0

#

mul=vl*t ; mu2=v2x*t

pi=3.1415927

gl=(D1lxt*abs(cos(pi*al/2)))~(1/al)

g2=(D2xt*abs (cos(pi*a2/2)))~(1/a2)

b1=1-2%ql ; b2=1-2%q2

x1 = seq(0,4,.01)

x2 = seq(0,4,.01)

u <- dstable(xl, alpha=al, beta=bl, gamma=gl, delta=mul, pm=1)
v <- dstable(x2, alpha=a2, beta=b2, gamma=g2, delta=mu2, pm=1)

r <- as.vector(outer(u, v, FUN = "x"))

grid <- expand.grid(xl=x1, x2=x2)

grid$z <- r

levelplot(z~x1*x2, grid, cuts = 12, region=FALSE,
contour=TRUE, labels=FALSE)

Fig. 6.14: R code to plot level curves of the solution p(x, t) to the vector fractional diffusion equation
(6.78) shown in Figure 6.5.
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al=0.7; a2=1.2
t=seq(0.001,10,.1)
xl=t"al

x2=t"a2
plot(x1,x2,type="1",x1im=c(-3,3) ,ylim=c(-3,3))
lines(-x1,-x2,type="1")
lines(-x1,x2,type="1")
lines(x1,-x2,type="1")
lines(x1,0%*x2,type="1")
lines(-x1,0%x2,type="1")
lines(0*x1,x2,type="1")
lines(0*x1,-x2,type="1")
theta=seq(0,6.29,.1)
x1=cos(theta)
x2=sin(theta)
lines(x1,x2,1ty="dashed")

Fig. 6.15: R code to plot orbits t — t4x for Example 6.33.

a=0.5

t=seq(0.0001,10,.01)
x1=t7axlog(t)

x2=t"a
plot(x1,x2,type="1",x1lim=c(-3,3) ,ylim=c(-3,3))
lines(-x1,-x2,type="1")
lines(3*x1,3*x2,type="1")
lines(-3*x1,-3*x2,type="1")
lines(x1,0%*x2,type="1")
lines(-x1,0%x2,type="1")
t=seq(0,6.29,.1)

xl=cos(t)

x2=sin(t)
lines(x1,x2,1lty="dashed")

Fig. 6.16: R code to plot orbits t — t4x for Example 6.34.
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a=0.5

t=seq(-8,4, .05)

x1=exp (axt)*cos(t)

x2=exp (axt)*sin(t)
plot(x1,x2,type="1",x1im=c(-3,3),ylim=c(-3,3))
lines(-x1,-x2,type="1")
x1=-exp(a*xt)*sin(t)
x2=exp (axt)*cos(t)
lines(x1,x2,type="1")
lines(-x1,-x2,type="1")
t=seq(0,6.29,.1)
x1=cos(t)

x2=sin(t)
lines(x1,x2,1ty="dashed")

Fig. 6.17: R code to plot orbits t — t*x for Example 6.35.

al=0.7; a2=1.2

t=seq(0.001,10,.1)

x1=t"al

x2=t"a2
plot(x1l,x2,type="1",x1im=c(-3,3),ylim=c(-3,3))
lines(-x1,-x2,type="1")
lines(-x1,x2,type="1")
lines(x1,-x2,type="1")
lines(x1,0%x2,type="1")
lines(-x1,0%x2,type="1")
lines(0*x1,x2,type="1")
lines(0*x1,-x2,type="1")
theta=seq(0,6.3,.1)

x1=cos(theta)

x2=sin(theta)
lines(x1,x2,1lty="dashed")
lines(27al*x1,27a2*x2,1ty="dashed")
lines(.57al*x1,.57a2*x2,1ty="dashed")

Fig. 6.18: R code to plot Jurek coordinates for Remark 6.40.
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library(lattice)

library(stabledist)

D1=1.0 ; D2=1.0

v1=0.0 ; v2=0.0

al=2.0 ; a2=1.4

q1=0.0 ; q2=0.0

t=1.0

#

mul=vil*t ; mu2=v2x*t

pi=3.1415927

gl=(Dlxt*abs(cos(pi*al/2)))~(1/al)

g2=(D2xt*abs (cos(pi*a2/2)))~(1/a2)

b1=1-2%ql ; b2=1-2%q2

x1 = seq(-2,2,.01)

x2 = seq(-2,2,.01)

u <- dstable(xl, alpha=al, beta=bl, gamma=gl, delta=mul, pm=1)

v <- dstable(x2, alpha=a2, beta=b2, gamma=g2, delta=mu2, pm=1)

r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(xl=x1l, x2=x2)

grid$z <- r

levelplot(z~x1*x2, grid, cuts = 8, region=FALSE,
contour=TRUE, labels=FALSE)

Fig. 6.19: R code to plot level curves of the solution p(x, t) to the fractional diffusion equation (6.113)
shown in Figure 6.10.
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7 Applications and Extensions

In this final chapter, we discuss a few of the many applications and extensions being
developed today in the rapidly growing research area of fractional diffusion.

7.1 The fractional Poisson process

The classical Brownian motion and Poisson process are the most famous and useful
continuous time stochastic processes in both theory and applications. In this section,
we discuss the fractional Poisson process. It generalizes the classical Poisson process
to allow long waiting times between events.

In Example 3.2 we showed that a Poisson random variable Y with mean E[Y] =
A > 0is infinitely divisible, with characteristic function E[eXY] = e?(® where 1) (k) =
Ale'k — 1]. The classical Poisson process N(t) is a Lévy process with E[etkN(0)] = et¥ (k)]
so that N(t) has a Poisson distribution with mean At. The family of linear operators
Tf(x) = E[f(x— N(t))] forms a semigroup on the Banach space Cy(IR). Given a discrete
random variable X with probability mass function (pmf) f(x), the semigroup T:f(x)
gives the pdf of the discrete random variable X + N(t), a Poisson process with random
initial state. Let p(n, t) = P[N(t) = n] denote the pmf of the discrete random variable
N(t). Then p(0,0) = 1 and p(n,0) = 0forn =1, 2, 3,..., and we can take FT to see
that p(k, t) = E[e kN(] = t¥(-k) for all ¢ > 0. Use the convolution property (2.1) of
the FT to see that

q(x, t) = Tef(x) = if(x —-n)p(n, t)
e
has FT g(k, t) = e “0f (k) for all t > 0. It follows that
2 a0k 0 = YRk, 0 = A - 1Ak, (71)
for all t > 0. Invert (7.1) using the shift property (3.25) of the FT to see that

2 a0 =140 -1,0 - g0, 015 46,0) = 0. 72

forallt > 0.

Equation (7.2) is a Cauchy problem on the Banach space Co(R): 0q/0t = Lg; q(0) =
f where the generator Lf(x) = A[f(x — 1) — f(x)]. By comparing the Fourier symbol
(k) = Aletk—1] with the Lévy representation (3.4), it is easy to see that N(1) = [a, b, ¢]
with b = 0, ¢{1} = A is a single point mass, and

[ _A
a_jl+y2¢(d")‘2'

DOI110.1515/9783110258165-007
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Then the generator can also obtained from Theorem 3.17. If f(0) = 1, then g(x, t) =
T«f(x) = p(x, t), and it is easy to check that the Poisson distribution

A"
n!

p(n,t) =P[N(t) =n] =e (7.3)

solves the Cauchy problem (7.2) with initial condition g(n, 0) = f(n).
The fractional Poisson process can be defined by Ng(t) = N(E;) where E; is the
inverse
E¢ =inf{u > 0 : D(u) > t} (74)

of a standard stable subordinator D(u), so that
]E[e—sD(u)] — e—usﬁ (75)

forall s > 0, for some O < 8 < 1. We assume that D(u) and hence E; are independent
of N(t), and then a simple conditioning argument shows that the pmf of the fractional
Poisson process is given by

m(n, t) = P[Ng(t) =n] = Ip(n, u)h(u, t) du (7.6)
0

where h(u, t) is the pdf of the inverse stable subordinator u = E;. Then, using (4.47)
and (4.48), we can write the pmf of the fractional Poisson process Ng(t) = N(E;) as

m(n,t>=jp(n,u u-l-”ﬁgﬂ(tu-“ﬁ>du=jp(n,u/r)ﬁ)gﬁ(r)dr 77)
0 0

t
'

where gg(r) is the pdf of D(1), and p(n, t) is the Poisson pmf given by (7.3).
Take FT in (7.6) to see that

ik, £) = E[e kNs0)] = J Pk, wh(u, £) du = j YRR, ) du (78)
0 0
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and then take LT using (4.42) to see that the FLT

m(k, s) = | ek, t) dt

(o)
e st J WO Ry, t) du dt
0

<j e~Sth(u, £) dt> Vb gy
0

Sﬁ—le—usﬂeulp(—k) du

Ot—— 8 O —— g Ot—— g O——2

[ee]
J e UISP VR gy, —
0

sh-1

sP—(-k)

|

©
T
-

(79)

by Fubini, a special case of (4.43). Rewrite (7.9) in the form
sPm(k, s) - sP1 = Y(-kym(k, s) = A(e™* — 1)m(k, s)

and invert the LT to get
Fm(k, v) = Me ™ - 1)m(k, 1)

where a’f is the Caputo fractional derivative. Here we use the fact that m(k, 0) = 1.
Then invert the FT, using the shift property (3.25) of the FT, to see that the pmf m(n, t)
of the fractional Poisson process solves the time-fractional equation

Fmmn, ) =Amn-1,0-mn, 0. (710)

Equation (7.10) explains why we call Ng(t) a fractional Poisson process: Its pmf solves
the time-fractional analogue (7.10) of the Cauchy problem (7.2) for the classical Poisson
process.

The form N(E;) of the fractional Poisson process is quite similar to the CTRW limit
A(E¢) in Chapter 4. The only difference is that the outer process is now a Poisson pro-
cess, instead of a normal or stable Lévy process. In fact, the fractional Poisson process
is also a kind of CTRW limit. But in order to get the Poisson process as the limit of the
jump process, we have to use triangular arrays. This is necessary in view of Theorem
4.5, which states that ordinary random walk limits are either normal or stable. Con-
sider a triangular array {Xp; : j = 1,...,kpsn = 1,2, 3, ...} of CTRW jumps, where
Xyj is Poisson with mean A/n. The CTRW row sums

Sn(kp) =Xp1 +---+ Xnk,,
are then Poisson with mean Ak, /n. Taking k, = [nt], it follows that

Sn([nt]) = N(t) (7.12)
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asn — oo forany t > 0 (see details). Argue as in Section 4.3 that (7.11) holds in the
sense of finite dimensional distributions, and then apply Theorem 3 in Bingham [38],
as in Section 4.4, to conclude that (7.11) holds in ID[0, co) with the Skorokhod J; topol-
ogy.

Next assume iid waiting times J,, ~ J with a Pareto distribution P[J > t] = Bt #
where0 < f<1landB=1/I'(1-pf).Let T, =J1 +--- + J, be the time of the nth CTRW
jump, and let R(¢t) = max{n > 0 : T, < t} denote the number of jumps by time ¢ > 0. It
follows from (4.30) with ¢ = n!/ that

n'R(n''At) = E, (7.12)

as n — oo in the Skorokhod space ID[0, co) with the J; topology, where where E; is
the inverse (7.4) of the standard stable subordinator D(t) with index O < B < 1. Since
waiting times and jumps are independent, it follows that

(Sn([nt]), n” ' R(n*"Pt) = (N(0), Ey)

in the J; topology. Since N(t) and D(t) are independent Lévy processes, they have al-
most surely no simultaneous jumps. Then it follows from the continuous mapping
theorem and Theorem 13.2.4 in Whitt [219], as in Section 4.4, that

Sn(R(nYBt)) = Sp(n - n 'R(n'Pt) = N(Ey)

in the Skorokhod M; topology. This shows that the fractional Poisson process is a
CTRW limit.

Actually, the fractional Poisson process is itself a CTRW. The Poisson process N(t)
is a CTRW with iid exponential waiting times P[], > t] = e~! and deterministic jumps
Y, = 1, see for example Ross [179, Proposition 5.1]. The fractional Poisson process
Np(t) is a CTRW with the same deterministic jumps, and iid waiting times

P[W, > t] = Eg(-AtP) (7.13)

for some 0 < B < 1, using the Mittag-Leffler function (2.29). This definition of the frac-
tional Poisson process is due to Laskin [115]. It can be motivated by the fact that the
Mittag-Leffler function is a natural extension of the exponential, due to its power se-
ries definition. Mainardi and Gorenflo [129, Eq. (5.26)] show that the tail of the Mittag-
Leffler function satisfies

t
Eﬁ(_)ltﬁ) ~ m

ast — oo,

and it follows that the waiting times of the fractional Poisson process are heavy tailed.
To see that this CTRW is a fractional Poisson process, let

Tp = sup{t > 0 : N(E;) < n} (7.14)
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denote the time when the fractional Poisson process enters the state n. Then it suffices
to show that 7,, = Wy +--- + W,, where the waiting times W, between state transitions
are iid Mittag-Leffler distributed, as in (7.13). Note that {N(t) < n} = {T, > t} for the
classical Poisson process. In other words, there have been less than n arrivals by time
t > 0ifand only if the time of the nth arrival is greater than t. Apply this to (7.14), using
the fact that E; is independent of the Poisson process N(t), to conclude that

Tp =supf{t >0: E; < Ty} (7.15)

The rest of the argument is delicate, involving sample paths properties of the process
t = D(u) and its inverse u = E;. We will give a heuristic argument here, see [141,
Theorem 2.1] for complete details: Sinceu = E; = T, att = 7,, wehave 1, = t = D(u) =
D(T,). Recall that the LT of the exponential distribution is
o0
E(e /) = I esteMar = A
) A+s

forany A > 0 and s > 0. Then we can use (7.5) to write

A

E[e™sT1] = ]E[e—sD(T1)] - []E (e—SD(h)l]l)] -E [e—hsﬁ] - T

(716)

foranyA >0ands > 0.
Next we will show that the Mittag-Leffler random variable W), in (713) has the same
LT as D(T1). Recall from (2.31) that the function G(¢) = Eg(-At?) has LT
sh-1
sP+A

forany A > 0 and any s? > A. Let fp(t) = 0¢[1 — G(t)] be the Mittag-Leffler pdf of W,.
Integrate by parts to see that

G(s) =

E(e™S"n) = | e S!fp(t) dt

se St (1 - G(t)) dt

O g O——3g

(717)

I
s A+sB| A+sP
forany A > 0 and any s? > A. Then the uniqueness theorem for LT (moment generating
functions) implies that W, = 7,. The general case n > 1 involves computing the joint

LTof 71, T2, ..., Tn, see [141, Theorem 2.1] for complete details.

Remark 7.1. Theheuristic formula 7, = D(Ty) is not exactly true. Rather, we have t,, =
D(T,-), which can be different if the process D(u) has a jump at u = T,,. Then we will
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have D(u) > D(u-) since D(u) is a strictly increasing element of the Skorokhod space
ID[0, c0), and hence is right-continuous with left-hand limits. However, we do have
P[D(u-) = D(u)] = 1 since D(u) is a Lévy process, and therefore has no fixed points
of discontinuity. Since T}, is independent of D(u), it follows that D(T,) =~ D(T,—) and
hence the LT of the pdf of 7, = D(T,-) is the same as that of D(T,), and in particular,
(7.16) is the correct LT for 71. See [141, Theorem 2.1] for more details.

Remark 7.2. The CTRW representation of the fractional Poisson process can be useful
for simulations. One only needs to compute the jump times 7, = Wy + --- + W, by
simulating iid Mittag-Leffler waiting times, e.g., using the MittaglLeff1eR package in
R. This gives the exact sample paths of the fractional Poisson process. It can also be
useful to consider a fractional compound Poisson process S(N(E;)) where S,, = X; +
.-+ + Xy, is the sum of iid random variables or vectors. This process jumps to the point
S(n) at time 7,, and hence it can also be simulated exactly using the same approach.

Details

To show that (7.11) holds, note that the left-hand side is Poisson with mean A[nt]/n,
and hence its characteristic function

]E[eikS,,([nt])] — e/h/)(k)[nt]/rl N e}ltz/)(k) — ]E[eikN(t)]’

since the limit N(t) is Poisson with mean At. Then it follows from Theorem 1.3 that (7.11)
holds.

7.2 LePage series representation

As an application of the Poisson representation in Section 3.4, we now develop a very
interesting series representation for stable laws and their domains of attraction. Sup-
pose that (IW;) are iid Pareto with P[W; > x] = Cx™* for some O < a < 1. Then Theorem
3.37 shows that

n
n-l/e Z Wy=Y (718)
j=1

where the a-stable limit Y has characteristic function
E[e'*Y] = exp [-CI'(1 - a)(-ik)*]. (719)

Suppose that (U;) are iid uniform random variables on (0, 1) with P[U; < x] = x for
0 < x < 1. Then we can take
Wj = (U;/Cy e
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since
P(U;/0)71 > x] = P[U; % > V%]
=P[Uj < Cx ] =Cx“

forallx > C1/%, asnoted in Example 5.17. This is a special case of the inverse cdf method
for simulating random variables: If F(x) = P[X < x] and U is uniform on (0, 1), then
F1(U) = X (e.g., see Press et al. [170, Chapter 7]).

Suppose N; is a Poisson process with rate A = 1. Take (E,,) iid with P[E,, > t] = 7},
the waiting times between jumps for this process, and let

I'y=E;1+---+E,

be the time of the nth jump. Then we have the inverse process relation {N; > n} = {I', <
t} as in Section 4.3. Now let
Ugy<---<Un

denote the order statistics of the sequence Uy, ..., U,. A standard result in extreme
value theory (e.g., see Resnick [175, p. 322] or Bickel and Doksum [32]) states that

<F1 r
Fn+1’”.’[‘n+1

): Uy, -+ Ugwy).-

That is, the first n arrival times are uniformly distributed in the interval [0, I'+1].
Now write

n n
n—l/a Z VV] — n—l/a Z(U}/C)fl/a
j=1 j=1

n
_ n—l/a Z(UU)/C)fl/a
j=1

n
~ Cl/an—l/a Z(rj/[-r”l)—l/a
=i

1/a n
- ¢l <_F';l+1> Yoy
j=1

where Y is a stable random variable with characteristic function (7.19). The strong law
of large numbers implies that
Fn+1 E1+---+En+1 n+1

= . — 1 almost surely, as n — oo.
n n+1 n

Then it follows using the Continuous Mapping Theorem 4.19 that

n
clay iy,
j=1
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In other words, the infinite series converges in distribution to a stable random variable
with characteristic function (7.19):

(o]
CYe N I = 54(1, 0,0) (7.20)
j=1
where 0% = CI'(1-a) cos(ma/2). In fact, the series converges almost surely, see LePage,
Woodroofe, and Zinn [124].

Remark 7.3. The argument above can be extended to any W € DOA(Y) with Y stable.
Suppose a,(Wy + --- + W,) = Y, where (W,) are iid with W > 0, and let Vp(x) =
P[W > x]. Then nVy(a,;'x) — x* for all x > 0, for some choice of a,. A regular
variation argument (a special case of Lemma 1.2 in Meerschaert and Scheffler [145])
shows that a, V Y(n~1y) — y~V/« Roughly speaking, the argument equates

nVo(a,'x) ~ x™®
Vo(a,'x) ~ n"1x™®
atx = Vyt(ntx™9)

x = apVt(n1x™%)

and then substitutes y = x % to get y" /% = a,Vy L(n=1y). The Skorokhod Theo-
rem (e.g., see Athreya and Lahiri [9, Theorem 9.4.1]) implies that (Wq,---, W) =
(Vo!(U1), ..., Vy*(Uy)), and then

n n [ee]
an Y Wy =Y anVg'(Ij/Tni) — Y I; /4= 1.
j=1 j=1 i=1

See LePage, Woodroofe, and Zinn [124] for complete details.

Remark 7.4. The series representation (7.20) can be extended to Lévy processes. Sup-
pose Z; is an a-stable Lévy process with index O < a < 1 and Lévy measure (3.10). For
V; iid uniform on (0, T), we have

(o]
Z = (tOY* Y 1(v; < I (7.21)
j=1
forall 0 < t < T. Note that Vj is the exact time of the jth largest jump of the process Z; in
the interval O < t < T. This representation extends to certain infinitely divisible Lévy
processes Z; = [0, 0, t¢], with F]._l/“ replaced by G™1(I'j), where G(r, 00) = ¢(r, c0),
see Rosifski [177].

To get a series representation for two-sided stable laws, assume P[W; > x] = pCx™®
and P[W; < —x] = gCx~* for x > Cl/« for some 0 < a < 1and C > 0, where C > 0,
p,q = 0,and p + g = 1. We can construct this sequence of iid random variables by
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setting W; = 0;X; with iid random signs P[@; = +1] = p, P[O; = -1] = g, and
P[X; > x] = Cx~* iid Pareto independent of ©;. Now write

n n
n*l/tx Z ij — n—l/a z @](U(l)/c)fl/a
j=1 j=1

1 I n+1 Ya & -1/a
=C /“<T> Yo =Y.
j=1
It follows using the strong law of large numbers that

(o)
clay o, % = S4(B, 0, 0) (7.22)
j=1

with index § = p — g and 0% = CI'(1 - a) cos(rta/2).

Remark 7.5. The series representation (7.22) was extended to operator stable laws by
Hahn, Hudson, and Veeh [79]. There I' ]._1/ % is replaced by I' }TB , and ©; are iid accord-
ing to the mixing measure M(d6). The series representation for operator stable Lévy
processes was modified and applied to operator stable laws in Cohen, Meerschaert
and Rosinski [51] to provide a fast and accurate method for simulating operator stable
sample paths.

Remark 7.6. The series representation for a > 1 requires centering. In this case, I ]._1/ “
has a finite mean, and the centering is needed to make the sum

$ (- eiae )

converge to a mean zero stable law, see LePage, Woodroofe, and Zinn [124]. If p = g,
then E[0;] = 0, and no centering is required. LePage, Podgdérski, and Ryznar [123]
proved almost sure convergence for stable series representations with centering. The
centering is more delicate when a = 1.

Example 7.7. Here we present a simple application of the LePage series representa-
tion to extreme value theory. Take W; iid Pareto with index 0 < a < 1. Let M, =
max(Wy, ..., Wy) = Wy). Then My, = CY/*(I'y /Tp41)~ /% so that

My = n~ Y CYA(Ty  Tay) ™
_ Cl/a <Fn+1 >l/a F—l/a
n 1

N Cl/al—vzl/a
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with probability one, by the strong law of large numbers. Then we have n~'/%M, =
cY/ar; "%, This extreme value limit has the Frechét distribution:
P[CYr;Y® < x] = P[CV*E]M* < x]
= P[] < CV/oy]
=P[E; > Cx %] = exp(-Cx™9)

for x > 0.

Example 7.8. The LePage series representation is also useful to compute the weak
limit for self-normalized sums of heavy tailed random variables. Take W; = 0;X; as
before: X,, iid Pareto with O < a < 1, and iid random signs. Then

S W CYtTaa/m S, 6T

VEL W e (T /) B 172
-1 -1

Z?:l @frj e Z;'fl @jrj e Y,

- —2/a = o —2/a - \/Y_

VI T VIR T 2

(7.23)

so the weak limit of the self-normalized sum is a ratio of two dependent stable laws:
Y; hasindex a, and Y, has index a/2. In fact, we have

n n
<n1/a Z VV]‘, an/zx Z VV}2> = (Y1, Y5)
j=1 j=1
where the limit Y = (Y4, Y»)' is operator stable with exponent B = diag(1/a, 2/a) and
the Lévy measure ¢ of Y is concentrated on the set {y : y, = y%}, see Meerschaert
and Scheffler [146, Corollary 10.1.8]. The convergence (7.23) extends to arbitrary X €
DOA(Y;) using the ideas in Remark 7.3, see Logan, Mallows, Rice and Shepp [125].

7.3 Tempered stable laws

Tempered stable laws reduce the probability of extremely large jumps, so that all mo-
ments exist. This can be preferable in applications where the moments have a physical
meaning. Another motivation for considering a tempered power law comes from tail
estimation. If p = P[X > x] = Cx *as x — oo, thenlog p = log C-alog x, and a log-log
plot of the upper order statistics fits a line with slope —a. In many practical applica-
tions, this is true up to some point, beyond which the most extreme order statistics
fall short of the power law model (e.g., see Aban, Meerschaert and Panorska [1]). For
such applications, a tempered model may provide a better fit to real data.

For a general treatment of tempered stable laws and their governing equations,
see Baeumer and Meerschaert [19]. To illustrate the basic idea, suppose Y > Ois a
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stable random variable with index 0 < a < 1 and pdf f(y) such that
o0
f(s) =E[e™] = j e fly)dy = exp [ - Ds“| (7.24)
0

for all s > 0, where D > 0. The exponentially tempered function e " f(y) is not a pdf,
since it will not integrate to 1. In fact, we have by (7.24) that

I e Vf(y)dy = exp [ - DA%]
0

and it follows that fi(y) = e "f(y) exp [DA%] is a pdf, called the (exponentially) tem-
pered stable pdf. This pdf has LT

fus) = [ e7e ™V fty) exp [DA] dy = exp| - Di(s + ) - A,
0

Zolotarev [228, Lemma 2.2.1] implies that (7.24) holds with s = A + ik for any A > 0 and
k € R, and then it follows by essentially the same argument that

fa(k) = j e e f(y)exp [DA?] dy = exp [ - D{(A + ik)* - A%}].  (7.25)
0

It is obvious from (7.25) that the tempered stable law with pdf f;(y) is infinitely
divisible with Fourier symbol ¥;(-k) = —D{(A + ik)* — A%}. Note that this reduces to
the stable case when A = 0. Now we will show that this infinitely divisible law comes
from exponentially tempering the Lévy measure. It follows from Proposition 3.10 that
the random variable Y with LT (7.24) has characteristic function E[e*Y] = e¥(X) where

Wi = [ (e - 1) gay)

and ¢(dy) = Cay*'dyl(y > 0), where D = CI'(1 - a). Define the tempered Lévy
measure
Pa(dy) = e Cay*dyl(y > 0).
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Since f yI(0 <y < R) pp(dy) < oo, it follows from Theorem 3.8 (a) that there exists a
unique infinitely divisible law with characteristic function e¥1 where

Y10 = [ (% - 1) gatay)

(e™-1)eMCay*dy

(e(ik—A)y _ e—/\y) Cay—a—l dy

Ot——g O——g O ——3g

= | (e — 1) Cay™*dy - j (e 1) Cay™*dy
0
=—CI'(1 - a)(A - ik)* + CI'(1 — a)A* = Y (k). (7.26)

This shows that tempering a positive stable law is equivalent to tempering its Lévy
measure.
Now suppose that Z; is a tempered a-stable Lévy process whose pdf p(x, t) has FT

Pk, t) = E[e" 2] = exp [t (~k)] = exp [-Dt{(A + ik)* — 1%}] .

What is the governing equation of this process? Clearly p(k, t) solves the differential
equation

%ﬁ(k, t) = -D{(A +ik)* - A%}p(k, t)
and so we know that p(x, t) solves
0
5P06 D =Lp(x, 6
where Lf(x) is the inverse FT of l/JA(—k)f (k). In order to understand the operator L, it

is easiest to go back to the LT.
The pdf p(x, t) of the tempered a-stable Lévy process Z; has LT

p(s,t) = j e *p(x, t) dx = exp [-Dt{(A + s)* - 1*}].
0

This LT solves the differential equation
da._ a ay 5
7P 0 = -D{A+5)" - AT}p(s, 0)
and inverting the LT shows that p(x, t) solves

0
Ep(xr t) = Lp(X, t)
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where Lf(x) is the inverse LT of —D{(A + s)% - A“}f (s). Now we will use the fact that
o0
j e eMf(x)dx = f(s - A) (7.27)
0

and the fact (proven in the details at the end of Section 2.3) that the Riemann-Liouville
fractional derivative of order O < a < 1 has LT

(o)

—SX as _ oaf
!e - [00] dx = 5°F(s).

Putting these two facts together, we see that

I e*S"d—aa[eAxf(x)] dx = s*f(s - A).

dx
0

Using (7.27) one more time, we see that

o0

d“ .

-SX ,—Ax % 1 ,Ax — a

Ie e g [e™f(x)] dx = (s + A)*f(s).
0

This shows that the generator of the tempered stable semigroup is defined (for suitable

functions f) by

Lf0) = e ™ L [eh500] - A%f0).

dx®
We call

a

d Ax a
I [e™f()] - A°f(x) (7.28)

the (positive) tempered fractional derivative of order O < a < 1. With this notation, the
pdf of the tempered fractional Lévy motion solves the tempered fractional diffusion
equation

o5 fx) = e

0
P06 0) = —DOY p(x, t).

Remark 7.9. A general theory of tempered stable laws in R? has been developed by
Rosinski [178]. Exponentially tempered stable processes were originally proposed by
Koponen [110] as a model for turbulent velocity fluctuations, and developed further
by Cartea and del Castillo-Negrete [45]. Tempered stable random variables (and Lévy
processes) are the weak limits of triangular arrays where the row elements follow a
power law jump distribution with exponential tempering, and the tempering strength
tends to zero at a specific rate as k, — oo, see Chakrabarty and Meerschaert [46].
Tempering can also be applied to the waiting times in a CTRW framework, and then
a tempered fractional derivative in time replaces the usual first order time derivative,
leading to a tempered fractional Cauchy problem. Tempered stable laws were applied in
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Meerschaert, Zhang and Baeumer [157] to a variety of problems in geophysics. In those
applications, the tempering is in the time variable. The tempered space-fractional dif-
fusion is applied to hydrology in Zhang [227]. In a typical application, A > O is very
small, so that the pdf f(y) is indistinguishable from the stable pdf f(y) until |y| is quite
large. A useful method for simulating tempered stable random variables is presented
in Baeumer and Meerschaert [19, Section 4].

Now suppose that Y is stable with index 1 < a < 2 and Lévy measure ¢(dy) =
Cay~*'dyI(y > 0) as in Proposition 3.12. In this case, the pdf f(y) > Oforally € R, but
the left tail f(y) — O faster than e asy — oo forany A > 0, so the Laplace transform
integral exists over the entire real line. In fact, Zolotarev [228, Lemma 2.2.1] shows that

FA+ik) = E[e-3+i0Y] = J e~ Yy dy = exp [DA + ik)°] (7.29)

-0

forallA > O and all k € R, where D = CI'(2 — a)/(a — 1). Then

I e Mf(y) dy = exp [DA%]
and so f(y) = e Vf(y) exp [ - DA%] is a pdf on —c0 < y < co. Its FT is given by
fatk) = exp [D{(A + ik)* - 1%}], (730)

the same form as 0 < a < 1 except for a change of sign.
Here it is also true that exponentially tempering the pdfis equivalent to tempering
the Lévy measure, up to a shift: Define

Pa(dy) = eV Cay % tdyl(y > 0)

and note that, since f yI(y > R) ¢a(dy) < oo, Theorem 3.8 (b) implies that there exists
aunique infinitely divisible random variable Y, with characteristic function E[e{kY0] =
e¥2(0) where

Pa(k) = | (e -1 -iky)e ™V Cay*dy

(e — 1 — (ik - A)y) Cay™**dy

Il
O —3 O g O ——m3

(o)
(e™ -1+ Ay) Cay™*'dy - ik j (e™-1)yCay*dy
0

F(Z—a)(/‘_ik)a_CF(Z—a)

=C =
a-1 a—-1

A% —ika (7.31)
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using Proposition 3.12 twice, where

= J 1) Cla -1y @ 1ay
0
[ CI(1 - (a-1)A@P]
:_c—F (2-a) -t (732)
a-1

using Proposition 3.10 and noting that a — 1 € (0, 1). Then
E[e'¥¥0] = exp [D{(A — ik)® — A% + ikaA%"1}]
where D = CI'(2 — a)/(a — 1). Similar to Remark 3.38, it is not hard to check that
. d ikY,
E[Yo] = (-i)—E[e" ]y=0 = 0.
dk

If we define a tempered stable Lévy process Z; with Z; = Yj, then E[Z] =
Figure 7.1 illustrates the meaning of the truncation parameter A, in the case a = 1.2.
The bottom left panel is almost indistinguishable from the corresponding stable Lévy
motion, compare Figure 5.24. As A grows, the large jumps diminish, and for large A the
sample path resembles a Brownian motion, compare Figure 5.18. The sample paths in
Figure 7.1 were simulated using an exponential rejection scheme, see [19, Section 4]
for details.

The density of Z; has FT

Pk, t) = exp [Dt{(A + ik)* — A% — ikaA*"1}].
This FT solves the differential equation
%js(k, t) = D{(A + ik)* — A% — ikaA* }p(k, t)

and inverting the FT shows that p(x, t) solves
i (x,t) =Lp(x, t)
) tp » 1) = Lp(X,

where Lf(x) is the inverse FT of D{(A+ik)* -A%—ikaA%®~! }f (k). An argument very similar
to the case 0 < a < 1 shows that the generator is defined (for suitable functions f) by

Mo [eMf0)] - A%(x) - ad* T (x).

Lfx)=e ax

We call ja
0% f00) = e 2 [ 0] - 1) ~ ak* ' () (733)
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Fig. 7.1: Tempered stable Lévy motion Z; with a = 1.2, showing the effect of the tempering parame-
ter A, from Baeumer and Meerschaert [19].

the (positive) tempered fractional derivative of order 1 < a < 2. With this notation,
the pdf of the tempered fractional Lévy motion with drift Z; + vt solves the tempered
fractional diffusion equation with drift

dp(x, t) = —vdxp(x, t) + DAY p(x, t).

A two-sided tempered stable Lévy process has Lévy measure ¢ (dy) = e AV (dy)
where ¢ is the Lévy measure (3.30) of an arbitrary nonnormal stable law. Then we can
write Z; = Z{ - Z; where Z; and Z; are two independent one-sided tempered stable
Lévy processes with the same index. If Z; has Lévy measure ¢(dy) = pCay~*1dyI(y >
0) and Z; has Lévy measure ¢(dy) = qCaly|"“tdyl(y < 0), then itis not hard to check
that the pdf p(x, t) of Z; solves the two-sided tempered fractional diffusion equation

ap(x, 1) = gD p(x, 1) + pDIF p(x, 1)

where the Fourier symbol of the negative tempered fractional derivative is obtained by
substituting —k for k in the Fourier symbol of the positive tempered fractional deriva-
tive. In the next section, we will consider alternative forms of the tempered fractional
derivative, similar to our analysis of the fractional derivative in Chapter 2.
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7.4 Tempered fractional derivatives

We first defined a fractional derivative d*f(x)/dx® in Chapter 1 as the function with FT
(ik)%f (k). Then in Chapters 2-3, we studied some alternative forms in terms of finite
differences, convolution integrals, and the generator formula for a semigroup. Our
present goal is to apply the same analysis to the tempered fractional derivative. For
complete details, see Baeumer and Meerschaert [19].

Recall from Section 7.3 that a one-sided tempered stable Lévy process Z; with in-
dex 0 < a < 1 has characteristic function

E[eikzt] _ etl/l/\(k)
where (k) = -D{(A — ik)* — A*} for some A > 0 and D > 0. The pdf p(x, t) of Z; has

FT
p(k, ) = E[e" k%] = t¥a(=h)

which solves
2 bk, )= Ya-hp(k, 0 = ~DIA + )~ A*}pik,

and so p(x, t) solves the tempered fractional diffusion equation
0 a,A
&p(x’ t) = _Dax’ p(x’ t)-

The tempered fractional derivative aff”‘f(x) has FT {(A + ik)¥ — A%}f(k), and we know
from (7.26) that

(]
[ (e"-1) eV cayetay - —cra - (@ - ik - ac).
0
Set C = 1/I'(1 - a) to see that
(0]
_ —iky _ -y a —a-1 — s ja
j(e 1)e F(l—a)y dy=A+ik)* -7
0

and apply this formula to see that

y—a—l dy

(A4 0%~ A9F k) = j (F(k) - e ™ F(K)) e—AyF(1 3
0

Inverting the FT shows that (for suitable functions f) the generator form of the (posi-
tive) tempered fractional derivative of order O < a < 1 is given by

(o0)

0% f(x) = j (F0) — fox - y))e

0

a -a-1
Ta—a’ dy (7.34)
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using Theorem 3.23 (a). This reduces to the generator form (2.17) of the fractional
derivative when A = 0. An alternative proof uses Theorem 3.17.
Can we also extend the Griinwald finite difference form (2.1) to tempered fractional
derivatives? Recall from Section 2.1 that
d*f(x) i A%f(x)

dx® T h—0 h«

(7.35)

where

o0

A°f0) = (I - BY*f0) = Y. (‘]") (1Y fox - jh)

j=0
is written in terms of the shift operator Bf(x) = f(x — h). In Section 2.2 we used the
Griinwald form to motivate the generator form. Now we reverse that process, to explore
one possible idea of a finite difference formula for the tempered fractional derivative.
In the case of a fractional derivative, we can use the asymptotic expression (2.5) for
the Griinwald weights,

wj = (-1) ((}x) ~ F(l_—fa)fafl asj — oo,
to write
dfo) [ O
= —![f(X) Fx =) ¥y
~ Y [fx) - fix - jh)] ( (]h)‘“h
j=1
_ v —tx—l
= Z[f(x) - fx = jn)] =——— m o

ZZ
Mg ||

[f(x = jh) - fOO] wj

1

-

Il

Z fox = jhyw; - fx) Y. W,} =h* ) fox - j)w

j=1 j=0

since 2?21 wj = -wg = —1 by (2.11). The Griinwald weights form a discrete approxima-
tion of the Lévy measure. (For more on this topic, see Meerschaert and Scheffler [148,
Section 5].) Inspired by this heuristic argument, we may consider a kind of tempered
finite difference operator

A0 = . (IJX) (~1YeMhfx —jh) = ) wie V" f(x ~ jh). (7.36)
j=0 j=0
It follows from (2.2) that

f wje Mt = i (‘}") (-1)e MM = (1- e )" (737)
j=0

j=0
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and, using this fact, we can write

o8 ) = ! (700 ~ fox=y))e ™ sy dy
= y -Ajh —a-1
~];[f(X) ~fx = jhy) eV s R
=h" y -flx-j “Ajh__ X a1
B );[f(x) focmie }F(l—a)]

l?

[f(x - jh) - f(x)] e
1

J

II
I

f(x jhye “”wj—ﬂx)fe‘“”w;}

j=1
“[if(X—ih “Mhy; — fo0(1 - M)“} (7.38)
j=0

where, in the last line, we add wqf(x) to each term, and apply (7.37). This leads us to
the following conjecture:

Proposition 7.10 (Baeumer’s formula). For a bounded function f, such that f and its
derivatives up to some order n > 1 + a exist and are absolutely integrable, the tempered
fractional derivative defined by (7.34) exists, and

a,A 1 Aa’Af(X)
Ox"flx) = lim —2 (7.39)
where the tempered finite difference operator
AV =y (‘]") (1Y e M"fx - jh) - (1 - e M*f(x). (740)

j=0

Now we will prove this conjecture. Of course we would not have presented the discus-
sion above, if it did not lead to a positive result! The rather informal presentation is
intended to illustrate, for the beginning researcher, the thought process behind the re-
sult. In mathematical research, it is necessary (but not sufficient) to master the meth-
ods of mathematical proof. One also needs to guess, by some method, what result
might be true, and then try to prove it. In this case, our first guess (7.36) had to be
adjusted, by the second term in (740).

Proof. Write

o

e E( )( e Vfx —jh) - (1~ €M) flx)

j=



224 — 7 Applications and Extensions

and take FT to get

ey (?)( 1y e MhehmF () — h(1 - e ) f(k)

\..

=h“ ozo:< )( 1 ]e A+1k}hf(k ( _e—/\h)a]c(k)

_ h—a(l _ e—(/\+lk)h) f(k) _ h—a(l _ e—/\h)ﬂf(k)
- (A +ik)*f (k) - A%f (k)

by the same Taylor expansion argument as in the proof of Proposition 2.1. Apply the
continuity theorem for FT to see that (7.39) holds for each x € R. Note that z = e-A+ikh
isa complex number with norm |z| < 1, so that the series in (740) converges absolutely,
uniformly in x, in view of (2.2). The proof that a;‘f’A f(x) exists as the inverse FT of [(A +

— A%)f (k) is essentially identical to Proposition 2.5. O
Remark 7.11. The proof of Proposition 7.10 extends immediately to the case 1 < a < 2,
with exactly the same proof, to show that

(741)

—Ax Ax a : Aa’Af(X)

[e f60] = A%fx) = lim ==
for 1 < a < 2, where A%Af(x) is given by the same formula (740). In fact, (741) holds
true, by the same proof, for any @ > 0. From this it is easy to derive a finite differ-
ence formula for the tempered fractional derivative (7.33) of order 1 < a < 2, see [19,
Proposition 3]. Similar to Remark 2.2, a shifted version of the finite difference formula
is useful for numerical solutions of the tempered fractional diffusion equation, see [19,
Proposition 6].

Remark 7.12. The generator form of the negative tempered fractional derivative is

3% fix) = ! (0 = fox + p)e™ sy dy (742)

using Theorem 3.23 (a). This reduces to the generator form (3.32) of the negative frac-
tional derivative when A = 0. This form is the generator of a Lévy process with Lévy
measure

P(dy) = e W Caly|*dyI(y < 0).

We also have the obvious modification of Proposition 7.10: For a bounded function f,
such that f and its derivatives up to some order n > 1 + a exist and are absolutely
integrable, the negative tempered fractional derivative defined by (7.42) exists, and

AL

— (743)

O{yftx) = lim
—0
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where the tempered finite difference operator

[ee]

APf0) =Y (‘]") (1Y e M f(x + jh) - (1 - e M) f(x). (744)
j=0

Remark 7.13. The generator form for 1 < a < 2 can be obtained by inverting the FT

P2 (~I)f (k) = {(A + ik)* = A* — ikaA™ 1} (k)

of the positive tempered fractional derivative of order 1 < a < 2 in (7.33). Substitute
C=(a-1)/I'(2 - a)in (731) and (7.32) to get

(s8]
J (e — 1 - iky) efM—?g—: i—; y Tty = (A= 1k)" = A% + ikaA*™ = o (K.
0

Then the inverse FT of

V2T = [ (7070 - F0 + ikyf ) e Ty ety
0
is o
a,A _ _ _ ! -A a(a-1) -a-1
o) = ! (=) =00 +yf ) eV EE—sytay (4s)

using Theorem 3.23 (b). Equation (7.45) is the generator form of the positive tempered
fractional derivative of order 1 < a < 2. When A = 0, (7.45) reduces to the generator
form (2.20) for the positive fractional derivative of order 1 < a < 2. An alternative
proof uses Theorem 3.17.

7.5 Distributed order fractional derivatives

The distributed order fractional derivative is defined by

1

Y Ppp) = jaff(ov(dﬁ) (746)

0

where v(dp) is a finite Borel measure on the unit interval (0, 1), and af is the Caputo
fractional derivative (2.33). The distributed order time-fractional diffusion equation

2
3 Pp(x, t) = D%p(x, ), (747)

where D > 0, was introduced by Chechkin et al. [48, 49] in the physics literature.
If v(dpB) is a point mass at some 8 € (0, 1), then (7.47) reduces to the time-fractional
diffusion equation (2.39), a model for subdiffusion where solutions spread at the rate
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tF12 for all t > 0. If v has point masses at 0 < f; < --- < B, < 1, we get a linear
combination of fractional time derivatives of different orders. Chechkin et al. [48] show
that in this case, the spreading rate is asymptotically equal to to t#1/2 as t — o0, so
the smallest 8 dominates. If (747) includes fractional derivatives of arbitrarily small
order f > 0, this suggests that solutions to (747) will spread at a rate slower than tf/
for any 8 > 0. Suppose for example that

o) - {Aﬁ“‘ldﬁ 0<B<B

0 B<B<1 (748)

for some a > 0, A > 0, and B < 1. We will show that this leads to ultraslow diffusion,
where the solution to (747) spreads like (log t)*/2 for all ¢ > 0 sufficiently large, slower
than any power law. The cutoff at B < 1 is required for technical reasons, see details.

Recall from Section 2.3 that the Caputo fractional derivative a’f f(t) has Laplace
tra}g/%form sPf(s) — sP~1f(0). Then for suitable functions f(t) the Laplace transform of
o Pf(t) is

0 1
[ estor P o de = [ [P7s) - s 4] viap) (749)
0 0

Now we will apply the alternative theory of infinitely divisible subordinators Y > 0
based on Laplace transforms, see the details at the end of Section 4.5. This Lévy rep-
resentation takes the simplified form E[e~sY] = e %), where s > 0 and

Y(s) = as + j (1-e™) ¢p(dy)
0

for some a > 0, and some Lévy measure ¢p(dy). This Lévy representation is unique.
The Lévy measure ¢(dy) on {y : y > 0} satisfies ¢(R, co0) < co and
R

qub(dy) < oo (750)
0]

for all R > 0. Now use (7.49) to write
j 5" Pf(t) dt = p(s)f(s) - s P(S)0), (751)

0

where
1

(s) = jsﬁv(dﬁ).
0
Recall from (4.56), which is just from Proposition 3.10 with s = —ik, that
[o0]
J (1-e™)Cpy P tdy = cr(1 - p)sb
0
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foralls > 0, forany O < 8 < 1. Set C = C(B) = 1/I'(1 - B) and substitute into (7.49) to
see that (7.51) holds with

1 [’}
W(s) = jsﬁv(d/n - j (1) By P-1dy C(B)AB* ' dp
0 0

(1-e™) p(ay),

Ot—— g O

where
B

b(dy) = jﬁy-ﬁ-ldy C(B)AB*1dp.

(0]

Let p(B) = C(B)AB* ! for 0 < B < B, and p(B) = 0 otherwise. Since I'(x) is a decreasing
function for 0 < x < 1, with I'(1) = 1, we have C(8) < 1 forall 0 < 8 < 1. Then

B B B
M= [ p@dp = [ cpaprap < [ aptap < co.
0 0 0

Since we can divide both sides of (7.47) by the constant M, it entails no loss of gener-
ality to assume that M = 1, and then p(f) is a pdf. Now we can also write simply

¢@dy) = | By P dy p(B) dp. (7.52)

O—

Next we want to show that ¢(dy) is a Lévy measure. Take any R > 0 and write

B(R, 00) By P1p(B) dp dy

By P dyp(p)dp

2:1_,8 O — g

RPp(p)dp (7.53)

Il
Oty O —— W —3

using the Fubini-Tonelli Theorem. The last integral is bounded above by max{1, R},
since p(p) is a pdf. Now we just need to check that (7.50) holds, see details. Then ¢(dy)
is a Lévy measure, and 1(s) is the Lévy symbol of some subordinator.

Let D¥(u) be the Lévy subordinator with E[e~S2*®] = e=¥() for all s > 0. Using
some deep semigroup arguments, Corollary 2.1 in Kovacs and Meerschaert [112] shows
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that D¥(u) has a density g(t, u), which is a smooth function of both ¢ > 0 and u > 0.
Define the inverse process E't/' =inf{u > 0 : D¥(u) > t}, so that

(EY <u) = (DY) > t). (7.54)

Theorem 3.1 in [112] shows that Eip has a density h(u, t) that is a smooth function of
u > 0. Now we can argue as in Section 2.4, using (7.54), that

t
d d d
h(u, t) = EIP[E;/’ <ul= —PDY(W) 2t = — [1 - Jg(y, u) dy}
0

with LT

h(u, s) = _4 [s7'a(s,w)]
du
d

- [S—le—uzll(s)] _ S—llp(s)e—uw(s) (7.55)

using the fact that integration corresponds to multiplication by s~! in LT space. See
Meerschaert and Scheffler [153, Theorem 3.1] for complete details.

Let f(x, u) be the PDF of B(u), independent of D¥(u), and use a simple condition-
ing argument, as in Section 2.4, to see that B(E ‘t/’) has PDF

(o)
p(x, t) = Jf(x, u)h(u, t) du.
0
Take FT and then LT to see that

-st

plk,s)=1|e e Ty (x, t) dx dt

—st

o

1
h —ikx h
L e J fox, wh(u, ) du dx dt

( j e~ f(x, u)dx) <Je‘5th(u, t)dt) du

(0]

s~1(s)

—uDk? -1 —up(s) gy, —
e s YP(s)e du 9+ DIE

Il
O——8 O ——8 Ot—— g O ——.9

See [153, Theorem 3.6] for complete details. Rewrite in the form ¥ (s)p(k, s)-s~1(s) =
-DI?p(k, s), invert the LT using (7.51) along with p(k, 0) = 1 to get

o Pp(k, ) = -DK*p(k, 0,

then invert the FT to see that the pdf p(x, t) of B(E;p) solves the distributed order time-
fractional diffusion equation (7.47).
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Next we want to construct a CTRW model for B(E;p). Take S(n) = Y1 +--- + Yy,
iid with E[Y;] = 0 and ]E[Yiz] = 2D. It follows from the Central Limit Theorem that
n~125(nt) = B(t) for any t > 0, see Example 3.31. This gives a suitable model for the
CTRW jumps. A suitable model for the CTRW waiting times is more delicate. In view
of Theorem 4.5, no random walk with iid waiting times can converge to DY (u), which
is neither normal nor a-stable. Hence it is necessary to consider a triangular array.

Now we will use an idea from Meerschaert and Scheffler [152, Section 3]. Take {By, :
n =1,2,3,...}iid with pdf p(8). Then, for each n = 1, 2, 3, ..., define iid waiting

times {Jnj : j=1,2,3,..., ky} with distribution
Py > By = B} = 4 0st<mill (7.56)
5> = = . .
Y n=f ntP t>nlP

Given any t > O, let k,, = [nt], and consider the triangular array of waiting times
Unj:i=1,2,...,kpsn=1,2,3,...}. At any time scale n, the waiting times J,; are
iid conditionally Pareto distributed, conditional on the random power law indices B,.
The time of the kth CTRW jump is given by the row sum

k
Ty =) Jnj
j=1

forany k =1, 2, 3, ... at any time scale n.
Remark 7.14. If we define (J;) iid Pareto with P[J; > t] = t# then

PlnVE]; > 6] = PU; > n'/Pt] = nPe)F = n71eF,

which is the same as (7.56). This shows that, conditional on B,, = 8, the norming for
this triangular array is the same as in Theorem 3.37.

Next we want to show that T[”m] = D¥(t) for any t > 0, using the convergence crite-

ria for triangular arrays, Theorem 3.33. The proof is quite similar to Theorem 3.37. To
show that condition (i) holds with k, = [nt], suppose u > 0 and note that for any n
sufficiently large we have

B
[nt]P[Jyj > u] = [nt] ijUn,' > ulBy = Blp(B) dp
0
B
_mr g
= !u p(B) dp

B
- tj uPp(B) dp = t p(u, o),
0



230 — 7 Applications and Extensions

using (753). Hence condition (i) holds. See details for the proof that condition (ii)
holds. Then it follows from Theorem 3.33 that Tfnt] - a, = D¥(¢t) for some center-
ing constants a,. Finally we want to argue that a, can be made as small as we like by
choosing R > 0 sufficiently small. Again, the proof is quite similar to Theorem 3.37, see
details. Then we have shown that TFM] = DY¥(t).

Now consider a triangular array of CTRW with jumps (Y;) and waiting times (J ;).
We have already shown that n~'/2S(nt) = B(t) and Ty = D¥(t). The number of
jumps by time ¢ > O at time scale n is defined by N} = max{k > 0 : T} < t}, and then
we can argue as in Section 4.3 that n"1N,(t) = Eip, see details. The CTRW particle
position at time t > 0 and scalen = 1,2, 3,... is given by S(N}). Now argue as in

Section 4.3, assuming the jumps (Y;) are independent of the waiting times (J,;), that
(n2S(nt), nINT) = (B(t), EV)
in the sense of finite dimensional distributions. Then it follows as in Section 4.4 that
nY2S(N") = n"Y2S(n - " NT') = B(EY)

in the Skorokhod M; topology, see [153, Corollary 2.4] for complete details. Conver-
gence in the J; topology follows from Straka and Henry [210, Theorem 3.6]. This estab-
lishes a CTRW model for the distributed order fractional diffusion equation (7.47).

Finally we explain how the distributed order fractional diffusion equation (7.47)
with v(dp) given by (7.48) models ultraslow diffusion. The Lévy symbol

1 1
P(s) = Jsﬁv(dﬁ) = j eP1ogsy(dp) = v(-log s)
0 0

where the LT
1 B rB
() = I e Py(dp) = J e PAB AR = Ar® I ex*dx = Ar®I(a, rB)
0 0 0

using the incomplete gamma function. As r — oo we have ¥(r) ~ Ar %I'(a), and hence
Y(s) ~ AT(a)(-log s)™™ ass — 0.
The CTRW limit process B(E;p) has mean zero and, since E[B(t)?] = 2Dt, a simple

conditioning argument shows that Var[B(E;p)] = 2DE[E :/’]. Let

m(t) = E[E’] = IIP[E;P > u) du = j]p[D‘P < t]du
0 0
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and take LT as in (7.55) to get

i(s) = [ est j PDY < ] du dt
0

(o)
I eSIPIDY < f] dt)
0

o_,g Ov_.g Ot—g

s1e WO gy = s71yp(s)! ~ Cs~1(~log s)*

ass — 0, where C~! = AT'(a). Example 2.10 shows that the function f(t) = t’ on t > 0
has LT f(s) = s P~'I'(p + 1) for any p > —1. An extension of this argument yields the
Karamata Tauberian Theorem:

flt) ~tPL(t)ast > 0o &= f(s)~sP ' I(p+1)L(1/s)ass — O, (7.57)

assuming that p > —1, L(t) is slowly varying, and f(t) is monotone for t > 0 sufficiently
large (see Theorem 4, p. 446 in Feller [68]). Since E;p is nondecreasing, the moment
function m(t) = IE[E}/’] is clearly monotone. Note that —log s = log(1/s), and that the
function L(t) = C(log t)“ is slowly varying. Then we can apply (7.57) with p = O to see
that m(t) ~ C(log t)* as t — oo. Hence the stochastic process B(E;p) models ultraslow
diffusion, since its variance Var[B(E‘tp)] ~ 2DC(log t)* for some a > 0. Remark 3.2
in [153] shows that P[J,; > t] is also slowly varying as t — co. Hence the ultraslow
diffusion results from very long waiting times.

Details

To show that (7.52) defines a Lévy measure, we also need to check that (7.50) holds.
Write

R B R
jycb(dy - jyjﬁy-ﬁ-ldyp(mdﬁ: jyﬁy-ﬁ-ldypw) dp
0 0 0

B
1-B

Then the integral (758) is bounded above by Bmax{R, R'-8}/(1 — B). This along with
upper bound on (7.53) shows that ¢(dy) is a Lévy measure. Equation (7.58) also shows
the reason for the cutoff at B < 1: If we integrate to 8 = 1, then (7.58) diverges.

To show that condition (ii) holds, first note that the conditional density of J,; given
B, =fis

R'Pp(B) dp. (7.58)

Oty O

O<u<nl/B

Yn(ulp) = { gy B . (7.59)

u>nk
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Then for any n sufficiently large we can write

B
(ne] Varljg) < (ne] [ u? [ waiBIp(p) dp du
0

= [nt] J w'n™' Bu Pt dup(p) dp
kY

n-1/B

-1 e Lopipap- "”J w B
0 0

g O O—n

p(B) dp.

Since /(2 - B) < 1and 1 - 2/f < -1, the second integral

B
J nl-2/B B

1
p®dp<n’ ij(/n a =7,

0

and then it follows that the second term tends to zero as n — oo. Since €27# < ¢ for
0 <e<landO < f < 1, the first integral is bounded above by
B
j L ppap<e.
2-B

Then it follows that

1%11m sup(nt] Var[]ij] < g% te = 0.
This shows that condition (ii) holds.

Next we show that a, can be made as small as we like by choosing R > 0 suffi-
ciently small. By (3.37) we can take

R B

an = keEUE) = [nt] ”” W) dup(B) dB

00

B

= [nt] j j un~'Bu~P-' dup(B) dp
0

n-1/8
B

= n_t]J’LRl -8 p(B)dp - [nt]J’ 171//3L

w1 1_ﬁp(ﬁ)dﬁ-

0

Since nt~Y/B < n1-1/B and 1 - 1/B < 0, it follows that the second term tends to zero
asn — oo. Since R# < R'B for 0 < R < 1, the first integral tends to zero as R — 0.
Hence the lim sup of the first term as n — oo can be made arbitrarily small by choosing
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R > O sufficiently small. As in the proof of Theorem 3.37, this implies that Tfn n= D¥(t)
without any centering.

To show that nIN} = E?’, let [x] denote the smallest integer greater than or
equal to x > 0, and note that as in Section 4.3 we have {N} > x} = {TF;q < t}. Next
observe that TFnﬂ = DY(¢t) for any t > 0. This is easy to check using characteristic

functions, as in (3.64). Since both D¥(x) and E;” have a density, it follows that
P[DY(u) > t] = P[D¥(u) > t] = P[EY < u] = P[EY < ul.
Now we can argue as in Section 4.3 that

P[n !N} < x] = P[N} < nx] = P[T}'

[nx]

> t]

S PD¥(x) > ] = PEY < x]
using (7.54) and TFnﬂ = D¥(t). This shows that n Ny = E?’
7.6 Pearson diffusions

The diffusion equation with constant coefficients

0 0 02
5P = —E[VP] + W[DP] (7.60)

from (1.9) governs the scaling limit of a random walk with finite variance jumps. In
this section, we consider Pearson diffusions governed by (7.60) with space-variable co-
efficients

D(x) =do + dix + dx?> and v(x) = ag + a1 x. (7.61)

A Pearson diffusion is a Markov process that can tend to steady state: X(t) = X(co) as
t — 0o. Then the density m(x) of the limit variable X(co) is a time-invariant solution
to equation (7.60): p(x, t) = m(x) for all t > 0. The steady state density of a Pearson
diffusion follows one of the six classes of Pearson distributions: normal, gamma, beta,
Student-t, inverse gamma, or F-distribution.

A Pearson diffusion is a time-homogeneous Markov process whose transition den-
sity p(x, t; y) is the conditional pdf of x = X; given X, = y. For any initial state X =y,
the function p = p(x, t) = p(x, t; y) solves the forward equation (7.60) with the point
source initial condition p(x, 0) = §(x — y). Then the forward semigroup

Tef(x) = jp(x, t)fY) dy (762)

gives the pdf of X;, given that Xy has pdf f(x). The function p(x, t) = T¢f(x) solves a
Cauchy problem

3 px)= £p(x, 05 p(x,0) = ) 763)

where the generator of the forward equation is

2
£0) =~ VOO0] + s [DCOSC0] (764)
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The forward equation is sometimes called the Fokker-Planck equation, especially in
applications to physics. For Markov processes, it is common for technical reasons to
first consider the backward semigroup

Tig(y) = Elg(Xo)lXo = y] = j p(x, £; y)g(x) dx. (765)

Ifg(y) = I(y € B) for some Borel set B, then T; g(y) = P[X; € B|X, = y], the probability
of finding a particle in the set B after time t > O, given that it started at location y at
time t = 0. The function p(y, t) = T} g(y) solves the backward equation

2 55, = vy) L, 0 + Dby, 6 (766)
5tP0+ 0 = V) 3P 0+ DY) 35 P, .

with initial condition p(y, 0) = g(y). The backward equation is simpler, because the
coefficients v and D appear outside the derivatives.
If a steady-state solution p = p(x, t) = m(x) to (7.60) exists, it satisfies:

0 02
0= —a [V(X)m(x)] + W [D(X)m(x)] . (7.67)
Integrating (7.67) once yields

%[D(x)m(x)] —-v(x)m(x) = Cy. (7.68)

With C; = 0, equation (7.68) reduces to

m'(x) v(x)-D'(x) (ao-d1)+ (a1 -2dy)x
m(x)  D(x) - do + dix + dyx2?

(7.69)

Equation (7.69) is the famous Pearson equation, introduced by K. Pearson [166] in 1914
to unify the six classes of Pearson distributions.

The six types of Pearson diffusions will be described in Remark 719 at the end of
this section. The study of Pearson diffusions began with Kolmogorov [108] and Wong
[220], and continued in Forman and Sgrensen [72], Avram, Leonenko and Rabehasaina
[11], Leonenko and Suvak [121, 120], and Avram, Leonenko and Suvak [10]. For the
remainder of this section, we will restrict our attention to Pearson diffusions of type (1-
3), where the steady state density m(x) is normal, gamma, or beta. Then the backward
equation (7.66) can be solved by separation of variables. See Leonenko, Meerschaert
and Sikorskii [122, Theorem 3.2 and Remark 3.5] for a complete and detailed proof.
Next we will sketch the main ideas of the proof. Write (7.66) in the form of a Cauchy
problem

2 P05 = 9P 05 P 0) =80) (770

where

o 08(y) 0’g(y)
Sg(y) =v(y) oy D(y) 5y

(771)
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is the generator of the backward semigroup. Suppose that p(y, t) = S(t)@(y) solves
(7.70), where the functions S and ¢ may depend on x. Then

)
5 [5OPeM] = 5[SeM],
which is equivalent for non-zero functions to

1 dS(H) _ Spw)
SO dt e

Equation (7.72) can hold only if both sides are equal to a constant. Denote this constant
by —A, and consider the two resulting equations: The Sturm-Liouville equation

(7.72)

Sp =-A¢p (7.73)
and the time equation
as(t)
T AS(t). (7.74)

Recall from Section 2.3 that ¢ is an eigenfunction of § if (7.73) holds for some complex
number A. Write the Sturm-Liouville equation (7.73) using (7.71) and (7.61) to get

(do + d1x + dyx®)@" + (ag + a1X)p" +Ap = 0. (7.75)

The steady state solutions m(x) for Pearson diffusions of type (1-3) are the normal,
gamma, and beta probability density functions. In these three cases, (7.75) is solved
by the Hermite, Laguerre, or Jacobi polynomials, respectively (see Remark 7.19). Each
of these families of polynomials forms an orthogonal system:

cz>0 ifn=m,
0 ifn+m

joﬂmoﬂmeMx={ (776)

such that §Q,(x) = —1,,Qn(x) for all n, where Qo(x) = 1and 0 =g < A < Ay < ---
with A, — co. The corresponding solutions to the time equation (7.74) have the form
Sn(t) = et

since the exponential functions are the eigenfunctions of the first derivative. Then
p(y, t) = eMtQ,(y) solves the Cauchy problem (7.70) with initial condition p(y, 0) =
Q. (). Since any finite linear combination of these functions will also solve equation
(7.70), is it reasonable to consider the infinite sum

pO,t) = Y bne ™ Qu(y). (777)
n=0

If
g =) bpQn(x) (778)
n=0
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where the series converges uniformly on compact sets, then some analytic estimates
show that the series (7.77) can be differentiated term-by-term, so that the function
pWy, t) in (7.77) solves equation (7.66). If the polynomials Q,(x) are normalized so that
c2 = 1in (776), then

jg(X)Qn(X)m(x) dx = b, foralln.

Then it follows from (7.78) that (7.77) solves the backward equation (7.66) with initial
condition p(y, 0) = g(y).
Equating (7.65) to (7.77) we see that

PO, t) = T;g(y) = ) bue™'Qu(y)
n=0

(o8]

- Y (] antomeo dx) e 1auy)

n=0
= j m(x) ) e-A"an<x)Qn<y)> g0 dx. (7.79)
n=0
Then -
pPx, t5y) =m(x) Y e Qu(x)Qn(y) (7.80)
n=0

is the transition density for the Pearson diffusion X;. This heuristic argument is made
rigorous in Proposition 7.21 in the details at the end of this section, which proves that
(7.80) is the point source solution to the forward equation (7.60) and the backward
equation (7.70) for Pearson diffusions of type (1-3).

A very similar separation of variables argument shows that

i) = | B 6 fy) dy
solves the forward equation (7.60) with initial condition p(x, 0) = f(x), where p(x, t;y)

is given by (7.80), for any initial function such that

) B
mQ) = r;)ann(X) (7.81)

where the series converges uniformly on compact sets. See [122, Theorem 3.3 and Re-
mark 3.5] for details.

Example 7.15. A type (1) Pearson diffusion has D(x) constant. Suppose that D(x) = 1,
and v(x) = —x. Then equation (7.69) becomes

m'(x)
m(x)

})

and it is easy to check that the normal density

m(x) = \/L_e*"zf2

2
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is a solution to this equation. The eigenfunction equation (7.75) becomes
@I -xpl+Ap =0, (7.82)
The eigenfunctions are the Hermite polynomials H,(x) and the corresponding eigen-

values are A,, = n for n > 0. The first three Hermite polynomials are Hy = 1, H; (x) = x
H,(x) = x* - 1. Check that each of these functions solves (7.82) with A = n.

Remark 7.16. Since we always have Qp(x) = 1, and sinceA,, > Oforalln > 0, it follows
from (7.80) that p(x, t;¥) — m(x) as t — oo for any y, i.e., the Pearson diffusion X
tends to the same steady state distribution m(x) regardless of the initial state X, = y.
See [122, Theorems 4.6—4.8] for details.

Remark 7.17. The forward equation (7.60) can be derived from the backward equation
(7.66) using integration by parts. Since the Pearson diffusion X; is a Markov process,
its transition densities satisfy the Chapman-Kolmogorov equation

PO, £+ 83y) = jp(x, 5:2)p(z, ) dz (783)

which adds up the probabilities of all the paths that transition from X(0) = y to X(t +
s) = x through some point X(t) = zin between (e.g., see Karlin and Taylor [102, p. 286]).
Equation (7.83) can be established by an argument similar to (3.29). Let p(x, t) = T¢f(x),
and use (7.83) to write

px, s +8) = TsTef(0) = Tsp(x, ) = jp(x, s:y)p(y, O dy

forall s, t > 0. Observe that
op(x,t+s) 0p(x,t+5s)
ot B os
and assuming that the derivative can be taken inside the integral, arrive at
op(x,s +t op(x, s;
p( )=j(t)p( y)dy

ot
Apply the backward equation (7.66) to get
op(x,s +t , S; 02 x,s
PaseD jp(y,t)[vm R 4 Dy TPy

Integrate by parts twice to get

op(x, 0’ 0
% - J (a—yz[D(y)p(y, 0] - 5, [V0pG. 0] ) p(x, s;y) dy,

assuming that the boundary terms vanish. Then let s — 0, and use the fact that
p(x, s;¥) — 6(x —y) as s — 0 to get the forward equation
op(x, t) _ 6
ot
See [102, p. 219] and the detalls at the end of this section for more information.

2
D, ] - [vooutx, ],
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Remark 7.18. We saw in Section 1.1 that the diffusion equation (1.9) governs a Brow-
nian motion with drift, the scaling limit of a random walk S,, = Wy + --- + W,, with
iid finite variance jumps. The forward equation (7.60) with parameters v(x) and D(x)
governs the scaling limit of a Markov process X; = Wy + --- + Wy, where N(t) is a
standard Poisson process with E[N(t)] = t, and the jump distribution depends on the
current state: Given X; = x, the next jump has mean v(x) and variance 2D(x). Then a
suitably normalized version of the Markov process X; converges to the Pearson diffu-
sion with these coefficients. See Barkai, Metzler and Klafter [22] and Kolokoltsov [109]
for additional details. In applications, this model is useful when the particle velocity
v(x) and dispersivity D(x) vary in space.

Details

A Pearson diffusion is a Markov process defined on the state space E = (a, b) < R!,
where we allow infinite endpoints. The interval (a, b) is chosen so that D(x) > 0 for
x € (a, b). A Markov process on the state space E is a stochastic process on E with the
Markov property:

P[X¢t4s € BlX; =%X,=y1 ..., Xy, =Y¥n] = P[Xtys € BIX¢ = Y]

forany Borelset BC E,s >0,0< t; <--- <ty <t,andy,y1,...,¥n € E. We say that
a Markov process X is time-homogeneous if

P[X¢+s € BlXs = y] = P[X; € B|Xo = y].

Then the Markov process has stationary increments. A Lévy process is one example of
a time-homogeneous Markov process, with independent increments.

The existence of a Markov process X; on E whose backward semigroup has the
generator (7.71) follows from Ikeda and Watanabe [95, Theorem 6.1]. That theorem
proves the existence of a Markov process with generator (7.71), where v(x) and D(x)
are continuous functions of x. Further, when the coefficients satisfy a local Lipschitz
condition, the Markov process is unique. The local Lipschitz condition holds for the
coefficients (7.61), and the corresponding Markov process is called a Pearson diffusion.
The proof of [95, Theorem 6.1] is based on the theory of stochastic differential equa-
tions. The process X; is defined as the solution to the stochastic differential equation

dXt = V(Xt)dt + O'(Xt)dBt

where D(x) = 02(x)/2 and B; is a standard Brownian motion, see [95] for more details.
The general solution to (7.67) can be obtained as in Karlin and Taylor [102, p. 221].
Multiply both sides of (7.68) by the integrating factor

S(X)=eXp<‘—J% y},

ao
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where ag is an arbitrary point in (a, b), and note that s/(x) = —v(x)s(x)/D(x). Then
(7.68) reduces to p
Ix (s()Dx)m(x)) = C15(x). (7.84)

Equation (7.84) is solved by another integration

S(x) 1

50Dk 250D’ (785)

m(x) = C1

where

S(x) = js(y)dy

is called the scale function of the diffusion. The constants C; and C, are chosen so
that m(x) > O for x € E, and fm(x)dx = 1. If a non-negative integrable solution of
equation (7.67) does not exist, the stationary density does not exist. If a non-negative
integrable solution of (7.67) exists, then it can be normalized so that it integrates to
one [102, p. 221]. If the distribution of X(0) has this density m(x), then X(t) has the
same density for all ¢ > 0 (e.g., see [102, p. 220]). For Pearson diffusions, we choose
C,=0.

To prove that (7.80) is the transition density of a type (1-3) Pearson diffusion, use
[122, Remark 3.4] to see that any smooth function g(y) with compact support in E can
be written in the form (7.78), where the series converges uniformly on compact sets.
Since the indicator function of any compact interval B € E can be approximated arbi-
trarily closely by such functions, it follows that

Plg(X)lxo = y] = j P(x, £ )g(x) dx

x€eB

for all such intervals. Then it follows that p(x, t; y) is the conditional density of X,
given Xy = y. The Fubini argument in (7.79) can be justified using Lemma 7.28.

In Remark 7.17, we outlined the derivation of the forward equation from the back-
ward equation, following the brief discussion in [102, p. 219]. Here we provide some
additional detail. As discussed in [69, 70, 102], the backward equation plays a cen-
tral role in the theory of diffusion processes. Some analytical difficulties arise when
considering the forward equation. Suppose that f, g : E — R are twice continuously
differentiable and have compact support in E. Then it is easy to check, using integra-
tion by parts, that [ [£f(x)]g(x) dx = [ f(y)[Sg(y)] dy. Thatis, we have (Lf, g) = (f, Sg)
where the inner product (f, g) = f f(x)g(x) dx. The derivation of Remark 7.17 also as-
sumed that the derivative can be passed through the integral. Since this does not al-
ways hold in general, the forward equation does not follow directly from the backward
equation without additional assumptions.

There are six types of Pearson diffusions, corresponding to six classes of solutions
to the ordinary differential equation (7.75). The solutions vary depending on the degree
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of polynomial D(x) in (7.61) (zero, one, or two) and, if D(x) has degree two, on the
discriminant of D(x) (zero, positive, or negative), see [11, 72]. These solution classes
also vary in terms of the spectrum of the operator G: The spectrum of a linear operator
A defined on a Banach space B is the set of complex numbers A such that A — AI has
no bounded inverse. If B = R" and A is an n x n matrix, then the spectrum is the
set of eigenvalues of the matrix A. If B is a space of functions, and if Af = Af for
some f # 0 in B, then f is an eigenfunction of A with eigenvalue A, and A belongs to
the spectrum of A. For the first three types of Pearson diffusions, the spectrum of the
operator G is purely discrete, and the sequence of eigenvalues increases to infinity. For
the three remaining types of Pearson diffusions, the spectrum has a (possibly empty)
finite discrete part, and a continuous part called the essential spectrum. A complete
description of all six classes of Pearson diffusions is included below.

If the spectrum of the generator G is purely discrete, the Sturm-Liouville problem
(7.73) is solved by an infinite system of classical orthogonal polynomials {Q,}. This
system is called orthonormalif c2 = 1 forall nin (7.76). Then this system of polynomials
forms an orthonormal basis for the space of functions L?(E, m(x) dx) consisting of all
Borel measurable functions f : E — R such that j IfO0)1?m(x)dx < co, with the inner
product {f, 8)m = f f(xX)g(x)m(x) dx. Any function g € L?(E, m(x) dx) can be written
in the form (7.78) for some constants b,, where the series on the right hand side of
(7.78) converges in the L? sense:

J

The coefficients in (7.78) are computed using the inner product: g, = (g, Q) forall n.
Some additional technical conditions (see Szegd [212, pp. 245-248] and [186, p. 381])
are needed to assert that (7.78) holds point-wise.

2
m(x)dx - 0 asN — oo.

N
g(X) = Y bnQn(x)
n=0

Remark 7.19. In this remark, we catalog the six types of Pearson diffusions in terms

of their invariant densities, and their polynomial families of eigenfunctions. Types (1-

3) have a purely discrete spectrum, and types (4—6) have a mixture of discrete and

continuous spectrum.

(1) The Ornstein-Uhlenbeck (OU) process is obtained when D(x) in (7.61) is a constant.
The traditional parametrization for the process is

v(x) = -6(x —p), D(x) = 6a?.

The convenience of this parametrization is in separating the distributional and
covariance parameters. For a stationary OU process, 6 is a correlation function
parameter, and y and ¢ are distribution parameters. The state space is E = R!
and the stationary distribution is normal:

1 o[ =W
P 20?

m(x) = ] , XeR. (7.86)

o
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When 0 < 0, the process is transient. When 6 > 0, the diffusion is a stationary OU
process when the initial distribution has density m(x). The eigenvalues of (-9)
are A, = On, n > 0. The corresponding eigenfunctions are Hermite polynomials.
The first three Hermite polynomials are Hy = 1, H;1(x) = x, Hy(x) = x? — 1. The
Rodrigues formula

n

d
—(_1\" -1
Hn(x) = (-1)" [m()]™ ==

mkx), xeR, n=0,1,2,...

can be used to compute the remaining polynomials.

The Cox-Ingersoll-Ross (CIR) process is obtained when D(x) is a first degree poly-
nomial D(x) = dyx + do. We may suppose do = 0 (after normalizing, which would
change ag to ag — aido/dq). If di > O then the process is a CIR (square root
Feller) diffusion on the state space E = (0, 00), see Cox, Ingersoll and Ross [52].
If d; < 0, then the state space is E = (-0, 0), where D(x) is positive. This case
can be reduced to the case d; > 0 by a simple reparametrization. The traditional
parametrization of the CIR process is

b 0
v(x)_—G(x—E>, D(X)—EX'
The invariant density is gamma:

b
m(x) = % xPlem x> o. (7.87)
The eigenvalues are A, = On, n > 0. The orthogonal polynomials are the Laguerre

polynomials Lff’fl)(ax) forn=0,1,2,...where
Wy 1o d -
Ly (x) = X Ve"m[x"”’e .

The Jacobi diffusion process is obtained when D(x) is a second degree polynomial
with positive discriminant. Suppose D(x) = d,(x — x1)(x — x3), and d, < 0. The
state space is E = (x1, x2) with x; < x,. After rescaling we may assume d, = -1,
and after a linear change of variables X = 2x — (x; + x2)/(x2 — x1), we can take

vix)=—(@a+b+2)x+b-a, DX =1-x>.

In the recurrent case a, b > —1, we obtain the Beta density:

I'la+b+2)

— (1 _ y\a b
M) = (=X 4 X ) Fa + 1)2e7b+1

xe(-1,1). (7.88)

The eigenvalues are A, = n(n + a + b + 1), n > 0. The orthogonal polynomials are
Jacobi polynomials given by the formula:

n

2"IP P (x) = (-1)"(L - 071 + x)—b: {@-x%m @ +x)bm] .

xn
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(4) The Student diffusion process is obtained when D(x) is a second degree polyno-
mial with negative discriminant, and d, > 0. The state space is E = R, and the
traditional parametrization is

v(x) = -0(x - u), D(X) =0a [(x -u)?+ 62]
x-u
exp [( 25 )Arctan( 5 )]

< >21|1+1/(2a)
wherex e R, 1 +1/(2a) > 1/2, and

() e
6\/—1"( ZL) 1+%+k

Note that in the symmetric case (u = u') the density function is
1

[1 +<x;y)2]“1/(za

In the classical parametrization for the Student distribution, with degrees of free-
domv =1 + (1/a), this reduces to

v+1
m(x):F< 2 ) ! xeR

svar(s) [1+(X u) ] i

The invariant density is

m(x) = c(u, p', a, 6)

s

27-1

cu, ', a,é) =

i :‘8

m(x) = c(u, a, 6) s X € R.

6

Only a finite number of central moments of the invariant distribution exist; the
nth central moment exists if n < v. Also, the invariant density has heavy tails that
decrease like |x|~1*V),

In this case, there are only finitely many simple eigenvalues in [0, A], where A =
6v?/(4(v - 1)), v > 1, and the absolutely continuous spectrum of multiplicity two
isin (A, co0), see Leonenko and Suvak [121]. The simple eigenvalues are

Ap = eln(v—n), Ognsng.

The orthogonal polynomials are generalized Romanovski polynomials given by
the Rodrigues formula:

Ro(x) =1,

- so (52 o (2]

n-(v+1)/2




)

(6)
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The reciprocal gamma diffusion is obtained in the case of zero discriminant, with
the polynomial D(x) proportional to x> (after a change of variables). The coeffi-
cients are

_ a 0,
v(x)-—@(x—m), D(x)——b_lx,

where 8 > 0, a > 0, b > 1. The invariant density is the inverse gamma:

-b-1_-a/x

ab
m(x) = ——x e Y*, x>0.

I'(b)
This is a heavy tailed diffusion, whose moments of order n exist only for n < b.
The discrete part of the spectrum of (-G) consists of finitely many eigenvalues

given by
nl(b —n) { b J
Ap=———=, 0<n<|=|.
" Tho1 =12

These eigenvalues lie within [0, A] , and the continuous part of the spectrum has
multiplicity one and lies inside (A, co), see Leonenko and Suvak [120], where the
cut-off

_ 6b?

S 4b-1)
The orthogonal polynomials in the point spectrum case are generalized Bessel
polynomials:

Bo(x) =1,

- an b
_ b+l (a/x) 2n—(b+1) ,—(a/x)

Bn(x) =x""e W[X e ], ne{l,...,{iﬂ», b>1.
The Fisher-Snedecor diffusion is obtained when D(x) is a second degree polyno-
mial with positive discriminant. After transformations, we can assume that the
first root of D(x) is negative, and the second is zero, so the state space is E =
(0, 00). The coefficients are

b 0
V(X) = —9 (X — m) . D(X) = mx(ax + b)

where the parameters a > 2, b > 2, and 6 > 0. The invariant density is the density
of F-distribution (also known as Fisher-Snedecor distribution):

X(a/z)—l(ax + b)—(a+b)/2
a~@2p-b2B (a/2, b/2)

m(x) = , x>0,

where B is the beta function

_ I(@I(b)

—m, a>0,b>0.

1
Mmm=1ﬂ4u—m“mx
0
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This is another heavy-tailed diffusion. The moments of order 2n exist when 2n <
b. Only finitely many discrete eigenvalues exist, and they are given by the formula

b
Ap = b_zn(b—2n), 0O<nc< {ZJ, b>2.
The cut-off for the discrete spectrum is
0b?
= 2
sb-2 0%

so that the essential spectrum lies in (A, co). The essential spectrum has multiplic-
ity one, see Avram, Leonenko and Suvak [10]. The orthogonal polynomials have
no common name in this case; in [10] they are called Fisher-Snedecor polynomi-
als since they are orthogonal with respect to the Fisher-Snedecor density. These
polynomials {F,(x), n=0,1,..., |b/4]} are given by the Rodrigues formula:

Fo(x) = 1,

n
Fn(x) = x*7(4/2)(ax + b)(a+b)/2 _ddx" [2mx( @2 gy 4 p)n-(a+h)2]

refuena 2]}

Remark 7.20. The heavy tailed Pearson diffusions (4-6) have only a finite number
N of orthogonal polynomials, because only a finite number of moments exist for the
invariant distribution. Since Q,(x) is the polynomial of degree n, Q2 (x) has degree 2n.
For case (4), moments of order 2n exists only for 2n < v, so N = |v/2]. For case (5),
these moments exists only for 2n < b, so N = | b/2]. For case (6), moments of order
2n < b/2 exist, so that N = | b/4].

Proposition 7.21. For the Pearson diffusions (1-3) the series

(o)
P, 5y) =m(x) Y eQu(y)Qn(x), (7.89)
n=0
where {Qn, n > 0} are Hermite, Laguerre or Jacobi polynomials, converges for fixed
t > 0, x, y € E. Equation (7.89) can be differentiated term by term on any finite intervals
t €[ty, t],0 < t; < t2, X, y € [x1,Xx2] C E, and hence the function p(x, t; y) in (7.89)
satisfies the backward and forward equations (7.70) and (7.60).

Proof. Recall that the eigenvalues are A, = On in the Hermite and Laguerre cases (1-2),
and A, = n(n+a+ b + 1) in the Jacobi case (3). In the rest of the proof, we will assume
without loss of generality that y = 0 and ¢ = 1 in the OU case (1), and a = 1 in the CIR
case (2).

The orthonormal Hermite polynomials

Hy(x) = Hy(x)/ |Hn ()| = \/% H,(x), n=0,1,2,.....
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satisfy (7.76) with Q, = H, and cﬁ = 1 for all n. For orthonormal Hermite polynomials
(e.g., see Sansone [186, p. 369])

Ho(x) < Ke' 4141 + |x/V2°1%), (790)

where K is a constant that does not depend on x.
To make the system of Laguerre polynomials orthonormal, we use the fact that

I'(b +n)
n!

(o)
j LY P 002xb e dx =
0

The orthonormal system of polynomials in this case is given by

L0V () = LD (ax)
" VI + n)/(T(b)n!)
For orthonormal Laguerre polynomials [186, p. 348]
F(b=1), y _ eX/? -1/4
Ly 'x)=0 (Wn s (791)

uniformly for x in finite intervals [xq, x5].
Finally, for Jacobi polynomials using the fact that

1

(@b 271 _ e bao o 2@l Tia+DI(n+b+1)
j(Pn (D)1 =071+ dX_C"_2n+a+b+1F(n+1)1"(n+a+b+1)’
]

we obtain the orthonormal system

(a,b)
_ P
Pl = B0, (792)
Cn
From [212, p. 196] we have
PP (x) = C(x, a, b) cos(N6 +y) + O(n" L), (7.93)

where x =cos8, N=n+1/2(a+b+1),andy = —(a + 1/2)m/2.
Convergence of the series (7.89) for fixed x, y € E and t > 0 follows from the above
relations. Specifically, in the Hermite case,

C(X, y)e—nﬂt

nl/n2

le ™ Qp(y)Qn ()| <

In the Laguerre case,
C(x, y)e "%

ni/2

le ™ Qn(y)Qn ()] <

In the Jacobi case
le ™ Qu(y)Qu(X)] < C(x, y)e mnrarb+lt,
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Above and later in the proof, we use notation C(x, y) for constants not all equal but
not dependent on n. These constants may also depend on the parameters of the dis-
tributions (i.e., the coefficients v(x) and D(x) in (7.61)).

Now we show that the series in (7.89) can be differentiated term by term, and in
view of standard results in analysis (e.g., see Rudin [181, Theorem 7.16, p. 151; Theo-
rem 7.17, p. 152]) this would follow from absolute and uniform convergence on finite
intervals of the series that involve the derivatives:

v o —Ant
—e "' Qn(y)Qn(x),
25
Y e M@ wen),
n=0

A
Y, e Q).
n=0

For the derivative with respect to ¢, we have

]%e-ﬂnfon(mn(x) < C(x, y)fnt/2e "

for the Hermite and Laguerre cases, and for the Jacobi case

n+a+b+1)t

‘%e*nfonw)on(x) < COty)n(n +a+ b+ 1e™

The terms on the right hand side of the two inequalities above form series that con-
verge uniformly for t € [tq, t2], X, ¥ € [x1, x2] € E. For the derivatives with respect to
y, we use the properties of Hermite, Laguerre, and Jacobi polynomials. For the Hermite
series involving derivatives in y, we use the relation (e.g., see Abramowitz and Stegun

[3, p. 783]):

L Hu0 = 10,

For orthonormal Hermite polynomials,

iI:In(x)z L

dx \/mHn—l(X) = VnHp-1(x),

and so in this case

e Qa0 = €,y (1)

For the second derivative in space, use the differential equation (7.75):
Hy (y) = yHp(y) = nHn(y).

The series involving the first derivative in space was treated above, and for the second
term
|le™*'nHy (y)Hy (0)| < C(x, y)e ™" V/n,
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and this upper bound leads to the series that converge uniformly for ¢ € [tq, t,].
For Laguerre polynomials (e.g., see Szegd [212, p. 102 ])

d (-1 (b)
b0 = L 00,
and for orthonormal Laguerre polynomials
d -(b-1) (n-1)¥2_,
EL" x) = = L7 (0.

The last quantity behaves like C(x, b)n!/# uniformly on finite intervals (see Sansone
[186, p. 348]). Therefore in this case

e @}, (y)Qn ()| < Clx, y)e ™"

and the rest of the argument for the series involving the first derivative in space is

the same as for Hermite polynomials. The same argument also applies to the second

derivative in space because, for Laguerre polynomials, equation (7.75) has the form
d2

_ d _ _
yd—yzL;” Vo (y- b)d—yLSJ’ Vi) -nLP V).

For Jacobi polynomials,
d

@n+a+b)(1- xz)apff‘”’)(x) =n(a-b-@2n+a+bx)P“Px)+
2(n + a)(n + b)P“P(x)

and for orthonormal Jacobi polynomials
d -(a,b) n(a-b-02n+a+b)x)
= pla -

) (2n +a + b)(1 - x2)

dx
2n+a)(n+b) b
2n+a+b)(1-x?) mpﬂ_l (x).

PP (0

The first term in the last relation leads to the series
Aptn(ab), \plab
> ne PP (x)
n
that converges because it is dominated by the absolutely convergent series

C(X, y) Z ne—n(n+a+b+1)t.
n

The second term in the expression for the derivative of the normalized Jacobi polyno-
mial behaves in the same way as the first, and finally, the expression for the second
derivative from (7.75) is

d? d
2 (@b) N _ b _ o) _ Y pab)
-y )—dy2 Py (y)=-((b-a)-(a+b-2)y) dyPn )

“n(n+a+b+ 1P y).
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The term with the first derivative was treated above. The second term leads to the series

Z eMinn +a+b+1)POD ()P (x)
n

which is dominated by the series C(x, y) ¥, n? e n(m+a+b+1)t This completes the proof
of term by term differentiation of (7.89).

It remains to note that each term of the series in (7.89) satisfies the backward and
forward equations. For the backward equation, with operator G acting on y,

Sm(x) e Qp(y)Qn(x) = ~Axm(x) e 1 Qy () Q) = %m(x) e Mt Qu(y)Qn (),

since Q,(y) is an eigenfunction of (- G) with the eigenvalue A,, . For the forward (Fokker-
Planck) equation, the left hand side is

2 M0 e Qu()@n(0] = ~Arm(20 € Qu() Q0.
For the right-hand side, use the fact that m(x) satisfies time-independent Fokker-
Planck equation, and therefore
1 d? d
Eﬁ[o m(x)] e Qn(y)Qn(x) - a[/u(X)m(X)]e”‘"th(y)Qn(X) =0
Then the rlght-hand side of the equation is
0
2 a — [0 (x)m(x)e ' Qn(y)Qn(x)] - [M(X)m(X)e Mt Qn(y)Qn ()]
- —o 2om(x) et fonmo"(x [o (0m(0)]e ™ Qn(y)Q}(x)
1 2
T2
d
- 2 [HOOmM() ] Qn(y) Qn () — HEOM(X) €7 Qn(y) Q1)

[az(x)m(X)]e_A”th()’)Qn(X)

= %oﬁx)m(x) e Mt Qu(y)Ql () + % [0 ()ym(x)] e Mt Qn(y) Q) (x)
— pOOmE0) e M Qy(y) QL (X). (7.94)
Using the fact that m(x) satisfies (7.68) with C; = 0, i.e,
d 2 _
25 [0*(mE)] = 2m0) px),
equation (7.94) reduces to
S0 (MO0 € Qu(y) Q00 + 200 H(0E Q) Gy (1)
— pOom(x) e MQu(y) Q) (%)
= 202(0m(0) €7 Q1) Q) () - MO pYe Q)8 ()

=m(x) e M Qu(y)[GQn(0)] = ~Am(x) et Qp(y)Qn(x)
which finishes the proof. O
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Remark 7.22. As discussed in Feller [69], it follows from Proposition 7.21 that the so-
lutions of Cauchy problems for the forward equation (7.63) and the backward equation
(7.66) are given by

{00 = [ pix, t:y)fty) dy

and
Tef(x) = j p(x, £)g(x) dx

respectively, where the transition density p(x, t; y) is given by (7.89).

7.7 Fractional Pearson diffusions

The time-fractional diffusion equation with constant coefficients

8 __9 o
06, ) = - [vb(x, t)] + 5 [Dp(x, t)] (7.95)

from (4.52) governs the scaling limit of a CTRW with finite variance jumps and power
law waiting times, see Remark 4.23. The CTRW scaling limit process A’(E;) whose
probability densities p(x, t) solve this time-fractional diffusion equation is a Brown-
ian motion with drift, where the time variable t has been replaced by an independent
inverse stable subordinator E;. In this section, we allow the coefficients of the time-
fractional forward equation (7.95) to vary in space, thereby extending the results of Sec-
tion 7.6 to the case of a time-fractional derivative. First we consider a time-fractional
backward equation

£, 2 i
0cp = 5p(y, ) =v(y) 3 p(y, ) + D) ayzp(y, t) (7.96)

with initial condition p(y, 0) = g(y). Note that x is a constant in this equation. The
Caputo fractional derivative af of order 0 < B < 1in (7.96) is defined by (2.33). Equa-
tion (7.96) is the time-fractional analog of the backward equation (7.66) considered in
Section 7.6.

The fractional backward equation (7.96) governs a stochastic process that is not
Markovian. Let D; be a standard stable subordinator with Laplace transform

E[e™sP1] = exp{-tsP}, s > 0. (7.97)
As in Section 2.3, we define the inverse (hitting time, first passage time) process
E¢ =inf{x > 0 : Dy > t}. (798)

Let X;(t) be a Pearson diffusion whose transition densities p1(x, t; y) solve the back-
ward Kolmogorov (7.66) and forward Fokker-Planck equation (7.60) with the point
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source initial condition p; (x, 0; ¥) = 8(x — y). Define the fractional Pearson diffusion
process
Xp(t) = X1(Ep), t 2 0. (799)

Since E; rests for periods of time whose distribution is not exponential, Xs(t) is not a
Markov process.

Given a Cy semigroup T; on some Banach space B, Theorem 3.16 shows that g(t) =
T:f solves the Cauchy problem

d
P Lg; q0)=f (7.100)

for any f € Dom(L). If we replace the first derivative d/dt in (7.100) by a Caputo frac-
tional derivative of order O < 8 < 1, we obtain the fractional Cauchy problem

op =Lp; pO) =f. (7101)

Then a general result on semigroups, Baeumer and Meerschaert [18, Theorem 3.1],

shows that
(o)

p(t) = Sif = j Tieyopf 85(1) dr (7102)
0

solves the fractional Cauchy problem (7.101) for any f € Dom(L). Here gg(r) is the prob-
ability density function of a standard stable subordinator D; with Laplace transform
(7.97). A simple change of variable u = (¢/r)? in (7102) leads to an equivalent form

Sif = I T.f [_guflflfﬂgﬁ(tu*”ﬂ) du. (7103)
0

The main ideas behind the proof of [18, Theorem 3.1] were illustrated in the derivation
of (4.48). In particular, using equation (4.47) we can see that

Sif = I Tof h(u, ) du (7104)
(0]

where h(u, t) is the pdf of the inverse stable subordinator (7.98).

Remark 7.23. The mathematical study of fractional Cauchy problems was initiated by
Kochubei [105, 106] and Schneider and Wyss [192]. Fractional Cauchy problems were
also invented independently by Zaslavsky [222] as a model for Hamiltonian chaos, see
also Saichev and Zaslavsky [183].

Now we apply (7.104) to the time-fractional backward equation (7.96) of a Pearson dif-
fusion. Proposition 7.27, in the details at the end of this section, shows that

T{g(y) = EIg(X1(£)1X1(0) = y]
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is a Co semigroup, and then it follows from Theorem 3.16 that
q(y, t) = T{ g(y) = E[g(X1(8))1X1(0) = y] = jpl(x, t;y)g(x)dx

solves the Cauchy problem

% =9q, q(,0)=gy) (7.105)

for any g € Dom(§), where the transition density p(x, t; y) is given by (7.80). Then
(7.104) implies that

(o0)

PO, O) = Sig(y) = j Tug(y) hu, £) du (7106)
0

solves the fractional Cauchy problem (7.96) for any g € Dom(SG). Now write

Stg(y) = | Tug(y) h(u, t) du

E[g(X1(u))IX1(0) = y] h(u, t) du

Ot——3 O ——3

= E[g(X1(E))IX1(0) = y]

= E[g(Xp(6))|Xp(0) = y] (7107)
since Eo = O almost surely. This shows that the fractional Pearson diffusion Xg(t) =
X1(E;) is governed by the time-fractional backward equation (7.96).

We will say that the non-Markovian Pearson diffusion process Xg(t) has a transi-
tion density pg(x, t; y) if

P[X5(t) € BIX3(0) = ] = jpﬂ(x, t;y) dx
B

for any Borel subset B of the state space E. That is, the transition density is the condi-
tional probability density of Xg(t), given Xg(0) = y. Since p1(x, t;y) is the transition
density of the Pearson diffusion X (t), a simple conditioning argument shows that the
transition density of the fractional Pearson diffusion X; (E;) is

pp(x, ;) = jpl(x, u; y)h(u, ) du (7108)
(0]

where h(u, t) is the pdf (4.47) of the inverse stable subordinator (7.98). Then we can
write (7.107) in the form

S:8(y) = E[g(Xa(t)|Xo = y] = Ipﬁ(X, t;y)g(x) dx. (7109)
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The transition density pg(x, t; y), along with the initial distribution of the random vari-
able Xg(0) = X1(0), determine the distribution of X3(t) for any single ¢ > 0.

An explicit formula for the transition density (7.108) can be obtained by separa-
tion of variables. Here we sketch the argument. For complete details, see Leonenko,
Meerschaert and Sikorskii [122, Theorem 3.2]. Suppose that p(y, t) = S(t)@(y) solves
the fractional backward equation (7.96), where the functions S and ¢ may depend on
x and f. Write

So(y)

1
AS(Hpy) = SHGp(y) or < dfS(t) = o)

S(t)
Set both sides equal to a constant to obtain the Sturm-Liouville equation G¢ = -A¢@
and the fractional time equation

sy = -as). (7110)
Recall from Section 2.3 that solutions to equation (7.110) have the form

s = Ep (M) = ¥ (A0y (7111)
— & T+ B)) '
for any A > 0, where S(0) = 1, and Ep(-) is the Mittag-Leffler function (2.29). For Pear-
son diffusions of type (1-3), the Sturm-Liouville equation has polynomial solutions
SQn(x) = -A,Qn(x) for all n, where 0 = Ag < A1 < A, <--- and A, — oo. For each n,
we also have that
A} Sn(t) = ~AuSn(®)

where the Mittag-Leffler eigenfunctions S,(t) = Eg(-An tP) solve the fractional time
equation. Then p(y, t) = Eg(-An t#)Q,(y) solves the time-fractional backward equa-
tion (7.96) with initial condition p(y, 0) = Qy(y). Since any finite linear combination of
functions of this form will also solve the backward equation, is it reasonable to con-
sider the infinite sum -
Py, ) =Y baEg(-AntP)Qn(y). (7112)
n=0
If g(y) is a function such that (778) holds, where the series converges uniformly on
compact intervals y € [c, d], then the Caputo fractional derivative and the generator
G can be applied to the series (7.77) term-by-term, so that the function p(y, t) in (7.112)
solves (7.96). If the polynomials Q, are normalized so that ¢2 = 1 for all n in (7.76),
then (7.112) solves the backward equation (7.70) with the initial condition p(y, 0) = g(y)
given by (7.78).
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Equating (7109) to (7.112) we see that

Py, t) = Sig(y) = Y bne M Qn(y)

n=0

- ¥ ([ £00@u (om0 dx) Ep-Auth)2u)
n=0

[ee]
= j (m(x) D Eﬁ(—/\ntﬁmn(x)czn(y)) g0 dx.
n=0
It follows that the transition density of the fractional Pearson diffusion is
o0
Pp(x, t5y) =m(x) )" Eg (-Ant’) Qu(0)Qn(y). (7113)
n=0

Since we always have Qq(x) = 1, and since A, > O for all n > 0, it follows from (7.113)
that pg(x, t; ¥) — m(x) as t — oo for any y, i.e., the fractional Pearson diffusion Xg(t)
tends to the same steady state distribution m(x) regardless of the initial state Xg(0) =
y. See [122] for complete details.

A very similar separation of variables argument shows that

Tef(x) = j (m(x) Y Eﬁ(—/\ntﬂ)Qn(X)Qn(y))f(y) dy
n=0

solves the time-fractional forward equation (7.60) with initial condition p(x, 0) = f(x),
for any initial function such that (7.81) holds uniformly on compact intervals x € [c, d].
See [122, Theorem 3.3] for details.

Remark 7.24. If 8 = 1, then (7.113) becomes

Pi(x, 5y) =m() Y e™Qu(0)Qn(y),

n=0

which agrees with (7.89).

Remark 7.25. The transition density (7.108) for a fractional Pearson diffusion X(t) of
type (1-3) can also be obtained by a different argument. Use (7.80) to write

P1(x, 5y) =m(x) Y e Qu(x)Qn(y) (7114)
n=0

Bingham [38] and Bondesson, Kristiansen, and Steutel [40] show that the inverse sta-
ble subordinator E; has a Mittag-Leffler distribution with

Bl = [ et 0 du = By(-st). n115)
0
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Write

Stg(y) = | Tug(y) h(u, t) du

P1(x, u; Y)g(0) dx) h(u, t) du

Il
Ot——g§ O ——3 O——3

(J
(jm(x f A, () on<y>g<x>dx> hu, ) du

m(x)

T M8

< J e " h(u, t) du) Qn(x)Qn(y)gx) dx
0

= j (m(x) D E,a(—stﬁ)on(x)on(y)) g dx. (7.116)
n=0

It follows that (7108) is the transition density of Xp(t). See [122, Lemma 4.1] for com-
plete details.

Remark 7.26. For more on the connection between Lévy-type Markov processes,
semigroups, and generators, see for example Schilling [191]. When the Lévy char-
acteristics [a, Q, ¢] in (6.21) vary with x, the resulting generator is called a pseudo-
differential operator, see Jacob [96].

Details

The backward semigroup (7.65) can be defined on the Banach space Co(E) of bounded
continuous real-valued functions on E, such that the limits

A =limf(x) and B =limf(x)
xla xTh

exist, with A = Oif a = —co, and B = 0 if b = +oo, with the supremum norm. The
semigroup property T; T; = T}, follows from the Chapman-Kolmogorov equation
(7.83). The backward semigroup is bounded, and in fact | T; fll < [f]l for all f € Co(E)
and all t > 0: We say that {T}} is a contraction semigroup. In the terminology of Rogers
and Williams [176, Definition 6.5, p. 241], this is also called a Feller-Dynkin semigroup.

Proposition 7.27. The backward semigroup defined in (7.65), where p(x, t;y) is the
transition density (7.80) of the Pearson diffusion process with diffusion coefficients v(x)
and D(x) defined in (7.61), is strongly continuous on Co(E). That is, | T g — gl — Oin the
supremumnorm as t — 0 for any g € Co(E).
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Proof. In view of Friedman [73, Theorem 3.4, p. 112], the operators {T; : ¢ > 0} form a
uniformly bounded semigroup on Cy(E). In addition, for any fixed y € E we have

T;gy) - gy) = j p(x, £ Y)(g(X) — g))dx

- j p(x, £ y)(8(x) - 8())dx

[x-yl<e

v [ pec e - g0
[x-yl>e
< sup |g(x)-gy)l J p(x, t;y)dx

|x-yl<e
[x-yl<e

iC j p(x, & y)dx,

|x-yl>¢

where C = sup, , |g(x) — g(y)| is finite since function g is bounded. It follows from the
form of the generator of the semigroup {T;} that

p(x, t;y)dx — 0

Ix-yl>e

as t — 0 for any € > O (see Feller [70]), therefore the second term in the above expres-
sion tends to zero as t — 0. The first term is bounded by

sup |g(x) —g)l,
[x-yl<e
which tends to zero as € — 0. This proves point-wise continuity of the semigroup: For
every fixed y, T; g(y) — g(y) as t — 0. Then Rogers and Williams [176, Lemma 6.7, p.
241] yields strong continuity of the semigroup: |T; g — gll — O as t — 0 in the Banach
space (supremum) norm. O

To prove that (7.113) is the transition density of a type (1-3) fractional Pearson diffusion,
use [122, Remark 3.4] to see that any smooth function g(y) with compact support in E
can be written in the form (7.78), where the series converges uniformly on compact
sets. Since the indicator function of any compact interval B € E can be approximated
arbitrarily closely by such functions, it follows that

Plg(X)lxo = y] = j P(x, £ )g(x) dx
XeB

for all such intervals. Then it follows that p(x, t; y) is the conditional density of X¢,
given Xy = y. The Fubini argument in (7.79) can be justified using Lemma 7.28.
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Lemma 7.28. For the three classes of fractional Pearson diffusions with discrete spec-
trum (OU, CIR, Jacobi) and O < 8 < 1, The series

pp(x, t5y) =m(x) Y Eg(-AntP) Qu(y)Qn(x) (7117)
n=0

converges for fixedt > 0, x, y € E.

Proof. For a Mittag-Leffler function with 0 < B < 1 (see Mainardi and Gorenflo [129,

Eq. (5.26)]) )

Ay L
Ep=Ant’) T(1~ BAnth

as the argument A,t? — co. The eigenvalues are A, = 6n in the Hermite and Laguerre
cases, and A, = n(n + a + b + 1) in the Jacobi case. In the rest of the proof, we will
assume without loss of generality that y = 0 and o = 1 in the OU case, and a = 1 in
the CIR case. For orthonormal Hermite polynomials (Sansone [186], p. 369)

Ha(x) < KeXn V41 + x/V215/2),

where K is a constant that does not depend on x.
For orthonormal Laguerre polynomials ([186], p. 348)

/2
F(b-1), \ _ e* ~1/4
L 700 =0 (X(zbl)/4 n ’

uniformly for x in finite intervals [xq, x>].
For orthonormal Jacobi polynomials

PP (x) = C(x, a, b) cos(N6 + y) + O(n" L),

wherex =cos8, N=n+1/2(a+b+1),andy = —(a + 1/2)n/2.
Convergence of the series (7.117) for fixed x, y, t follows from the above relations.
Specifically, in the Hermite case,

Cx,y,t, B)

|Eg (—Antﬁ) Qn(¥)Qr(X)| < ni+i/2

In the Laguerre case,

Cx,yt,
|Eg (—)lntﬁ) Qn(y)Qn(x)| < (n+1/2ﬁ)
In the Jacobi case

C(x,y, t, B)cos(NO +y)
n2 )

|Eg (~Ant?) Qn(y)Qn(0)] <

When 8 = 1, we have Eg(-A,t?) = e7M!, and the proof is similar. O
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7.8 Correlation structure of fractional processes

In many applications [49, 204, 97], it is useful to compute second order properties of
the process used to model a particular phenomenon. In this section we develop ex-
plicit computational formulae for the correlation function of fractional Pearson diffu-
sions discussed in Section 7.7 and time changed Lévy processes such as the fractional
Poisson process discussed in Section 7.1. A time changed Lévy process can also arise
as the limit of CTRW considered in Chapter 4. We show that the random time change in
Pearson diffusions and in Lévy process, using the inverse of the standard stable sub-
ordinator, introduces a long-range dependence in the corresponding fractional pro-
cesses.

The consideration of the correlation function is premised on the existence of the
second moment, and only processes with finite second moment are considered in
this section. For three Pearson diffusions with purely discrete spectrum (Ornstein-
Uhlenbeck, Cox-Ingersol-Ross, and Jacobi) all moments exist. The conditions for the
existence of moments for three heavy-tailed Pearson diffusions are in Remark 7.20.

If the time-homogeneous Markov process X (t) is in steady state, then its proba-
bility density m(x) stays the same over all time. The stationary Pearson diffusion has
correlation function

corr[Xy(t), X1 (t + )] = exp(-6s), t=>0, s>0, (7.118)

where the correlation parameter 6 = A; is the smallest positive eigenvalue of the back-
ward generator [122, 117]. Thus the Pearson diffusion exhibits short range dependence,
meaning that the correlation function falls off rapidly (exponentially in this case), so
that it is integrable at infinity.

Recall that the fractional Pearson diffusion was defined in Section 7.7 as X(t) =
X1(E¢), where E; is the inverse or first passage time

E;=inf{u >0:D(u) > t}
of the standard f-stable stable subordinator D(u) with
E[e~sDW] = e us?

We will say that a fractional Pearson diffusion is in steady state if it starts with
the distribution m(x). The fractional Pearson diffusion in steady state is first order
stationary, i.e., Xg(t) has the same probability density m(x) for all ¢ > 0. Indeed, in

view of [18, Theorem 3.1]
(o)

j m()f,(u) du = m(x),
0

where f; is the density of E;. Thus the fractional Pearson diffusion in steady state has
mean E[X3](f) = E[X1(t)] = m; and variance Var[Xg(t)] = Var[X(t)] = m% which do
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not vary over time. The next result gives an explicit formula for the correlation function
of a fractional Pearson diffusion in steady state.

Theorem 7.29. Suppose that X1(t) is a Pearson diffusion in steady state, so that its
correlation function is given by (7.118). Then the correlation function of the corresponding
fractional Pearson diffusion Xp(t) is given by

corr[Xs(t), Xp(s)] = Eg(-0tP) + (7.119)

0pth ,[Eﬁ( 0P (1 - Z)ﬁ)
Ira+p) Z1-B

for t = s > 0, where Eg(2) is the Mittag-Leffler function.
See details at the end of this section for proof.

Remark 7.30. When ¢ = s, it must be true that corr[X(t), Xg(s)] = 1. To see that this
follows from (7.119), recall the formula for the beta density

I'(a@)I'(b)

X

a-1 b-1 a+b-1 _
I (x-y)’""dy = B(a, b)x where B(a, b) := T +b)
0

for a > 0 and b > 0, and write

0pis Jl Ep(-0(1-2))
ra+p) ] Z1-B

z1Paz

1 .
_ optP j f (-6tP(1 - )Py
I'l+p) A =SC +Bj)

.1

_ B S O i

_F(1+B)].;)F(1+ﬁi)£(1 s
6Bt i(_etﬁ)j
“TQ+p K TA+B)

L fﬁnﬁ)(—etﬁ)f
T T +B) £ TA+BG +1)

(-6tPy+?
Z ¢ T(1+BG+1)

B(Bj +1,B)

=1-Ep(-6tP).

Then it follows from (7.119) that corr[Xp(t), Xp(s)] =

Remark 7.31. Stationary Pearson diffusions exhibit short range dependence, since
their correlation function (7.118) falls off exponentially fast. However, the correlation
function of a fractional Pearson diffusion falls off like a power law with exponent j €



7.8 Correlation structure of fractional processes =— 259

(0, 1). When s is fixed and t — oo, the correlation function is not integrable, so this
process exhibits long range dependence. To see this, fix s > 0 and recall [129, Eq. (5.26)]
that

1
Eg(-0tP) ~ ———— ast — co.
p-6r) I(1-potk st

Then
1

Ir(1-p)etP(1-sy/t)#
ast — oo forany y € [0, 1]. In addition from [114]

Eg(-0tP(1 - sy/t)f) ~

C

_otP(1 - Pl g —————
|Ep(=6t"(1 - sy/)")] < 1+0tP(1 - sy/t)P

for all t > 0, and using the dominated convergence theorem we get

s/t 0B Y
6Bt J Ep(-0tP(1 - 2) )dz
ra+p) ) Z1-p
B 9pth :
= E ﬁ*l _ ﬁ _ /3
_<t> F(l+ﬁ)Jy Eg (-0t (1 - sy/t)f ) dy

0

~ (%)ﬁ m Iyﬂfldy B G)ﬁ I +ﬁ)1l‘(1 _B)

0

as t — oo. It follows from (7.119) that for any fixed s > O we have

B
corr(Xp(t), Xg(s)) ~ tﬁF(ll—/}) (% + F(ﬁs+ 1)> ast — oo. (7.120)
We now consider a general time change in a Lévy process Z(t) = X(Y(t)) where X is a
Lévy process, X, Y are independent, and in general Y(¢) may be non-Markovian with
non-stationary and non-independent increments. For example, it might be an inverse
subordinator considered earlier in this section to time-change Pearson diffusions.
Then Z(t) may also be also non-Markovian with non-stationary and non-independent
increments. The next result gives an explicit expression for the correlation function
of this time-changed process.

Theorem 7.32. Suppose that X(t), t > 0 is a homogeneous Lévy process with X(0) = 0
and finite variance, and Y (t) is a non-decreasing process independent of X, with P[Y(t) >
0] = 1 fort > 0, finite mean U(t) = EY(t) and finite variance. Then the mean of the
process Z = X(Y(t)) is

E[Z(t)] = UE[X(1)], (7121)

the variance is

Var[Z(t)] = [EX(1)]* Var[Y(¢)] + U(t) Var[X(1)], (7122)
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and the covariance function of the process Z = X(Y(t)) is given by
Cov[Z(t), Z(s)] = Var[X(1)]U(min(t, s)) + [EX(1)]* Cov[Y(t), Y(s)]. (7123)
Proof is included in the details at the end of this section.
Remark 7.33. When EX(1) = 0, then
Var[Z(t)] = U(t) Var[X(1)],
the covariance function is
Cov[Z(t), Z(s)] = Var[X(1)]U(min(t, s)),

and the correlation function is

U(min(t, s)) U(min(t, s))
Z(t), Z = = .
conz(o), 2)] VU U(s) \j U(max(t, s))

When the random time change is to the inverse or hitting time of a Lévy subordinator
L with the Laplace exponent ¢ so that

E[eSL0] = e7#6), s > 0,

the inverse process
Yt) =inf{u>0:L(u)>t},t>0 (7.124)

is non-decreasing, and its sample paths are almost surely continuous if L is strictly in-
creasing. For any Lévy subordinator L, Veillette and Taqqu [213] show that the renewal
function U(t) = E[Y(¢)] of its inverse (7.124) has Laplace transform U given by:

1
s¢(s)’

U(s) = I U(t)eStdt = (7125)
(0]

where ¢ is Laplace exponent of L. Thus, U characterizes the inverse process Y, since
¢ characterizes L. For example, from [213, Theorem 4.2] the second moment of Y is

t
EY2(f) = J 2U(t - 1)dU(T) (7126)
(0]

and the covariance function of Y is given by [213, Eq. (18)]:
tiNty
Cov[Y(t1), Y(t2)] = j (U(ty — 1) + U(t2 - 1))dU(7) - U(t1)U(t2). (7.127)
0

For many inverse subordinators, the Laplace exponent ¢ can be written explicitly, but
then the Laplace transform (7.125) has to be inverted to obtain the renewal function.
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Numerical methods for the inversion were proposed in [213]. We consider one example
where the Laplace transform can be inverted analytically and its asymptotic behavior
can be found in order to describe the behavior of the correlation function of the time
changed process. For more examples, see [118].

When L is standard f-stable subordinator with index O < < 1, and the Laplace
exponent ¢(s) = sP for all s > 0, the inverse stable subordinator has the Laplace
transform S oty

-sY(t —st
E[e70] = ,12:071"(/3" T Ep(-stP),
using the Mittag-Leffler function (2.29). When the outer process X(t) is a homogeneous
Poisson process, the time changed process X(Y(t)) is fractional Poisson process [141]
discussed in Section 7.1. More generally, for any Lévy process X(t), the time changed
process X(Y(t)) isa CTRW limit where the waiting times between particle jumps belong
to the domain of attraction of the stable subordinator L(t), see [153].
Since

0(s) = (7.128)

sh+1
the renewal function p

t
ra+p’
The renewal function (7.129) can also be obtained from a result of Bingham [38], who
showed that forall 0 < ¢ <--- < ty

U(t) = E[Y(8)] = (7.129)

OE[Y(ty)--- Y(t)] 1 1

_ , 7130
oty --- Oty LY [t1(t2 = t2) -+ (tx — ti-)]* P o

Apply (7.130) with k = 1 to see that
d th-1
E U(t) - Tﬁ)’

integrate once, and use I'(8 + 1) = BI'(B).
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For 0 < s < t, substitute (7.128) into (7.127) to see that the covariance function of
the inverse stable subordinator is

S

Cov[Y(t), Y(s)] = —F(lliﬁ)z J ((t L T)ﬁ) #1ar
0
__(ts)f
(1 +p)?
ﬁtzﬁ s/t
__ptr B, B-1
T T+ P j(l uyudu
ﬁs (ts)P
r<1 TRy AR v
2
- T /3 ————[BEPB(B, B+ 1;5/0)
+Bs*P BB, B +1) - (ts)/’], (7131)

using a substitution u = 7/t, where
X
B(a, b x) := j (1 — w1 du
0

istheincomplete beta function. An equivalent form of the covariance function in terms
of the hypergeometric function was obtained in [213, Eq. (74)]. Apply the Taylor series
expansion (1 — u)?1 = 1+ (1 - b)u + O(u?) as u — 0 to see that

a+1
=+ 0(x**?) asx — 0.

B(a, b; x) = —+(1 b)X

Then it follows that for s > 0 fixed and ¢t — co we have

F(B;s, t) == B’ B(B, B + 1;5/t) - (ts)P
(s/t)P 8 (s/t) p+1
B B+
B+1
ST 0/,

= pe?# +0((s/tP2) - (ts)P

-5

so that

Cov[Y(t), Y(s)] = Bs? B(ﬁ B+1)+F(;s, t)]

Ira+ ﬁ)2 [ (7132)

ast — oo, where F(8;s,t) — 0ast — oco. Hence

Bs*BB.p+1) 5P
Cov([Y(t), Y(s)] — Ta+p? " Tp+1) ast — oo. (7133)
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Letting s = t it follows from (7.131) that

i 2pBIBIB+1) g
Varl (0] = 7= > g
_epl 2 1
=t [r(zﬁ+1) I +ﬁ)2]’ .

which agrees with the computation in [15, Section 5.1]. From (7.132) and (7.134) it follows
that for O < s < t the inverse stable subordinator has correlation function
[Bs#B(B, B+ 1)+ F(B; s, 1)]

2I(1+p)?
(st [ TRRD 1]

corr[Y(s), Y(t)] =

where F(f;s, t) — 0ast — oo, and hence

§>ﬁ [2_ r2p+1)

corr[Y(s), Y(t)] ~ <t T+ )2

-1
] ast — oo.
This power law decay of the correlation function is a kind of long range dependence
for the inverse stable subordinator Y(¢).

From (7.121) and (7.129) we can see that the time-changed process Z(t) = X(Y(t))
has mean

_PE[X(1))
HAO= Ty
Substituting (7.134) into (7.122) yields the variance of the time-changed process:
tP Var[X(1)] tzﬁ[IEX(l)V( 1 1 )
Var[Z = - . 713
AN =i g T g \T@p BrGR (7135)

It follows from (7.123), (7.129), and (7.132) that for O < s < t the covariance function of
Z(t) = X(Y(0)) is

sB Var[X(1)]
I +p)

N [EX(1)]?
Ir(1+p)?

Cov[Z(t), Z(s)] =

B BB, B+ 1) + F(B;s, )] (7136)

where F(B;s, t) » 0ast — oo, hence

B 28 2
Cov[Z(t), Z(s)] — > XTLX[E)D] A ([;Ef(z;))] as t — co. (7137)

For O < s < t, the time changed process Z(t) = X(Y(t)) has correlation

corr(Z(t), Z(s)] = ——2VZ), Z(0]
VVar[Z(s)] Var[Z(D)]

where Cov[Z(s), Z(t)] is given by (7.136) and the remaining terms are specified in (7.135).
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The asymptotic behavior of the correlation depends on whether the outer process
has zero mean. If E[X(1)] # 0, then for any s > O fixed we have

2P [EX(1)]? ( 1 1

Var[Z(t)] ~ B r(2p) Br(p)?

) ast — oo,
and so we have

corr[Z(t), Z(s)] ~ tBC(B,s) ast— oo,

where

([ sPvarx()] | sP[EX(1))?
C(ﬁ’s)‘( TA+p)  T(1+2B )

- -1
(\/ 4 - IIE[X(l)]I\/Var[Z(S)]> ,

T2p) T(B)?

where Var[Z(s)] is given by (7.135).
On the other hand, if E[X(1)] = O, then the covariance function of the time-
changed process for 0 < s < t simplifies to

B
Cov[Z(t), Z(s)] = Var[X(1)] 1,(15—4_[;) (7.138)
and the correlation function is
B/
cort[Z(t), Z(s)] = (%) !

a formula obtained by Janczura and Wytomanska [97] for the special case when the
outer process X(t) is a Brownian motion.

In summary, the correlation function of Z(¢t) falls off like a power law t# when
E[X(1)] # 0, and even more slowly, like the power law t 812 when E[X(1)] = 0. In
either case, the non-stationary time-changed process Z(t) exhibits long range depen-
dence. If E[X(1)] = O, the time-changed process Z(t) = X(Y(t)) also has uncorre-
lated increments: Since Cov[Z(t), Z(s)] does not depend on t, we have Var[Z(s)] =
Cov([Z(s), Z(s)] = Cov[Z(s), Z(t)] and hence, since the covariance is additive, we have
Cov([Z(s), Z(t) — Z(s)] = 0 for O < s < t. Uncorrelated increments together with long
range dependence is a hallmark of financial data [188], and hence this process can be
useful to model such data. Since the outer process X(t) can be any Lévy process, the
distribution of the time-changed process Z(t) = X(Y(t)) can take many forms.

Details

The proof of Theorem 7.29 is presented below.
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Proof. Write

corr[Xg(t), Xp(s)] = corr[X1(E), X1(Es)]
= J Je‘e'”‘V'H(du, dv), (7.139)
00

a Lebesgue-Stieltjes integral with respect to H(u, v) := P[E; < u, E5 < v], the bivariate
distribution function of the process E;.

To compute the integral in (7.139), we use the bivariate integration by parts for-
mula [77, Lemma 2.2]

ab ab
J jF(u, v)H(du, dv) = j jH([u, al x [v, b])F(du, dv)+
00 00
+ | H(w, a 0, b)F(du, 0)
b

(0]
N jH((o, a] x [v, b))F(0, dv)

0
+ F(0, 0)H((0, a] x (0, b]). (7.140)

with F(u, v) = eVl and the limits of integration a and b are infinite:

3

J JF(u, WH(du, dv) = | [ H(lw, 0o] x [v, co])F(du, dv)
00

o——3

H([u, co] x (0, co])F(du, 0)

H((0, co] x [v, 00])F(0, dv)

+

+
—§ O —3 O,

+
T ©
(=)

(0, 0)H((0, co] x (0, c0])

P[E; > u, Es > v]F(du, dv)

+
O3 O——3 o——3
o——3

P[E; > u]F(du, 0)

P[Es > V]F(0,dv) + 1, (7141)

+
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since E; > 0 with probability 1 for all ¢ > 0. Note that F(du, v) = f,(u)du forallv > 0,

where

fou) = -0 ULy > v} + 0e 0V Ly < v},

Integrate by parts to get

Similarly

o——3

PIE. > ulF(du, 0) = [ (1~ PIE, <ul) (-6e™") du
0

= [e‘G“IP[Et > u]] + Te‘e"ft(u)du
0

= Eg(-0tF) - 1.

o—3

and hence (7.141) reduces to

where

o—yg

o
0

P[Es > VIF(0, dv) = Ep(-0sP) - 1,

j F(u, v)H(du, dv) = I + Eg(-0tP) + Eg(-6sP) -1
0

[eeXee]
I= J J]P[Et >u, Es > v]F(du, dv).
00

(7142)

(7.143)

(7.144)

Assume (without loss of generality) that ¢ > s. Then E; > Es, so that P[E; > u, Es >
v] = P[Eg > v] foru < v. Write I = I; + I, + Is where

Il =

Iz =

I3 =

j PE; > u, E > v]F(du, dv) =
u<v
I P[E, > u, Es > V]F(du, dv) =
u=v

I PE, > u, Es > v]F(du, dv).

u>v

—

P[Es > vV]F(du, dv)

A

u<v
I P[E, > vIF(du, dv)
u=v
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Since F(du, dv) = -02e~9-Ydy dv for u < v, we may write

oo Vv

I = -6 J I P(E; > v]e®“ V) dudv
v=0u=0
(o)
=-0 I P[E; > v](1 — e ™)dv
v=0

— _OE[E]-0 j P(E, > v]e-%dv
v=0

fsP
o9 (En(—0sP) -
- Ta B (Ep(-0sP) - 1) (7.145)

using the well known formula E[X] = I;O P[X > x]dx for any positive random vari-
able, the relation (7.143), and the formula E[E;] = t#/T(1 + B) for the mean of the
standard inverse $-stable subordinator [15, Eq. (9)].

Since F(du, v) = f,(u)du, where the function (7.142) has a jump of size 260 at the
point u = v, we also have

I —ZGTIP[E >v]dv—201E[E]—LSﬁ
27 s= T STTA+p)”
0

Since F(du, dv) = -62e~94=V)qy dv for u > v as well, we have

(o) (o)
I3 = -6 j P[E; > u, Es > V] j e 0 qy dv.
v=0 u=v (7.146)

Next, we obtain an expression for P[E; > u, Es > v]. Since the process E; is inverse to
the stable subordinator D, we have {E; > u} = {D, < t} and since E; has a density,
it follows that P[E; > u, Es > v] = P[D, < t,D, < s]. Since D(u) has the same
distribution as u/#D(1), the random variable D(u) has the density function gg(x, u) =
u YBgp(xut/P), and

X

B
where f;(u) is the probability density of u = E¢. Since D, has stationary independent
increments, it follows that

P[E;>u,Es>v]=P[D, < t,D, <s]
=P[(D,-D,)+D, <t D,<s]

8p(x, u) = ufy(u),

S t-y
- j 250y, v) j 2506, u — v)dxdy
y=0 x=0
S t-y
_ J gvfy(v) j g(u—v)fx(u—v)dxdy.

y=0 x=0
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Substituting and using Fubini Theorem, it follows that

g2 I g J [}; I vy (v) J(u—v)fx(u—v)e’g(“’v)du dvdxdy
y=0 =0 v=0 =
s ﬁ tfyﬁ 00 (e
_ _pn? I I -0z
=-0 I y p I vfy(v)dv I zfy(z)e™"?dz dx dy
y=0 = x=0 v=0 z=0
where
j vfy(v)dv = E[E,] = T+ p) (7.147)
v=0
Next we claim that
jzfx(z)e 02qz = _ﬁ_G d—Eﬁ( 0xP). (7.148)
0

To see that (7.148) holds, first differentiate the power series expansion for the Mittag-
Leffler function to obtain

[ I WA K
by COX)T (7149)

Then expand e~ in a Taylor series expansion, and integrate term by term:

00 © gk 00
j zfy(z)e % dz = ( k!) j 2 (z)dz
0 k=0 0

- e)k k+1 (_e)k Bk+1) (k+1)!
—Z ——E[Ey"] = Z PR Ty

k=0
B 1 X (0P (k + 1) 1 X (-0xByj
- < T(1+B(k+1)) ‘_Egr(uﬁ;)

and apply (7.149) to see that (7.148) holds.
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Now it follows using (7.147) and (7.148) and then a substitution z = y/t that

s t-y
2 B B )/ﬁ
=0 L} LE[NHIJ)] [ B6 dx a0 axay
y=

xX=

B
F(1+/3 J J Eﬁ( 0x”)dx dy
_v\8) _
F(1+ﬁ j 5 (Ep(-6(t - y)P) - 1y
ot JEﬁ(—Gtﬁ(l—z)ﬁ) L 0sh
_F(1+ﬁ)0 Z1-B r1+p)’

Then it follows from (7.139) and (7.144) that

12 +I3 + Ep(-0tP) + Eg(-0sP) -1

corr[Xp(t), Xp(s)] jj F(u,v)H(du, dv)
00
I +

A 20sP

F(l /3 — Eg(-0s )+1]+7F(1+ﬁ)
gt [ Ep(-0tP(1 - 2)P) o

"TaA+p) I 218 TTa+p

+ Ep(—0tP) + Eg(-0sP) - 1

_oth
" ) dz + Eg(-6tF)

0ptt ' Ep(-6tA(1 - 2))
J z1-8

which agrees with (7.119). O

The proof of the formula for the correlation function of time-changed Lévy process
(Theorem 7.32) can also be obatined using the bivariate integration by parts formula
used for the proof of Theorem 7.29. However, when the outer process is Lévy as opposed
to diffusion, the proof simplifies. We now present the proof of Theorem 7.32.

Proof. Since X(t) is a Lévy process, E[X(t)] = tE[X(1)] and Var[X(t)] = t Var[X(1)]. If
G¢(u) = P[Y(y) < u], then a simple conditioning argument shows that the mean of
Z(t) is

E[Z()] = I uE[X(1)]G¢(du) = UOE[X(1)].
0
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The variance
Var[Z(t)] = E[X(Y(t))*] - [EX(Y(t))]?

E[X*(W)]G(du) - U*(O[EX(1)]?

(W [EX(D)]? + u Var[X(D)]}G(du) - U?(6)[EX(1)]?

Y

= [EX(1)I2E[Y?(8)] + Var[X(1)]U(t) - U*(O[EX(1)]?
= [EX(1)]? Var[Y(t)] + U(t) Var[X(1)].

For O < s < t, since the outer process X(t) has independent increments, we have

EX()X(s) = E(X(t) - X(s))X(s) + EX%(s)
= E(X(t) - X(s))EX(s) + EX2(s)
= ts[EX(1)]? - s?[EX(1)]? + Var X(s) + s> [EX(1)]?
= ts[EX(1)]? + s Var X(1).

Since processes X and Y are independent,
EX(Y(£))X(Y(s)) = EY(t)Y(s)[EX(1)]® + EY(s) Var X(1),
and the covariance function of the time-changed process is

Cov[Z(b), Z(s)] = EY()Y(s)[EX(1)]? + EY(s) Var X(1) - EZ(t)EZ(s)
= EY()Y(S)[EX(1)]? + EY(s) Var X(1) — U(t)U(s)[EX(1)]?
= U(s) Var X(1) + [EX(1))? Cov[Y(8), Y(s)].

7.9 Fractional Brownian motion

Fractional Brownian motion is the fractional derivative (or fractional integral) of a
Brownian motion. Suppose that B(t) is a standard Brownian motion with characteris-
tic function E[exB(®] = e~tk*/2 for all t > 0. Extend B(¢) to the entire real line by taking
another independent Brownian motion B (t) with the same distribution, and setting
B(t) = B1(~t) when t < 0. Then we have E[ekB(©O)] = ¢-1tF*/2 for all ¢ € R. Recall from
(2.23) that the Caputo fractional derivative of order 0 < a < 1 can be written in the

form
X

j F(u)(x - w)*du.

(o)

da*flx) 1
dx* ~ I'(1-a) E
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Heuristically, we would like to define the fractional Brownian motion

t
ﬁ I (t-s)"*B'(s)ds
—00
but there are some technical issues. We review the basic ideas here. For complete de-
tails, see Pipiras and Taqqu [167].

First of all, the derivative B'(s) does not exist (the paths of a Brownian motion
are almost surely nowhere differentiable). This is similar to a problem we often face
in probability. If X is a random variable with cdf F(x) and pdf f(x) = F'(x), then we
define E[g(X)] = [ g00)f(x) dx = [ g)F' (x) dx. If the cdf is not differentiable, we use
the Lebesgue-Stieltjes integral E[g(X)] = jg(x)F (dx) instead (see details). A similar
approach works for stochastic integrals, and thus for continuous functions g(s) we
can define

b n
[ sts)Bs) ~ Y tspBias) (7150)
2 i=1

where As = (b - a)/n, si = a+iAsfori =0,1,...,n, B(4s;) = B(s;) — B(sj_1), and
the approximating sum on the right converges in probability to the stochastic integral
on the left as n — oo (see details at the end of this section). Note that B(As;) is normal
with mean zero and variance (s; —S;_1), and that B(Asy), . . . , B(4s,) are independent,

since B(t) has independent increments. Then } ; g(s;)B(4s;) is normal with mean zero
and variance Y ; g(si)?As, and it follows by taking limits that

b b
Ig(s)B(ds) =N <o, j |g(s)|2ds> . (7.151)

assuming that |g(s)|? is integrable over a < s < b. The improper integral is defined, as
usual, as a limit of proper integrals

b b
I g(s)B(ds) = agr}loo J g(s)B(ds) in probability,
and then
b b
[ sBas) - N(O, | |g<s)|2ds> (7152)

assuming that |g(s)|? is integrable over —co < s < b.
Now we may try to define a fractional derivative of Brownian motion by the for-

mula
t

I (t — s)"*B(ds)

—00

1
=1
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but this does not work either, because for g(s) = (t - s)~* we have

t
j lg(s)ds = co.

To work around this, we first define

t
L) = T J(t _ $)"“B(ds)

and we consider the difference

Bu(t) = lim Io(t) = 1a(0)
1 ‘ 1 ¢
= all»gloo m J(t — S)iaB(dS) — m J(O - S)iaB(dS)
Sp— ( [(t-5);% - (0 -5);%] B(ds) (7153)
where
x ifx>0
(X)) = ‘l (7.154)
0 ifx<oO

and we adopt the convention 0° = 0. This stochastic integral is defined for any -1/2 <
a < 1/2, since the function g(s) = (t — s);% — (0 - s);* satisfies Ig(s)z ds < oo in that
case (see details). Hence we have to restrict to -1/2 < a < 1/2 in this approach. Then
we can define the fractional derivative of Brownian motion of order 0 < a < 1/2, and
also the fractional integral of the same order. See the details at the end of this section
for a brief introduction to fractional integrals.

The Hurst index H = (1/2) — a for 0 < H < 1 governs the self-similarity of the
fractional Brownian motion (7153). First note that the random measure B(ds) has a
scaling property B(c ds) = c¢/?B(ds), since for an interval V = [a, b] we have B(V) =
N(0, |V]) and B(cV) = N(0, [cV]) = c}/2B(V). Then a change of variables s = cs’ yields

(o)

Bu(ct) = ;g | [(ct= " ~0- 9] Bas)

—00

B r(11_ @) I [(ct—cs){? — (co - es')?] Bicds')

—00

.1 i H-1/2 [ H-1/2 _ n  H-1/2] 172 '
- T jc [(6 - /Y12 (0 - s)T12] 12 Bas')

-0

= cHBy(b). (7.155)
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To justify the change of variables in (7155), use (7150) and note that B(cAs;) =
c2B(As;) (see details). Then we certainly have By(ct) = cfBy(t) forall ¢ > 0
and t € R. It is also possible to extend this argument to show that Bg(ct) = c¥By(t) in
the sense of finite dimensional distribution (e.g., see Samorodnitsky and Taqqu [185,
Corollary 7.2.3]).

In the special case H = 1/2, we have a = 0, and then for t > 0 we get

By(t) = ﬁj’ [I(t —s > 0)—I(0 — s > 0)] B(ds)
_ j [1(0 < s < )] B(ds) = B(t) - B(0) = B(t),

while for t < O we get

(0]
By(t) = J [I(t < s < 0)] B(ds) = B(0) — B(£) = —By(£) =~ B(¢).
-0
Hence Bg(t) is a Brownian motion on t € Rwhen H = 1/2.

It follows from self-similarity By (ct) = cHBy(t) that a fractional Brownian motion
satisfies By (t) = tHBy(1) for all t € R, where the stochastic integral By (1) is normal
with mean zero. Hence By (t) has a pdf p(x, t) with FT

Bk, t) = Ble kBr(O)] = g=DEMi?

for any t > 0, for some constant D > 0. Then clearly
d
Efo(k, t) = 2HDt*H1(ik)’p(k, t)

and hence the pdf p(x, t) of a fractional Brownian motion By(t) solves a diffusion
equation with variable coefficients

d _, 02
SePo 0 = 2HD?H 1mp(x, t) (7.156)

for t > 0. The case 1/2 < H < 1 is a kind of super-diffusion,and 0 < H < 1/2is a
sub-diffusion.

Because fractional Brownian motion Bg(t) is a fractional integral or derivative of
Brownian motion, it averages B(t) over the entire interval (-oo, t], and so the incre-
ments

1 (0]
Bi(t) - Bu(t) = =5 | [ =97 = ts - 9/!77] Bias)

—00

are not independent. However, a straightforward change of variables shows that the
increments are stationary: By(t;) — By (t1) = Bg(ta — t1). The fractional Brownian
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motion By (t) with H # 1/2 is not a Lévy process, since it does not have independent
increments. There are many Gaussian stochastic processes whose pdf p(x, t) solves
(7.156) (e.g., the process t — t7Z where Z =~ N(0, 2D) is one). However, fractional
Brownian motion is the only self-similar Gaussian process with stationary increments
(e.g., see [185, Lemma 7.2.1]), and so it is the only self-similar Gaussian process with
stationary increments that is governed by (7.156).

Remark 7.34. The graph of a fractional Brownian motion Bg(t) is a random fractal
with dimension d = 2 — H, see for example Falconer [65, Theorem 16.7]. As the Hurst
index H increases from 1/2 to 1, we are applying a fractional integral of increasing
order, so the graph becomes smoother.

Remark 7.35. It is a simple matter to compute the covariance structure of a frac-
tional Brownian motion Bp(t), using the self-similarity and stationary increments.
First consider 0 < s < t. Since By(t) = t!By(1) we have E[By(t)?] = t?HC where
C = E[By(1)?]. Now write

(Br(t) - Bu(s))* = By(t)* + By(s)> - 2By(t)By(s)
and take expectations to get
C(t - 5)*" = ¢t 4 Cs?™ — 2E[By(t)By(s)].

Now solve to get
C
E[BH(t)Bu(s)] = 5 [+ 27— (- 5)*].

The case O < t < s is similar, and we can combine these two cases to write
C
E(Br(0)Br(s)] = = [1t12 + 151 — |t - s|*1].. (7157)

The case where t < 0 or s < 0 is again similar, and leads to the same result (7.157). For
those cases, note that By (1) = By (—1). This follows easily from the fact that By (t) has
stationary increments.

The fractional Brownian motion (7.153) is the positive fractional derivative (or integral)
of a Brownian motion. Applying the same construction using the negative fractional
derivative leads to the process

1 T H-1/2 H-1/2
i | [6-0!77 = -0 ] Bas)

where x, = xI(x > 0), and again we adopt the convention 0° = 0. This form averages
B(ds) over the interval extending to +oo. A mixture of positive and negative fractional
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derivatives leads to the general form

T [t -9~ 0-9)i""] Bs)

-0

Bu(t) = r(1p— a)

[0
q _pnH-1/2 . \H-1)2
trow j [(s t)f (s - 0)f ]B(ds) (7158)
—00
for p, g > 0. Taking p = g = 1 leads to the form

I [It - s#12 — |0 - s|#1/2] B(ds), (7159)

(6]

B0~ g

based on the Riesz fractional derivative or integral (see details).

Remark 7.36. The definition (7.158) of a fractional Brownian motion is based on the
Caputo fractional derivative (2.23) of a function defined on the entire real line. Another
kind of fractional Brownian motion uses the Caputo fractional derivative (2.33) of a
function defined on the positive half-line. The Lévy fractional Brownian motion (also
called type two fractional Brownian motion) is defined for t > 0 by

t
J(t - s)E-12B(ds). (7.160)
0

By () = I1-a

where 0 < H < 1. Since the function g(s) = (t — s)#~1/2 is square integrable over
the interval s € [0, t], this construction is simpler. However, the definition (7.158) is
preferred in many applications, because it has stationary increments.

A discrete analogue of fractional Brownian motion can be constructed using fractional
differences. Take (Z,) iid normal with mean zero, and let

Yy =02y = (I~ B)YZn = 3. (‘]") (~1YZn; (7161)
i=0

using the backward shift operator BZ, = Z,_1. In time series, Y}, is called a fractional
ARIMA(O, d, 0) process where d = —a = H—(1/2) is the order of fractional integration
(e.g., see Brockwell and Davis [42, Section 13.2]). If0 < d < 1/2 (i.e., 1/2 < H < 1) then
this mean zero process has long range dependence since its autocovariance function
decays very slowly:

E[Y, Y] ~ C?H2 asj — co.

Hurst [94] noted this kind of long range dependence in flood levels of the Nile river.
The time series (Y},) is stationary. It can be considered as a discrete analogue of the
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increments of a fractional Brownian motion. In fact, if welet S, = Y +--- + Y, then it
follows from Whitt [219, Theorem 4.6.1] that

ogls[m] = Bg(t)

in the Skorokhod space D[0, co), where Co2 = Var(S,) and C = E[By(1)?]. Hence
it is reasonable to approximate fractional Brownian motion by a random walk whose
jumps come from a fractional ARIMA(O, d, O) process.

Remark 7.37. Another popular method for simulating fractional Brownian motion
uses FT methods. Use (7.153) to write

Bu(ti) = Ja(ti) —Ja(0)

on a finite discrete grid s; = a + jAt, where

n

Z - $));%B(4s)) = I4(t;).

Ja(ti)

r(1

Since J,(t;) is a discrete convolution, it can be efficiently computed using a numeri-
cal method called the fast Fourier transform, a streamlined algorithm for computing
the discrete FT (e.g., see Press, et al. [170]). Simply multiply the discrete FT g(k;) =
Y e isikig(s;) of the filter g(sj) = (sj);%/T(1 - a) by the discrete FT B(Ak;) of the noise
sequence B(4s;), invert the product of these two discrete Fourier transforms ]a(k,-) =
g(k,-)B(Ak,-) to get the convolution J,(¢;), and then subtract /,(0) (e.g., see Dieker and
Mandjes [61]). Some additional efficiency can be obtained by simulating the discrete
FT of the noise sequence B(Ak]‘) directly (e.g., see Voss [216]). Since g(kj) ~ (ik;)*!
with a = (1/2) — H, taking limits after Fourier inversion leads to

Ja(x) = Ja(0) = j(eka ~1)(ik)"H12B(qdk).

This stochastic integral with respect to the complex-valued Gaussian random measure
B(dk) is called the spectral representation of a fractional Brownian motion (e.g., see
Samorodnitsky and Taqqu [185, Section 7.2]). Roughly speaking, J,(t) represents the
H + 1/2 order fractional integral of the white noise B(dt), i.e., the H — 1/2 fractional
integral of B(t).

Remark 7.38. Starting with a stable Lévy motion A(t) on t > O with index 0 < y < 2,
extend to t € R as before, by setting A(t) = A;(-t) for t < 0, where A;(t) is another
independent Lévy motion identically distributed with A(t). The stochastic integral

An®) = 7 j [(t- )3 - (0 - 5);%] A(ds) (7162)

can be defined in the same way as for Brownian motion, using the stable random mea-
sure A(a, b] = A(b) — A(a). The stochastic process (7.162) is called a linear fractional
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stable motion. The stable stochastic integral f g(s)A(ds) = Y,;8(si) A(4s;) is defined
when | |g(s)|Yds < oco. The self-similarity A(ct) = c'/YA(t) of the stable process im-
plies that A(c ds) = c}/YA(ds), and then it follows that Ay (ct) =~ c® Ag(t), by the same
argument as in the Gaussian case, where the Hurst index H = (1/y) — a. A linear frac-
tional stable motion has stationary increments, which are not independent (unless
a = 0). For more details, see [185, Section 7.4].

A discrete analogue of linear fractional stable motion with 1 < y < 2 comes from
taking (Z,) iid y-stable with mean zero in (7.161). Since the covariance does not exist
in this case, the long range dependence of the fractionally integrated time series (Y)
in the case H > 1/y is defined in terms of the moving average coefficients: We say that
Y, = Zj ¢jZy-j has long range dependence if Z]- Icjl = co. In view of (2.5) we can see
that (7.161) is long range dependent if a < O (fractional integration).

IfweletS, = Yq +--- + Y, then it follows from Whitt [219, Theorem 4.7.2] that

n S,y = Ag(t)

in the Skorokhod space ID[0, co). Hence the fractional ARIMA(O, d, 0) process with
stable innovations (Z,) approximates the increments of a linear fractional stable mo-
tion. The FFT method outlined in Remark 7.37 can also be used to simulate linear frac-
tional stable motion, see Stoev and Taqqu [209] and Biermé and Scheffler [34].

Remark 7.39. If we take (Z,) iid normal with mean zero, then the sequence (Y,) in
(7161) models a correlated sequence of mean zero finite variance particle jumps. In
a CTRW framework with iid power law waiting times P[J, > t] = Ct? for some
0 < B < 1, independent of the particle jumps, the CTRW scaling limit is By (E(t))
where E(t) is the inverse stable subordinator (4.27). If we take (Z,) iid stable with mean
zero, then the CTRW scaling limit is Ay (E(t)), a linear fractional stable motion time-
changed via the inverse stable subordinator. If the mean zero sequence (Z,) belongs to
some normal or stable domain of attraction, the same scaling limit applies. For more
details, see Meerschaert, Nane and Xiao [142]. The governing equation of these CTRW
limits is currently unknown.

Details

In order to clearly understand stochastic integrals, we begin with a review of deter-
ministic integrals. If X is a random variable with cdf F(x) = P[X < x], and g(x) is
a Borel measurable function, we define the expectation of g(X) through a Lebesgue-
Stieltjes integral E[g(X)] = fg(x)F (dx) = j g(x)u(dx), a Legesgue integral with re-
spect to the probability measure u defined by u(a, b] = F(b) — F(a). Recall that the
Lebesgue integral is defined as follows: If g(s) = I(s € V) for some Borel set V, then
fg(s)y(ds) = u(V). For a simple function g(s) = Y1, a;I(s € V;) where Vi, ..., V,
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are mutually disjoint Borel sets, f g(s)u(ds) = Z;-Ll a;u(V;). Then for g > 0, we define

[ stsmias) = lim [ gnisincas) (7163

where

(7164)

(s) = (k-1)/n if(k-1)/n<g(s) <k/nforsomel <k<n
" 0 otherwise.

Since f gn(s)u(ds) is an increasing sequence, the limit f g(s)u(ds) in (7.163) always
exists (although it may equal infinity). If g(s) takes both positive and negative values,
we can write g = g* — g~ the difference of two non-negative Borel measurable func-
tions, and then we define [ g(s)u(ds) = [ g*(s)u(ds) - [ g~(s)u(ds), provided that
both integrals exist and are finite. The integral

b
Ig(s)F(ds) = Jg(s)[(a < s < b)u(ds) (7.165)

is defined since g(s)I(a < s < b) is a Borel measurable function.
The Riemann-Stieltjes integral is defined by

b n
jg(s)F(ds) - Alsiglol_zzlg(soAF(sf) (7166)

a

where As = (b -a)/n,si =a+iAsfori=0,1,...,n,and AF(s;) = F(s;) — F(sj_1). If
g(s) is continuous, then g(s) is also bounded and uniformly continuous on the interval
[a, b]. Given any positive integer n, choose 6 > 0 such that |g(s)-g(t)| < 1/n whenever
|s —t] < 6.If As < &, then since 0 < g(s) — gn(s) < 1/n for each s, for n sufficiently
large, eventually |gn(s) - 8(si)| < Ign(s) - g(s)| +18(s) — g(si)| < 2/nforall si; <s <'s;
andalli=1,2,...,n,andthen

U gn($)F(ds) - Y g(s)AF(s)

i=1

%j&@ﬁww—J(ngﬂm1<SS$0FM9

i=1

n Si

< j Ign(s) — g(si)| F(ds) < (2/n)[F(b) - F(a)]

=lsiy

for all n. Then it follows from (7.165) and (7.166) that the Riemann-Stieltjes integral ex-
ists and equals the Lebesgue-Stieltjes integral for continuous functions on bounded
intervals. Equality on unbounded intervals follows. For example, for g(s) > O the
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Riemann-Stieltjes integral of g(s) with respect to F(ds) on —co < s < b is defined
by

b b
I g(s)F(ds) = aliglm I g(s)F(ds). (7.167)

Suppose that this limit is finite. Since the Riemann-Stieltjes integral on the right-hand
side of (7.167) equals the Lebesgue-Stieltjes integral over that same interval, it follows
from the dominated convergence theorem that (7.167) also holds for the Lebesgue-
Stieltjes integral, and hence these two integrals are equal over the unbounded inter-
val.

Given a Brownian motion B(t) with E[e 2 forall t € R, we now
define the stochastic integral j g(s)B(ds). Here we outline the basic ideas. For more
details on stochastic integration, see Samorodnitsky and Taqqu [185, Chapter 3]. First
we define a random measure B(ds) on the real line by setting B(a, b] = B(b) — B(a).
Then B(a, b] = N(0, (b — a)), since B(t) has stationary increments. Extend to Borel
sets V to see that B(V) = N(O, |V]) where |V]| = fI(s € V) ds is the Lebesgue measure
of the set V. This construction uses the Kolmogorov consistency theorem, see [185,
Chapter 3] for complete details. If U and V are disjoint intervals, then B(U) and B(V)
are independent, since B(t) has independent increments. Extend to Borel sets to see
that B(ds) is independently scattered, i.e., B(U) and B(V) are independent when U
and V are disjoint Borel sets. Given a simple function g(s) = Z;-Ll cil(s € V;) where

kB()] — g-ltlk

Vi, ..., Vy are mutually disjoint bounded Borel sets, we define
n
Jg(s)B(ds) =Y ¢;B(Vy). (7.168)
i=1

For example, if g(s) = I(a < s < b) then

b
Ig(s)B(ds) - I 1B(ds) = B(b) - B(a).

The stochastic integral (7.168) is normal with mean zero and variance
n
Y civil = [ Igts)ds.
i=1
Now for g > 0 Borel measurable, we define
Ig(s)B(ds) = Y}Lngo J gn(s)B(ds) in probability (7.169)
where the simple function g, is given by (7.164), and f lg(s)|>ds < co. To show that

this limit exists, it is simplest to work with L? convergence: Let I(g,,) = f gn(s)B(ds), a
sequence of Gaussian random variables. Use the dominated convergence theorem to
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see that

11(gn) - I(gm)ll2 := E[lI(gn) - I(gm)I*]
= E[|I(gn - gm)I*]

- j|gn(s> ~ gm(s)12ds — 0

asm, n — oo, i.e., the sequence {I(gy)} is Cauchy. Since the Banach space L? of finite
variance random variables with the norm || X||, = VIE[X?] is Cauchy complete, there
exists a limit I(g) in this space. Since L? convergence (convergence in mean square)
implies convergence in probability, (7.169) holds, and since convergence in probability
also implies convergence in distribution,

Ig(s)B(ds) ~N (o, J |g(s)|2ds) : (7170)

(Note: This L? convergence argument does not extend to stable stochastic integrals,
since a stable law does not have a finite second moment. One can still prove conver-
gence in probability, but the argument is harder, see [185, Chapter 3].) The reason for
taking limits in probability in the definition (7.169), rather than a point-wise limit, is
that the sample paths of B(t) are almost surely of unbounded variation, so that the
point-wise limit might not exist.

If g(s) is continuous on the interval [a, b], then we can also write

b
n
J g(s)B(ds) = Alimo Z g(s;)B(4s;) in probability (7.171)
§—07
a i=1

where As = (b - a)/n, s; = a+iAsfori =0,1,...,n, and B(4s;) = B(s;) — B(sj_1).
To see this, note that for all large n we have |g,(s) — g(s;)| < 2/nforalls;_; < s < s;
andalli=1,2,...,n,where g, is the simple function approximation of g defined by
(7.164). Then

b n n S
j gn(s)B(ds) - ) g(si)AB(si) =~ N <o, D j lgn(s) - g(si)l? ds)
i=1

a =157,

for all n. Since the variance is bounded above by (2/n)?|b — a|, the difference between
these two stochastic integrals converges in probability to zero, and then (7.171) follows.
Define g(s) = (t - 5);* — (0 - s);* using the notation (7.154). We want to show that
fg(s)zds < oo when -1/2 < a < 1/2. Suppose that t > 0. Then g(s) = O fors > t.
For s < O we have g(s) = (t — s)™® — (0 — s)™%. Write g(s) = f(t — s) — f(0 — s) where
f(u) = u=*. The mean value theorem implies that g(s) = tf’(w) = —taw~ 1% for some
0-s<w<t-s.Then |g(s)| < t|a||s|~*! for all s < 0. It follows that

1 1 00
j g(s)%ds < j (ta)?|s| 2% 2ds = J(ta)zs‘z”“zds <00
1

—00 —00
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provided that -2a — 2 < -1,ie.,a > -1/2. If a < 0, then g(s) is bounded on the
interval [-1, t], and so the function g(s)? is integrable on the entire real line. If a > 0,
then the integrand g(s) blows up at s = t and s = 0. On the interval (-1, 0) we have
0<(t-5)"%< (0-5s)"%sothatg(s)? = [(0—-5)"*—(t —5)"*]% < (0 — 5)"2% and hence

0 0 1
j g(s)?ds < J |s|~2%ds = js‘z”‘ds <00
| | 0

provided —2a + 1 > 0, i.e., « < 1/2. Finally, on the remaining interval 0 < s < t we
have g(s) = (t - s)~* and a change of variables u = t — s shows that

¢ ¢ ¢
Ig(s)zds = j(t —§)7%%ds = I u%du < o
0 0 0

provided @ < 1/2. Hence it follows that jg(s)zds < oo for -1/2 < a < 1/2 when
t > 0. The proof for ¢t < 0 is similar. If a ¢ (-1/2, 1/2), it can be shown using similar
arguments that [ g(s)*ds = co

For suitable functions f(t), the (positive) Riemann-Liouville fractional integral of
order a > 0 is defined by

19(¢) = j )t - wLdu.

(

Recall (2.27), and substitute p = a — 1 to see that s~ is the LT of t*~1/I'(a). Then for
bounded continuous functions f(t) on t > 0, extended to the entire real line by setting
f(t) = Owhent < 0, it follows from the convolution property of the LT that I f(t) has LT
s7%f(s). Some authors define the Riemann-Liouville and Caputo fractional derivatives
in terms of the Riemann-Liouville fractional integral: For example, when 0 < a < 1
we can write

d d
Dif() - 4 [17o0] and o0 - 1w 10,

which reduces to (2.23) and (2.24). The negative Riemann-Liouville fractional integral
of order a > 0 is defined by

2 ft) = I ) - % du.

F()

The Riesz fractional integral of order a > 0 is J{f(t) = CpI{f(t) + qulf‘ft)f(t) withp =
= 1/2. Hence we can also write

« C
Jift) = @

J Falt — uldu.
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This integral exists for bounded continuous functions such that f(t) — 0 sufficiently
fast as |t| — oo, since the function |¢|*"! is integrable at ¢t = O for any a > 0. The
constant C > 0 is chosen so that J§f(x) has FT |k|™* (k) for suitable functions f(x). The
Riesz fractional integral is also called the Riesz potential. For more information, see
Samko, Kilbas and Marichev [184].

To justify the change of variables in (7.155), suppose first that g(s) > 0 is continu-
ousons € [a, b]. Then (7171) defines the stochastic integral j: g(s)B(ds). Given ¢ > 0,
define B(cAs;) = B(cs;) — B(csj_1). Then

=

g(csi) B(cAsy) = ig(csi) c'?B(4s;)
i=1 i=1

and taking limits in probability as n — oo shows that

ch b
Jg(s’)B(ds’) = jg(cs) c'2B(ds).

ca

For a different proof, use the fact that the integrand g(t, s) = (t - s)7% - (0 - 5);% in
(7.153) has the scaling property g(ct, cs) = c~%g(t, s) = c-1/2g(t, s). Note that

By(ct) = Ig(ct, s)B(ds) = N(o, I lg(ct, s)|2ds) ,

and
HBy(t) = JcH g(t, s)B(ds) = N(o, 2 J ls(t, s)|2ds) .

Then use the scaling and a change of variables s = cs’ to check that
I lg(ct, s)|? ds = I lg(ct, cs')|?cds’
= ¢2H-1 j lg(t, s)>cds’
= J lg(t, s ds'

so that both integrals have the same distribution.
7.10 Fractional random fields

In this section, we develop multiparameter extensions of the fractional Brownian mo-
tion introduced in Section 7.9. We begin with an independently scattered Gaussian
random measure B(dx) on R< such that, for any bounded Borel subset V ¢ R4, B(V)
is a mean zero normal random variable with variance equal to | V|, where |V]| = I I(x €
V) dx is the Lebesgue measure of that set. In R?, | V] is the area of the set V/, and in R3,
| V] is the volume of the set V. Define the d-dimensional rectangle

(a,b]={erRd:a,~<x,~§bjforallj=1,...,d}
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and the vector 1 = (1, ..., 1) € R?. Now we define the stochastic integral
|| s00 B0 ~ ¥ fpBeax) (7172)
(a,b] j

where Ax; are rectangles (xj, xj + h1] in R? and x; = a + jh is a discrete lattice with
spacing h = Ax > 0. Here j = (j1,...,jq) is a vector of integers, and the sum is taken
over all j such that x;j € (a, b]. The approximating sum is mean zero normal with vari-
ance }; f(x,-)2 (Ax)? since the random variables B(Ax;) are iid N(O, (Ax)4). It converges
in probability to the stochastic integral for continuous functions f(x) (see details), and
the limit

| foB@o=x{o [ oo ax
xe(a,b] x€(a,b]
Arandom fieldis a stochastic process A(x) indexed by x € R4. The (Lévy) fractional
Brownian field in R4 is a scalar-valued random field defined by

Br(x) = j [l = yI=42 — jjo - yII#=4/2] B(ay), (7.173)

yeRd

for 0 < H < 1, H #+ 1/2. This form extends the fractional Brownian motion (7.159)
based on the Riesz fractional derivative (0 < H < 1/2) or the Riesz fractional integral
(1/2 < H < 1), see details. The stochastic integral (7.173) is well-defined because the
function f(y) = |x —y||"=4/2 -0 - y|#-4/2 satisfies the condition [ |f(y)|?dy < co when
0 < H < 1, H # 1/2. Since the volume (Lebesgue measure) of the set cV = {cx :
x € V}in R? is ¢?|V], the Gaussian random measure B(dx) has the scaling B(c dx) =
c42B(dx). For example, if V is a cube with sides of length h in R3, then B(V) has
variance |V| = h3, and ¢V is a cube with sides of length ch, so that B(cV) has variance
|cV| = ¢3h3. Then it follows that By (cx) = cEBy(x):

Bu(ex) = | [lox - yI"412 - Jo - y|"4?] B(dy)
= | Tlex = ey'1-4%2 = o - oy -4 B(c
Z J cH-d/2 [le Y IEA2 o - yI"H—d/z] cA2B(dy)
= cHBy(x). (7.174)

A straightforward extension of this argument shows that By(cx) and c¥By(x) have
the same finite dimensional distributions.

Remark 7.40. A fractional stable field can be defined in a similar manner. Take
an independently scattered stable random measure A(dx) on R? such that A(V) =
Sy(B, a(V), 0) in the notation of Proposition 5.3, where o(V)? = |V|, and define

Ap(x) = j [Ix = yI"=47 — o -y =47 ] A(dy) (7.175)
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for 0 < H < 1 with H # 1/y. The stable stochastic integral
[ f004@0 ~ ¥ fxpaaxy (7176)
(a,b] i

exists if flf(x)lydx < 00, see Samorodnitsky and Taqqu [185, Chapter 3]. Since
A(cdx) = cvA(dx), it follows that the fractional stable field is self-similar with
Hurst index H: Ag(cx) = cHAy(x). Fractional stable fields have been used to param-
eterize flow and transport models in highly heterogeneous aquifers, see Herrick et al.
[83], Kohlbecker et al. [107], and additional discussion later in this section.

The random field (7.173) is isotropic: If R is an orthogonal matrix (see Remark 6.3) then
I|Rx|| = |Ix|| for all x € R?, and a change of variables y = Ry’ shows that

[ Ty a2 - yo -y -2 Biay')

= Bp(x) (7177)

By(Rx) = | [IRx - yI=4/2 — |j0 - y|*~¥/2] B(dy)

[IRx - Ry'|#~4/> — |RO - Ry'|""¥?| B(R dy")

I

since |RV| = | V| for any Borel set V. Increments of the fractional Brownian field (7.173)
are given by

By(x) - Bu(y) = j [Ix = 21742 — |y — 21~42] B(d2), (7178)

zeRd

and then an easy change of variables shows that By (x) — By(y) = Bg(x - y), i.e., the
random field has stationary increments.

A stationary isotropic random field can provide a reasonable model for a physical
parameter that varies in the same manner in all directions, and exhibits stationary
behavior (that is, the nature of the physical parameter is the same at every point in
space). Temperature or atmospheric pressure might be considered isotropic on a two
dimensional rectangle at a fixed altitude, in a small enough region so that the atmo-
spheric conditions remained the same. If you photograph a meadow, forest, desert, or
other homogeneous landscape from above, on a cloudy day, it would appear isotropic.
One cannot easily tell north from east.

For a more detailed example, consider the traditional vector advection dispersion
equation (ADE) for the movement of contaminants in ground water. Here p(x, t) de-
notes the relative concentration of the contaminant at location x and time ¢ > 0, the
solution to the ADE

%p(x, t) =-v-Vp(x, t) +V-QVp(x, t). (7.179)
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The advective velocity v controls the plume center of mass, and the dispersivity matrix
Q governs the dispersion of individual particles away from their center of mass. In
practical applications, it is common to allow v and Q to vary with the spatial location

x. Darcy’s Law states that

y - —Kvh (7180)

n

where 7 is the porosity of the medium (percent of volume through which fluid can
flow), h is the hydraulic head (height of the water level relative to some fixed depth),
and K is the hydraulic conductivity. The scalar K field describes how easy it is for fluid
to flow through the porous medium at the point x, which reflects the structure of the
medium (e.g., K values in sand are larger than K values in clay). If the porous medium
is isotropic, then a fractional Brownian field or a fractional stable field (see Remark
7.40) is often used to generate a synthetic K field, consistent with the statistics of mea-
sured data. At a typical experimental site, K is measured at points in a vertical column
(in a well) and then the statistics of the K field are examined from several wells. This
gives an indication of the moments, pdf, and correlation structure. Typically the sam-
pling wells produce on the order of 103 K values. Solving the ADE (7.179) on a computer
usually requires values of the velocity field v at around 10° data points in two dimen-
sions, or 108 in three dimensions (since the model domain in the vertical dimension is
usually thinner). In order to parameterize this computer model, a random field simu-
lator is used to generate a synthetic K field consistent with the statistical properties of
the measured K data. The Darcy equation (7.180) is then used to generate the velocity
field, and finally the ADE is solved on a computer (e.g., by particle tracking, or a finite
difference method). Often the dispersivity is assumed constant, or in some cases it is
assumed that Q = al where a(x) = ag|v(x)| for some aq > O.

Many studies of K field data have found evidence of long range dependence, lead-
ing to the widespread use of fractional Brownian fields to simulate the K field (actually
log K). Some authors have noted that log K data often has a heavier tail than a Gaus-
sian, and here a fractional stable field (see Remark 7.40) has also been used (e.g., see
Painter [164]). However, it is probably not reasonable to model the porous medium for
groundwater flow as isotropic. A typical aquifer is laid out by a depositional process,
roughly in layers. If you think of an exposed hillside or cliff face (e.g. after a hillside
has been cut through for road construction) there are often prominent vertical lay-
ers. Rotating a picture of the hillside (or rotating the camera) changes the orientation.
Isotropic pictures have no preferred orientation. To adequately model situations with a
preferred orientation requires anisotropic fields. Anisotropy is very common in nature.
Temperature varies with altitude (or depth). Gravity provides a fundamental orienta-
tion to most physical systems. To develop anisotropic Brownian (and stable) fields,
we will employ anisotropic fractional derivatives (the Riesz fractional derivative with
Fourier symbol —|k||* is the only isotropic fractional derivative).

The basic construction in Biermé et al. [33, Theorem 4.1] replaces the filter ¢p(x) =

Ix|[#-4/2 in (7.173) by a different filter with operator scaling. Define the scaling matrix
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E = diag(ai,...,aq) where 1 = a; <--- < agq. Then it is easy to check that the filter

g 172
O(X1,...,Xq) = (Z Djllez/“"> (7181)

j=1

for some constants D; > 0 has operator scaling: @(cEx) = cop(x) for all x € R? and all
¢ > 0. Define the Gaussian random field

B0 = [ [ptx-y)"1 - (0~ y)"-41] B(dy), (7182)

yeRd

where g = a; +---+ag = trace(E). The stochastic integral exists forany O < H < 1, see
[33, Theorem 4.1]. The random field (7.182) has stationary increments, and operator
scaling: Define AV = {Ax : x € V} and note that |[AV| = |det(A)||V| for any matrix
A and any Borel set V' ¢ R4. Here det(A) is the determinant of matrix A, and when
A =cE det(A) = ¢ ... ¢% = ¢4, Then B(cE dy) = c9/2B(dy), and a change of variables
y = cEy’ leads to

By(cF2) = [ [p(cPx ~ )02 - p(0 - y~9"2] B(dy)
[@(cPx = cEy)I=92 — g(cFo - cFy")H9/2] B(cF ay")
= [ M2 [ -y 02 — o -y 42 a2 B(ay)
= By (). (7183)

An extension of this argument shows that Bq,(cEx) = CHB¢(X) in the sense of finite
dimensional distributions [33, Corollary 3.2]. If ¢(x) = c|x| then E = I the identity
matrix, g = d, and By(x) is a fractional Brownian field. In general, each one dimen-
sional slice Bj(x;) = By(x1,...,Xq) is a well-balanced fractional Brownian motion
whose Hurst index H; = H/a; varies with the coordinate. This model was invented to
simulate natural K fields in Benson et al. [27]. Typically the Hurst index H; is the high-
est in the flow direction (say H; = 0.9), somewhat lower in the horizontal direction
transverse to the flow (say H, = 0.6), and in the negative dependence range for the
vertical direction (say H3 = 0.3). An extension using more general operator scaling
filters allows the Hurst index to vary with an arbitrary set of coordinate axes, see [33].

Remark 7.41. An operator scaling fractional stable field can be defined in a similar
manner. Take an independently scattered stable random measure A(dx) on R? such
that A(V) = Sy(B, o(V), 0) where o(V)¥ = |V], and define

Ag00 = [ o0y 01— p(0 - y)"-01%] AGdy), (7184)
yeR4

for 0 < H < 1. Since A(cE dx) = c?/*A(dx), it follows that the fractional stable field is
operator self-similar: Ag(cEx) = cHAg(x).



7.10 Fractional random fields = 287

Remark 7.42. Some researchers have proposed modeling natural K fields using prob-
ability models that are neither Gaussian nor stable. For example, the Laplace distri-
bution has been proposed by Meerschaert, Kozubowski, Molz and Lu [138]. It is pos-
sible to construct stochastic integrals and random fields based on any infinitely di-
visible distribution, but they will not have the same nice scaling properties. Some
mathematical properties of one dimensional fractional Laplace motion are discussed
in Kozubowski, Meerschaert and Podgoérski [113].

Remark 7.43. Similar to Remark 7.37, the spectral representation of a fractional Brow-
nian field is
Bu() = [(e" - I B,

Remark 7.44. Various studies of physical systems have collected data on the velocity
distribution in complex systems, which often exhibits a heavy tail, see for example
Solomon, Weeks and Swinney [206]. Roughly speaking, if the velocity distribution in
the ADE (7.179) follows a power law, then it is reasonable to imagine that the plume may
follow a fractional diffusion at late time, due to the accumulation of power-law particle
jumps. Mathematically, this leads to a conjecture that a highly variable velocity field
in a traditional diffusion equation with variable coefficients could lead to a fractional
diffusion in the scaling limit. This conjecture remains open. One complication is that,
for a very rough velocity field like the ones simulated from fractal random fields, the
standard theory of diffusions does not apply, since the coefficients are not Lipschitz
functions.

Details

Given an independently scattered Gaussian random measure B(dx) on R? such that
E[etkBW] = ¢-IVIK*/2 for Borel sets V ¢ RY, we now define the stochastic integral
f g(s)B(ds). Given a simple function g(s) = Y, cil(s € V;) where Vy,..., V), are
mutually disjoint bounded Borel subsets of R¢, we define

| sBeas) = 3 cipvi (7185)
i=1

in exactly the same way as the one dimensional stochastic integral (7.168). This
stochastic integral (7.185) is normal with mean zero and variance

n
Y civil = [ 1gooPdx.
i=1

Now for g > 0 Borel measurable, we define

J g(x)B(dx) = Y}Lngo J gn(X)B(dx) in probability (7.186)
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where the simple function g, is given by (7.164). Then
j g00B(dx) =~ N (o, j |g(x)|2dx) . (7187)

and the stochastic integral exists if f |g(x)]>dx < oco. For more details, see Samorod-
nitsky and Taqqu [185, Chapter 3].
If g(x) is continuous on the d-dimensional rectangle [a, b], we can also write

n
g(x)B(dx) = Alimo z g(x{)B(Ax;) in probability (7.188)
xX—0 7
xe(a,b] =1
where Ax; are rectangles (x;, x; + h1] in RY, thevector1=(1,...,1) e R4, x; =a+ih

is a discrete lattice with spacing h = Ax > 0, i = (i, ..., ig) is a vector of integers, and
the sum is taken over all i such that x + ih € (a, b]. To verify (7188), use the uniform
continuity of g on the compact set [a, b] to see that for any given h, for all large n we
have |gn(x) - g(x;)] < 2/nforall x € (xj, x; + h]and alli=1, 2, ..., n, where g, is the
simple function (7.164). Then

| n00B@0 - YepaBxy =N 0.Y [ lgnto - gl dx

xe(a,b] i (xi,x;+h]

for all n. Since the variance is bounded above by (2/n)? I"[]-(b,- - aj), the difference
between these two stochastic integrals converges in probability to zero, and then (7.171)
follows.

The Riesz fractional integral is defined for suitable functions f : R? — R by

8fx) = — [ o - ye-day.

I'(a)
Similar to the one variable case, the integral exists for bounded continuous functions
such that f(x) — 0 sufficiently fast as | x| — oo, since the function Ix||*-4 is integrable
at x = 0 for any a > 0. To see this, change to spherical coordinates. The constant
C > 0is chosen so that J$f(x) has FT ||k||‘“f(k) for suitable functions f(x). The Riesz
fractional integral is also called the Riesz potential. For more information, see Samko,
Kilbas and Marichev [184].

7.11 Applications of fractional diffusion

Fractional diffusion is an interesting theoretical construction that links probability,
differential equations, and physics. Its practical importance stems from the fact that
many real world situations fit the model. We begin our discussion of real world ap-
plications with the problem of contaminant transport in underground aquifers. Here
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fractional diffusion was found to be useful because it solved an important open prob-
lem.

The classical advection dispersion equation (ADE) for contaminant transport as-
sumes that the relative concentration of particles p(x, t) solves

op __ 9dp 9p

3 —va + DW
where v is the average drift and D is the dispersivity. The underlying physical model is
a random walk, where individual particles take random jumps away from the center
of mass with mean zero and finite variance proportional to D. A Gaussian pdf provides
the analytical solution for a point source initial condition. According to this model, a
contaminant plume should spread away from its center of mass like ¢t'/2, since the pdf
p(x, t) has standard deviation v2Dt. The one dimensional ADE has been applied at
many experimental sites in order to check the accuracy of the model (e.g., see Gelhar
et al. [75, 74]). One consistent observation is that the best fitting value of the parame-
ter D typically grows with time. Wheatcraft and Tyler [218] review this literature, and
propose a fractal model of heterogeneous porous media as an explanation for the em-
pirical observation that D =~ Ct” for some p > 0. Benson et al. [28, 30] developed the
fractional ADE

(7189)

ot - Vox T oxa
to connect these fractal concepts with fractional derivatives. This research was suc-
cessful, in that it allowed hydrologists to use a fractional ADE with constant coeffi-
cients instead of a traditional ADE with variable coefficients. Since these coefficients
are supposed to represent physical properties of the aquifer that do not vary over the
time scale of the experiment, this is an important scientific achievement.

a
o _ %P po'p (7190)

Remark 7.45. The units of the FADE coefficients can be determined using the Griin-
wald finite difference formula (2.1) for the fractional derivative: Write

A a

_p = _VA_p + A p

At Ax (Ax)*

where the relative concentration p(x, t) = C(x, t)/ I C(x, t) dx is dimensionless, t is in
time units T, and x is in length units L. Then the left-hand side has units of 1/T so
each term on the right-hand side has the same units. This implies that v has units of
L/T, and D has units of L*/T, since Ax has units of L, and (Ax)* has units of L?.

Point source solutions to the fractional ADE or FADE (7.190) with 1 < a < 2 are stable
densities that spread away from their center of mass at the rate t/%, a super-diffusion.
They exhibit positive skewness and a heavy power-law leading tail, features often ob-
served in real data.

Figure 7.2 shows plume data collected at the Macro-dispersion Experimental Site
(MADE) in Columbus, Mississippi, USA, and the best-fit concentration curves from
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Fig. 7.2: Tracer plume from the MADE site with fitted stable and Gaussian pdf, from Benson et al.
[29].

the FADE (7.190) with constant coefficients: @ = 1.1, v = 0.12 meters per day, and
D = 0.14 meters® per day. The data represent measured concentrations from sam-
pling wells distributed along the natural flow path of ground water at the site. A tri-
tium tracer was injected into the ground water at day ¢ = 0 and monitored over the
course of the experiment. The best fitting ADE curves (normal pdf) from a variable co-
efficient model are also shown (i.e., the best fitting Gaussian pdf is shown for each data
set). These concentration snapshots clearly illustrate the skewness and non-Gaussian
shape typically seen in ground water plumes. It seems apparent that the ADE, even
with a dispersion coefficient that varies with time, does not capture the plume shape.
Alog-log plot of the same dataat day ¢ = 224 and day ¢t = 328 was shown in Figure 1.5.
That figure illustrates the power-law decay of the concentration p(x, t) ~ x"*1 for x
large, consistent with the stable pdf solution to the FADE. Additional analysis in that
paper verified that the peak concentration falls at a power law rate ~ ¢~1/® and that the
empirical plume variance (which can be estimated from a histogram of particle con-
centration, even though the theoretical variance does not exist) increases at a power
law rate ~ t2/®, The parameter & was estimated a priori from the statistics of the hy-
draulic conductivity (K field, see additional discussion in Section 7.10). The empirical



7.11 Applications of fractional diffusion =—— 291

agreement between this a estimate and the fitted plume provides additional evidence
in favor of the FADE model.

The fractional advection dispersion equation (7.190) is based on a random walk
model with power law jumps. Real contaminant plumes may also experience retarda-
tion caused by particle sticking and trapping. The space-time fractional ADE

Ppx, t) I (x t)+Da—a x, t) (7191)
L A axa P :

introduced in Section 2.4 is based on a CTRW with power law waiting times between
jumps. Because the waiting time has infinite mean for 0 < 8 < 1, a segregation of
particles into two phases, mobile and immobile, leads to a more detailed model de-
scribed in Schumer et al. [193]. That model predicts mobile plume mass will decay like
a power law. This power law decay of mobile mass was also observed in the MADE
tritium plume, supporting the use of a space-time fractional diffusion model at that
site.

Another kind of evidence for power law retention time comes from examination
of the breakthrough curve t — p(x, t) at a fixed location x. Solutions to (7.191) with
0 < B < 1 decay like ~ t#-1 at late time, see Schumer et al. [193]. Haggerty, Wondzell
and Johnson [78] observed a power law breakthrough curve during a tracer test in a
mountain stream. Those data were fit to a space-time fractional ADE with § = 0.3
in Schumer et al. [193]. The long waiting times in this setting are caused by tracer
particles that become trapped in sediment at the bottom of the stream.

Power law waiting times are very common in practical applications. Barabasi [21]
studied the waiting time between emails from a single user. The distribution follows
a Pareto model with 8 =~ 1. Aoki, Sen and Paolucci [6] use fractional time derivatives
of order 0 < B < 1 to model heat transfer on a metal plate. Voller [215] uses a space-
time fractional diffusion equation for heat transfer, with a fractional time derivative
of order O < 8 < 1 and a fractional space derivative of order 1 < a < 2, to model a
melting front. Weiss and Everett [217] use a time-fractional diffusion equation with
0 < B < 1 to model the anomalous diffusion of electromagnetic eddy currents in
geological formations.

One of the modeling issues involving (7.191) is the range of the power law index.
If « > 2, then power law jumps have a finite variance, and the traditional second
derivative in space applies at late time. If § > 1 then the power law waiting times have
a finite mean, and the first order time derivative applies at late time. However, the
traditional diffusion equation may not be an appropriate model for such a system on
an intermediate time scale. Hence there is an ongoing effort to extend the fractional
diffusion model to a larger range of a and f. For example, applying a two scale limit
procedure to waiting times with 1 < 8 < 2 leads to a time-fractional ADE

a

px, t), (7192)

B 0 0
o p(x,t) —aopp(x, t) = —vap(x, t)+D 3xE

with a > 0, see Baeumer, Benson and Meerschaert [14].



292 — 7 Applications and Extensions

Méndez Berhondo et al. [158] found that waiting times between solar flares follow
a power law model with 1 < B < 2. Then a time fractional equation such as (7.192)
could be applied. Smethurst and Williams [202] find that the waiting times between
doctor visits for an individual patient follow a power law model with 8 = 1.4.

Another interesting application of heavy tails and fractional diffusion comes from
the theory of complex systems. An instructive review article of Shlesinger, Zaslavsky
and Klafter [200] describes how Lévy flights are used to model chaotic dynamical sys-
tems. Chaotic dynamical systems are deterministic systems of nonlinear differential
equations that can exhibit wild behavior, in which the later state is so sensitive to the
initial condition that its behavior is essentially random. This sensitive dependence on
initial conditions was noted by Lorenz [126], who observed chaotic behavior in com-
puter models from atmospheric science. The book of Strogatz [211] provides an ac-
cessible reference to this subject, see also [135, Section 6.4]. A particle tracing out a
chaotic trajectory follows a fractal set called a strange attractor. The velocity of such
particles can often follow power law statistics, i.e., the proportion of displacements
exceeding size Ax falls off like a power law (Ax)~% over a fixed time interval At. Even
though the system is deterministic, the behavior is so unpredictable that a random
walk model is appropriate. The Lévy flight is the name used in this field to refer to a
random walk with power law jumps in some a-stable domain of attraction. The scal-
ing property (self-similarity) of the limiting stable Lévy motion that approximates the
random walk in the long-time limit has a strong appeal. Shlesinger et al. [200] also
consider Lévy walks, a coupled CTRW in which the waiting time between jumps also
follows a power law distribution. The coupled CTRW, an extension of the CTRW model
presented in Section 4.3, was developed to impose physical limits on heavy tailed ran-
dom walks. In the coupled CTRW model, the iid random vectors (J;, Y;) describe the
jumps Y; of a particle, and the time J; required to make this jump. The components of
this random vector are dependent, to enforce physical limits. For example, particles
cannot travel faster than the speed of light, so that the ratio Y;/J; has an upper bound.
The mathematical theory of coupled CTRW limits considered in Becker-Kern, Meer-
schaert and Scheffler [24] leads to fractional diffusion equations that involve coupled
space-time fractional derivatives, see Example 7.52 for more details.

Remark 7.46. Applications of fractional diffusion require estimation of the probabil-
ity tail p = P[X > x] =~ Cx~* from experimental data. Taking logs on both sides yields
log p =~ log C—alog x, which is the basis for some common tail estimation procedures.
Given a data set Xy, ..., X, that is supposed to follow this model, at least approxi-
mately for x large, sort the data in decreasing order X(1) = -+ > X(y). if this model
is appropriate, then we should have log(i/n) =~ log C — alog X(;) for the largest order
statistics. In some cases, if a large number of upper order statistics follow this model
reasonably closely, a simple linear regression on a log-log plot of the order statistics
versus the ranks i/n can be used to estimate the tail parameter. Since order statistics
are not independent, the estimation problem is not a standard regression. Aban and
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Fig. 7.3: Log-log plot of the exceedence probability for the 100 largest observations of positive daily
total precipitation in Tombstone, Arizona USA between July 1, 1893 to December 31, 2001, with best
fitting Pareto (dotted line), Pareto with truncated Pareto parameters (dashed line), and truncated
Pareto (solid line) tail distribution. From Aban, Meerschaert and Panorska [1].

Meerschaert [2] show that correcting for the mean and covariance structure under an
assumed Pareto model leads to a sharper estimation procedure known as the Hill es-
timator, originally developed by Hill [87] and Hall [87]. Since it is quite common to
encounter power law data in many fields of science and engineering, this estimation
problem has attracted much attention. There are dozens (at least) of different tail es-
timators, many of which are reviewed in Baek and Pipiras [13]. There are also some
interesting variations that are useful in practice, including truncated Pareto laws, see
Aban, Meerschaert and Panorska [1].

Lavergnat and Gole [116] found that waiting times between large raindrops follow a
power law model with 0 < B < 1. Aban, Meerschaert and Panorska [1] fit a Pareto
with a = 3.8 to the largest observations of daily precipitation in city with a very dry
climate, see Figure 7.3. As noted in Remark 7.46, Hill’s estimator of a is commonly used
in practice. For the data in Figure 7.3, there is evidence that the largest observations
do not follow a pure power law. The curved line in Figure 7.3 represents the best fitting
truncated Pareto distribution. The dashed line represents the Pareto distribution with
a = 2.9 taken from the fitted truncated Pareto. This may be appropriate if there was
some truncation effect in measurement that reduced the largest observations. Mala-
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Fig. 7.4: Breakthrough data for a tracer test on the Grand River in Michigan, with fitted stable den-
sity, from Chakraborty, Meerschaert and Lim [47].

mud and Turcotte [130] find that the waiting time between large earthquakes in Cali-
fornia follows a power law model with = 1.0.

Sabatelli et al. [182] find that waiting times between trades follow a (truncated)
power law with 8 = 0.4. Since log returns also follow a power law distribution, this
suggests that a space-time fractional diffusion model

B o*
0 ,)=D—— , t 1

tp(x, t) GIXI"‘p(X ) (7.193)
may be useful to model the symmetric log returns. A tempered fractional derivative
in time may also be considered, as developed in Section 7.4, to capture the deviation
from a power law for long waiting times, see Carr, Geman, Madan and Yor [44]. For a
survey of recent research that applies continuous time random walks and fractional
diffusion to finance, see Scalas [188].

Deng et al. [59, 60] applied the fractional advection dispersion equation (FADE)

op(,t _ oplet) oD o°pe, ) 0P D)

(7194)

ot ox axa TIPS o

to model contaminant transport in rivers. They use a negatively skewed stable with
a=17and B = -1 (i.e.,, p = 0 and g = 1) to capture the heavy trailing tail for a
tracer test in the Missouri River in Iowa USA, caused by particles that get trapped in
the sediment at the bottom of the river. A related fractional model was developed by
Shen and Phanikumar [199]. Figure 7.4 shows how the model (7.194) with a = 1.38 and
B = -1 fits data from a tracer test on the Grand River in Michigan USA. In this type of
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Fig. 7.5: Breakthrough data for a tracer test in the Red Cedar River in Michigan, fit to a time-fractional
diffusion model, from Chakraborty, Meerschaert and Lim [47]. The lower panel shows the same data
on a log-log plot, to illustrate the power law decay of concentration at late time.

analysis, it is typical to plot the breakthrough curve t — p(x, t) at fixed locations x. A
heavy tail on the right-hand side of the breakthrough curve is therefore an indication
of negative skewness in the pdf x — p(x, t). In this application, the breakthrough
curve is measured by pouring buckets of tracer into the river over the side of a bridge,
and then measuring concentration over time at other bridges further downstream. As
we mentioned in Chapter 1, this model has caused some controversy in hydrology. The
random walk model behind (7.194) with g = 1 has only negative jumps, so the model
in [59, 60] assumes that particles “jump” upstream (relative to the plume center of
mass). Chakraborty, Meerschaert and Lim [47] fit another tracer test on the Red Cedar
river in Michigan USA using the model (7194) with « = 1.5 and 8 = -1 (not shown).
An alternative time-fractional diffusion model, equation (7.191) with « = 2 and 8 =
0.978, was also fit to the same data, with reasonably good results, see Figure 7.5. Since
the time-fractional model does not assume upstream jumps, it is preferred by some
hydrologists.
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Fig. 7.6: Monthly average flow in the Salt river near Roosevelt, Arizona from October 1912 to Septem-
ber 1983, from Anderson and Meerschaert [5].

Power law tails with 2 < a < 4 are also commonly seen in river flow time series.
Figure 7.6 shows a time series of monthly average flows from the Salt river, upstream of
Phoenix, Arizona in the USA. This river runs from the mountains through the desert,
and experiences a wide range of variability in flow. The occasional sharp spikes are
indicative of heavy tails, see discussion in Brockwell and Davis [42, Section 13.3]. A log-
log plot of the largest order statistics in Figure 7.7 shows a power law tail with a = 3.0.
Sums of iid random variables having a power law tail with a > 2 are asymptotically
normal, since the variance is finite. The data are significantly correlated, and a statis-
tical estimate of the correlation is useful to model the process. A typical time series
model to represent the dependence between successive observations is a moving av-
erage X; = Y¢ + Zi ¢jZ;—j where (Z;) are iid with mean zero and P[|Zj| > x] = Cx~*. The
sample covariance

1 1
— XK= p0)Xeeh — Heen) = — (Z cizt_i) <Z c;ZHh-f)
t i j

(g g

=nt (Z CiCi+hZf_l~ + Z Z CiCk+thiZtk> .
i i ki
Since lP[Zj2 > x] = P[|Zj| > x}?] =~ Cx™*/2 where 2 < a < 4, the first term involves
squared noise variables with an infinite second moment. It turns out that this term
dominates as n — oo, so that the asymptotic limit of the sample covariance involves
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a stable law, see Davis and Resnick [57, 58]. Hence, even though the time series has
finite variance, the Extended Central Limit Theorem 4.5 is important to understand
the covariance structure.
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Fig. 7.7: The river flow data from Figure 7.6 has a power law tail with a = 3.0.

Fractional diffusion is also useful in biology. The famous paper of Viswanathan
et al. [214] proposed a Lévy flight model (no pun intended) for the wanderings of an
albatross foraging for food in the open ocean. This model is based on tracking data
from individual birds. The birds make many small flights, searching for food. Then
occasionally they make a very long flight, seeking a new fishing spot. The power law
statistics of the flight length suggest a random walk in the domain of attraction of a
stable law, and hence a stable Lévy process provides a convenient model for the long-
time behavior of these birds. The trajectory of a single bird over time is similar to the
sample path in Figure 5.32. Some biologists argue that animals follow a stable Lévy
motion because it represents a better search strategy than a Brownian motion, see
discussion in Shlesinger et al. [200]. Ramos-Fernandez et al. [173] use a Lévy walk to
model the foraging of spider monkeys.

Baeumer, Kovacs and Meerschaert [16, 17] use a fractional diffusion equation to
model the spread of invasive species. Data from biological studies often show that
offspring migrate a distance from their parents that falls off like a power law. The dis-
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persal kernel that models these movements represents the distance between parent
and offspring, so that the repeated convolution of dispersal kernels gives the location
of subsequent generations. This is mathematically equivalent to a random walk over
the generations, where the dispersal kernel gives the pdf of the jump variable. A heavy
tailed dispersal kernel leads to a stable Lévy motion after a number of generations.
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Fig. 7.8: Solution to the reaction-diffusion equation (7195) with a = 2 (top panel) and a = 1.7 (bot-
tom panel), illustrating the effect of anomalous dispersion. From Baeumer, Kovacs and Meerschaert
[17].

Since the population can increase, a fractional reaction-diffusion equation is use-
ful to represent growth and dispersal:
o o

x,t)+D

oxa P 0+ Dasm
The first term Ap(x, t) models exponential population growth at the rate A, until
population reaches the environmental carrying capacity K. This model is not mass-
preserving, so the solution p(x, t) can no longer be interpreted as a pdf. Figure 7.8
illustrates the effect of fractional dispersion on an invasive species moving across a
slit barrier. In traditional dispersion, there is slow movement through the slit. Note

1P D

K p(x, t). (7.195)

0
2 P 6 = Ap(x t)( ) +Cp
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that in this case, the population on the right-hand side of the barrier is centered at the
slit location. In anomalous dispersion, the population jumps directly over the barrier.
In a practical application, the slit might represent a long river with one crossing point.

A very interesting study in Brockmann et al. [41] analyzed human movements by
tracking bank notes, using the biological model of dispersal kernels. They found that
the distance traveled by bank notes (carried by humans) over a four day period fol-
lows a power law model with @ = 0.6. The authors observe that fractional diffusion of
human populations has significant implications for modeling the spread of infectious
disease, which can be expected to spread faster than a traditional diffusion model
predicts.

Mandelbrot [131] and Fama [66] pioneered the use of heavy tail distributions in
finance. Data on cotton prices from the seminal paper of Mandelbrot [131] indicate
that a stable Lévy motion provides a more appropriate model for price fluctuations
than the usual Brownian motion. Let P(j) denote the price of cotton, or other specu-
lative commodity, on day j. The log return is defined by L(j) = log[P(j)/P(j — 1)]. Then
P(n) = P(0)exp[L(1) + --- + L(n)]. Since log(1 + z) = z + 0(z?), the log-return ap-
proximates the relative change in price. The log return is useful in finance, because
this nonlinear transformation typically produces a sequence of centered random vari-
ables with essentially no serial correlation: E[L(j)] = O and E[L(G)L(j — 1)] = O.
For this reason, it is common in finance to represent prices by an exponential model
P(t) = P(0) exp[X(t)] where X(t) is some Lévy process. For example, the famous Black-
Scholes model for option pricing is based on a Brownian motion model of log returns.
Alternative option pricing formulas based on stable Lévy motion have been developed
by Mittnik and Rachev [159] and Janicki et al. [98].

The application of stable models in finance remains controversial, and much of
the controversy revolves around the very delicate problem of tail estimation. Jansen
and de Vries [99] argue that daily returns for many stocks and stock indices have heavy
tails with 3 < a < 5, and discuss the possibility that the October 1987 stock market
crash could be explained as a natural heavy tailed random fluctuation. Loretan and
Phillips [127] use similar methods to estimate heavy tails with 2 < a < 4 for returns
from numerous stock market indices and exchange rates. This indicates that the vari-
ance is finite but the fourth moment is infinite. Both daily and monthly returns show
heavy tails with similar values of a in this study. Rachev and Mittnik [172] fit a stable
pdf with 1 < a < 2 to a variety of stocks, stock indices, and exchange rates. McCul-
loch [133] re-analyzed the data in [99, 127], and fit a stable pdf with 1.5 < a < 2. The
papers [99, 127] estimate a based on a Pareto distribution with a € (0, co) while the
authors in [133, 172] apply a stable distribution with @ € (0, 2]. A nice discussion of
this controversy appears in McCulloch [134].

Aban, Meerschaert and Panorska [1] examined absolute daily price changes in
U.S. dollars for Amazon, Inc. stock from January 1, 1998 to June 30, 2003. They fit a
Pareto with a = 2.3 to the largest observations, see Figure 7.9. A truncated Pareto with
a = 1.7 was also fit. The truncated Pareto estimate of @ may be more appropriate, if
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Fig. 7.9: Log-log plot of the largest absolute values of daily price changes in Amazon, Inc. stock,
with best fitting Pareto (straight line) and truncated Pareto (curved line) tail distribution. From Aban,
Meerschaert and Panorska [1].

there were significant truncation effects in the observations. For example, there are
automatic trading limits that can limit the largest price fluctuations. Figure 7.10 shows
trading volume (shares per day) for the same data set. There is a clear power law trend
with @ = 2.7. Trading volume can be used to infer waiting times between trades for a
CTRW model of stock prices.

Remark 7.47. Power laws are quite prevalent in scientific data, see for example the
book of Sornette [207]. One possible explanation involves mixture distributions. Ex-
ponential and related distributions (e.g., gamma) can arise from random arrival pro-
cesses and relaxation phenomena (e.g., cooling). In a heterogeneous environment,
the exponential rate parameter may vary. Suppose P[X > x] = e ¥ where A itself
follows an exponential distribution with P[A > y] = e~ for some b > 0. Then the
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Fig. 7.10: Trading volume for Amazon, Inc. stock from January 1, 1998 to June 30, 2003. The data fita
power law with o = 2.7.

unconditional distribution of X is a power law:

(o)
P[X > x] = IIP[X > x|A = ylbe ™™ dy
0
T b b
_ “YXpo~by 4y, — ~ =
je be™?’dy hix s x as x — oo.
0

If A has a gamma pdf g(y) with Laplace transform g(s) = (1 + ﬁs)f'x for some a > O,
then

PX > x] = I e g(y)dy = (1+Bx) "= Cx% asx — o0
0

where C = 7% > 0. Karamata’s Tauberian Theorem (e.g., see Feller [68, Theorem 3, p.
445]) implies that any pdf that decays like a power law at zero has a Laplace transform
that decays like a power law at infinity (the formal statement involves regular varia-
tion). Since the mixture above is mathematically equivalent to the Laplace transform
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of the mixing density, any such pdf for A (e.g., Weibull or beta) also produces ran-
dom variables with a power law tail. For more details, and an application to sediment
transport, see Hill et al. [88].

7.12 Applications of vector fractional diffusion

In this section, we summarize some recent applications of vector fractional diffusion,
to illustrate the practical application of the theory developed in Chapter 6.

Example 7.48. Schumer et al. [194] applied the generalized fractional diffusion equa-
tion (6.115) as a conceptual model for contaminant transport in ground water. In Chap-
ter 1, we discussed an experiment at the MADE site, see Figure 1.5. Figure 7.11 shows
that the two-dimensional MADE plume spreads at a rate t'/% in the direction of flow,
where the tail index a; = 1.2 is reasonably consistent with the one dimensional
model. The plume spreads like 1/ in the direction transverse to the flow, where
a; = 1.5. The spreading rate was determined by plotting the measured plume vari-
ance against distance. Since the average plume velocity is constant, the mean travel
distance x = vt is proportional to time. Since the plume width grows like a power law
with distance, it also grows like a power law with time, with the same power law in-
dex. Then an operator stable Lévy motion with drift is an appropriate model for the
movement of individual particles, and the GADE (6.115) with B = diag(1/1.2,1/1.5)
can be used to model relative concentration in two dimensions. A second study, at an
experimental site in Cape Cod, found @; = 1.6 and a, = 2. The plume spreading at this
site can be well approximated by the GADE (6.113). The underlying operator Lévy mo-
tion has one stable component in the direction of flow, and one normal component
in the direction transverse to flow. The plume shape is similar to Figure 6.10, which
represents the view from above, where flow is in the positive x, direction.

Example 7.49. If a data set of random vectors exhibits a heavy tail in each coordinate,
it is often the case that the tail index varies with the coordinate. Figure 7.12 displays
n = 2,853 daily log returns, based on the exchange rates of the German Deutsche
Mark x; and Japanese Yen x, against the US dollar. (See Section 7.11 for a discussion
of Lévy process models in finance based on log returns.) A one dimensional analysis
similar to Figure 1.5 indicates that the exchange rate data in each coordinate x; and x,
fits a mean zero stable pdf with a =~ 1.6. This was the basis for the multivariable stable
model proposed by Nolan, Panorska and McCulloch [162]. That paper also includes a
method for estimating the spectral measure (6.49). Then the pdf of the accumulated
log return X(t) solves a vector fractional diffusion equation (6.63).

A further analysis reveals that the tail behavior varies with the coordinate, once we
adopt a suitable rotated coordinate system. For an X € GDOA(Y) where the operator
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Fig. 7.11: Apparent plume variance in the direction of flow (circles) and transverse to flow (squares)
at the MADE site, from Meerschaert, Benson and Baeumer [136].

stable law Y has exponent B = diag(1/aq, 1/a,) with ay < ay, it follows from the
spectral decomposition discussed near the end of Section 6.8 that each component
X - ¢j is in the domain of attraction of a stable random variable Y; = Y . e; with index
;. Then Theorem 4.5 shows that Vo (r) = P[|X - e;| > r] is RV(-aq;), and Proposition 4.9
implies that for any 6 > O we have

ré-a < P[|X-ej| > 1] < o9

for all r > 0O sufficiently large. Since any one dimensional projection X - 8 is a linear
combination of the coordinates X - ej, it follows that

ro M PX- 0] > 1] < 5

for all 8 + +e,, i.e., the heavier tail dominates. (For an extension of this property to
arbitrary exponents, see Meerschaert and Scheffler [146, Theorem 6.4.15].) Applying
this idea to the exchange rate data, the fact that the coordinates x; and x, show the
same tail behavior with @ = 1.6 does not rule out the possibility of another coordinate
system in which the tail behavior varies.

To investigate this possibility, we consider a rotated coordinate system z; (line
with slope -1) and z; (line with slope +1) as noted in Figure 7.12. Now we find that
the z, coordinate has a lighter tail with a; =~ 2.0 and the z, coordinate has a heavier
tail with a> =~ 1.6. The original coordinates mask the variation in tail behavior. Now
a reasonable model for X(t) is an operator stable Lévy process in the new coordinates
z1 and z,, where the z; coordinate is a Brownian motion, and the z, coordinate is a
stable Lévy motion with index a5. It follows from the Lévy representation (6.21) that
these two coordinate processes are independent. Then the pdf of the accumulated log
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Fig. 7.12: Exchange rates against the US dollar from Meerschaert and Scheffler [150]. The new coor-
dinates z1, z, uncover variations in the tail parameter a.

return process X(t) solves a fractional diffusion equation

d 62 d 1.6

ap(z, t) =D a—zip(z, t) +Dq Wp(z, t) (7.196)
using the symmetric fractional derivative as in (6.68). One interpretation of this model
is that both currencies are reacting to the same principal effect, the US dollar, and
variations due to other currencies are less extreme.

The new coordinates in this example are the eigenvectors of the sample covariance
matrix of the exchange rate data in Figure 7.12. Theorem 10.4.8 in [146] implies that,
if B = diag(1/a;, 1/a,) with @, < a; in some coordinates, the eigenvalues of the
sample covariance matrix converge in probability to the coordinate system that makes
B diagonal. This result is a heavy tailed version of principal component analysis. Even
though the covariance matrix does not exist in this case, the sample covariance matrix
indicates a useful set of coordinates. For details, see Meerschaert and Scheffler [150,
Example 8.1].
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The exponential Lévy process model P(t) = P(0)exp[X(t)] fails to capture one
very interesting feature of financial data: Typically the log returns are uncorrelated,
but their absolute values (or squared values) are highly correlated. This is an interest-
ing and useful example of a real world situation in which variables are uncorrelated,
but not independent. The problem of constructing good models for vectors of log re-
turns in finance, that capture heavy tails as well as nonlinear correlations, is an ac-
tive research area. One promising approach is to subordinate the Lévy process X(t) to
some independent waiting time process, see for example Barndorff-Nielsen [23], Carr,
Geman, Madan and Yor [44], and Kotz, Kozubowski and Podgdrski [111]. Some related
models were developed by Bender and Marquardt [26], Finlay and Seneta [71], Heyde
[84], and Leonenko, Petherick and Sikorskii [119]. The CTRW introduced in Section 2.4
can provide a strong motivation for considering such models.

Example 7.50. An application to geophysics in Meerschaert and Scheffler [149] con-
siders a data set of fracture aperture x; and fluid velocity x, in fractured rock, from
a site under consideration for a nuclear waste depository in Sweden. A one variable
tail estimation shows that the aperture data has a heavy tail with a; = 1.4, and the
fluid velocity data has a heavy tail with a, = 1.05. Then an operator stable model with
exponent B = diag(1/1.4, 1/1.05) could be appropriate. Since the components of the
operator stable law have infinite second moment, the covariance cannot be used to
model dependence. Instead, the spectral measure A(d0) in (6.111) governs the depen-
dence between these two variables. The spectral measure in Figure 7.13 was approx-
imated using the nonparametric estimator of Scheffler [189]. The spectral measure
governs the direction of jumps that make up the operator stable limit. In the data,
the largest jumps are traced back to the unit sphere using the Jurek coordinates from
Remark 6.40, and this gives a nonparametric estimate of the spectral measure. See
[149] for more details.

Example 7.51. An application to fracture flow in Reeves et al. [174] models a contam-
inant plume moving through fractured rock as a random walk that converges in the
long-time scaling limit to an operator stable Lévy motion. The eigenvalues a; of the
scaling matrix B code the power law jumps, related to fracture lengths. The eigen-
vectors v; of B determine the coordinate system, related to fracture orientation. The
mixing measure is concentrated in the eigenvector directions, so that a contaminant
particle jumps in the v; direction with some probability M(v;), and the random jump
length L follows a power law distribution with P[L > r] = r % with a; = ai‘l. The
eigenvector directions reflect the fracture geometry. Typically the fracture orientation
is determined by the crystalline structure of the rock, and there are just a few pre-
ferred fracture orientations. If the orientations are orthogonal, then the contaminant
plume follows the vector fractional diffusion equation (6.113), and the plume shape
is similar to Figure 6.5. More typically, the fracture orientations are separated by an
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Fig. 7.13: Estimated spectral measure for an operator stable model of fracture statistics, from Meer-
schaert and Scheffler [149].

angle less than 90 degrees. This can be related to the orthogonal case by a simple
(non-orthogonal) change of coordinates. In some cases, the number of fracture orien-
tations is larger than the number of dimensions. Then the mixing measure determines
the relative number of jumps in each direction. Because there are a finite number of
possible orientations, the mixing measure is always discrete in these applications.

Example 7.52. Figure 7.14 shows tick-by-tick data on LIFFE bond futures from Septem-
ber 1997. The plotted data are X,, = (Yn, Jn)' where Yy, is the log return after the nth
trade, and J, is the waiting time between the n — 1st and nth trades. The log returns
are roughly symmetric, and exhibit a power law tail with a = 1.8. The waiting times
also show a heavy tail, with index 8 =~ 0.9. There appears to be some significant de-
pendence between the two coordinates, and it seems that large log returns are associ-
ated with long waiting times. This is consistent with a model where (X,) are iid with
X € GDOA(V) and V has dependent components. This leads to a coupled CTRW model
for the price at time t > 0, see Meerschaert and Scalas [144]. The coupled CTRW is
similar to the model introduced in Section 2.4 except that the space-time random vec-
tors X, have dependent components. A convenient dependence model is Y, = ’,i’ ’z n
where Z,, are iid normal, independent of J,,. Then the CTRW limit has a pdf that solves
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a coupled fractional diffusion equation

o a2\ tF
(a—m) P(X,f)=5(X)F(1—_ﬁ)

where f is the tail index of the waiting times. The coupled space-time fractional
derivative operator on the left-hand side is defined through its Fourier-Laplace sym-
bol Y(k, s) = (s + k?), i.e., the FLT of the left-hand side is y(k, s)p(k, s). The theory
of coupled CTRW, their limit laws, and their governing equations is based on operator
stable laws, since the space-time vector X,, belongs the GDOA of some operator stable
law. For more details, see Becker-Kern et al. [24], Jurlewicz et al. [101], Meerschaert
and Schefler [153], and Straka and Henry [210].
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Fig. 7.14: Waiting times in seconds and log returns for LIFFE bond futures, from Meerschaert and
Scalas [144].

Example 7.53. For a general operator stable process, where the components are not
independent, solutions to the generalized fractional advection-dispersion equation
(6.115) can be obtained via particle tracking. Figure 7.15 shows a particle tracking solu-
tion to the GADE with B = diag(1/1.5, 1/1.9). The mixing measure is concentrated on
seven discrete points: M(e1) = 0.3, M(+vy) = 0.2, M(+v,) = 0.1, and M(+v3) = 0.05,
where v; = Rg,e1 with 61 = 6°, 6, = 12°, and 65 = 18°. Here R, is the rotation matrix
from Example 6.35. This conceptual model represents the flow and dispersion of tracer
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particles in ground water. Many particle jumps follow the direction of flow (the posi-
tive x, coordinate) but some particles deviate to avoid obstacles in the porous medium.
The particle tracking solution shows level sets from a histogram of particle location,
based on n = 10, 000, 000 particles. Each particle follows a simulated operator stable
process Z; + vt with v = (10, 0)' indicating a drift from left to right. The process Z; was
approximated using a random walk with jump vectors W2 @ (mean-corrected) where
P[W > r] = 1/r and O has distribution M(d6), as in Theorem 6.43. To validate the
accuracy of the particle tracking method, a numerical method was used to compute
the inverse FT of the operator stable. As compared to the vector diffusion in Figure
6.2, the plume in Figure 7.15 is skewed in the direction of flow, and the spreading rate
is greater in the direction of flow. The operator stable Lévy process Z; represents the
location of a randomly selected particle. In this case, the x; component is stable with
index a; = 1.5, the x, component is symmetric stable with index a, = 1.9, and the
two components are dependent. For more details, see Zhang et al. [225]. An interest-
ing experiment reported in Moroni, Cushman and Cenedese [161] performs particle
tracking on actual individual particles through a porous medium in a laboratory set-
ting. Particle tracking for time-fractional diffusion equations is treated in Germano,
Politi, Scalas and Schilling [76], Magdziarz and Weron [128] and Zhang, Meerschaert
and Baeumer [226].
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Fig. 7.15: Particle tracking solution of the generalized fractional advection-dispersion equation

(6.115) from Zhang, Benson, Meerschaert, LaBolle and Scheffler [225], with diagonal exponent
B = diag(a, a2), velocity v = (v1, v2)’, and mixing measure as indicated.
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advection dispersion equation, 14
anisotropic diffusion, 144
asymptotic inverse, 108

backward semigroup, 234
Banach space, 62

big O(x) notation, 7
bounded linear operator, 62
bounded variation, 42

box dimension, 133
breakthrough curve, 295

Caputo fractional derivative, 40

Cauchy problem, 63

centered stable law, 70, 83, 86

central limit theorem, 3
Chapman-Kolmogorov equation, 68, 237
characteristic function, 2, 147
compensator, 72

continuous in probability, 106
Continuous Mapping Theorem, 103
continuous time random walk, 45
contraction semigroup, 254

coupled fractional diffusion equation, 307
cumulative distribution function, 2, 146

Darcy’s Law, 285

diffusion equation, 4

Dirac delta function, 42

directional derivative, 171

dispersal kernel, 298

dispersion tensor, 149

dispersivity, 4

distributed order fractional derivative, 225
domain of attraction, 91, 154, 194
Dominated Convergence Theorem, 7, 9, 61

eigenfunction, 37, 235
eigenvalue, 152

eigenvector, 152

essential spectrum, 240
exponent, 180

extended central limit theorem, 10

Feller-Dynkin semigroup, 254
finite dimensional distributions, 103
Fokker-Planck equation, 234

forward equation, 233

forward semigroup, 233

Fourier inversion, 8, 108

Fourier symbol, 64

Fourier transform, 2, 147
Fourier-Laplace transform, 44
Fourier-Stieltjes transform, 41

fractal, 132

fractional advection dispersion equation, 12
fractional ARIMA, 275

fractional Brownian field, 283
fractional Brownian motion, type 2, 275
fractional Cauchy problem, 250
fractional derivative, 11, 22

fractional difference, 21

fractional diffusion equation, 11, 15
fractional directional derivative, 171
fractional dispersivity, 73

fractional Laplacian, 156, 174

fractional Pearson diffusion, 250
fractional Poisson process, 206
fractional reaction-diffusion equation, 298
fractional stable field, 283

fractional stable motion, 277

full, 151

generalized domain of attraction, 154
generalized FADE, 197, 307

generalized fractional derivative, 191
generalized fractional diffusion equation, 191
generalized function, 42

generator, 62

generator form, 71, 74

Griinwald formula, 22

Griinwald weights, 23

Heaviside function, 42
Hilbert space, 28

Hurst index, 11, 272
hydraulic conductivity, 285

independently scattered, 279

infinitely divisible law, 51, 158

inner product, 146

integration by parts, 26

inverse stable subordinator, 103, 112, 114
isotropic diffusion, 144
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isotropic stable Lévy motion, 156 process convergence, 105
iterated Brownian motion, 114 pseudo-differential operator, 254
Jurek coordinates, 186 R-O variation, 189

random field, 283
Karamata Tauberian Theorem, 231 random walk, 2

regular variation, 89, 188
Lévy flight, 292 Riemann-Liouville fractional derivative, 40
Lévy process, 59, 102, 238 Riesz fractional derivative, 174, 275
Lévy walk, 292 Riesz fractional integral, 288
Laplace transform, 35 Riesz potential, 282, 288
LePage series representation, 210 Rodrigues formula, 241
Lindeberg Condition, 79
little o(x) notation, 2 scale function, 239
log return, 299 self-similar, 106
long range dependence, 275 self-similarity, 11

semigroup, 62
Markov process, 65, 233, 238 separation of variables, 234
matrix exponential, 180 shift semigroup, 65
matrix power, 180 simultaneous jumps, 106, 107
Mittag-Leffler distribution, 209 Skorokhod Theorem, 212
Mittag-Leffler function, 37 Skorokhod topology, 105
moments, 2 spectral decomposition, 196
Monte Carlo simulation, 130 spectral measure, 168

spectrally simple, 197
negative fractional derivative, 15, 23, 71, 74 spectrum, 240
nilpotent matrix, 182 stable density, 10

stable distribution, 11
operator scaling, 179 stable index, 58
operator scaling fractional stable field, 286 stable Lévy motion, 153
operator self-similar, 180 stable law, one-sided, 58
operator stable, 178, 192, 195 stable law, two-sided, 69
operator stable Lévy motion, 153 standard stable law, 123
orbits, 181 standard stable subordinator, 123
order statistics, 211 stochastic differential equation, 238
orthogonal, 150 stochastic integral, 279, 287
orthogonal system, 235 strongly continuous, 62
orthonormal basis, 152, 240 Sturm-Liouville equation, 235
outer product, 146 subdiffusion, 225

subordinator, 102
Pareto distribution, 68 super-diffusion, 11
particle tracking, 74 symmetric, 151
Pearson diffusion, 233, 238, 240 symmetry, 150
Pearson distribution, 233
Pearson equation, 234 tempered fractional Cauchy problem, 217
Poisson process, 73 tempered fractional derivative, 217, 220, 225
positive definite, 151 tempered fractional diffusion, 217, 220
probability density function, 2 tempered stable, 215

probability mass function, 205 tight, 80, 162



time-fractional diffusion, 43
transition density, 233, 251
transpose, 145

triangular array, 75, 159

ultraslow diffusion, 226, 231
unbounded variation, 133
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vague convergence, 76, 79, 160
vector diffusion equation, 148, 175
vector fractional diffusion equation, 171

weak convergence, 8
weak derivative, 41
weak solution, 48






