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1 Introduction

Fractional calculus is a rapidly growing field of research, at the interface between
probability, di�erential equations, and mathematical physics. Fractional calculus is
used tomodel anomalous di�usion, inwhich a cloud of particles spreads in a di�erent
manner than traditional di�usion. This book develops the basic theory of fractional
calculus and anomalous di�usion, from the point of view of probability.

Traditional di�usion represents the long-time limit of a random walk, where fi-
nite variance jumps occur at regularly spaced intervals. Eventually, after each par-
ticle makes a series of random steps, a histogram of particle locations follows a bell-
shapednormal density. The central limit theoremof probability ensures that this same
bell-shaped curve will eventually emerge from any random walk with finite variance
jumps, so that this di�usion model can be considered universal. The random walk
limit is a Brownian motion, whose probability densities solve the di�usion equation.
This link between di�erential equations and probability is a powerful tool. For exam-
ple, a method called particle tracking computes approximate solutions of di�erential
equations, by simulating the underlying stochastic process.

However, anomalous di�usion is often observed in real data. The “particles”
might be pollutants in ground water, stock prices, sound waves, proteins crossing a
cell boundary, or animals invading a new ecosystem. The anomalous di�usion can
manifest in asymmetric densities, heavy tails, sharp peaks, and/or di�erent spread-
ing rates. The square root scaling in the central limit theorem implies that the width
of a particle histogram should spread like the square root of the elapsed time. Both
anomalous super-di�usion (a faster spreading rate) and sub-di�usion have been ob-
served in real applications. In this book, we will develop models for both, based on
fractional calculus.

The traditional di�usion equation relates the first time derivative of particle con-
centration to the secondderivative in space. The fractional di�usion equation replaces
the space and/or time derivatives with their fractional analogues. We will see that
fractional derivatives are related to heavy tailed randomwalks. Fractional derivatives
in space model super-di�usion, related to long power-law particle jumps. Fractional
derivatives in time model sub-di�usion, related to long power-law waiting times be-
tween particle jumps. Fractional derivativeswere invented by Leibnitz soon after their
more familiar integer-order cousins, but they have become popular in practical appli-
cations only in the past few decades. In this book, we will see how fractional calculus
and anomalous di�usion can be understood at a deep and intuitive level, using ideas
from probability.

The first chapter of this book presents the basic ideas of fractional calculus and
anomalous di�usion in the simplest setting. All of the material introduced here will
be developed further in later chapters.
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2 | 1 Introduction

1.1 The traditional di�usion model

The traditional model for di�usion combines elements of probability, di�erential
equations, and physics. A random walk provides the basic physical model of particle
motion. The central limit theorem gives convergence to a Brownian motion, whose
probability densities solve the di�usion equation. We start with a sequence of in-
dependent and identically distributed (iid) random variables Y, Y1, Y2, Y3, . . . that
represent the jumps of a randomly selected particle. The random walk

Sn = Y1 + ⋅ ⋅ ⋅ + Yn
gives the location of that particle after n jumps. Next we recall the well-known central
limit theorem, which shows that the probability distribution of Sn converges to a nor-
mal limit. Here we sketch the argument in the simplest case, using Fourier transforms.
Details are provided at the end of this section to make the argument rigorous. A com-
plete proof of the central limit theorem will be given in Theorem 3.36 using di�erent
methods. Then in Theorem 4.5, we will use regular variation to show that the same
normal limit governs a somewhat broader class of random walks.

Let F(x) = ℙ[Y ≤ x] denote the cumulative distribution function (cdf) of the
jumps, and assume that the probability density function (pdf) f(x) = F�(x) exists. Then
we have

P[a ≤ Y ≤ b] =
b

∫
a

f(x) dx = F(b) − F(a)

for any real numbers a < b. The moments of this distribution are given by

μp = E [Yp] = ∫ xp f(x) dx

where the integral is taken over the domain of the function f .
The Fourier transform (FT) of the pdf is

̂f (k) = E [e−ikY] = ∫ e−ikxf(x) dx.

The FT is closely related to the characteristic function E [eikY] = ̂f (−k). If the first two
moments exist, a Taylor series expansion ez = 1 + z + z2/2! + ⋅ ⋅ ⋅ leads to
̂f (k) = ∫(1 − ikx + 1

2!
(−ikx)2 + ⋅ ⋅ ⋅ ) f(x) dx = 1 − ikμ1 − 1

2 k
2μ2 + o(k2) (1.1)

since ∫ f(x) dx = 1. Here o(k2) denotes a function that tends to zero faster than k2 as
k → 0. A formal proof of (1.1) is included in the details at the end of this section.

Suppose μ1 = 0 and μ2 = 2, i.e., the jumps have mean zero and variance 2. Then
we have

̂f (k) = 1 − k2 + o(k2)
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as k → 0. The sum Sn = Y1 + ⋅ ⋅ ⋅ + Yn has FT
E [e−ikSn] = E [e−ik(Y1+⋅⋅⋅+Yn)]

= E [e−ikY1] ⋅ ⋅ ⋅ E [e−ikYn]
= E [e−ikY]n = ̂f (k)n

and so the normalized sum n−1/2Sn has FT

E [e−ik(n−1/2Sn)] = E [e−i(n−1/2k)Sn] = ̂f (n−1/2k)n
= (1 − k2

n
+ o(n−1))n → e−k

2

(1.2)

using the general fact that (1 + (r/n) + o(n−1))n → er as n → ∞ for any r ∈ ℝ (see
details). The limit

e−k
2 = E [e−ikZ] = ∫ e−ikx 1√4π e−x2/4 dx

using the standard formula from FT tables [203, p. 524]. Then the continuity theorem
for FT (see details) yields the traditional central limit theorem (CLT):

n−1/2Sn = Y1 + ⋅ ⋅ ⋅ + Yn√n ⇒ Z (1.3)

where⇒ indicates convergence indistribution. The limit Z in (1.3) is normalwithmean
zero and variance 2.

An easy extension of this argument gives convergence of the rescaled random
walk:

S[ct] = Y1 + ⋅ ⋅ ⋅ + Y[ct]
gives the particle location at time t > 0 at any time scale c > 0. Increasing the time

scale c makes time go faster, e.g., multiply c by 60 to change from minutes to hours.
The long-time limit of the rescaled random walk is a Brownianmotion: As c →∞ we

have

E [e−ik c−1/2S[ct]] = (1 − k2
c
+ o(c−1))[ct] = [(1 − k2

c
+ o(c−1))c ] [ct]c → e−tk

2

(1.4)

where the limit
e−tk

2 = p̂(k, t) = ∫ e−ikxp(x, t) dx
is the FT of a normal density

p(x, t) = 1√4πt e−x2/(4t)
with mean zero and variance 2t. Then the continuity theorem for FT implies that

c−1/2S[ct] ⇒ Zt
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where the Brownian motion Zt is normal with mean zero and variance 2t.
Clearly the FT p̂(k, t) = e−tk2 solves a di�erential equation

dp̂

dt
= −k2p̂ = (ik)2 p̂. (1.5)

If f � exists and if f, f � are integrable, then the FT of f �(x) is (ik) ̂f (k) (see details). Using
this fact, we can invert the FT on both sides of (1.5) to get (see details)

∂p

∂t
= ∂

2p

∂x2
. (1.6)

This shows that the pdf of Zt solves the di�usion equation (1.6). The di�usionequation
models the spreading of a cloud of particles. The randomwalk Sn gives the location of
a randomly selected particle, and the long-time limit density p(x, t) gives the relative
concentration of particles at location x at time t > 0.

More generally, suppose that μ1 = E[Yn] = 0 and μ2 = E[Y2n ] = σ2 > 0. Then
̂f (k) = 1 − 1

2σ
2k2 + o(k2)

leads to

E[e−ik n−1/2Sn ] = (1 − σ2k2
2n
+ o(n−1))n → exp(− 12σ2k2)

and

E[e−ik c−1/2S[ct] ] = (1 − σ2k2
2c
+ o(c−1))[ct] → exp(− 12 tσ2k2) = p̂(k, t). (1.7)

This FT inverts to a normal density

p(x, t) = 1√2πσ2t e−x2/(2σ2t)
with mean zero and variance σ2t. The FT solves

dp̂

dt
= −σ

2

2
k2p̂ = σ

2

2
(ik)2 p̂

which inverts to
∂p

∂t
= σ

2

2

∂2p

∂x2
. (1.8)

This form of the di�usion equation shows the relation between the dispersivity D =
σ2/2 and the particle jump variance. Apply the continuity theorem for FT to (1.7) to
get random walk convergence:

c−1/2S[ct] ⇒ Zt

where Zt is a Brownian motion, normal with mean zero and variance σ2t.
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In many applications, it is useful to add a drift: vt + Zt has FT
E[e−ik(vt+Zt)] = e−ikvt−12 tσ2k2 = p̂(k, t),

which solves
dp̂

dt
= (−ikv + σ2

2
(ik)2) p̂.

Invert the FT to obtain the di�usion equation with drift:

∂p

∂t
= −v ∂p

∂x
+ σ

2

2

∂2p

∂x2
. (1.9)

This represents the long-time limit of a random walk whose jumps have a non-zero
mean v = μ1 (see details). Figure 1.1 shows a typical concentration profile, a normal
pdf

p(x, t) = 1√2πσ2t e−(x−vt)2/(2σ2t) (1.10)

that solves the di�usion equation with drift (1.9). Figure 1.2 shows how the solution
evolves in time. Since vt+Zt hasmean vt, the center ofmass is proportional to the time
variable. Since vt + Zt has variance σ2t, the standard deviation is σ√t, so the particle
plume spreads proportional to the square root of time. Setting x = vt in (1.10) shows
that the peak concentration falls like the square root of time. The simple R codes used
to produce the plots in Figures 1.1 and 1.2 will be presented and discussed in Examples
5.1 and 5.2, respectively.

Details

The FT ̂f (k) = ∫ e−ikxf(x) dx is defined for integrable functions f , since |e−ikx| = 1.
Hence the pdf of any random variable X has a FT. In fact, the FT ̂f (k) = E[e−ikX] exists
for all k ∈ ℝ, for any random variable X, whether or not it has a density. The next two
results justify the FT expansion (1.1).

Proposition 1.1. If E[|X|p] exists, then
(−i)pμp = ̂f (k)(0) = dp

dkp
E [e−ikX]

k=0 (1.11)

Proof. The first derivative of the FT is

̂f (1)(k) = lim
h→0

̂f (k + h) − ̂f (k)
h

= lim
h→0

h−1 (E [e−i(k+h)X] − E [e−ikX]) = lim
h→0
E[gh(X)]

where gh(x) = h−1(e−i(k+h)x − e−ikx) = h−1(e−ihx − 1)e−ikx is the di�erence quotient
for the di�erentiable function k Ü→ e−ikx, so that gh(x) → g(x) = −ixe−ikx as h → 0.
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Fig. 1.1: Solution to di�usion equation (1.9) at time t = 5.0 with velocity v = 3.0 and variance

σ2 = 2.0.
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Fig. 1.2: Solution to di�usion equation (1.9) at times t1 = 1.0 (solid line), t2 = 2.0 (dotted line), and
t3 = 3.0 (dashed line). The velocity v = 3.0 and variance σ2 = 2.0.
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From the geometric interpretation of eiy as a vector in complex plane, it follows that
|eiy − 1| ≤ |y| for all y ∈ ℝ. Then

|gh(x)| =
!!!!!!!!! e−ihx − 1h

!!!!!!!!! ⋅ |e−ikx| ≤ |x|
for all h ∈ ℝ and all x ∈ ℝ. TheDominated Convergence Theorem states that if gh(x) →
g(x) for all x ∈ ℝ and if |gh(x)| ≤ r(x) for all h and all x ∈ ℝ, and if E[r(X)] is finite,
then E[gh(X)] → E[g(X)] and these expectations exist (e.g., see Durrett [62, Theorem
1.6.7, p. 29]). Since E[|X|] exists, the dominated convergence theorem with r(x) = |x|
implies that

̂f (1)(k) = lim
h→0
E[gh(X)] = E[g(X)] = E [(−iX) e−ikX] .

Set k = 0 to arrive at (1.11) in the case p = 1. The case p > 1 is similar, using the
fact that gh(x) = h−p(e−ihx − 1)pe−ikx is the pth order di�erence quotient for k Ü→
e−ikx. Alternatively, the proof for the case p > 1 can be completed using an induction
argument.

Proposition 1.2. If E[|X|p] exists, then the FT of X is
̂f (k) =

p∑
j=0

(−ik)j
j!

μj + o(kp) (1.12)

as k → 0.

Proof. If the FT ̂f (k) is p times di�erentiable, then the Taylor expansion

̂f (k) =
p∑
j=0

kj

j!
̂f (j)(0) + o(kp)

is valid for all k ∈ ℝ. Apply Proposition 1.1 to arrive at (1.12).
In equation (1.2) we used the fact that(1 + r

n
+ o(1/n))n → er as n →∞. (1.13)

To verify this, write o(1/n) = εn/n where εn → 0 as n → ∞. Note that |r + εn | < 1
for n su�ciently large, and then use the fact that ln(1 + z) = z + O(z2) as z → 0. This
notation means that for some δ > 0 we have!!!!!!!! ln(1 + z) − zz2

!!!!!!!! < C
for some constant C > 0, for all |z| < δ. Then we can write

ln [(1 + r + εn
n
)n] = n ln [1 + r + εn

n
]

= n [ r + εn
n
+ O ( 1

n2
)] = r + εn + O (1

n
)→ r.
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Then apply the continuous function exp(z) to both sides to conclude that (1.13) holds.
In (1.3) we use the idea of weak convergence. Suppose that Xn is a sequence of

random variables with cdf Fn(x) = ℙ[Xn ≤ x], and X is a random variable with cdf
F(x) = ℙ[X ≤ x]. We write Xn ⇒ X if Fn(x) → F(x) for all x ∈ ℝ such that F is
continuous at x. This is equivalent to the condition that E[h(Xn)] → E[h(X)] for all
bounded, continuous functions h : ℝ → ℝ. See for example Billingsley [37].

In (1.3) we use the continuity theorem for the Fourier transform. Let ̂fn(k) =
E[e−ikXn] and ̂f (k) = E[e−ikX]. The Lévy Continuity Theorem [146, Theorem 1.3.6]
implies that Xn ⇒ X if and only if ̂fn(k) → ̂f (k). More precisely, we have:
Theorem 1.3 (Lévy Continuity Theorem). If Xn , X are random variables on ℝ, then
Xn ⇒ X implies that ̂fn(k) → ̂f (k) for each k ∈ ℝ, uniformly on compact subsets. Con-
versely, if Xn is a sequence of random variables such that ̂fn(k) → ̂f (k) for each k ∈ ℝ,
and the limit ̂f (k) is continuous at k = 0, then ̂f (k) is the FT of some random variable X,
and Xn ⇒ X.

In (1.6) we used the fact that the FT of f �(x) is (ik) ̂f (k). If f �(x) exists and is integrable,
the limits

lim
x→∞ f(x) = f(0) + limx→∞

x∫
0

f �(u)du and lim
x→−∞

f(x) = f(0) − lim
x→−∞

0∫
x

f �(u)du

exist. If f is integrable, then these limits must equal zero. Then we can integrate by
parts to get

∞∫
−∞

e−ikxf �(x) dx = [e−ikxf(x)]∞
x=−∞ +

∞∫
−∞

ike−ikxf(x) dx = 0 + (ik) ̂f (k). (1.14)

Applying this fact to the function f � shows that, if f �� is also integrable, then its FT
equals (ik)2 ̂f (k), and so

(ik)2 p̂(k, t) = ∫ e−ikx ∂2
∂x2

p(x, t) dx. (1.15)

To arrive at (1.6), we inverted the FT (1.5). This can be justified using the following
theorem.

Theorem 1.4 (Fourier inversion theorem). If ∫ |f(x)| dx < ∞, then FT ̂f (k) exists. Then
if ∫ | ̂f (k)| dk < ∞, we have

f(x) = 1

2π
∫ eikx ̂f (k) dk (1.16)

for all x ∈ ℝ.
Proof. See [146, Theorem 1.3.7] or Stein and Weiss [208, Corollary 1.21].
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Apply Theorem 1.4 to both sides of (1.5) to get

1

2π
∫ eikx ∂

∂t
p̂(k, t) dk = 1

2π
∫ eikx(ik)2 p̂(x, t) dk. (1.17)

By (1.15), the right hand side of (1.17) equals ∂2p(x, t)/∂x2. In order to prove (1.6), it
su�ces to show that ∫ eikx ∂

∂t
p̂(k, t) dk = ∂

∂t
∫ eikxp̂(k, t) dk

for any fixed t > 0. Write

∂

∂t
∫ eikxp̂(k, t) dk = lim

h→0
∫ eikx p̂(k, t + h) − p̂(k, t)

h
dk,

where p̂(k, t) = e−tk2. Since h → 0, consider h small such that |h| < t/2 (t > 0 is fixed
in this argument). Then the mean value theorem yields |1 − e−hk2 | ≤ |h|k2etk2/2, and
therefore !!!!!!!! p̂(k, t + h) − p̂(k, t)h

!!!!!!!! = e−tk2 !!!!!!!!!!1 − e−hk2h

!!!!!!!!!! ≤ k2e−tk2/2 .
Another version of the Dominated Convergence Theorem (e.g., see Rudin [181, Theo-
rem 11.32]) states that if fn(y) → f(y) as n → ∞ and if |fn(y)| ≤ g(y) for all n and all
y, where ∫ g(y) dy exists, then ∫ fn(y) dy → ∫ f(y) dy and these integrals exist. Since
for any t > 0, the function k2e−tk2/2 is integrable with respect to k, the dominated
convergence theorem implies

∂

∂t
∫ eikxp̂(k, t) dk = ∫ eikx lim

h→0
p̂(k, t + h) − p̂(k, t)

h
dk = ∫ eikx ∂

∂t
p̂(k, t) dk.

Similar arguments justify (1.8) and (1.9).
To show that (1.9) governs the limit of a random walk with drift, suppose that

Y, Y1, Y2, Y3, . . . are iid with mean μ1 = v = E[Y] and finite variance σ2 = μ2 − μ21 =
E[(Y − μ1)2]. Write

S[ct] =
[ct]∑
j=1
Yj =
[ct]∑
j=1
(Yj − v) +

[ct]∑
j=1
v

and note that the first sum grows like c1/2 while the second grows like c as c → ∞.
Hence, in order to get convergence, we must normalize at two scales. Since Y − v has
FT

̂f (k) = 1 − 1
2σ

2k2 + o(k2)
as k → 0, the sum of the mean-centered jumps (Y1 − v) + ⋅ ⋅ ⋅ + (Yn − v) has FT ̂f (k)n,
and then the centered and normalized sum

S(c)(t) = c−1/2
[ct]∑
j=1
(Yj − v) + c−1

[ct]∑
j=1
v
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has FT (1 − 1
2σ

2 k
2

c
+ o(c−1))[ct] ⋅ e−ikc−1v[ct] → exp(−ikvt − 1

2 tσ
2k2)

The limit inverts to a normal density with mean vt and variance σ2t. Physically, we
follow a cloud of particles (iid copies of the randomwalk S[ct]) in amoving coordinate
systemwith origin at x = vt. In this coordinate system, the cloud spreads according to
the di�usion equation. Translating back to the original coordinates, we see a di�usion
with drift.

1.2 Fractional di�usion

The di�usion model presented in Section 1.1 describes random walk limits with fi-
nite variance jumps. In many real world applications, particles follow a heavy-tailed
jump distribution, and a di�erent model emerges. Here we outline the argument for
the simplest case, a Pareto distribution. Additional details are provided at the end of
this section. The formal proof for Pareto jumps will be given in Theorem 3.37. Then in
Theorem 4.5, wewill use regular variation to show that the same limit governs a broad
class of random walks whose probability tails fall o� like a power law.

As in Section 1.1, the random walk

Sn = Y1 + ⋅ ⋅ ⋅ + Yn
gives the location of a particle after n independent and identically distributed (iid)
jumps. Suppose that the jump variables Yn follow a Pareto distribution, centered to
mean zero: Suppose ℙ[X > x] = Cx−α where C > 0 and 1 < α < 2. Then the first

moment μ = E[X] exists, but the second moment E[X2] = ∞. Now take Yn iid with

X − μ, so that μ1 = E[Yn] = 0. Since the variance of Yn is infinite, the central limit

theorem (1.3) does not apply. Instead, we will see that a di�erent limit occurs, with a
di�erent scaling. For suitably chosen C, the FT of Yn is (see details)

̂f (k) = 1 + (ik)α + O(k2) (1.18)

as k → 0. The sum Sn = Y1 + ⋅ ⋅ ⋅ + Yn has FT ̂f (k)n and the normalized sum n−1/αSn
has FT

̂f (n−1/αk)n = (1 + (ik)α
n
+ O(n−2/α))n → e(ik)

α

(1.19)

since 2/α > 1, where the limit

e(ik)
α = E [e−ikZ]

is the FT of a stable density (see details). The continuity theorem for FT yields the ex-
tended central limit theorem:

n−1/αSn = Y1 + ⋅ ⋅ ⋅ + Yn
n1/α

⇒ Z. (1.20)
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The family of stable distributions includes the normal as a special case, when α = 2.
They represent all possible limits in the extended central limit theorem, see Theorem
4.5 for details.

Now we show convergence of the random walk. As c →∞ we have

E[e−ik c−1/αS[ct]] = (1 + (ik)α
c
+ O(c−2/α))[ct] → et(ik)

α

where the limit
et(ik)

α = E[e−ikZt] = p̂(k, t) = ∫ e−ikxp(x, t) dx
is the FT of a stable density. Then the continuity theorem for FT implies

c−1/αS[ct] ⇒ Zt .

Unlike the normal case α = 2, the stable FT p̂(k, t) = et(ik)α cannot be inverted in
closed form when 1 < α < 2.

Clearly the FT p̂(k, t) = et(ik)α solves
dp̂

dt
= (ik)α p̂. (1.21)

Recalling that (ik)n ̂f (k) is the FT of the nth derivative, we define the fractional deriva-
tive dα f(x)/dxα to be the function whose FT is (ik)α ̂f (k) (see details). Then we can in-
vert the FT in (1.21) to see that the stable densities solve a fractional di�usion equation

∂p

∂t
= ∂

αp

∂xα
. (1.22)

The fractional di�usion equation models the spreading of a cloud of particles with a
power-law jump distribution.

The stable pdf p(x, t) is positively skewed, with a heavy power-law tail. In fact, we
have p(x, t) = Ax−α−1 + o(x−α−1) as x → ∞ for some A > 0 depending on C, t, and α,
so that the limit retains the power-law jump distribution (e.g., see Zolotarev [228], p.
143). This is in stark contrast to the traditional CLT, in which the tail behavior of the
individual jumps disappears in the limit.

The fractional di�usion equation (1.22) models super-di�usion. In fact, we have
Zct ≃ c1/αZt (same distribution) since

E[e−ikZct ] = p̂(k, ct) = ect(ik)α
= et(ikc1/α)α = p̂(c1/αk, t) = E[e−ik c1/αZt ]

This property is called self-similarity. The index H = 1/α of self-similarity is often
called the Hurst exponent (e.g., see Embrechts and Maejima [64]). This also implies
that solutions p(x, t) to the fractional di�usionequation (1.22) satisfy a scaling relation

p(x, ct) = c−1/αp(c−1/αx, t) for all x ∈ ℝ and all t > 0.
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Fig. 1.3: Solution to the fractional di�usion equation (1.23) at time t = 5.0 with velocity v = 2.0 and
dispersion D = 1.0, for α = 1.5.

In particular, the spreading rate is t1/α, and the peak falls at the same rate, which is
faster than the t1/2 rate in the traditional di�usion equation (1.6).

Next we add scale and drift. The FT of vt + D1/αZt is
p̂(k, t) = E[e−ik(vt+D1/αZt)] = e−ikvt+Dt(ik)α

which solves
dp̂

dt
= (−ikv + D(ik)α) p̂.

Invert the FT to obtain the fractional di�usion equation with drift:

∂p

∂t
= −v ∂p

∂x
+ D∂

αp

∂xα
. (1.23)

In applications to ground water hydrology, equation (1.23) is also called the frac-
tional advection dispersion equation (FADE), see Benson et al. [29]. Advection is the
displacement of suspended particles in moving water, and dispersion is the parti-
cle spreading caused by particles following di�erent flow paths through a porous
medium. The particle density p(x, t) that solves (1.23) has center of mass x = vt,
and it spreads out from the center of mass at the super-di�usive rate t1/α due to
self-similarity.

Figure 1.3 shows a stable pdf that solves the FADE (1.23). Note the skewness and
the heavy right tail. Figure 1.4 shows how the solution evolves in time. Since the limit
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Fig. 1.4: Solution to fractional di�usion equation (1.23) at times t1 = 3.0 (solid line), t2 = 5.0 (dotted
line), and t3 = 8.0 (dashed line) with velocity v = 3.0 and dispersion D = 1.0, for α = 1.5.

process is self-similar with index 1/α > 1/2, the plume spreads faster than a tradi-
tional Brownian motion. The R codes used to produce the plots in Figures 1.3 and 1.4
will be presented and discussed in Examples 5.9 and 5.11, respectively.

In ground water hydrology, the FADE (1.23) models concentration of a contami-
nant that is transported along with moving water under the ground. Particles must
find their way through a porous medium consisting of sand, gravel, clay, etc. Some
particles will find a relatively direct path, while others will take amore tortuous route.
This causes dispersion, traditionally modeled by the second derivative term. A frac-
tional derivative indicates a power-law distribution of particle velocities, thought to
be related to a fractal model of the porous medium, see Wheatcraft and Tyler [218].
The plume center of mass moves at a constant rate, modeled by the first derivative
term. Concentration measurements are taken at di�erent points x at the same time
t > 0 to form a histogram, which is then fit to the stable density p(x, t) that solves the
FADE (1.23).

To fit the parameter α, the fact that p(x, t) ≈ Ax−α−1 is used. Since log p ≈ log A −
(α + 1) log x, a log-log plot of the concentration profile should resemble a straight line
with slope −(α + 1) for x large, and this can provide a rough estimate of α. Figure 1.5
shows concentrationmeasurements takenat a distance xmeters downstream from the
initial injection point, from an experiment documented in Benson et al. [29]. A tracer
is injected at location x = 0 at time t = 0 and transported downstream by the natural
flow of the ground water. Concentration measurements taken at t = 224 and t = 328
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days after injection were fit to the FADE (1.23) with constant coe�cients (black line),
and to the traditional advection dispersion equation (ADE) in (1.9) where D is allowed
to varywith time (grey line). It is commonly noted in hydrological studies that the best
fitting D grows with time like a power law (e.g., see Wheatcraft and Tyler [218]). The
popularity of the fractional ADE is partly due to the fact that it can fit the same plume
at di�erent times using constant coe�cients. The fitted stable density has α = 1.1
with v = 0.12 meters per day and D = 0.14 metersα per day. It is thought that α
reflects the heterogeneity of the porous medium, see Clarke et al. [50]. The power law
tail of the stable density is confirmedby the straight line asymptotics on the right hand
side of eachplot. The best fitting normal density underestimates concentrations by six
orders of magnitude at the leading (right) edge of the plume. If the plume represents
a pollutant heading towards a municipal water supply well, the ADE would seriously
underestimate the risk of downstream contamination. The stable density that solves
the FADE, on the other hand, captures the super-di�usive spreading and power-law
leading tail observed in the data.
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Fig. 1.5: Concentration measurements from Benson et al. [29], and fitted stable density with α = 1.1.

A more general fractional di�usion equation pertains when random walk jumps
follow a two-sided Pareto distribution. Suppose ℙ[X > x] = pCx−α and ℙ[X < −x] =
qCx−α for some 1 < α < 2 and 0 ≤ p, q ≤ 1 with p + q = 1. Then μ1 = E[X] exists, and
we take (Yn) iid with X − μ1. Now for some constant D > 0 depending on α and C we
have (see details)

̂f (k) = 1 + pD(ik)α + qD(−ik)α + O(k2) (1.24)

and then we get

E[e−ik c−1/αS[ct] ] = (1 + pD(ik)α + qD(−ik)α
c

+ O(c−2/α))[ct]
→ et[pD(ik)

α+qD(−ik)α] = p̂(k, t).
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This FT solves
dp̂

dt
= [pD(ik)α + qD(−ik)α] p̂. (1.25)

Now we define the negative fractional derivative dα f(x)/d(−x)α to be the function
whose FT is (−ik)α ̂f (k). Invert the FT in (1.25) to see that the two-sided stable densities
solve a two-sided fractional di�usion equation

∂p(x, t)
∂t
= pD ∂

αp(x, t)
∂xα
+ qD ∂

αp(x, t)
∂(−x)α . (1.26)

The random walk limit c−1/αS[ct] ⇒ Zt is a two-sided stable process. Its densities
solve the fractional di�usion equation (1.26), which therefore models the spreading
of a cloud of particles with power-law jumps in both directions. The weights p and q
represent the relative likelihood of positive or negative jumps. The family of two-sided
stable densities p(x, t) for the limit process Zt spreads at the super-di�usive rate t1/α ,
and has power-law tails in both directions (see details). The skewness β = p − q indi-
cateswhether the pdf is positively skewed (β > 0) due to the preponderance of positive
jumps, negatively skewed (β < 0), or symmetric (β = 0). The two-sided FADE

∂p(x, t)
∂t
= −v ∂p(x, t)

∂x
+ pD ∂

αp(x, t)
∂xα
+ qD ∂

αp(x, t)
∂(−x)α (1.27)

governs the process vt + Zt, the scaling limit of a random walk with mean jump v =
E[Yn] (see details).

In applications to ground water hydrology, concentration profiles show a power-
law leading edge, and we typically find β = 1, since fast-moving particles jump down-
stream, as noted by Benson et al. [29]. In a classical study of turbulence by Solomon,
Weeks and Swinney [206], velocity measurements follow a symmetric power-law dis-
tributionwith β = 0. In a fractionalmodel for invasive species developed by Baeumer,
Kovács and Meerschaert [16], animals and plants take power law jumps with β > 0,
indicating a preference for motion in the direction of new territories . In finance, price
jumps follow a power law with β ≈ 0, while trading volume follows a power law with
β = 1, see for example Mandelbrot [132]. In medical ultrasound, power law disper-
sal is observed with β = 1, see Kelly, McGough and Meerschaert [103]. In river flows,
retention of contaminant particles in river beds and eddy pools causes a power-law
trailing edge in the concentration profile, modeled by a FADE with β = −1, see for
example Deng, Singh and Bengtsson [60]. This fit is controversial, since the random
walk model with β = −1 suggests that particles are taking long jumps upstream, see
discussion in Chakraborty, Meerschaert and Lim [47]. The paper [47] also discusses
more advanced statistical methods for fitting a stable pdf to data.

Remark 1.5. The random variable Z with FT

E[e−ikZ] = epD(ik)α+qD(−ik)α
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is called stable because, if (Yn) are iid with Z, then the FT en[pD(ik)
α+qD(−ik)α] of n1/αZ

is also the FT of Y1 + ⋅ ⋅ ⋅ + Yn. It follows that
Y1 + ⋅ ⋅ ⋅ + Yn

n1/α
≃ Z

for all n ≥ 1, i.e., (1.20) holds with Yn replaced by Zn, and convergence in distribution
strengthened to equality in distribution.

Remark 1.6. The most cited paper of Einstein [63] concerns the connection between
random walks, Brownian motion, and the di�usion equation. Sokolov and Klafter
[205] review the history, and the development of fractional di�usion, based on ran-
dom walks with power law jumps, to address empirical observations of anomalous
di�usion.

Details

A Pareto random variable X satisfies ℙ[X > x] = Cx−α for x > C1/α, where C > 0 and
1 < α < 2. It has cdf

F(x) = ℙ[X ≤ x] = {{{1 − Cx−α if x ≥ C1/α
0 if x < C1/α (1.28)

and pdf

f(x) = {{{Cαx−α−1 if x ≥ C1/α
0 if x < C1/α (1.29)

The pth moment

μp = E[Xp] = ∫ xp f(x) dx
= Cα

∞∫
C1/α

xp−α−1 dx

= Cα [ xp−α
p − α]∞C1/α = α

α − p C
p/α (1.30)

when 0 < p < α. For p ≥ α, the pth moment μp does not exist, since the integral in
(1.30) diverges at infinity. Hence for 1 < α < 2, the first moment μ1 exists, but the
second moment μ2 is undefined.

In this book, we define the fractional power zα of any complex number z = reiθ as
zα = rαeiθα, where α ≥ 0, r ≥ 0, −π < θ ≤ π, and eiθ = cos θ + i sin θ.
Proposition 1.7. A Pareto random variable X with pdf (1.29) for some 1 < α < 2 has

FT

E[e−ikX] = 1 − ikμ1 + D(ik)α + O(k2) as k → 0. (1.31)

where μ1 is given by (1.30) with p = 1, and D = CΓ(2 − α)/(α − 1).
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Proof. Write

E[e−ikX] =
∞∫
C1/α

e−ikxCαx−α−1dx

=
∞∫
C1/α

[1 − ikx + (e−ikx − 1 + ikx)]Cαx−α−1dy
= 1 − ikμ1 +

∞∫
0

(e−ikx − 1 + ikx)Cαx−α−1dy
−
C1/α∫
0

(e−ikx − 1 + ikx)Cαx−α−1dy
where μ1 = C1/αα/(α −1) by (1.30) with p = 1. It follows by an elementary but lengthy
computation (see the proof of Proposition 3.12) that

∞∫
0

(e−ikx − 1 + ikx)Cαx−α−1dx = C Γ(2 − α)
α − 1 (ik)

α

when 1 < α < 2. For the remaining integral, a Taylor series expansion shows that

|e−ikx − 1 + ikx| ≤ (kx)
2

2!
for all x ∈ ℝ and k ∈ ℝ.

Then !!!!!!!!!!!!!C
1/α∫
0

(e−ikx − 1 + ikx)Cαx−α−1dy!!!!!!!!!!!!! ≤ k22 C1/α∫
0

Cαx1−αdy

= k
2

2
Cα [ x2−α

2 − α]C1/α
0

= k
2

2

α

2 − α C
2/α

since 1 < α < 2. Then it follows that X has FT (1.31).

Setting C = (α − 1)/Γ(2 − α) and using the Taylor series for ez, it follows from (1.31)
that Y = X − μ1 has FT
E[e−ik(X−μ1)] = [1 − ikμ1 + (ik)α + O(k2)] ⋅ [1 + ikμ1 + 1

2! (ikμ1)2 + O(k3)]
= 1 + (ik)α + O(k2)

which justifies the FT expansion in (1.18).
Inverting the FT (1.21) to arrive at (1.22) also requires∫ eikx ∂

∂t
p̂(k, t) dk = ∂

∂t
∫ eikxp̂(k, t) dk
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for the FT p̂(k, t) = et(ik)α of a stable density. Write

∂

∂t
∫ eikxp̂(k, t) dk = lim

h→0
∫ eikx p̂(k, t + h) − p̂(k, t)

h
dk,

where !!!!!!!! p̂(k, t + h) − p̂(k, t)h

!!!!!!!! = !!!!!et(ik)α !!!!! !!!!!!!!!1 − eh(ik)αh(ik)α
!!!!!!!!! !!!!(ik)α !!!! . (1.32)

Note that |ez| = eRe(z), i = cos (π/2) + i sin (π/2), and (ik)α = (i sgn(k)|k|)α =
|k|α exp(i sgn(k)πα/2) = |k|α[cos(πα/2) + i sgn(k) sin(πα/2)], where sgn(k) is sign
of k. Then the first term in (1.32) reduces to!!!!!et(ik)α !!!!! = et|k|α cos(πα/2)
where cos (πα/2) < 0, since 1 < α < 2. Also, the third term is!!!!(ik)α !!!! = |k|α
since |eiθ| = 1 for all real θ. To bound the second term, use the Taylor series for ez to
write !!!!!!!!1 − ezz

!!!!!!!! ≤ 1 + |z|2 + |z|23! + ⋅ ⋅ ⋅ = e|z| − 1|z| .

Fix t > 0 and consider z = h(ik)α for |h| < −(t/2) cos (πα/2). Then |z| = |h||k|α, and
the mean value theorem implies that

e|h||k|
α − 1 ≤ |h||k|αe−(t/2) cos (πα/2)|k|α

for all |h| < −(t/2) cos (πα/2). Then the second term in (1.32) is bounded by!!!!!!!!!1 − eh(ik)αh(ik)α
!!!!!!!!! ≤ e|h||k|α − 1|h||k|α ≤ e

−(t/2) cos (πα/2)|k|α

Putting all three terms together, it follows that!!!!!!!! p̂(k, t + h) − p̂(k, t)h

!!!!!!!! ≤ |k|αe(t/2)|k|α cos(πα/2)
for all |h| < −(t/2) cos (πα/2). Since the function |k|αe(t/2)|k|α cos(πα/2) is integrable with
respect to k for any t > 0, the dominated convergence theorem implies that

∂

∂t
∫ eikxp̂(k, t) dk = ∫ eikx lim

h→0
p̂(k, t + h) − p̂(k, t)

h
dk = ∫ eikx ∂

∂t
p̂(k, t) dk.

Similar arguments justify (1.23) and (1.26).
A two-sided Pareto random variable X with index 1 < α < 2 satisfies ℙ[X > x] =

pCx−α and ℙ[X < −x] = qCx−α for all x > C1/α, where C > 0, and 0 ≤ p, q ≤ 1 with
p + q = 1. Then X has pdf

f(x) =
{{{{{{{
pCαx−α−1 if x > C1/α;
0 if −C1/α < x < C1/α;
qCα|x|−α−1 if x < −C1/α.
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Noting that |x| = −x for x < 0, a substitution y = −x along with (1.30) shows that the
nth moment of X is

E[Xn] = ∫ xn f(x) dx
= pCα

∞∫
C1/α

xn−α−1 dx + qCα
−C1/α∫
−∞

xn(−x)−α−1 dx

= pCn/α α

α − n + qCα
∞∫
C1/α

(−1)nyn−α−1 dy

= (p + (−1)nq)Cn/α α

α − n (1.33)

when 0 < n < α. For n ≥ α, the nth moment does not exist.
The FT of X follows easily from Proposition 1.7. A change of variables y = −x to-

gether with (1.31) leads to

E[e−ikX] = p
∞∫
C1/α

e−ikxCαx−α−1dx + q
−C1/α∫
−∞

e−ikxCα(−x)−α−1dx

= p [1 − ikμ + D(ik)α + O(k2)] + q ∞∫
C1/α

eikyCαy−α−1dy

= p [1 − ikμ + D(ik)α + O(k2)] + q [1 + ikμ + D(−ik)α + O(k2)]
= 1 − (p − q)ikμ + pD(ik)α + qD(−ik)α + O(k2) (1.34)

where μ = C1/αα/(α − 1) and D = CΓ(2 − α)/(α − 1). Since μ1 = (p − q)μ = E[X] by
(1.33), it follows from (1.34) that Y = X − μ1 has FT
E[e−ikY] = [1 − ikμ1 + pD(ik)α + qD(−ik)α + O(k2)] ⋅ [1 + ikμ1 + O(k2)]

= 1 + pD(ik)α + qD(−ik)α + O(k2)
which justifies the FT expansion in (1.24).

The Lévy Continuity Theorem 1.3 shows that the limit e(ik)
α
in (1.19) is the FT of

some probability measure, since it is continuous at k = 0. In Section 4.5 we will prove
that this probability distribution has a density, using the FT inversion formula (Theo-
rem 1.4).

In Proposition 2.5 we will use the FT inversion formula prove that if f and its
derivatives up to some integer order n > 1 + α exist and are absolutely integrable,
then the fractional derivative dα f(x)/dxα exists, and its FT equals (ik)α ̂f (k).

To show that (1.23) governs the limit of a random walk with drift, take Xj iid with
X, where ℙ[X > x] = Cx−α for some 1 < α < 2 and some C > 0. Proposition 1.7 shows
that Xj has FT (1.31), and it follows that the FT of Xj − μ1 is 1 + D(ik)α + O(k2). Take
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Sn = X1 + ⋅ ⋅ ⋅ + Xn and consider the normalized random walk

c−1/α(S[ct] − v[ct]) + c−1v[ct] = c−1/α
[ct]∑
j=1
(Xj − v) + c−1

[ct]∑
j=1
v

where v = μ1 = E[X]. Take FT to get(1 + D (ik)α
c
+ O(c−2/α))[ct] ⋅ e−ikc−1v[ct]→ exp(−ikvt + Dt(ik)α).

Remark 1.8. The FT expansion (1.18) can also be proven using Tauberian theorems
from Pitman [169]. These Tauberian theorems relate the asymptotic behavior of the
probability tail G(x) = ℙ[Y > x] at infinity to that of the FT at zero. We will write
f(x) ∼ g(x) to mean that the ratio f(x)/g(x) → 1. Suppose Y > 0 with G(x) ∼ Cx−α as
x →∞ for some 1 < α < 2, and let ̂f (k) = E[e−ikY]. Then the real and imaginary parts
of the FT satisfy

Re ̂f (−k) = 1 − π

2Γ(α) sin(πα/2)G(1/k) + o(k
α)

Im ̂f (−k) = π

2Γ(α) cos(πα/2)G(1/k) + o(k
α)

as k → 0, by [169, Theorem 1] and [169, Theorem 8], respectively. Putting the real and
imaginary parts together, and using the formula

(−i)α = (e−iπ/2)α = e−iπα/2 = cos(πα/2) − i sin(πα/2)
we have

̂f (−k) = 1 − Ckα π

2Γ(α) [ 1

sin(πα/2) −
i

cos(πα/2)] + o(kα)
= 1 − Cπkα cos(πα/2) − i sin(πα/2)

2 sin(πα/2) cos(πα/2)Γ(α) + o(k
α)

= 1 − Cπ

Γ(α) sin(πα) (−ik)
α + o(kα)

as k → 0. This shows that

̂f (k) = 1 + D(ik)α + o(kα)
as k → 0, where

D = − Cπ

Γ(α) sin(πα) > 0
since 1 < α < 2. Using Euler’s formula

Γ(α)Γ(1 − α) = π

sin(πα)
we have

D = −CΓ(1 − α) = CΓ(2 − α)
α − 1

which agrees with Proposition 1.7.



2 Fractional Derivatives

Fractional derivativeswere invented by Leibnitz soon after their integer-order cousins.
In this chapter, we develop the main ideas and mathematical techniques for dealing
with fractional derivatives.

2.1 The Grünwald formula

In the first chapter of this book, we defined the fractional derivative dαf(x)/dxα as the
functionwith FT (ik)α ̂f (k). Our present goal is to develop amore familiar and intuitive
definition in terms of di�erence quotients. Given a function f(x), we candefine the first
derivative

df(x)
dx
= lim
h→0

f(x) − f(x − h)
h

when the limit exists. Higher order derivatives are defined by

dn f(x)
dxn
= lim
h→0

∆n f(x)
hn

where

∆f(x) = f(x) − f(x − h)
∆2f(x) = ∆∆f(x) = ∆[f(x) − f(x − h)]
= f(x) − 2f(x − h) + f(x − 2h)

∆3f(x) = f(x) − 3f(x − h) + 3f(x − 2h) − f(x − 3h)
...

∆n f(x) =
n∑
j=0
(n
j
) (−1)j f(x − jh)

using the binomial formula: Using the backward shift operator Bf(x) = f(x−h)we can
write

∆f(x) = (I − B)f(x)
where If(x) = f(x) is the identity operator; then we have

∆n f(x) = (I − B)n f(x) =
n∑
j=0
(n
j
) (−B)j In−jf(x).

The fractional di�erence operator

∆α f(x) = (I − B)α f(x) =
∞∑
j=0
(α
j
) (−B)j f(x) = ∞∑

j=0
(α
j
) (−1)j f(x − jh)

DOI 10.1515/9783110258165-002
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is also used in time series analysis to model long range correlation. Here(α
j
) = Γ(α + 1)

j!Γ(α − j + 1)
extends the usual definition, since Γ(n + 1) = n! for positive integers n. Now we write
the Grünwald-Letnikov finite di�erence form

dαf(x)
dxα
= lim
h→0

∆α f(x)
hα

(2.1)

for the fractional derivative. Our next result shows that this definition agrees with our
original definition of the fractional derivative in terms of Fourier transforms.
Proposition 2.1. For a bounded function f , such that f and its derivatives up to some

order n > 1 + α exist and are absolutely integrable, the Grünwald fractional derivative
(2.1) exists, and its FT is (ik)α ̂f (k).
Proof. The binomial series

(1 + z)α =
∞∑
j=0
(α
j
) zj (2.2)

converges for any complex |z| ≤ 1 and any α > 0 (e.g., see Hille [89, p. 147]). Equation
(2.12) in the details at the end of this section shows that

∞∑
j=0

!!!!!!!!!(αj) (−1)j !!!!!!!!! < ∞.
Hence, if f is bounded, the series

∆α f(x) =
∞∑
j=0
(α
j
) (−1)j f(x − jh)

converges, uniformly on −∞ < x < ∞.
Proposition 2.5 in thedetails at the endof this section shows that dα f(x)/dxα exists

as the function with FT (ik)α ̂f (k). A substitution y = x − a shows that f(x − a) has FT∫ e−ikxf(x − a) dx = ∫ e−ik(y+a)f(y) dy
= e−ika ∫ e−ikyf(y) dy = e−ika ̂f (k).

Then ∆α f(x) has FT∫ e−ikx ∞∑
j=0
(α
j
) (−1)j f(x − jh) dx = ∞∑

j=0
(α
j
) (−1)j ∫ e−ikxf(x − jh) dx

=
∞∑
j=0
(α
j
) (−1)je−ikjh ̂f (k)

= (1 − e−ikh)α ̂f (k).
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The first equality above can be justified using the uniform convergence of the series
∆α f(x), and the integrability of each term (e.g., see Rudin [181, Theorem 7.16, p. 151]).

If k ̸= 0, then the FT of ∆α f(x)/hα is

h−α(ikh)α (1 − e−ikh
ikh
)α ̂f (k) = (ik)α (1 − [1 − ikh + 1

2! (−ikh)2 + ⋅ ⋅ ⋅ ]
ikh

)α ̂f (k)
= (ik)α ( ikh − 1

2! (−ikh)2 + ⋅ ⋅ ⋅
ikh

)α ̂f (k)
= (ik)α (1 − 1

2! (ikh) + ⋅ ⋅ ⋅ )α ̂f (k)
→ (ik)α ̂f (k)

as h → 0. If k = 0, then obviously (1 − e−ikh)α ̂f (k) = (ik)α ̂f (k). Hence the FT of
∆α f(x)/hα converges pointwise to that of dα f(x)/dxα . Then Proposition 2.6 in the de-
tails at the end of this section shows that (2.1) holds.
Remark 2.2. A similar argument shows that for any fixed integer p > 0 we have

dα f(x)
dxα
= lim
h→0

h−α
∞∑
j=0
(α
j
) (−1)j f(x − (j − p)h)

which is useful in numerical methods, see for example Meerschaert and Tadjeran
[155].
The negative fractional derivative can be defined by

dα f(x)
d(−x)α = limh→0 h

−α
∞∑
j=0
(α
j
) (−1)j f(x + jh). (2.3)

An argument similar to Proposition 2.1 shows that this expression has FT (−ik)α ̂f (k).
The fractional di�erence is a discrete convolution with the Grünwald weights

wj = (−1)j (α
j
) = (−1)jΓ(α + 1)

Γ(j + 1)Γ(α − j + 1)
= (−1)

jα(α − 1) ⋅ ⋅ ⋅ (α − j + 1)
Γ(j + 1)

= −α(1 − α) ⋅ ⋅ ⋅ (j − 1 − α)
Γ(j + 1)

= −αΓ(j − α)
Γ(j + 1)Γ(1 − α) (2.4)

using the property Γ(x + 1) = xΓ(x). Write f(x) ∼ g(x) to mean that f(x)/g(x) → 1.
Apply Stirling’s approximation Γ(x + 1) ∼ √2πx xxe−x as x →∞ to get

wj ∼ −α
Γ(1 − α)

√2π(j − α − 1) (j − α − 1)j−α−1e−(j−α−1)√2πj jje−j
= −α
Γ(1 − α)√ j − α − 1j

( j − α − 1
j
)j−α−1 j−α−1eα+1
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and note that √ j − α − 1
j
→ 1

and ( j − α − 1
j
)j−α−1 = (1 − α + 1

j
)j ⋅ ( j − α − 1

j
)−α−1

→ e−(α+1) ⋅ 1
as j →∞. It follows that the Grünwald weights follow a power law asymptotically:

wj ∼ −α
Γ(1 − α) j

−α−1 as j →∞. (2.5)

TheGrünwald formula (2.1) gives a concrete interpretation to the fractional deriva-
tive. Suppose that p(x, t) represents the relative concentration of particles in the frac-
tional di�usion equation ∂p/∂t = ∂αp/∂xα . Suppose that 1 < α < 2, so that wj > 0 for
all j ≥ 2. Since

∆p(x, t)
∆t
≈ (∆x)−α

∞∑
j=0
wjp(x − j∆x, t)

we see that the change in concentration at location x at time t is increased by an
amount wjp(x − j∆x, t) that is transported to location x from location x − j∆x. Since
wj falls o� like a power law j−α−1, the fraction of particles at any location that moves
j steps to the right follows a power law distribution. This deterministic model is com-
pletely consistent with the random power lawmodel of particle jumps assumed in the
last chapter, leading to the extended central limit theorem, and a stable density that
solves this fractional di�usion equation. This connection between the deterministic
(Euler) picture and the random (Lagrange) picture of di�usion is fundamental.
Remark 2.3. Here we explain the Eulerian picture. We give a physical derivation of
the deterministic model for di�usion, and show how it extends to the fractional case.
Let p(x, t) represent the mass concentration at location x at time t. The conservation
of mass law is

∂p

∂t
= −∂q

∂x
(2.6)

where q(x, t) is the flux. Consider a small cube of side ∆x in three dimensions, with
flow from left to right in the x direction. The flux

flux = mass
area ⋅ time

(2.7)

at location x is the rate at which mass passes through the face of the cube at location
x. Since the face of the cube has area A = (∆x)2 the change in mass in the cube over
time ∆t can be approximated by

∆M = q(x, t)A ∆t − q(x + ∆x, t)A ∆t.
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Then the approximate change in concentration is

∆p = ∆M
A∆x
= −[q(x + ∆x, t) − q(x, t)]A∆t

A∆x
= −−∆q(x, t)∆t

∆x

and so
∆p

∆t
= −∆q

∆x

which leads to (2.6) in the limit as ∆x → 0. See Figure 2.1 for an illustration.

x x + Dx

i i+1

Dx

Fig. 2.1: Eulerian picture for di�usion, from Schumer et al. [195].

The di�usion equation comes from combining the conservation of mass equation
(2.6) with Fick’s Law for the flux

q = −D∂p
∂x

(2.8)

which states that particle flux is proportional to the concentration gradient. Fick’s law
is based on empirical observation. If fluid to the left of the point x contains a higher
concentration of dissolved mass than fluid to the right of the point x, then random
motion will send more particles to the right than to the left. In this case, we have
∂p/∂x < 0 and q > 0, i.e., the sign of the flux is the opposite of the sign of the concen-
tration gradient. Experiments indicate that flux is generally a linear function of the
gradient. The dispersivity constant D in (2.8) depends on physical parameters such as
temperature (a higher temperature increases D).

The di�usion equation comes from combining (2.6) with (2.8):

∂p

∂t
= − ∂

∂x
[−D∂p

∂x
] = D∂2p

∂x2

assuming D is a constant independent of x. The fractional di�usion equation with
1 < α < 2 can be derived from a fractional Fick’s Law

q = −D∂
α−1p

∂xα−1
(2.9)
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combined with the classical conservation of mass equation

∂p

∂t
= − ∂

∂x
[−D∂α−1p

∂xα−1
] = D∂αp

∂xα

where (2.9) can be understood in terms of the Grünwald formula. In the traditional
derivation of Fick’s Law, we consider particle movements between adjacent cubes of
side ∆x, as illustrated in Figure 2.1. The fractional Fick’s Law for the flux allows parti-
cles to jump into the box at location x from a box at location x− j∆x. The proportion of
particles that make a jump this long drops o� as a power of the separation distance.
See Schumer et al. [195] for more details. An alternative derivation uses the traditional
Fick’s Law (2.8) along with a fractional conservation of mass equation

∂p

∂t
= −∂

α−1q

∂xα−1
(2.10)

which leads to the same fractional di�usion equation

∂p

∂t
= − ∂

α−1

∂xα−1
[−D∂p

∂x
] = D∂αp

∂xα
,

see Meerschaert, Mortensen and Wheatcraft [139] for additional details. The physical
interpretation of (2.10) is similar to (2.9), using the Grünwald interpretation of the frac-
tional derivative. Both lead to the same fractional di�usion equationwhen the disper-
sivityD is a constant. For a combination of positive andnegative fractional derivatives,
particles can also jump into the box at location x froma box at location x+ j∆x. See Fig-
ure 2.2 for an illustration. For the case where D varies with x, see for example Zhang,
Benson, Meerschaert and LaBolle [224]. A more general model of flux as a convolu-
tion was developed by Cushman and Ginn [54]. It was shown in Cushman and Ginn
[55] that this more general model reduces to the fractional di�usion equation when
the convolution is a power law. Note that the physical derivation also explains whywe
focus on the case 1 < α ≤ 2.

Details

Here we collect somemathematical details needed to check the arguments in this sec-
tion. The gamma function is defined for α > 0 by

Γ(α) =
∞∫
0

e−xxα−1 dx.

Note that e−xxα−1 ∼ xα−1 as x → 0+, so that the integral exists. A simple integration
by parts

b∫
a

u(x)v�(x)dx = u(x)v(x)!!!!ba − b∫
a

v(x)u�(x) dx
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Dx

i−4 i−3 i−2 i−1 i i+1 i+2 i+3 i+4

Fig. 2.2: Eulerian picture for fractional di�usion, from Schumer et al. [195].

with u = xα shows that

Γ(α + 1) = [−xαe−x]∞0 + α ∞∫
0

e−xxα−1 dx = αΓ(α)

for α > 0. Now use the formula Γ(α +1) = αΓ(α) to extend the definition of the gamma
function to non-integer values of α < 0. For example, Γ(−0.7) = Γ(0.3)/(−0.7), and
Γ(−1.7) = Γ(−0.7)/(−1.7). Since

Γ(1) =
∞∫
0

e−x dx = 1

it follows that Γ(n + 1) = n! Apply the formula Γ(α + 1) = αΓ(α) j times to see that(α
j
) = Γ(α + 1)

Γ(j + 1)Γ(α − j + 1) =
αΓ(α)

j!Γ(α − j + 1) = ⋅ ⋅ ⋅ =
α(α − 1) ⋅ ⋅ ⋅ (α − j + 1)

Γ(j + 1) .

Eventually (j − 1 − α) > 0 for all j large, and then

wj = (−1)j (α
j
) = −α

Γ(j + 1) (1 − α) ⋅ ⋅ ⋅ (j − 1 − α)

has the same sign for all j large. Since

∞∑
j=0
wj =
∞∑
j=0
(α
j
) (−1)j = (1 + (−1))α = 0 (2.11)

by the binomial formula (2.2), it follows that

∞∑
j=0
|wj | < ∞. (2.12)
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Since e−z = 1 − z + O(z2), we have for any fixed k ̸= 0 that(1 − e−ikh
ikh
)α = (1 − [1 − ikh + O(h2)]

ikh
)α = (1 + 1

ik
O(h))α → 1

as h → 0.
Our next goal is to prove that, under certain technical conditions, the fractional

derivative dα f(x)/dxα exists as the functionwith FT (ik)α ̂f (k). This requires the follow-
ing useful lemma.
Lemma 2.4. If f(x) and all of its derivatives up to order n exist and are absolutely inte-
grable, then

| ̂f (k)| ≤ C

1 + |k|n (2.13)

for all k ∈ ℝ.
Proof. When k = 0, | ̂f (0)| ≤ ∫∞−∞ |f(x)|dx := C0, and similarly for |k| < 1 we have

| ̂f (k)| ≤ 2C0
1 + |k|n ,

since 1 + |k|n < 2 in that case. A straightforward extension of the argument for (1.15)
shows that, if f(x) and all of its derivatives up to order n exist and are absolutely inte-
grable, then the FT of the nth derivative f (n)(x) equals (ik)n ̂f (k). Then we have

̂f (k) = (ik)−n
∞∫
−∞

e−ikxf (n)(x) dx,

and it follows that | ̂f (k)| ≤ C1/|k|n where C1 = ∫∞−∞ |f (n)(x)| dx. For |k| ≥ 1 we have
| ̂f (k)| ≤ 2C1

1 + |k|n ,

since 2|k|n ≥ 1 + |k|n in that case. Then by choosing C to be the larger of 2C1 or 2C0,
we have that (2.13) holds for all k.

The classical theory of FT is most clearly stated using the function spaces L1(ℝ) and
L2(ℝ). We give a brief summary here, see Stein and Weiss [208, Sections 1 and 2]
for complete details. A function is in L1(ℝ) if it is absolutely integrable, meaning
that ∫ |f(x)| dx < ∞. A function is in L2(ℝ) if it is square integrable, meaning that∫ |f(x)|2dx < ∞. Theorem 1.4 shows that every f ∈ L1(ℝ) has a FT. Then the FT can
be extended to L2(ℝ) by taking limits. The function space L2(ℝ) is a Hilbert space

with inner product ⟨f, g⟩2 = ∫ f(x)ḡ(x) dx, a special kind of Banach space with the
norm ‖f‖2 = √⟨f, f⟩2. Here ā + ib = a − ib denotes the complex conjugate. We will
give more details about Banach spaces in Section 3.3. If f ∈ L2(ℝ) then the function
fn(x) = f(x)I(|x| ≤ n) is in L1(ℝ) ∩ L2(ℝ) for any positive integer n. Then the FT ̂f (k)
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is defined as the limit of ̂fn(k) in the L2 sense, so that ‖f − fn‖2 → 0 as n → ∞. The
FT maps L2(ℝ) onto itself, so that every element of L2(ℝ) is also the FT of another
L2(ℝ) function. Furthermore, the Plancherel Theorem [208, Theorem 2.3] states that
⟨ ̂f , ĝ⟩2 = 2π⟨f, g⟩2, and hence ‖ ̂f ‖2 = √2π‖f‖2. Then it follows that ‖fn − f‖2 → 0 if
and only if ‖ ̂fn − ̂f ‖2 → 0 as n →∞.
Proposition 2.5. If f and its derivatives up to some integer order n > 1 + α exist and
are absolutely integrable, then the fractional derivative

dα f(x)
dxα
= 1

2π

∞∫
−∞

eikx(ik)α ̂f (k) dk

exists, and its FT equals (ik)α ̂f (k) in L2(ℝ).
Proof. Lemma 2.4 implies that (2.13) holds, and then

|(ik)α ̂f (k)| ≤ C|k|α
1 + |k|n

for all k. Since n > 1 + α, the function (ik)α ̂f (k) ∈ L1(ℝ) ∩ L2(ℝ). Define

g(x) = 1

2π

∞∫
−∞

eikx(ik)α ̂f (k) dk, x ∈ ℝ.

By the Plancherel theorem, we deduce that g ∈ L2(ℝ) and its FT (in L2(ℝ)) equals
(ik)α ̂f (k). Hence g(x) = dα f(x)/dxα in L2(ℝ).
Proposition 2.6. For a bounded function f , such that f and its derivatives up to some

order n > 1 + α exist and are absolutely integrable, the Grünwald fractional di�erence
quotient gh(x) := ∆α f(x)/hα converges to the fractional derivative dα f(x)/dxα , defined
as the function with FT (ik)α ̂f (k), for all x ∈ ℝ.
Proof. It was shown in the proof of Proposition 2.1 that the function gh(x) has FT

ĝh(k) = (1 − e−ikh
h
)α ̂f (k)→ (ik)α ̂f (k) as h → 0 (2.14)

where the convergence is pointwise. Moreover, by the mean value theorem and the
dominated convergence theorem, (2.14) also holds in L1(ℝ) and L2(ℝ). Indeed,!!!!!!!!!! [(1 − e−ikhh

)α − (ik)α] ̂f (k) !!!!!!!!!! = !!!!!(e−ikcα − 1)(ik)α ̂f (k)!!!!!
≤ 2 !!!!!(ik)α ̂f (k)!!!!!
∈ L1 ∩ L2 .
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In the first equality, c is a number between 0 and h.
By the L2-convergence in (2.14), Parseval’s identity implies that gh → g in L2 for

some function g ∈ L2. By the inversion formula, we may take g as

g(x) := 1

2π

∞∫
−∞

eikx(ik)α ̂f (k) dk

since (ik)α ̂f (k) ∈ L1. By Proposition 2.5, this g is equal to the fractional derivative
dα f(x)/dxα . Now by the pointwise and L1-convergence,

|gh(x) − g(x)| = 1

2π

!!!!!!!!!!!! ∞∫−∞ eikx(ĝh(k) − ĝ(k)) dk!!!!!!!!!!!! (2.15)

≤ 1

2π
|| ĝh − ĝ ||L1

→ 0

for any x ∈ ℝ as h → 0. Note that since gh is continuous by the uniform convergence
of the series ∆α f(x) and g is continuous by definition, the equality in (2.15) holds ev-
erywhere. This proves the pointwise convergence. In fact, the convergence is uniform
in x.

Since we define ∂αp/∂xα as the function with FT (ik)α p̂, it is clear that
∂α−1

∂xα−1
∂p

∂x
= ∂

∂x

∂α−1p

∂xα−1
= ∂

αp

∂xα

for any α > 0. Since ∆α f(x) has FT (1 − e−ikh)α ̂f (k), it is also true that
∆∆α−1f(x) = ∆α−1∆f(x) = ∆α f(x).

2.2 More fractional derivatives

In this section,wedevelop somealternative integral forms for the fractional derivative.
From equation (2.1) we have

∂α f(x)
∂xα
= lim
∆x→0

∆α f(x)
∆xα

(2.16)

where

∆α f(x) =
∞∑
j=0
wj f(x − j∆x)

is a discrete convolution with the Grünwald weights wj . Recall from (2.5) that

wj ∼
−α

Γ(1 − α) j
−α−1 as j →∞.
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Since w0 = 1 we can write

∆α f(x)
∆xα
= (∆x)−α [[f(x) + ∞∑j=1wj f(x − j∆x)]] .

From the binomial formula (2.2) it follows that ∑∞j=0 wj = 0, see (2.11). Consider the
simplest case 0 < α < 1. Then it follows from (2.4) that wj < 0 for all j ≥ 1, and so∑∞j=1 wj = −1. Define bj = −wj for j ≥ 1, so that

bj ∼
α

Γ(1 − α) j
−α−1 as j →∞, and

∞∑
j=1
bj = 1.

Then

∆α f(x)
∆xα
= (∆x)−α

∞∑
j=1
[f(x) − f(x − j∆x)] bj

≈
∞∑
j=1
[f(x) − f(x − j∆x)] α

Γ(1 − α) (j∆x)
−α−1∆x

≈
∞∫
0

[f(x) − f(x − y)] α

Γ(1 − α) y
−α−1dy

which motivates the generator form of the fractional derivative:

dα f(x)
dxα
=
∞∫
0

[f(x) − f(x − y)] α

Γ(1 − α) y
−α−1dy. (2.17)

Integrate by parts with u = f(x) − f(x − y) to get the Caputo form
dαf(x)
dxα
= 1

Γ(1 − α)
∞∫
0

f �(x − y)y−αdy = 1

Γ(1 − α)
∞∫
0

d

dx
f(x − y) y−αdy. (2.18)

Take the derivative outside the integral to get the Riemann-Liouville form

dα f(x)
dxα
= 1

Γ(1 − α)
d

dx

∞∫
0

f(x − y)y−αdy. (2.19)

[Are these forms equivalent?] These forms are valid for 0 < α < 1. For 1 < α < 2 we
can write the generator form

dα f(x)
dxα
= α(α − 1)
Γ(2 − α)

∞∫
0

[f(x − y) − f(x) + yf �(x)] y−1−αdy. (2.20)

Integrate by parts twice to get the Caputo form for 1 < α < 2:

dα f(x)
dxα
= 1

Γ(2 − α)
∞∫
0

d2

dx2
f(x − y)y1−αdy. (2.21)
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Move the derivative outside to get the Riemann-Liouville form for 1 < α < 2:

dα f(x)
dxα
= 1

Γ(2 − α)
d2

dx2

∞∫
0

f(x − y)y1−αdy. (2.22)

In Chapter 3 we will provide a rigorous proof that the generator form satisfies the FT
definition of the fractional derivative. The equivalence of the generator form and the
Caputo form will be discussed in the details at the end of this section. The general
relation between the Caputo and Riemann-Liouville forms will be discussed further
in Section 2.3.

Example 2.7. Let f(x) = eλx for some λ > 0, so that f �(x) = λeλx. Using the Caputo
form for 0 < α < 1, a substitution u = λy, and the definition of the gamma function,
we get

dα

dxα
[eλx] = 1

Γ(1 − α)
∞∫
0

λeλ(x−y)y−αdy

= λeλx

Γ(1 − α)
∞∫
0

e−λyy−αdy

= λeλx

Γ(1 − α)
∞∫
0

e−u (u
λ
)−α du

λ

= λeλx

Γ(1 − α) λ
α−1
∞∫
0

e−uu(1−α)−1du

= λeλx

Γ(1 − α) λ
α−1Γ(1 − α) = λαeλx

which agrees with the integer order case. For example, we have

d2

dx2
[eλx] = λ2eλx

and so forth. Using the Riemann-Liouville form we get

dα

dxα
[eλx] = d

dx
[[ 1

Γ(1 − α)
∞∫
0

eλ(x−y)y−αdy]]
= d

dx
[[ eλx

Γ(1 − α)
∞∫
0

e−λyy−αdy]]
= d

dx
[ eλx

Γ(1 − α) λ
α−1Γ(1 − α)]

= d

dx
[λα−1eλx] = λαeλx
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which agrees with the Caputo. In this case, both forms lead to the same result.

Before we consider our next example, we first develop some equivalent forms. Make a
substitution u = x − y in the Caputo form to get

dαf(x)
dxα
= 1

Γ(1 − α)
x∫
−∞

f �(u)(x − u)−αdu. (2.23)

The same substitution gives an alternative Riemann-Liouville derivative for 0 < α < 1:

dα f(x)
dxα
= 1

Γ(1 − α)
d

dx

x∫
−∞

f(u)(x − u)−αdu. (2.24)

Example 2.8. For p > 0, define f(x) = xp for x ≥ 0, and f(x) = 0 for x < 0. Then
f �(x) = pxp−1 for x > 0 and f �(x) = 0 for x < 0. Recall the formula for the beta density

x∫
0

ya−1(x − y)b−1 dy = Γ(a)Γ(b)
Γ(a + b) x

a+b−1

for a > 0 and b > 0. Then the Caputo form is

dα

dxα
[xp] = 1

Γ(1 − α)
x∫
0

pyp−1(x − y)−αdy

= p

Γ(1 − α)
x∫
0

yp−1(x − y)(1−α)−1dy

= p

Γ(1 − α)
Γ(p)Γ(1 − α)
Γ(p + 1 − α) x

p+(1−α)−1

= pΓ(p)
Γ(p + 1 − α) x

p−α = Γ(p + 1)
Γ(p − α + 1) x

p−α

which agrees with the integer order case. For example, we have

d2 [xp]
dx2
= p(p − 1)xp−2 = Γ(p + 1)

Γ(p − 1) x
p−2

since Γ(p + 1) = p(p − 1)Γ(p − 1). Using the Riemann-Liouville form we get

dα

dxα
[xp] = 1

Γ(1 − α)
d

dx
[[ x∫0 yp(x − y)−αdy]]

= 1

Γ(1 − α)
d

dx
[[ x∫0 y(p+1)−1(x − y)(1−α)−1dy]]

= 1

Γ(1 − α)
d

dx
[Γ(p + 1)Γ(1 − α)

Γ(p + 2 − α) xp+1−α]
= Γ(p + 1)
Γ(p + 2 − α) (p + 1 − α)x

p−α = Γ(p + 1)
Γ(p − α + 1) x

p−α
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which again agrees with the Caputo form.

Our next example shows the Caputo and Riemann-Liouville forms need not agree.

Example 2.9. Let f(x) = 1 for x ≥ 0 and f(x) = 0 for x < 0. Then f �(x) = 0 for x ̸= 0,
so the Caputo fractional derivative is zero. In fact, the Caputo fractional derivative
of a constant function is always zero, just like the integer order derivative. But the
Riemann-Liouville derivative is not. For x > 0 and 0 < α < 1, use (2.24) to get

dα

dxα
f(x) = 1

Γ(1 − α)
d

dx
[[ x∫0 1 (x − y)−αdy]]

= 1

Γ(1 − α)
d

dx
[[ x∫0 u−αdu]]

= 1

Γ(1 − α)
d

dx
[ x1−α
1 − α]

= x−α

Γ(1 − α) ̸= 0.

Since f(x) = f(x − y) unless y > x > 0, the generator form is

dα

dxα
f(x) =

∞∫
0

[f(x) − f(x − y)] α

Γ(1 − α) y
−α−1dy

=
∞∫
x

[1 − 0] α

Γ(1 − α) y
−α−1dy

= α

Γ(1 − α) [ x−αα ] = x−α

Γ(1 − α)
the sameas theRiemann-Liouville form. Recall thatwe obtained the Caputo form from
the generator form via integration by parts. In this case, integration by parts with u =
f(x) − f(x − y) in the generator form (2.17) gives

∞∫
0

[f(x) − f(x − y)] α

Γ(1 − α) y
−α−1dy

= [ −y−α
Γ(1 − α) (f(x) − f(x − y))]∞x + ∞∫

x

f �(x − y) 1

Γ(1 − α) y
−αdy

= x−α

Γ(1 − α) +
∞∫
0

f �(x − y) 1

Γ(1 − α) y
−αdy

so the di�erence between these forms comes from the boundary terms.
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Details

The generator form (2.17) of the fractional derivative of order 0 < α < 1 is an improper
integral. If f(x) is twice continuously di�erentiable, then f(x− y) = f(x)− yf �(x)+O(y2)
as y → 0, and hence [f(x) − f(x − y)] y−α−1 = O(y−α) is integrable at y = 0. If f is
bounded, then [f(x) − f(x − y)] y−α−1 = O(y−1−α) as y → ∞ is also integrable at infin-
ity, so that the generator form of the fractional derivative exists. A similar argument
pertains to the generator form (2.20) when 1 < α < 2.

To derive the Caputo form (2.18) from the generator form (2.17), integrate by parts
in (2.17) with

u = f(x) − f(x − y) and dv = α

Γ(1 − α) y
−α−1dy

which leads to[[f(x) − f(x − y)] −y−α
Γ(1 − α)]∞y=0 + ∞∫

0

f �(x − y) 1

Γ(1 − α) y
−αdy.

If f(x) is continuously di�erentiable and bounded, then [f(x) − f(x − y)]y−α = O(y1−α)
as y → 0 and [f(x)− f(x− y)]y−α = O(y−α) as y →∞, so that the Caputo and generator
forms are equivalent.Many probability density functions f(x) satisfy these conditions.

2.3 The Caputo derivative

The transform method for solving partial di�erential equations uses the FT for the
space variable x along with the formula

∞∫
−∞

e−ikxf �(x) dx = (ik) ̂f (k).

The Laplace transform (LT)

̃f (s) =
∞∫
0

e−stf(t) dt (2.25)

is usually used for the time variable t, along with the formula

∞∫
0

e−stf �(t) dt = s ̃f (s) − f(0). (2.26)

The Laplace transform (2.25)mayalso be considered as the integral over the entire real
line, where the function f(t) = 0 for t < 0, and then we replace f(0) by f(0+) in (2.26).
See Remark 2.13 for more details. The formula (2.26) di�ers from the FT analogue be-
cause of the boundary term from integration by parts: Check (2.26) using u = e−st and
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dv = f �(t)dt, which leads to
∞∫
0

e−stf �(t) dt = e−stf(t)!!!!∞t=0 + ∞∫
0

se−st f(t) dt

= −e−0f(0) + s ̃f (s),
assuming e−stf(t) → 0 as t → ∞. Since the FT integrates over the entire real line
−∞ < x <∞, the boundary term in that integration by parts vanishes, assuming that
f(x)→ 0 as |x|→∞. See Remark 2.13 for additional discussion.

For 0 < α < 1, the Riemann-Liouville fractional derivative Dαt f(t) has LT sα ̃f (s),
while the Caputo fractional derivative ∂αt f(t) has LT sα ̃f (s)− sα−1 f(0) (see details at the
end of this section). Check using integration by parts that the LT of f ��(t) is s2 ̃f (s) −
sf(0)− f �(0). For 1 < α < 2,Dαt f(t) has LT sα ̃f (s), while ∂αt f(t) has LT sα ̃f (s)− sα−1 f(0)−
sα−2f �(0), and so forth (seedetails). Since theCaputoderivative incorporates the initial
condition in the usual way, it is the preferred form of the fractional time derivative in
practical applications.

Example 2.10. Let p > −1 and define f(t) = tp for t ≥ 0. Substitute u = st and use the
definition of the gamma function to see that

̃f (s) =
∞∫
0

e−sttp dt

=
∞∫
0

e−u (u
s
)p du

s

= s−p−1
∞∫
0

e−uu(p+1)−1 du = s−p−1Γ(p + 1). (2.27)

Then the Riemann-Liouville fractional derivativeDαt f(t) has LT
∞∫
0

e−st [ dα
dtα

tp] dt = sα−p−1Γ(p + 1) = [s−(p−α)−1Γ(p − α + 1)] Γ(p + 1)
Γ(p − α + 1)

and inverting the LT shows that

dα

dtα
[tp] = tp−α Γ(p + 1)

Γ(p − α + 1) (2.28)

for p − α > −1, which agrees with Example 2.8. Since f(0) = 0 for p > 0, the Caputo
and Riemann-Liouville derivatives are equal in this case.

Example 2.11. Suppose f(t) = 1 for all t ≥ 0. It is easy to check that ̃f (s) = 1/s. Then
the Caputo fractional derivative of order 0 < α < 1 has LT sα(1/s) − sα−11 = 0 so that
∂αt f(t) = 0. The Riemann-Liouville fractional derivative has LT sα(1/s) = sα−1 so that
Dαt f(t) = t−α/Γ(1 − α) using (2.27), which agrees with Example 2.9.
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Derivatives are linear operators on some space of functions. We say that f ̸= 0 is an
eigenfunction of the linear operator d

dt
provided that d

dt
f(t) = λf(t) for some real (or

complex) number λ, called the eigenvalue. The function f(t) = eλt is an eigenfunction
since d

dt
[eλt] = λeλt, which is also reflected in the LT:

̃f (s) =
∞∫
0

e−steλt dt =
∞∫
0

e(λ−s)t dt = 1

s − λ

for s > λ. Then f �(t) has LT
s ̃f (s) − f(0) = s ( 1

s − λ) − 1 = λ

s − λ = λ
̃f (s).

We have used this fact to solve the di�usion equation: From ∂p/∂t = ∂2p/∂x2 the FT
yields d

dt
p̂ = −k2p̂, so that the FT solution is an eigenfunction of d

dt
with eigenvalue

−k2, and hence we can take p̂ = e−k2t, which inverts to a normal density.
The Mittag-Le�er function is defined by a power series

Eβ(z) =
∞∑
j=0

zj

Γ(1 + βj) (2.29)

that converges absolutely for every complex z. Note that Eβ(0) = 1. The Mittag-Le�er
function reduces to the exponential function when β = 1. The eigenfunctions of the
Caputo fractional derivative are f(t) = Eβ(λtβ): Di�erentiate term-by-term using (2.28)
to see that

∂
β
t f(t) = ∂βt [[∞∑j=0 λj tβj

Γ(1 + βj)]]
=
∞∑
j=1

λj

Γ(1 + βj)
Γ(βj + 1)

Γ(βj + 1 − β) t
βj−β

= λ
∞∑
j=1

λj−1

Γ(1 + β(j − 1)) t
β(j−1) = λf(t). (2.30)

For a complete and detailed proof, see Mainardi and Gorenflo [129].

Remark 2.12. Another proof uses LT: Use (2.27) to see that f(t) = Eβ(λtβ) has LT
∞∑
j=0

λj

Γ(1 + βj) s
−βj−1Γ(βj + 1) = s−1

∞∑
j=0
(λs−β)j

= s−1 1

1 − λs−β
= sβ−1

sβ − λ
(2.31)

when sβ > |λ|. Then ∂βt f(t) has LT

sβ ( sβ−1
sβ − λ
) − sβ−11 = s2β−1

sβ − λ
− s

β−1(sβ − λ)
sβ − λ

= λ( sβ−1
sβ − λ
) .
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Invert the LT to see that ∂βt f(t) = λf(t).
Eigenfunctions of Caputo fractional derivatives are useful for solving time-fractional
di�usion equations. Starting from

∂
β
t p(x, t) = D ∂2

∂x2
p(x, t)

take FT to get
∂
β
t p̂(k, t) = −Dk2p̂(k, t)

which shows that p̂(k, t) is an eigenfunction of ∂βt with eigenvalue −Dk2. Then
p̂(k, t) = Eβ([−Dk2]tβ)

and in order to solve this time-fractional di�usion equation, we need to invert this FT.
In the next section, we will solve this problem, and we will also develop a stochastic
interpretation for time-fractional di�usion. [Recall that space-fractional di�usion re-
flects power law jumps in space. What random process do you think is reflected in a
time-fractional di�usion?]

Details

In this section, we have used the uniqueness theorem for LT: If f(t) and g(t) are con-
tinuous, and if ̃f (s) = g̃(s) for all s > s0, then f(t) = g(t) for all t > 0, see for example
Feller [68, p. 433].

In Remark 2.12 we took the LT of the infinite series (2.31) term-by term. This can be
justified as follows. Theorem 8.1 in Rudin [181] states that if the power series∑∞j=0 cjuj
converges for |u| < R, then∑∞j=0 cjuj converges uniformly on |u| < R− ε for any 0 < ϵ <
R. Then, since the power series (2.29) converges for all z, for any fixed s > 0, λ ∈ ℝ,
and β > 0, a substitution u = tβ shows that the series

∞∑
j=0

(λtβ)j
Γ(1 + βj) e

−st = e−st
∞∑
j=0

(λtβ)j
Γ(1 + βj)

converges uniformly in t ∈ [0, x] for any real number x > 0. Next we apply [181, The-
orem 7.16]: If a sequence of functions fn(t) is integrable on [a, b] and converges to f(t)
uniformly on t ∈ [a, b], then f(t) is integrable and

b∫
a

f(t) dt = lim
n→∞

b∫
a

fn(t) dt.

Define

fn(t) =
n∑
j=0

(λtβ)j
Γ(1 + βj) e

−st
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and

f(t) =
∞∑
j=0

(λtβ)j
Γ(1 + βj) e

−st

and apply these two theorems to get

x∫
0

∞∑
j=0

(λtβ)j
Γ(1 + βj) e

−stdt =
x∫
0

f(t) dt

= lim
n→∞

x∫
0

fn(t) dt

= lim
n→∞

n∑
j=0

x∫
0

(λtβ)j
Γ(1 + βj) e

−stdt

=
∞∑
j=0

x∫
0

(λtβ)j
Γ(1 + βj) e

−stdt.

Now let x →∞ to get

∞∫
0

∞∑
j=0

(λtβ)j
Γ(1 + βj) e

−stdt = lim
x→∞

∞∑
j=0

x∫
0

(λtβ)j
Γ(1 + βj) e

−stdt. (2.32)

It remains to show that the limit on the right hand side of (2.32) can be taken inside the
sum. Theorem 7.10 in [181] states that, if |gj(x)| ≤ Cj for all x and all j, and if∑j Cj <∞,
then ∑j gj(x) converges uniformly in x. Fix s > 0 such that sβ > |λ| and define

gj(x) =
x∫
0

(λtβ)j
Γ(1 + βj) e

−stdt

and

Cj =
∞∫
0

(|λ|tβ)j
Γ(1 + βj) e

−stdt.

Since !!!!gj(x)!!!! ≤ Cj and ∞∑
j=0
Cj =

sβ−1

sβ − |λ| <∞,

it follows that∑∞j=0 gj(x) converges uniformly in x. Lastly, Theorem 7.11 in [181] implies
that if hn(x)→ h(x) uniformly in x, and if hn(x)→ Dn as x →∞ for all n, then

lim
x→∞ lim

n→∞ hn(x) = lim
n→∞ lim

x→∞ hn(x).
Then with

hn(x) =
n∑
j=1
gj(x) =

n∑
j=1

x∫
0

(λtβ)j
Γ(1 + βj) e

−stdt
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and

h(x) =
∞∑
j=1
gj(x) =

∞∑
j=1

x∫
0

(λtβ)j
Γ(1 + βj) e

−stdt

it follows that

lim
x→∞ lim

n→∞ hn(x) = lim
x→∞

∞∑
j=1

x∫
0

(λtβ)j
Γ(1 + βj) e

−stdt

= lim
n→∞ lim

x→∞ hn(x)

=
∞∑
j=0

∞∫
0

(λtβ)j
Γ(1 + βj) e

−stdt.

This completes the proof of term-by-term integration of the series in Remark 2.12.
Wenowderive the expression for the LT of the Caputo fractional derivative of order

0 < α < 1. For a function f(x) defined on x ≥ 0, the Caputo fractional derivative is
defined by

∂αx f(x) = 1

Γ(1 − α)
x∫
0

f �(x − y)y−αdy, (2.33)

which is equivalent to (2.18) with f(x) = 0 for x < 0. Assuming that e−sxf �(x − y)y−α
is integrable as a function of two variables, x and y, substitute x − y = z, change the
order of integration, and apply (2.27) to get

1

Γ(1 − α)
∞∫
0

e−sx
x∫
0

f �(x − y)y−αdy dx = 1

Γ(1 − α)
∞∫
0

y−α
∞∫
y

e−sxf �(x − y)dx dy

= 1

Γ(1 − α)
∞∫
0

e−syy−αdy

∞∫
0

e−szf �(z)dz

= sα−1 (s ̃f (s) − f(0))
= sα ̃f (s) − sα−1f(0).

To derive the expression for the LT of the Riemann-Liouville fractional derivative,
note that for a function f(x)definedon x ≥ 0 theRiemann-Liouville fractional derivative
(2.19) reduces to

Dαx f(x) = 1

Γ(1 − α)
d

dx

x∫
0

f(x − y)y−αdy. (2.34)

To compute its LT, integrate by parts to get

1

Γ(1 − α)
∞∫
0

e−sx( d
dx

x∫
0

f(x − y)y−αdy) dx = I1 + I2
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where

I1 =
1

Γ(1 − α) [[e−sx x∫
0

f(x − y)y−αdy]]∞x=0 = 0
assuming f(x) is bounded, and

I2 =
s

Γ(1 − α)
∞∫
0

e−sx
x∫
0

f(x − y)y−αdy dx

= s

Γ(1 − α)
∞∫
0

y−α
∞∫
y

e−sxf(x − y)dx dy

= s

Γ(1 − α)
∞∫
0

e−syy−αdy ×
∞∫
0

e−szf(z)dz

= s sα−1 ̃f (s) = sα ̃f (s)
assuming e−sxf(x − y)y−α is integrable. It follows that the Caputo and Riemann-
Liouville fractional derivatives of order 0 < α < 1 are related by

∂αx f(x) = Dαx f(x) − f(0) x−α

Γ(1 − α)
= 1

Γ(1 − α)
d

dx
[[ x∫0 f(x − y)y−αdy]] − f(0) x−α

Γ(1 − α) . (2.35)

Someauthors use the last line of (2.35) as the definition of the Caputo fractional deriva-
tive, since it exists for a broader class of functions (e.g., see Kochubei [105]).

Remark 2.13. This remark explains the connection between Fourier and Laplace
transforms inmore detail, and introduces the Fourier-Stieltjes transform and theweak
derivative. Suppose that f(t) is a real-valued function defined for t ≥ 0, and extend
to the entire real line by setting f(t) = 0 when t < 0. Then the two-sided Laplace
transform

̃f (s) = ∫ e−stf(t) dt = ∞∫
−∞

e−stf(t) dt

agrees with the definition (2.25). If f �(t) exists at every t > 0, then we can write∫ e−stf �(t) dt = lim
a↓0

∞∫
a

e−stf �(t) dt

= lim
a↓0
[[e−stf(t)!!!!!!!∞a − ∞∫a (−s)e−st f(t) dt]]

= s ̃f (s) − f(0+) (2.36)
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using integration by parts with u = e−st and dv = f �(t) dt. This formula reduces to
(2.26) when f(t) is continuous from the right at t = 0.

We have noted previously that f �(t) has FT (ik) ̂f (k). This was proven in the details
at the end of Section 1.1, assuming that f �(t) exists for all t ∈ ℝ and f, f � are integrable.
These conditions do not hold in the present case, since f �(t)maybeundefined at t = 0.
In fact, let us suppose that f(0) ̸= 0, so that f(t) is not even continuous at t = 0. The
usual interpretation of the FT in this case is the Fourier-Stieltjes transform, using the
idea of a weak derivative: Suppose that f(t) is a right-continuous function of bounded
variation, so that f(t) can be written as the di�erence of twomonotone nondecreasing
functions, f(t) = f1(t) − f2(t) where fi(t) ≤ fi(t�) whenever t ≤ t�, for i = 1, 2. Then
we can define a Borel measure μ on ℝ such that μ(a, b] = f(b) − f(a), and write the
Lebesgue-Stieltjes integral ∫ g(t)f(dt) = ∫ g(t)μ(dt) for any suitable Borel measurable
function g(t). The Lebesgue integral is a standard construction in analysis and prob-
ability (e.g., see [35, 62, 180]). A brief review of Lebesgue integrals, Lebesgue-Stieltjes
integrals, and their connection to Riemann integrals will be included in the details
at the end of Section 7.9. Now we can interpret the FT of the derivative as a Fourier-
Stieltjes transform ∫ e−ikt∂t f(t) dt = ∫ e−iktf(dt). (2.37)

If the traditional first derivative f �(t) exists for all t ∈ ℝ, then we have ∂t f(t) dt =
f(dt) as an equivalence of measures, but the Fourier-Stieltjes transform also exists for
functions with jumps. The canonical example is the Heaviside function f(t) = H(t) :=
I(t ≥ 0), so that H(t) = 0 when t < 0, and H(t) = 1 when t ≥ 0. Here μ is a point mass
at t = 0 and ∫ e−ikt∂t f(t) dt = ∫ e−iktf(dt) = e−ik0μ{0} = 1
for all k ∈ ℝ. In functional analysis, it is common to write ∂t f(t) = δ(t) in this case,
where δ(t) is the Dirac delta function. The Dirac delta function is a distribution, or
generalized function, defined as a linear operator on a suitable space of test functions
g(t) by the formula ∫ g(t)δ(t) dt = g(0),
another notation for the Lebesgue-Stieltjes integral ∫ g(t)∂t f(t) dt = ∫ g(t)f(dt) when
f(t) = H(t) and ∂t f(t) = δ(t). The generalized function ∂t f(t) = δ(t) is also called the
weak (or distributional) derivative of the Heaviside function f(t) = H(t). Now apply the
integration by parts formula for functions F, G of bounded variationwith no common
points of discontinuity (e.g., see [85, Theorem 19.3.13]):

b∫
a

F(t)G(dt) = F(b)G(b) − F(a)G(a) −
b∫
a

G(t)F(dt).

Define F(t) = e−ikt and G(t) = f(t), and note that both are functions of bounded vari-
ation on any finite interval [a, b], with no common points of discontinuity, since F(t)
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is continuous. Then

b∫
a

e−ikt∂t f(t) dt =
b∫
a

e−iktf(dt)

= e−ikbf(b) − e−ikaf(a) −
b∫
a

(−ik)e−iktf(t) dt.

Suppose that f(t) → 0 as t →∞. Since f(t) = 0 for t < 0, we can take limits as a → −∞
and b →∞ to conclude that

∞∫
−∞

e−ikt∂t f(t) dt = (ik) ̂f (k). (2.38)

This extends the usual FT formula, using the weak derivative. This notation is com-
monly used in the physics literature. Recall that we are assuming f(t) = 0 for t < 0,
f(0) ̸= 0, f is continuous from the right, of bounded variation, and f �(t) exists in the
traditional sense for all t > 0. Then in the senseof distributions,we canuse thephysics
notation to write

∂t f(t) =
{{{{{{{
0 t < 0
f(0) δ(t) t = 0
f �(t) t > 0

and so we have

∞∫
−∞

e−ikt∂t f(t) dt = 0 +
∞∫
−∞

e−iktf(0) δ(t) dt +
∞∫
0

e−iktf �(t) dt

= 0 + e−ik0f(0) + [ik ̂f (k) − f(0)]
= ik ̂f (k).

In the third term, we have used integration by parts in exactly the same manner as
(2.36). Indeed, this integral may be viewed as the LT of f �(t) evaluated at s = ik. In
some applications, it is quite natural to consider Laplace transformswhere s is a com-
plex number (e.g., see Arendt, Batty, Hieber and Neubrander [8]). In summary, the
di�erence between the formulas for the FT and the LT of the first derivative reflects
the fact that these two transforms interpret the first derivative in a di�erent manner at
the boundary point t = 0.
2.4 Time-fractional di�usion

The simplest time-fractional di�usion equation

∂
β
t p(x, t) = D ∂2

∂x2
p(x, t) (2.39)
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employs a Caputo fractional derivative (2.33) of order 0 < β < 1. We will solve this
fractional partial di�erential equation using the Fourier-Laplace transform (FLT):

p̄(k, s) =
∞∫
0

∞∫
−∞

e−ste−ikxp(x, t) dx dt =
∞∫
0

e−stp̂(k, t) dt.

To illustrate the method, first consider the traditional Brownian motion solution

p(x, t) = 1√4πt e−x2/(4t) (2.40)

to the di�usion equation ∂p/∂t = ∂2p/∂x2. Take FT in (2.40) to get p̂(k, t) = e−k2t and
then take LT to get

p̄(k, s) =
∞∫
0

e−ste−k
2 t dt =

∞∫
0

e−(s+k
2)t dt = 1

s + k2

for all s > 0. Note that p̂(k, 0) = 1 for all k, reflecting the fact that the Brownianmotion
B(t) = 0 with probability one when t = 0. Rewrite in the form

sp̄(k, s) − 1 = −k2p̄(k, s)
and invert the LT to get

d

dt
p̂(k, t) = −k2p̂(k, t).

Then invert the FT to recover the di�usion equation

∂

∂t
p(x, t) = ∂2

∂x2
p(x, t). (2.41)

Now we apply the FLT method to the time-fractional di�usion equation (2.39).
Take FT to get

∂
β
t p̂(k, t) = −Dk2p̂(k, t)

and assume the point source initial condition p̂(k, 0) ≡ 1. Take LT to get
sβ p̄(k, s) − sβ−1 = −Dk2p̄(k, s) (2.42)

and rearrange to get

p̄(k, s) = sβ−1

sβ + Dk2
, (2.43)

then invert using (2.31) to get

p̂(k, t) = Eβ(−Dk2 tβ).
In order to invert this FT, wewill need a stochastic model for time-fractional di�usion.
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Remark 2.14. The time-fractional di�usion equation (2.39) can also be written in
terms of the Riemann-Liouville fractional derivative Dβt . Recall that Dβt f(t) has LT
sβ ̃f (s). Recall (2.27), and substitute p = −β to see that sβ−1 is the LT of t−β/Γ(1 − β).
Invert the LT in (2.42) to get

Dβt p̂(k, t) − t−β

Γ(1 − β) = −Dk
2 p̂(k, t)

and then invert the FT to arrive at

Dβt p(x, t) = D ∂2

∂x2
p(x, t) + t−β

Γ(1 − β) δ(x). (2.44)

Here δ(x) is the Dirac delta function, whose Fourier transform δ̂(k) ≡ 1 (see the de-
tails at the end of this section). Equation (2.44) is the fractional kinetic equation for
Hamiltonian chaos introduced by Zaslavsky [222] in the physics literature. The math-
ematical study of (2.44) was initiated by Kochubei [105, 106] and Schneider andWyss
[192].

Now we will outline the stochastic model for time-fractional di�usion. Additional de-
tails and precise mathematical proofs will be provided later in Chapter 4 of this book.
The randomwalk S(n) = Y1 + ⋅ ⋅ ⋅ + Yn gives the location of a particle after n iid jumps.
Now suppose that the nth jump occurs at time Tn = J1 + ⋅ ⋅ ⋅ + Jn where the iid waiting
times Jn > 0 between jumps have a power law probability tail ℙ[Jn > t] = Bt−β for
t large, with 0 < β < 1 and B > 0. For suitable choice of B, an argument similar to
Section 1.2 shows that

c−1/βT[ct] ⇒ Dt

where the limit process Dt is stable with index β, and LT

E[e−sDt ] = e−tsβ = q̃(s, t),
where q(u, t) is the density of Dt. Since

d

dt
q̃(s, t) = −sβ q̃(s, t)

this density solves
∂

∂t
q(u, t) = − ∂

β

∂uβ
q(u, t)

using the Riemann-Liouville fractional derivative. Let

Nt = max{n ≥ 0 : Tn ≤ t}
denote the number of jumps by time t ≥ 0. The continuous time randomwalk (CTRW)
S(Nt) gives the particle location at time t. These are inverse processes: {Nt ≥ n} =
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{Tn ≤ t}, and in fact, {Nt ≥ u} = {T⌈u⌉ ≤ t} where ⌈u⌉ is the smallest integer n ≥ u. The
inverse process has an inverse weak limit:

c−βNct ⇒ Et

where {Et ≤ u} = {Du ≥ t}. We can define Et = inf{u > 0 : Du > t}, the first passage
time of Du above the level u > 0. The scaling c1/βDt = Dct in distribution implies the
inverse scaling cβEt = Ect in distribution. The CTRW scaling limit as the time scale
c →∞ is

c−β/2S(Nct) = (cβ)−1/2S(cβ c−βNct) ≈ (cβ)−1/2S(cβ Et) ≈ B(Et)

a time-changed Brownian motion. Since

ℙ[Et ≤ u] = ℙ[Du ≥ t] =
∞∫
t

q(w, u) dw

the inner process Et has density

h(u, t) = d

du
ℙ[Et ≤ u] = d

du
[[1 − t∫

0

q(w, u) dw]]
with LT

h̃(u, s) = − d
du
[s−1 q̃(s, u)]

= − d
du
[s−1e−usβ] = sβ−1e−usβ

using the fact that integration corresponds to multiplication by s−1 in LT space. Since
B(Et) = B(u)where u = Et is independent of x = B(u), a simple conditioning argument
shows that the process B(Et) has density

m(x, t) =
∞∫
0

p(x, u)h(u, t) du ≈∑
u

ℙ(B(u) = x|Et = u)ℙ(Et = u).

Take FLT (x Ü→ k and t Ü→ s) to get

m̄(k, s) =
∞∫
0

e−uDk
2

sβ−1e−us
β

du = sβ−1
∞∫
0

e−u(s
β+Dk2) du = sβ−1

sβ + Dk2

which agrees with (2.43). This shows that the limit density m(x, t) solves the time-
fractional di�usion equation (2.39). Also note that m̂(k, t) = Eβ([−Dk2]tβ).

The CTRWmodel provides a physical explanation for fractional di�usion. Apower
law jump distribution with ℙ[Yn > x] = Cx−α leads to a fractional derivative in space
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Fig. 2.3: Solution to time-fractional di�usion equation (2.39) at time t = 0.1 with β = 0.75 and

dispersion D = 1.0

∂α/∂xα of the same order. A power law waiting time distribution ℙ[Jn > t] = Bx−β
leads to a fractional time derivative ∂

β
t of the same order. Long power-law jumps re-

flect a heavy tailed velocity distribution, which allows particles to make occasional
long jumps, leading to anomalous super-di�usion. Long waiting times model particle
sticking and trapping, leading to anomalous sub-di�usion:

B(Ect) ≃ B(cβEt) ≃ cβ/2B(Et).

Since β < 1, the density of this process spreads slower than a Brownian motion. Fig-
ure 2.3 plots a typical density m(x, t) for the process B(Et). As compared to a normal
density, this curve has a sharper peak, and heavier tails. The R code used to produce
Figure 2.3 will be discussed in Example 5.13.

Remark 2.15. Continuous time random walks were proposed by Montroll and Weiss
[160], and developed further by Scher and Lax [190], Klafter and Silbey [104], and Hil-
fer and Anton [86]. An interesting CTRW model for the migration of cancer cells was
presented in Fedotov and Iomin [67]. See Berkowitz, Cortis, Dentz and Scher [31] for a
review of continuous time random walks in hydrology. Scalas [188] reviews applica-
tions of the CTRWmodel in finance. Schumer and Jerolmack [196] develop an interest-
ing CTRWmodel for sediment deposition in the geological record.
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Details

To prove the inverse scaling, recall that Dcu ≃ c1/βDu and write

ℙ[Ect ≤ u] = ℙ[Du ≥ ct] = ℙ[c−1Du ≥ t]
= ℙ[(c−β)1/βDu ≥ t] = ℙ[Dc−βu ≥ t]
= ℙ[Et ≤ c−βu] = ℙ[cβEt ≤ u]

so that Ect ≃ cβEt.
To prove the inverse limit, recall that c−1/βT[ct] ⇒ Dt and {Nt ≥ u} = {T⌈u⌉ ≤ t}

and write

ℙ[c−βNct ≤ u] = ℙ[Nct ≤ cβu] = ℙ[T⌈cβu⌉ ≥ ct]
= ℙ[c−1T⌈cβu⌉ ≥ t] = ℙ[(cβ)−1/βT⌈cβu⌉ ≥ t] → ℙ[Du ≥ t] = ℙ[Et ≤ u]

so that c−βNct ⇒ Et.
The Dirac delta function δ(x) was introduced in Remark 2.13. It is a generalized

function, or distribution, defined for suitable test functions g(t) (e.g., bounded con-
tinuous functions) by ∫ g(x)δ(x) dx = g(0). One way to understand equation (2.44) is
that p(x, t) is aweak solution, sometimes called a distributional solution, to the di�er-
ential equation, meaning that∫ Dβt p(x, t)g(x) dx = ∫D ∂2

∂x2
p(x, t)g(x) dx + ∫ t−β

Γ(1 − β) δ(x)g(x) dx

for suitable test functions g(x). This functional analysis construction is equivalent to
using cumulative distribution functions and Fourier-Stieltjes transforms. Let

P(x, t) =
x∫
−∞

p(y, t) dy

be the cumulative distribution function of a Brownian motion B(t) with pdf p(x, t)
given by (2.40). Then P(x, t) is the unique solution to the di�usion equation

∂

∂t
P(x, t) = ∂2

∂x2
P(x, t) (2.45)

with initial condition P(x, 0) = I(x ≥ 0), the Heaviside function. To see this, apply the
Fourier-Stieltjes transform

P̂(k, t) = ∫ e−ikxP(dx, t)
on both sides of equation (2.45) to get

d

dt
P̂(k, t) = (ik)2P̂(k, t) = −k2P̂(k, t)
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with initial condition P̂(k, 0) = ∫ e−ikxP(dx, 0) = 1 for all k ∈ ℝ, since P(dx, 0) is a
point mass at x = 0, i.e., the probability distribution of B(0). Taking derivatives with
respect to x on both sides of (2.45) recovers the di�usion equation (2.41) with the Dirac
delta function initial condition p(x, 0) = δ(x). Since∫ e−ikxP(dx, t) = ∫ e−ikxp(x, t) dx
for all t > 0, these Fourier transform calculations are completely equivalent. Hence,
equation (2.44) is equivalent to

D
β
t P(x, t) = D

∂2

∂x2
P(x, t) + t−β

Γ(1 − β)H(x)

where p(x, t) = ∂xP(x, t), and H(x) = I(x ≥ 0) is the Heaviside function.
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3 Stable Limit Distributions

In this chapter, we develop the fundamental mathematical tools for fractional di�u-
sion. The Fourier transform of a stable law is computed from the Lévy representation
for infinitely divisible laws. The extended central limit theorem for a random walk
with power law jumps follows from the convergence criteria for triangular arrays. The
theory of semigroups leads naturally to the generator form of the fractional derivative.

3.1 Infinitely divisible laws

Infinitely divisible lawsare a class of probability distributions that includes thenormal
and stable laws. The Lévy representation for infinitely divisible laws is the basis for
both the stable FT, and the generator form of the fractional derivative. Recall that the
generator form of the fractional derivative is

dα f(x)
dxα
=
∞∫
0

[f(x) − f(x − y)] α

Γ(1 − α) y
−α−1dy (3.1)

for 0 < α < 1, or

dαf(x)
dxα
=
∞∫
0

[f(x − y) − f(x) + yf �(x)] α(α − 1)
Γ(2 − α) y

−1−αdy (3.2)

for 1 < α < 2. The stable FT p̂(k, t) = etD(ik)α leads to the space-fractional di�usion
equation ∂p/∂t = D∂αp/∂xα . How do these forms connect? The answer lies in some
deep mathematical theory, which we now begin to develop.

We start by establishing some notation. Given a random variable Y, we define the
cumulative distribution function (cdf) F(x) = ℙ[Y ≤ x], the probability density func-
tion (pdf) f(y) = F�(y), and the probability measure μ(a, b] = F(b) − F(a) = ℙ[a < Y ≤
b]. We write Y ≃ μ or Y ≃ F, and we will also write X ≃ Y if two random variables X, Y
have the same distribution. The characteristic function

μ̂(k) = E[eikY] = ∫ eikxμ(dx) = ∫ eikxF(dx) = ∫ eikxf(x) dx = ̂f (−k)
is related to the Fourier transform (FT) by an obvious change of sign. Characteristic
functions with eikx are used in probability, because they simplify the formula (1.11) for
moments. Fourier transforms with e−ikx are used in di�erential equations, because
they simplify the formula (1.14) for derivatives. See the details and the end of this sec-
tion for more information.

We say that (the distribution of) Y is infinitely divisible if Y ≃ X1 + ⋅ ⋅ ⋅ + Xn for
every positive integer n, where (Xn) are independent and identically distributed (iid)

DOI 10.1515/9783110258165-003
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random variables. If Xn ≃ μn, then we also have

μ̂(k) = E[eikY] = E[eik(X1+⋅⋅⋅+Xn)] = E[eikX1] ⋅ ⋅ ⋅E[eikXn)] = μ̂n(k)n
since X1, . . . , Xn are independent.

Example 3.1. If Y ≃ N(a, σ2) (normal with mean a and variance σ2), then μ̂(k) =
exp(ika + 1

2σ
2k2). If we take μ̂n(k) = exp(ik(a/n) + 1

2 (σ2/n)k2) then clearly μ̂(k) =
μ̂n(k)n so Y is infinitely divisible. In fact Y ≃ X1 + ⋅ ⋅ ⋅ +Xn where Xj ≃ N(a/n, σ2/n) are
iid. The sum of independent normal random variables is also normal, the means add,
and the variances add.

Example 3.2. If Y is Poisson with mean λ, then ℙ[Y = j] = μ{j} = e−λλj/j! for j =
0, 1, 2, . . . and

μ̂(k) = ∫ eikxμ(dx) = ∞∑
j=0
eikjℙ[Y = j]

=
∞∑
j=0
eikje−λ

λj

j!

= e−λ
∞∑
j=0

(λeik)j
j!

= exp(−λ) exp(λeik) = exp(λ[eik − 1])

so μ̂(k) = μ̂n(k)n where μ̂n(k) = exp((λ/n)[eik − 1]). The sum of independent Poisson
random variables is also Poisson, and the means add.

Example 3.3. A compound Poisson random variable Y = W1 + ⋅ ⋅ ⋅ + WN = SN is a
random sum, where Sn = W1 + ⋅ ⋅ ⋅ +Wn, (Wj) are iid with probability measure ω(dy),
and N has a Poisson distribution with mean λ, independent of (Wj). Then

F(y) = ℙ[Y ≤ y] = ℙ[SN ≤ y]
=
∞∑
j=0
ℙ[SN ≤ y|N = j]ℙ[N = j]

=
∞∑
j=0
ℙ[Sj ≤ y]e−λ λ

j

j!
.

Then Y has characteristic function

μ̂(k) =
∞∑
j=0
ω̂(k)je−λ λ

j

j!

= e−λ
∞∑
j=0

[λω̂(k)]j
j!

= e−λeλω̂(k) = eλ[ω̂(k)−1].
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Take μ̂n(k) = e(λ/n)[ω̂(k)−1] to see that Y is infinitely divisible. The sum of independent
compound Poisson random variables with the same jump distribution are also com-
pound Poisson.

To motivate what comes next, write the compound Poisson characteristic function

μ̂(k) = eλ[ω̂(k)−1]

= exp (λ [∫ eikxω(dx) − 1])
= exp (λ [∫ (eikx − 1)ω(dx)])
= exp ([∫ (eikx − 1) λ ω(dx)])
= exp (∫ (eikx − 1)ϕ(dx))

where the Lévy measure ϕ(dx) = λ ω(dx). This is also called the jump intensity. The
random variable Y = W1+⋅ ⋅ ⋅ +WN is the accumulation of a randomnumber of jumps.
The number of these jumps that lie in any Borel set B is Poisson with mean ϕ(B) =
λ ω(B). To see this, note thatω(B) = ℙ[Wn ∈ B] and split the Poisson process of jumps
into two parts, depending on whether or not the jump lies in B. A general theorem
on Poisson processes (e.g., see Ross [179, Proposition 5.2]) shows that an independent
splitting produces two independent Poisson processes, and then the number of jumps
that lie in B follows a Poisson with mean ϕ(B) = λ ω(B).

The Lévy representation gives the general form of the characteristic function for
an infinitely divisible law. This form reflects the normal and compound Poisson cases.
We say that a σ-finite Borel measure ϕ(dy) on {y : y ̸= 0} is a Lévy measure if ϕ{y :

|y| > R} < ∞ and ∫
0<|y|≤R

y2ϕ(dy) < ∞ (3.3)

for all R > 0. See the details at the end of this section for more information.

Theorem 3.4 (Lévy representation). A random variable Y ≃ μ is infinitely divisible if
and only if its characteristic function μ̂(k) = E[eikY] = eψ(k) where

ψ(k) = ika − 1
2 k

2b + ∫(eiky − 1 − iky

1 + y2)ϕ(dy) (3.4)

for some a ∈ ℝ, b ≥ 0, and some Lévy measure ϕ(dy). This Lévy representation μ ≃
[a, b, ϕ] is unique.

Proof. The proof is based on a compound Poisson approximation, see Meerschaert
and Sche�er [146, Theorem 3.1.11].

Example 3.5. If Y ≃ N(a, σ2) then Theorem 3.4 holds with b = σ2 and ϕ = 0.
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Example 3.6. If Y is compound Poisson, then Theorem 3.4 holds with b = 0, ϕ(dy) =
λ ω(dy), and

a = λ∫ y

1 + y2 ω(dy).

To check this, write

ψ(k) = ikλ∫ y

1 + y2 ω(dy) + ∫(eiky − 1 − iky

1 + y2 ) λ ω(dy)
= λ∫ eikyω(dy) − 1 = λ [ω̂(k) − 1] .

Note that the integral expression for a exists, since the integrand is bounded.

The next result shows that every infinitely divisible law is essentially compound Pois-
son. Suppose that Yn is a random variable with cdf Fn(x) and probability measure μn
for each positive integer n. We say that Yn ⇒ Y (convergence in distribution, some-
times called convergence in law, or weak convergence) if Fn(x) → F(x) for all x ∈ ℝ
such that F(x+) = F(x−). In view of the continuity theorem for FT (see Theorem 1.3),
this is equivalent to μ̂n(k) → μ̂(k) for every k ∈ ℝ.
Proposition 3.7. Every infinitely divisible law is the weak limit of compound Poisson

laws.

Proof. Use the Lévy Representation Theorem 3.4 to write μ̂(k) = eψ(k) where (3.4)
holds. Then μ̂(k) = [μ̂n(k)]n where μ̂n(k) = eψ(k)/n. This shows that Y ≃ X1 + ⋅ ⋅ ⋅ + Xn
where the iid summands (Xn) ≃ μn. Now define Yn = X1 + ⋅ ⋅ ⋅ + XN where N is Pois-
son with mean n. Then Yn is compound Poisson with characteristic function ν̂n(k) =
exp(n[μ̂n(k) − 1]). Fix k ∈ ℝ and write

μ̂n(k) − 1 = (1 + 1
n
ψ(k) + 1

2!
(1
n
ψ(k))2 + ⋅ ⋅ ⋅) − 1 = 1

n
ψ(k) + O(n−2)

so that n[μ̂n(k) − 1] = ψ(k) + O(n−1). Then ν̂n(k) = exp(ψ(k) + O(n−1)) → exp(ψ(k)) =
μ̂(k) for all k ∈ ℝ, so νn ⇒ μ.

The compoundPoissonapproximationgives a concrete interpretationof theLévymea-
sure. Suppose that μ ≃ [0, 0, ϕ] so that

μ̂(k) = exp [∫(eiky − 1 − iky

1 + y2 )ϕ(dy)] .
Define

ν̂n(k) = exp[[[ ∫|y|>1/n (eiky − 1 − iky

1 + y2 )ϕ(dy)]]]
= exp (λn ∫(eiky − 1)ωn(dy) − ikan)
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where

λn = ∫
|y|>1/n

ϕ(dy) = ϕ{y : |y| > n−1}

ωn(B) = λ−1n ∫
|y|>1/n,y∈B

ϕ(dy) = λ−1n ϕ(B ∩ {y : |y| > n−1})

an = ∫
|y|>1/n

y

1 + y2 ϕ(dy).

Then νn ≃ Yn + an a shifted compound Poisson where Yn ≃ W1 + ⋅ ⋅ ⋅ +WN , (Wn) ≃ ωn
is iid, and N is Poisson with mean λn independent of (Wn). The Lévy Representation
Theorem 3.4 implies that ν̂n(k) → eψ(k) = μ̂(k), so νn ⇒ μ. Every infinitely divisible
law with no normal component can be approximated by such a compound Poisson,
the sum of a random number of jumps. The Lévy measure controls both the number
and size of the jumps.

Details

The Lebesgue-Stieltjes integral and the distributional derivative were introduced
briefly in Remark 2.13. Here we provide more detail, with an emphasis on probability
distributions. The cumulative distribution function F(x) = ℙ[Y ≤ x] is monotone
nondecreasing and continuous from the right, and it follows that there exists a Borel
measure μ such that μ(a, b] = F(b) − F(a) for all a < b in ℝ. If the pdf f(x) = F�(x)
exists, then we can define the probability measure

μ(a, b] = ℙ[a < Y ≤ b] =
b∫
a

f(x) dx,

and the characteristic function

μ̂(k) = ∫ eikxf(x) dx.
If the random variable Y has atoms, i.e., if ℙ[Y = xk] > 0 for some real numbers xk,
then F(xk) > F(xk−) and the cumulative distribution function is not continuous, so it
is certainly not di�erentiable. Then the pdf cannot exist at every x ∈ ℝ. In this case,
the characteristic function

μ̂(k) = E[eikY] = ∫ eikxμ(dx) = ∫ eikxF(dx)
is defined using the Lebesgue integral with respect to the probability measure μ, or
equivalently, the Lebesgue-Stieltjes integral with respect to the cumulative distribu-
tion function F(x). If the atoms of Y (i.e., the discontinuity points of the cumulative
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distribution function F(x)) are isolated, then we may also write the pdf of Y using
physics notation. For example, if Y is a Poisson random variable with mean λ, then
ℙ[Y = j] = μ{j} = e−λλj/j! for j = 0, 1, 2, . . ., and we can use physics notation to write

f(x) = ∂xF(x) =
∞∑
j=0
e−λ

λj

j!
δ(x − j)

where ∂xF(x) is the weak or distributional derivative of F(x). This is a completely
rigorous alternative notation for the pdf. Readers of this book who are more famil-
iar with the physics notation may consider the Lebesgue integral ∫ eikxμ(dx) or the
Lebesgue-Stieltjes integral∫ eikxF(dx) as an alternative notation for∫ eikxf(x) dx, with
the understanding that the pdf f(x) may contain Dirac delta function terms to repre-
sent atoms of the probability distribution. In a similar manner, readers who are more
familiar with the physics notation may interpret the Lévy measure as ϕ(dy) = ϕ(y)dy
where the function ϕ(y) is integrable over {y : |y| > R} and the function y2ϕ(y)
is integrable over {0 < |y| ≤ R}. It is possible that the Lévy measure ϕ(dy) con-
tains atoms. For example, a Poisson random variable with mean λ has Lévy mea-
sure ϕ(dy) = λ δ(y − 1) dy. For readers who are familiar with Lebesgue integrals and
Lebesgue-Stieltjes integrals, it is worth while to learn the alternative notation, since
it is commonly used without explanation in the physics literature. This notation also
appears frequently in the literature on partial di�erential equations.

If X ≃ μ and Y ≃ ν are independent then ℙ[X ∈ A, Y ∈ B] = ℙ[X ∈ A]ℙ[Y ∈ B] =
μ(A)ν(B) is the joint distribution of (X, Y), so the characteristic function of X + Y is
E[eik(X+Y)] = ∫ eik(x+y)μ(dx)ν(dy) = ∫ eikxμ(dx)∫ eikyν(dy) = μ̂(k)ν̂(k).

Since the integrand in (3.4) is bounded, the integral exists over {y : |y| > R}. To
show that the integral exists over {y : 0 < |y| ≤ R} for any k ∈ ℝ, use (3.3) along with

eiky − 1 − iky

1 + y2 = (e
iky − 1 − iky) + (iky − iky

1 + y2 ) := f(y) + ikg(y)
where f(y) = O(y2) as y → 0 by a Taylor series approximation, and

g(y) = y − y

1 + y2 =
y(1 + y2) − y

1 + y2 = y3

1 + y2 = O(y
3) as y → 0.

Since ϕ is a Lévy measure, ∫
0<|y|≤R

y2ϕ(dy) < ∞,

and ∫
0<|y|≤R

|y|3ϕ(dy) ≤ R ∫
0<|y|≤R

y2ϕ(dy) < ∞.
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3.2 Stable characteristic functions

Here we compute the characteristic function of a stable law, using the Lévy represen-
tation. First we need to develop some alternative forms.

Theorem 3.8. Suppose Y ≃ μ is infinitely divisible with characteristic function μ̂(k) =
eψ(k) and (3.4) holds. Then we can also write μ̂(k) = eψ0(k) where

ψ0(k) = ika0 − 1
2 k

2b + ∫ (eiky − 1 − ikyI(|y| ≤ R)) ϕ(dy) (3.5)

for any R > 0, for some unique a0 depending on R and a. Furthermore:

(a) If ∫
0<|y|≤R

|y|ϕ(dy) < ∞ (3.6)

then we can also write μ̂(k) = eψ1(k) where

ψ1(k) = ika1 − 1
2 k

2b + ∫(eiky − 1)ϕ(dy) (3.7)

for some unique a1 depending on a0; and

(b) If ∫
|y|>R

|y|ϕ(dy) < ∞ (3.8)

then we can also write μ̂(k) = eψ2(k) where

ψ2(k) = ika2 − 1
2 k

2b + ∫(eiky − 1 − iky)ϕ(dy) (3.9)

for some unique a2 depending on a0.

Proof. The integral

δ0 = ∫( y

1 + y2 − yI(|y| ≤ R)) ϕ(dy)
exists, since the integrand is bounded and O(y3) as y → 0. If we take a0 = a−δ0, then
ψ(k) = ψ0(k). If (3.7) holds, then ψ0(k) = ψ1(k), where

a1 = a0 − ∫
0<|y|≤R

yϕ(dy).

If (3.9) holds, then ψ0(k) = ψ2(k), where

a2 = a0 + ∫
|y|>R

yϕ(dy).

Uniqueness follows from Theorem 3.4.
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We now define a one-sided stable law μ to be an infinitely divisible law with Lévy rep-
resentation [a, 0, ϕ] where a ∈ ℝ and

ϕ(dy) =
{{{Cαy−α−1dy for y > 0
0 for y < 0

(3.10)

for some 0 < α < 2. We call α the index of that stable law. Note that (3.10) is a Lévy
measure since

ϕ{y : |y| > R} =
∞∫
R

ϕ(dy) =
∞∫
R

Cαy−α−1dy = CR−α

and ∫
0<|y|≤R

y2ϕ(dy) =
R∫
0

Cαy1−αdy = Cα

2 − α R
2−α

are both finite for any R > 0.
Example 3.9. Suppose Y ≃ μ is a one-sided stable law stable with index 0 < α < 1.
Since ∫

0<|y|≤R

|y|ϕ(dy) =
R∫
0

Cαy−αdy = Cα

1 − α R
1−α

is finite, we can use Theorem 3.8 (a) to write

μ̂(k) = eψ1(k) = exp[[ika1 + ∞∫0 (eiky − 1) Cαy−α−1dy]] . (3.11)

We want to evaluate this integral.

Proposition 3.10. When 0 < α < 1, the stable characteristic function (3.11)with a1 = 0
can be written in the form

μ̂(k) = E[eikY] = exp [−CΓ(1 − α)(−ik)α] . (3.12)

Proof. We follow the proof in Feller [68], see also [146, Lemma 7.3.7]. We will approxi-
mate the integral

I(α) =
∞∫
0

(eiky − 1) αy−α−1dy
by another integral

Is(α) =
∞∫
0

(e(ik−s)y − 1) αy−α−1dy
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for s > 0. Integrate by parts with u = e(ik−s)y − 1 to see that

Is(α) = [(e(ik−s)y − 1) (−y−α)]∞0 + (ik − s) ∞∫
0

e(ik−s)yy−αdy (3.13)

and note that the boundary terms vanish, since e(ik−s)y − 1 = O(y) as y → 0. The
characteristic function of a gamma pdf is

∞∫
0

eiky
ba

Γ(a) y
a−1e−bydy = (1 − ik

b
)−a

for a > 0 and b > 0. Set a − 1 = −α and b = s to see that

Is(α) = (ik − s)
Γ(1 − α)
s1−α
(1 − ik

s
)α−1 = −Γ(1 − α)(s − ik)α

for s > 0. Apply the dominated convergence theorem to see that Is(α) → I(α) as s → 0.
This shows that

I(α) = −Γ(1 − α)(−ik)α (3.14)

and then (3.12) follows.

The FT of this stable law is E[e−ikY] = μ̂(−k) = exp [−CΓ(1 − α)(ik)α]. Given any in-
finitely divisible law μ with characteristic function μ̂(k) = eψ(k), we can define a Lévy
process Zt such that E[eikZt] = etψ(k) for all t ≥ 0. A Lévy process Zt is infinitely di-
visible, with Z0 = 0, Zt+s − Zt ≃ Zs for all s, t > 0 (stationary increments), and Zt
independent of Zt+s − Zt for all s, t > 0 (independent increments). See Section 4.3 for
more details. Note that Zt ≃ [ta, tb, tϕ] since

tψ(k) = ikta − 1
2 k

2tb + ∫(eiky − 1 − iky

1 + y2 ) tϕ(dy).
Taking μ as above, the stable Lévy process Zt has FT p̂(k, t) = E[e−ikZt ] = e−Dt(ik)α
where D = CΓ(1 − α) > 0. Then

d

dt
p̂(k, t) = −D(ik)α p̂(k, t).

Invert the FT to see that p(x, t) solves the fractional di�usion equation
∂

∂t
p(x, t) = −D ∂α

∂xα
p(x, t).

Note that in this case (0 < α < 1) there is a minus sign on the right-hand side.

Example 3.11. Now suppose that Y ≃ μ is a one-sided stable law stable with index
1 < α < 2. Since ∫

|y|>R

|y|ϕ(dy) =
∞∫
R

Cαy−αdy = Cα

α − 1R
1−α
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is finite, we can use Theorem 3.8 (b) to write

μ̂(k) = eψ2(k) = exp[[ika2 + ∞∫0 (eiky − 1 − iky) Cαy−α−1dy]] . (3.15)

Proposition 3.12. When 1 < α < 2, the stable characteristic function (3.15)with a2 = 0
can be written in the form

μ̂(k) = E[eikY] = exp [C Γ(2 − α)
α − 1 (−ik)

α] . (3.16)

Proof. The proof is similar to Proposition 3.10. Write

J(α) =
∞∫
0

(eiky − 1 − iky) αy−α−1dy
and

Js(α) =
∞∫
0

(e(ik−s)y − 1 − (ik − s)y) αy−α−1dy
for s > 0. Integrate by parts with u = e(ik−s)y − 1 − (ik − s)y to see that the boundary
terms vanish (see details) and

Js(α) = (ik − s)
∞∫
0

(e(ik−s)y − 1) y−αdy
= ik − s
α − 1

∞∫
0

(e(ik−s)y − 1) (α − 1)y−(α−1)−1dy (3.17)

where 0 < α − 1 < 1. Then we can apply the calculation in the proof of Proposition
3.10 to see that

Js(α) =
ik − s
α − 1 Is(α − 1)

= ik − s
α − 1 [−Γ(1 − (α − 1))(s − ik)α−1] = Γ(2 − α)α − 1 (s − ik)

α

for s > 0. Then dominated convergence theorem implies

Js(α) → J(α) = Γ(2 − α)
α − 1 (−ik)

α

as s → 0.

Taking μ as above, the stable Lévy process Zt with Z1 ≃ μ has FT p̂(k, t) = E[e−ikZt] =
eDt(ik)

α
where D = CΓ(2 − α)/(α − 1) > 0. Then

d

dt
p̂(k, t) = D(ik)α p̂(k, t)
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which leads to the fractional di�usion equation

∂

∂t
p(x, t) = D ∂α

∂xα
p(x, t).

Note that in this case (1 < α < 2) there is no minus sign on the right-hand side.

Details

The Dominated Convergence Theorem (DCT) (e.g., see Rudin [181, Theorem 11.32])
states that if fn(y) → f(y) for all y and if |fn(y)| ≤ g(y) for all n and all y, where∫ g(y) dy exists, then ∫ fn(y) dy → ∫ f(y) dy and these integrals exist. Write

Is(α) =
∞∫
0

(e(ik−s)y − 1) αy−α−1dy
=
∞∫
0

(e−sy cos(ky) − 1) αy−α−1dy + i ∞∫
0

(e−sy sin(ky)) αy−α−1dy.
Since |e(ik−s)y − 1| ≤ 2, both integrands are bounded by C1y−α−1 for all y > 0. To
establish an integrable bound near zero, apply the mean value theorem on [0, y] for
0 < y < 1 to get

|e−sy cos(ky) − 1| ≤ e−sy|s cos(ky) + k sin(ky)|y ≤ (|k| + s)y

Since s → 0, eventually s < 1, and with C2 = |k| + 1, |e−sy cos(ky) − 1| ≤ C2y. Note
that k is fixed in this argument. Similarly

|e−sy sin(ky)| ≤ C2y,

so both integrands are also bounded by C2y αy−α−1 = C3y−α for 0 < y < 1. Define

g(y) =
{{{C3y−α for 0 < y < 1, and
C1y
−α−1 for y ≥ 1.

Then ∫∞
0
g(y) dy exists, and the dominated convergence theorem applies to the real

and imaginary parts of the integral, which shows that Is(α) → I(α). It is also possible
to apply the DCT directly to the complex-valued integrand.

A similar bound shows that the boundary terms in (3.13) vanish, since:!!!!!(e(ik−s)y − 1) (−y−α)!!!!! ≤ 2y−α → 0 as y →∞; and!!!!!(e(ik−s)y − 1) (−y−α)!!!!! ≤ 2C2y1−α → 0 as y → 0.

The boundary terms in (3.17) vanish since, for fixed s > 0 and k ∈ ℝ,!!!!!(e(ik−s)y − 1 − (ik − s)y) (−y−α)!!!!! ≤ C4y1−α → 0 as y →∞; and!!!!!(e(ik−s)y − 1 − (ik − s)y) (−y−α)!!!!! ≤ C5y2−α → 0 as y → 0.
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3.3 Semigroups

The theory of semigroups allows an elegant treatment of fractional di�usion equa-
tions as ordinary di�erential equations on a space of functions. It also explains the
generator form of the fractional derivative. A semigroup is a family of linear operators
on a Banach space. A Banach space B is a complete normed vector space. That is, if
fn ∈ B is a Cauchy sequence in this vector space, such that ‖fn− fm‖→ 0 asm, n →∞,
then there exists some f ∈ B such that ‖fn − f‖ → 0 as n → ∞ in the Banach space
norm. In this section, we will use some basic results on semigroups. For more on the
general theory of semigroups, see [8, 90, 165].
Example 3.13. TheBanach spaceB = C(ℝ) consists of bounded continuous functions
f : ℝ → ℝ with the norm ‖f‖ = sup{|f(x)| : x ∈ ℝ}. The space B = C0(ℝ) consists of
continuous functions with f(x) → 0 as |x| → ∞, with the same norm.

Example 3.14. The Banach space L2 consists of finite variance random variables X
with the norm ‖X‖ = √E[X2]. We will use this space in the proofs of Section 7.9. Some
authors write L2(Ω, P) to emphasize that this is a space of random variables on the
sample space Ω with probability measure P.

Example 3.15. The Banach space Lp(ℝ) consists of functions f : ℝ → ℝ such that∫ |f(x)|pdx < ∞, with the norm ‖f‖p = (∫ |f(x)|pdx)1/p for 0 < p < ∞. The most
common choices are p = 1 and p = 2. The Sobolev space Wk,p(ℝ) consists of all
functions such that f and all of its derivatives f (j) up to order k exist and are in Lp(ℝ),
with the norm ‖f‖k,p = ( k∑

j=0
‖f (j)‖pp)1/p .

A family of linear operators {Tt : t ≥ 0} on a Banach space B is called a semigroup if
T0f = f for all f ∈ B, and Tt+s = TtTs (the composition of these two operators). We say
that Tt is bounded if, for each t ≥ 0, there exists some Mt > 0 such that ‖Tt f‖ ≤ Mt‖f‖
for all f ∈ B. We say that Tt is strongly continuous if ‖Tt f − f‖ → 0 for all f ∈ B. A
strongly continuous, bounded semigroup is also called a C0 semigroup.

The generator of the semigroup Tt is a linear operator defined by

Lf(x) = lim
t→0

Tt f(x) − T0f(x)
t − 0 . (3.18)

This is the abstract derivative of the semigroup evaluated at t = 0. Note that the limit
in (3.18) is taken in the Banach space norm. For example, when B = C0(ℝ) we require
that

sup
x∈ℝ

!!!!!!!!Tt f(x) − T0f(x)t − 0 − Lf(x)
!!!!!!!! → 0 as t → 0, (3.19)
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and then (3.18) also holds for each x ∈ ℝ. If Tt is a C0 semigroup, then the generator
(3.18) exists, and its domain

Dom(L) = {f ∈ B : Lf exists }
is a dense subset ofB, i.e., for any f ∈ B there exists a sequence fn ∈ Dom(L) such that‖fn − f‖→ 0, see Pazy [165, Corollary I.2.5].

Theorem 3.16. If Tt is a C0 semigroup on the Banach space B, then the function q(t) =
Tt f solves the Cauchy problem

d

dt
q = Lq; q(0) = f (3.20)

for any f ∈ Dom(L).

Proof. See, for example, Pazy [165, Theorem I.2.4].

In our applications, the Banach spaceB is typically a space of functions, like C0(ℝ) or
Lp(ℝ). Thenwe canwrite Theorem3.16 in amore concrete form: If Tt is a C0 semigroup
on the Banach space of functions B, then q(x, t) = Tt f(x) solves the Cauchy problem

∂

∂t
q(x, t) = Lq(x, t); q(x, 0) = f(x), (3.21)

for any f ∈ Dom(L). If L = ∂2/∂x2, then (3.21) is the di�usion equation, and (3.20)
represents this partial di�erential equation as an ordinary di�erential equation on
some suitable space of functions.

Given a Lévy process {Zt : t ≥ 0}, we define a family of linear operators

Tt f(x) = E[f(x − Zt)] (3.22)

for t ≥ 0, for suitable functions f(x). The next result shows that (3.22) defines a C0
semigroup on the Banach space C0(ℝ), and gives an explicit form of the generator in
terms of the Lévy representation.

Theorem 3.17. Suppose that Zt is a Lévy process, and that E[eikZ1] = eψ(k) where ψ(k)
is given by (3.4). Then (3.22) defines a C0 semigroup on C0(ℝ) with generator

Lf(x) = −af �(x) + 1
2bf
��(x) + ∫(f(x − y) − f(x) + yf �(x)

1 + y2 )ϕ(dy). (3.23)

The domain Dom(L) contains all f such that f, f � , f �� ∈ C0(ℝ). If we also have f, f � , f �� ∈
L1(ℝ), then ψ(−k) ̂f (k) is the FT of Lf(x).
Proof. See Sato [187, Theorem 31.5] for the proof that (3.22) defines a C0 semigroup on
C0(ℝ) with generator (3.23). Hille and Phillips [90, Theorem 23.14.2] proved that Lf(x)
has FT ψ(−k) ̂f (k) when f, f � , f �� ∈ L1(ℝ).
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Remark 3.18. In this remark, we sketch the main ideas in the proof of Theorem 3.17.
Strongcontinuity of the semigroup (3.22) on C0(ℝ) follows from the fact that Zt ⇒ Z0 =
0. The semigroupproperty Tt+s = TtTs follows from the fact that Zt has stationary inde-
pendent increments (see details). The generator formula (3.23) comes from a FT inver-
sion: Suppose {Zt : t ≥ 0} is a Lévy process with FT p̂(k, t) = E[e−ikZt] = exp(tψ(−k)).
If Zt has pdf p(x, t), then we have

Tt f(x) = ∫ f(x − y)p(y, t) dy (3.24)

a convolution of the two functions. We define the convolution

f ∗ g(x) = ∫ f(x − y)g(y) dy
andwenote that the FT converts convolutions to products: The FT of f∗g isF[f∗g](k) =
̂f (k)ĝ(k) (see details). If f(x) is a probability density, and if X ≃ f(x) is independent of
Zt, then X + Zt ≃ Tt f(x), since the pdf of a sum of independent random variables is
a convolution of their respective densities. We can think of X as the initial particle
location, with pdf f(x). Then Tt f(x) is the pdf of particle location at time t ≥ 0, with
T0f(x) = f(x). Since the FT of a convolution is a product, it follows from (3.22) that
Tt f(x) has FT etψ(−k) ̂f (k). Then for suitable functions f we can pass the FT inside the
limit and write

F[Lf](k) = lim
t→0

etψ(−k) ̂f (k) − ̂f (k)
t − 0

= [lim
t→0

[1 + tψ(−k) + 1
2 t

2ψ(−k)2 + ⋅ ⋅ ⋅ ] − 1
t

] ̂f (k) = ψ(−k) ̂f (k).
We call ψ(−k) the Fourier symbol of the generator L. Use the Lévy representation (3.5)
to write

ψ(−k) ̂f (k) = −a(ik) ̂f (k) + 1
2 (ik)

2b ̂f (k) + ∫(e−iky − 1 + iky

1 + y2 ) ̂f (k)ϕ(dy).
Then invert this FT using the fact that∫ e−ikxf(x − y) dx = e−iky ̂f (k) (3.25)

to arrive at (3.23). The condition f, f � , f �� ∈ L1(ℝ) is required to show that the FT of
Lf(x) exists.

Remark 3.19. In this remark, we outline the main idea behind the proof of Theorem
3.16, for the special case of an infinitely divisible semigroup. Take FT in (3.22) to get

q̂(k, t) = etψ(−k) ̂f (k); q̂(k, 0) = ̂f (k).
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Compute
∂

∂t
q̂(k, t) = ψ(−k)q̂(k, t)

and invert the FT to arrive at (3.21). Note that the domainDom(L)of the generator (3.23)
on the space L1(ℝ) consists of all functions f ∈ L1(ℝ) such that ĥ(k) = ψ(−k) ̂f (k) is
the FT of some function h ∈ L1(ℝ), see Baeumer and Meerschaert [18, Theorem 2.2].

Now we illustrate the semigroup machinery with some familiar examples.

Example 3.20. If Zt ≃ N(0, 2Dt) then

μ̂t(k) = e−tDk
2 = etψ(k)

with Fourier symbol ψ(−k) = D(ik)2 . The generator can be obtained by inverting
ψ(−k) ̂f (k) = D(ik)2 ̂f (k), so that L = D∂2/∂x2 in this case. The Cauchy problem is:

∂

∂t
q(x, t) = D ∂2

∂x2
q(x, t); q(x, 0) = f(x).

Its solution is

q(x, t) = Tt f(x) =
∞∫
−∞

f(x − y)p(y, t) dy

where

p(y, t) = 1√4πDt exp(− y24Dt
) .

If the initial particle location is a random variable X with pdf f(x), independent of Zt,
then the Brownian motion with a random initial location X + Zt has pdf Tt f(x). This
is a Markov process: The pdf of the displacement (X + Zt+s) − (X + Zt) = Zt+s − Zt is
independent of the past history of the process {Zu : 0 ≤ u ≤ t}.

Example 3.21. If Zt = tv for some constant velocity v then

Tt f(x) = E[f(x − Zt)] = f(x − vt),
the shift semigroup. Its generator is

Lf(x) = lim
t→0

f(x − vt) − f(x)
t − 0

v

v
= −vf �(x).

Here μ̂t(k) = E[eikvt] = etψ(k) so that ψ(k) = ikv, and then ψ(−k) = −v(ik), so that
L = −v ∂/∂x. It is easy to check that q(x, t) = f(x − vt) solves ∂q/∂t = −v∂q/∂x.

Example 3.22. If Zt ≃ N(vt, σ2 t) is a Brownian motion with drift, take a = v, b = σ2,
and ϕ = 0 in (3.23) to see that the density q(x, t) of X + Zt solves

∂

∂t
q(x, t) = −v ∂

∂x
q(x, t) + 1

2
σ2

∂2

∂x2
q(x, t) = Lq(x, t)
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with initial condition q(x, 0) = f(x). This di�usion equation with drift comes from the
sum of two semigroups. The semigroups commute, so the generators add.

Theorem 3.17 gives an explicit form for the generator of an infinitely divisible semi-
group. Nowwe apply this result to explain the generator form of the fractional deriva-
tive. In order to apply Theorem 3.17 to stable semigroups, it is convenient to develop
some alternative forms of the generator. The next result is the semigroup analogue of
Theorem 3.8.

Theorem 3.23. Suppose that Zt is a Lévy process, and thatE[eikZ1] = eψ(k) where ψ(k)
is given by (3.4). Then we can also write the generator (3.23) in the form

Lf(x) = −a0f �(x) + 1
2bf
��(x) + ∫(f(x − y) − f(x) + yf �(x)I(|y| ≤ R)) ϕ(dy) (3.26)

for any R > 0, for some unique a0 depending on R and a. Furthermore:
(a) If (3.6) holds, then we can also write

Lf(x) = −a1f �(x) + 1
2bf
��(x) + ∫ (f(x − y) − f(x)) ϕ(dy) (3.27)

for some unique a1 depending on a0; and

(b) If (3.8) holds, then we can also write

Lf(x) = −a2f �(x) + 1
2bf
��(x) + ∫ (f(x − y) − f(x) + yf �(x)) ϕ(dy) (3.28)

for some unique a2 depending on a0.

Proof. The proof is very similar to Theorem 3.8. Since the integral

δ0 = ∫( y

1 + y2 − yI(|y| ≤ R))ϕ(dy)
exists, we can take a0 = a − δ0. If (3.6) holds, take

a1 = a0 − ∫
0<|y|≤R

yϕ(dy).

If (3.8) holds, take

a2 = a0 + ∫
|y|>R

yϕ(dy).

Example 3.24. Let Zt be a stable Lévy process with index 0 < α < 1, such that Z1 has
the one-sided stable characteristic function (3.11) with a1 = 0. Then it follows from
(3.27) that the generator of this semigroup is

Lf(x) =
∞∫
0

(f(x − y) − f(x)) Cαy−α−1dy.
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Proposition 3.10 shows that ψ(−k) = −CΓ(1− α)(ik)α is the Fourier symbol of this one-
sided stable semigroup. If we take C = 1/Γ(1 − α), then this shows that L = −∂α/∂xα,
using the generator form (2.17) of the fractional derivative for 0 < α < 1. Note the
minus sign in the generator in this case. A result of Hille and Phillips [90, Theorem
23.15.2] implies that this generator exists for all f ∈ L1(0,∞) such that f(0) = 0 and
f � ∈ L1(0,∞). This strengthens the result in Proposition 2.1, since it implies that the
fractional derivative dα f/dxα of order 0 < α < 1 exists whenever the first derivative f �
exists.

Example 3.25. Let Zt be a stable Lévy process with index 1 < α < 2, such that Z1 has
the one-sided stable characteristic function (3.15) with a2 = 0. Then it follows from
(3.28) that the generator of this semigroup is

Lf(x) =
∞∫
0

(f(x − y) − f(x) + yf �(x)) Cαy−α−1dy.
Proposition 3.12 shows that

ψ(−k) = C Γ(2 − α)
α − 1 (ik)

α

is the Fourier symbol of this one-sided stable semigroup. If we take C = (α−1)/Γ(2−α),
then this shows that L = ∂α/∂xα, using the generator form (2.20) of the fractional
derivative of order 1 < α < 2. Note the positive sign in the generator in this case.
Theorem 3.17 shows that this fractional derivative exists when f, f � , f �� ∈ C0(ℝ), which
strengthens the result in Proposition 2.1, since it implies that the fractional derivative
dα f/dxα of order 1 < α < 2 exists whenever the second derivative f �� exists.

Details

A substitution z = x − y shows that the FT of f ∗ g is
∞∫
−∞

e−ikx( ∞∫
−∞

f(x − y)g(y) dy) dx = ∞∫
−∞

e−ik(z+y)
∞∫
−∞

f(z)g(y) dy dz

=
∞∫
−∞

e−ikzf(z) dz
∞∫
−∞

e−ikyg(y) dy

= ̂f (k)ĝ(k).

The proof of the semigroup property Tt+s = TtTs for (3.22) uses a conditioning
argument. Since Zt is a Lévy process, (Zt+s − Zt) ≃ Zs, and (Zt+s − Zt) is independent
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of Zt. Then we can write

Tt+sf(x) = E[f(x − Zt+s)]
= E[E[f(x − {(Zt+s − Zt) + Zt})|Zt]]
= ∫E[f(x − {Zs + y})]p(y, t) dy
= ∫E[f(x − y − Zs)]p(y, t) dy
= ∫ Ts f(x − y)p(y, t) dy
= E[Ts f(x − Zt)] = TtTs f(x). (3.29)

This is a special case of the Chapman-Kolmogorov equation for Markov processes.

3.4 Poisson approximation

In order to motivate the proof of the extended central limit theorem, by the method
of triangular arrays, we show here how the stable laws emerge as weak limits of com-
pound Poisson random variables with Pareto (power law) jumps.

Example 3.26. Suppose that Y is a one-sided stable random variable with character-
istic function μ̂(k) = eψ(k), where

ψ(k) = −CΓ(1 − α)(−ik)α =
∞∫
0

(eiky − 1) Cαy−α−1dy
for some 0 < α < 1, using Proposition 3.10. We will approximate Y by an infinitely
divisible random variable Yn with characteristic function E[eikYn] = eψn(k) where

ψn(k) =
∞∫
1/n

(eiky − 1) Cαy−α−1dy.
Define

λn =
∞∫
1/n

Cαy−α−1dy = [ − Cy−α]∞
1/n
= Cnα

and write
ψn(k) = λn ∫(eiky − 1)ωn(dy)

where
ωn(dy) = λ−1n Cαy−α−1I(y > 1/n) dy = n−ααy−α−1I(y > 1/n) dy

is a probability measure. This is a special case of the Pareto distribution, originally
invented to model the distribution of incomes. The general Pareto distribution can be
defined by setting ℙ[X > x] = Cx−α for x > C1/α where C, α are positive constants.
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Take (Wn) iid with distribution ωn so that

ℙ[Wn > x] =
∞∫
x

n−ααy−α−1dy = [n−α(−y−α)]∞
x
= Ax−α

for all x > A1/α = 1/n. Write

ψn(k) = λn ∫(eiky − 1)ωn(dy) = λn[ω̂n(dy) − 1]
to see that Yn is compound Poisson, in view of Example 3.3. In fact Yn ≃ W1 + ⋅ ⋅ ⋅ +WN

where (Wn) are iid Pareto with ℙ[Wn > x] = Ax−α and N is Poisson with mean λn =
Cnα independent of (Wn). Since the integral ψ(k) exists, we certainly have ψn(k) →
ψ(k) for each fixed k ∈ ℝ, and then μ̂n(k) = eψn(k) → eψ(k) = μ̂(k) as n → ∞. This
proves that Yn ⇒ Y.

Hence a stable law is essentially a compound Poisson with power law jumps. The
mean number of jumps λn = Cnα → ∞ as the minimum jump size 1/n → 0, so that
the jump intensity ϕn(dy) = λnωn(dy) increases without bound to the Lévy measure
ϕ of the stable law. This means that the stable law represents the accumulation of an
infinite number of power law jumps. For any n, it combines a finite number of jumps
of size greater than 1/n with an infinite number of jumps of size less than 1/n.

We now define the general two-sided stable law μ with index 0 < α < 2 to be an in-
finitely divisible law with Lévy representation [a, 0, ϕ], where a ∈ ℝ and

ϕ(dy) =
{{{pCαy−α−1dy for y > 0, and
qCα|y|−α−1dy for y < 0.

(3.30)

where p, q ≥ 0 with p + q = 1. This is a Lévy measure since

ϕ{y : |y| > R} = CR−α and ∫
0<|y|≤R

y2ϕ(dy) = Cα

2 − α R
2−α

are both finite for any R > 0.
Example 3.27. Consider a two-sided stable random variable Y with index 0 < α < 1.
Since ∫

0<|y|≤R

|y|ϕ(dy) =
R∫
0

Cαy−αdy = Cα

1 − α R
1−α
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is finite, we can apply Theorem 3.8 (a). Suppose that Y is centered so that a1 = 0 in
(3.7). Then we can write μ̂(k) = E[eikY] = eψ(k) where

ψ(k) = ∫(eiky − 1)ϕ(dy)
= p
∞∫
0

(eiky − 1) Cαy−α−1dy + q 0∫
−∞
(eiky − 1) Cα(−y)−α−1dy

= −pCΓ(1 − α)(−ik)α + q
∞∫
0

(e−ikx − 1) Cαx−α−1dx
= −pCΓ(1 − α)(−ik)α − qCΓ(1 − α)(ik)α (3.31)

using a substitution x = −y and Proposition 3.10.
Define Yn ≃ μn where μ̂n(k) = eψn(k) with

ψn(k) = ∫
|y|>1/n

(eiky − 1)ϕ(dy).
Let

λn = ∫
|y|>1/n

ϕ(dy) = Cnα

and ωn(dy) = λ−1n I(|y| > 1/n)ϕ(dy). Take (Wn) ≃ ωn iid so that

ℙ[Wn > x] = pAx−α and ℙ[Wn < −x] = qAx−α

for all x > A1/α = 1/n. Then Yn ≃ W1+⋅ ⋅ ⋅+WN where N is Poissonwithmean λn = Cnα
independent of (Wn). Againwe have Yn ⇒ Y, which shows that the two-sided stable is
also the accumulation of power law jumps, including a finite number of jumps larger
than 1/n and an infinite number of very small jumps. The constants p and q balance
the positive and negative jumps.

The two-sided stable law decomposes into independent positive and negative
parts: Use (3.31) to write ψ(k) = pψ+(k) + qψ−(k)where

ψ+(k) =
∞∫
0

(eiky − 1) Cαy−α−1dy = −CΓ(1 − α)(−ik)α ,
ψ−(k) =

0∫
−∞
(eiky − 1) Cα|y|−α−1dy = −CΓ(1 − α)(ik)α .

Then μ̂(k) = eψ(k) = epψ+(k)eqψ−(k)which shows that Y ≃ Y++Y− a sumof two indepen-
dent stable laws. We can also write Yn ≃ Y+n +Y−n a sumof two independent compound
Poisson, the first with only positive jumps, and the second with only negative jumps.
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The generator form of the negative fractional derivative comes inverting the FT for the
symbol ψ−(−k): Use the fact that ∫ e−ikxf(x + y) dx = eiky ̂f (k) to see that

ψ−(−k) ̂f (k) =
∞∫
0

(eiky ̂f (k) − ̂f (k)) Cαy−α−1dy
is the FT of

∞∫
0

(f(x + y) − f(x)) Cαy−α−1dy.

Take C = 1/Γ(1 − α) to get
dαf(x)
d(−x)α = F

−1[(−ik)α ̂f (k)]

= F−1[−ψ−(−k) ̂f (k)]

= α

Γ(1 − α)

∞∫
0

(f(x) − f(x + y)) y−α−1dy (3.32)

for 0 < α < 1. Formula (3.32) also follows from (3.27) and a simple change of variables.
Suppose that Zt is a two-sided stable Lévy motion with Z1 ≃ Y. Then p̂(k, t) =

E[e−ikZt] = etψ(−k) with ψ(−k) = −pD(ik)α − qD(−ik)α and D = CΓ(1 − α) > 0. Then
dp̂(k, t)
dt
= ψ(−k)p̂(k, t) = −pD(ik)α p̂(k, t) − qD(−ik)α p̂(k, t)

which inverts to the two-sided fractional di�usion equation

∂p(x, t)
∂t
= −pD ∂

αp(x, t)
∂xα
− qD ∂

αp(x, t)
∂(−x)α

for 0 < α < 1. The positive fractional derivative codes positive power law jumps, and
the negative fractional derivative corresponds to the negative power law jumps.

3.5 Shifted Poisson approximation

Here we develop the Poisson approximation for stable laws with index 1 < α < 2. In
this case, the Poisson approximation involves a shift.

Example 3.28. Suppose that Y is one-sided stable with characteristic function μ̂(k) =
E[eikY] = eψ(k) where

ψ(k) = ∫(eiky − 1 − iky)ϕ(dy)
=
∞∫
0

(eiky − 1 − iky) Cαy−α−1dy
= C Γ(2 − α)

α − 1 (−ik)
α
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for 1 < α < 2, using Proposition 3.12. Let Yn be infinitely divisible with characteristic
function μ̂n(k) = eψn(k) where

ψn(k) =
∞∫
1/n

(eiky − 1 − iky) Cαy−α−1dy
= ∫(eiky − 1 − iky) ϕn(dy)

and ϕn(dy) = I(y > 1/n)ϕ(dy) is the Lévy measure of this infinitely divisible law.
Define

λn = ∫ϕn(dy) = ∞∫
1/n

Cαy−α−1dy = Cnα

so that ωn(dy) = λ−1n ϕn(dy) is a probability measure. Take (Wj) iid with distribution
ωn and write

ψn(k) = λn ∫(eiky − 1 − iky)ωn(dy) = λn ∫(eiky − 1)ωn(dy) − ikan
where an = λn ∫ y ωn(dy) = λnE[Wj]. Here ℙ[Wj > x] = Ax−α with A = n−α so that

E[Wj] =
∞∫

1/n

y Aαy−α−1dy = [Aα y1−α
1 − α ]∞1/n = Aα

α − 1n
α−1

is finite for all n for 1 < α < 2. Then ψn(k) = λn[ω̂(k) − 1] − ikan so Yn is shifted
compound Poisson: TakeN Poissonwithmean λn, independent of (Wj), and note that

exp(ψn(k)) = exp(λn[ω̂(k) − 1] − ikan) = E[ exp (ik[W1 + ⋅ ⋅ ⋅ +WN − an])]
so that Yn ≃ W1 + ⋅ ⋅ ⋅ +WN − an. Note that

λn = Cnα →∞ and an = λnE[Wj] =
αC

α − 1n
α−1 →∞

so that both the mean number of jumps and the shift tend to infinity as the trunca-
tion threshold 1/n → 0. Since ℙ[Wj > x] = Ax−α the stable random variable Y is
essentially the (compensated) sum of power law jumps. The compensator adjusts the
random sum of power law jumps to mean zero. As the threshold shrinks to zero, the
number of jumps increases to infinity, and their accumulated mean an also increases
to infinity, but the compensated sum (the shifted compound Poisson) converges to an
α-stable limit.

Let Zt be a stable Lévy process with Z1 ≃ Y. Then Zt ≃ [0, 0, tϕ] in the alternative Lévy
representation (3.9). The Lévy process Znt ≃ [0, 0, tϕn] with Zn1 ≃ Yn is a compound
Poisson process with power law jumps, centered to mean zero. In fact we can write

Znt = W1 + ⋅ ⋅ ⋅ +WN(t) − tan
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where N(t) is a Poissonprocesswith rate λn. The PoissonprocessN(t) is a Lévy process
whose Lévy measure is a point mass ϕn{1} = λn . Then E[N(t)] = λn t and a standard
conditioning argument shows that the compound Poisson process (a random sum)
has mean

E[W1 + ⋅ ⋅ ⋅ +WN(t)] = E[N(t)]E[Wj ] = tan .

Example 3.29. A general two-sided stable random variable Y with 1 < α < 2 has
Lévy measure (3.30). Then it follows from Proposition 3.12 and a change of variables
that E[eikY] = eψ(k) where

ψ(k) = ∫(eiky − 1 − iky)ϕ(dy)
= pC Γ(2 − α)

α − 1 (−ik)
α + qC Γ(2 − α)

α − 1 (+ik)
α . (3.33)

If Zt is a stable Lévy motion with Z1 ≃ Y then p̂(k, t) = E[e−ikZt] = etψ(−k). Take
D = CΓ(2 − α)/(α − 1) and write p̂(k, t) = exp[pDt(ik)α + qDt(−ik)α]. Then

dp̂(k, t)
dt
= ψ(−k)p̂(k, t) = pD(ik)α p̂(k, t) + qD(−ik)α p̂(k, t)

which inverts to the two-sided fractional di�usion equation

∂p(x, t)
∂t
= pD ∂

αp(x, t)
∂xα
+ qD ∂

αp(x, t)
∂(−x)α

for 1 < α < 2. As in the case 0 < α < 1, the positive fractional derivative comes from
the positive power law jumps, and the negative fractional derivative corresponds to
the negative jumps.

Example 3.29 illustrates the reason for the positive coe�cients in the fractional di�u-
sion equation for 1 < α < 2, and the negative coe�cients for 0 < α < 1. This comes
from the change of sign in the stable characteristic function. One can also note that
the log-characteristic function ψ(k) should have a negative real part, since the char-
acteristic function eψ(k) remains bounded for all real k. Since (±ik)α has a positive real
part for 0 < α < 1, and a negative real part for 1 < α < 2, the negative sign in the case
0 < α < 1 is necessary to make the real part of ψ(k) negative.

We have now connected the coe�cients α and D in the fractional di�usion equa-
tionwith the parameters of the Pareto law. The order of the fractional derivative equals
the power law index α, and the fractional dispersivity

D =
{{{{{CΓ(1 − α) for 0 < α < 1, and

C
Γ(2 − α)
α − 1 for 1 < α < 2.

These relations can be useful for simulating sample paths of a stable Lévy process
using the compound Poisson approximation. A histogram of particle locations at time
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t > 0will approximate the solution to the corresponding fractional di�usionequation.
This is the method of particle tracking, see for example Zhang, Benson, Meerschaert
and Sche�er [223].

The two-sided stable law is a sum of independent components, segregating the
positive and negative jumps. Write ψ(k) = pψ+(k) + qψ−(k) where

ψ+(k) =
∞∫
0

(eiky − 1 − iky) Cαy−α−1dy = C Γ(2 − α)
α − 1 (−ik)

α ,

ψ−(k) =
0∫
−∞
(eiky − 1 − iky) Cα|y|−α−1dy = C Γ(2 − α)

α − 1 (ik)
α .

Then Y ≃ Y+ + Y− a sum of two independent stable laws. Take C = (α − 1)/Γ(2 − α)
to get ψ−(−k) = (−ik)α the Fourier symbol of the negative fractional derivative. Invert
the FT to obtain the generator form of the negative fractional derivative in the case
1 < α < 2: A change of variables shows that

ψ−(k) =
∞∫
0

(e−iky − 1 + iky) Cαy−α−1dy.
Use ∫ eikxf(x + y) dx = eiky ̂f (k) to get

dαf(x)
d(−x)α = F

−1[(−ik)α ̂f (k)]

= F−1 [[∞∫0 (eiky ̂f (k) − ̂f (k) − iky ̂f (k)) Cαy−α−1dy]]
= α(α − 1)
Γ(2 − α)

∞∫
0

(f(x + y) − f(x) − yf �(x))y−α−1dy. (3.34)

Note that f(x+y) = f(x)+yf �(x)+O(y2)by a Taylor series expansion, so that this integral
converges at y = 0 if f is su�ciently smooth. Formula (3.34) can also be derived from
(3.28) by a change of variables.
Details

In the one-sided case, the shifted compound Poisson process Znt = S(N(t))− tan where
S(n) = W1+⋅ ⋅ ⋅+Wn is a randomwalk. SinceN(t) is Poissonwithmean tλn independent
of S(n), the random sum S(N(t)) has mean

E [S(N(t))] =
∞∑
j=0
E [S(j)|N(t) = j]ℙ[N(t) = j]

=
∞∑
j=0
jE[W]ℙ[N(t) = j]

= E[W]tλn = tan
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so that E[Znt ] = 0.
In the two-sided case we have

λn = ∫ϕn(dy) = ∫
|y|>1/n

ϕ(dy)

=
∞∫
1/n

pCαy−α−1dy +
−1/n∫
−∞

qCα|y|−α−1dy

= (p + q)
∞∫

1/n

Cαy−α−1dy = Cnα

and the probability measure

ωn(dy) = λ−1n ϕn(dy) =
{{{n−αpαy−α−1dy for y > 1/n, and
n−αqα|y|−α−1dy for y < −1/n.

Then

ℙ[Wn > x] = ωn(x,∞) =
∞∫
x

n−αpαy−α−1dy = pAx−α

ℙ[Wn < −x] =
−x∫
−∞

n−αqα|y|−α−1dy =
∞∫
x

n−αqαy−α−1dy = qAx−α

where A = n−α for all n. Again Yn ⇒ Y since ∫ (eiky − 1 − iky)ϕ(dy) exists. Here
E[Wj] =

∞∫
1/n

y pAαy−α−1dy +
−1/n∫
−∞

y qAα|y|−α−1dy = (p − q) Aα
α − 1n

α−1

so that E[Wj] = 0 if p = q. In this case, the compensator an = 0, and the compound
Poisson approximation converges without centering.

3.6 Triangular arrays

This section develops the general theory of triangular arrays, which is the fundamen-
tal tool used to prove the extended central limit theorem for stable laws. Recall that Y
is infinitely divisible if for every positive integer n we can write Y ≃ Xn1 + ⋅ ⋅ ⋅ + Xnn a
sum of iid random variables. A triangular array of random variables is a set

{Xnj : j = 1, . . . , kn; n = 1, 2, 3, . . .} (3.35)

where Xn1, . . . , Xnkn are independent for each n ≥ 1, and kn → ∞ as n → ∞. Then
the row sum

Sn = Xn1 + ⋅ ⋅ ⋅ + Xnkn
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is a sum of independent random variables. We will make the usual assumption that

lim
n→∞ sup

1≤j≤kn
ℙ[|Xnj| > ε] = 0 for all ε > 0. (3.36)

This condition ensures that every summand is asymptotically negligible. A general
result [146, Theorem 3.2.14] states that Y is infinitely divisible if and only if Sn−an ⇒ Y

for some triangular array that satisfies (3.36) and some sequence (an).
Example 3.30. Take (Wn) iid with E[Wn] = 0 and E[W2

n ] = σ2 < ∞. Then

Xnj =
1

σ√nWj : 1 ≤ j ≤ n

forms a triangular array with kn = n, and the row sums Sn ⇒ Y ≃ N(0, 1). Note that
Xnj are iid for 1 ≤ j ≤ n, but the distribution of Xnj depends on n.

Example 3.31. Take (Wn) iid with E[Wn] = 0 and E[W2
n ] = σ2 < ∞. Then

Xnj = n−1/2Wj : 1 ≤ j ≤ [nt]

forms a triangular array with kn = [nt], and the row sums Sn ⇒ Y ≃ N(0, σ2 t). In
other words, Sn ⇒ B(t) for any single t ≥ 0, where B(t) is a Brownian motion.

Example 3.32. Take (Wn) iid with μ = E[Wn] ̸= 0 and E[(Wn − μ)2] = σ2 < ∞. Then

Xnj =
1√n (Wj − μ) +

1

n
μ : 1 ≤ j ≤ [nt]

forms a triangular array with kn = [nt], and the row sums

Sn =
kn∑
j=1
Xnj =

1√n [nt]∑j=1(Wj − μ) +
[nt]
n
μ ⇒ B(t) + μt

a Brownian motion with drift, where B(t) ≃ N(0, σ2 t). Note that two scales are neces-
sary here: We must divide the mean by n and the deviation from the mean by √n to
represent both terms in the limit.

The proof the extended central limit theorem with normal or stable limits depends on
the convergence theory for triangular arrays. Define the truncated random variables

XRnj = XnjI(|Xnj| ≤ R) =
{{{Xnj if |Xnj| ≤ R; and
0 if |Xnj| > R.

We say that a sequence of σ-finite Borel measures ϕn(dy) → ϕ(dy) on {y : y ̸= 0}
if ϕn(B) → ϕ(B) for any Borel set B that is bounded away from zero, and such that
ϕ(∂B) = 0. This is called vague convergence. In Section 3.4 we defined a sequence of
compound Poisson random variables whose Lévy measures ϕn converged vaguely to
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the Lévy measure ϕ of a stable law. See the details at the end of this section for more
discussion.
Theorem 3.33 (Triangular array convergence). Given a triangular array (3.35) such
that (3.36) holds, there exists a random variable Y and a sequence (an) such that

Sn − an ⇒ Y if and only if:

(i)
kn∑
j=1
ℙ[Xnj ∈ dy] → ϕ(dy) for some σ-finite Borel measure on {y : y ̸= 0}; and

(ii) lim
ε→0

lim sup
n→∞

kn∑
j=1

Var[Xεnj] = limε→0 lim inf
n→∞

kn∑
j=1

Var[Xεnj] = b ≥ 0.

In this case, Y is infinitely divisible with Lévy representation [a, b, ϕ], where a depends
on the choice of centering constants (an). We can take

an =
kn∑
j=1
E[XRnj] (3.37)

for any R > 0 such that ϕ{y : |y| = R} = 0, and then E[eikY] = eψ0(k) where

ψ0(k) = − 12 k
2b + ∫(eiky − 1 − ikyI(|y| ≤ R)) ϕ(dy). (3.38)

That is, (3.5) holds with a0 = 0.

Proof. This is a special case of [146, Theorem 3.2.2].

Remark 3.34. To establish vague convergence condition (i), it su�ces to show

kn∑
j=1
ℙ[Xnj > y] → ϕ(y,∞) and

kn∑
j=1
ℙ[Xnj < −y] → ϕ(−∞, −y) (3.39)

for every y > 0 such that ϕ{y} = ϕ{−y} = 0. The centering constants an in (3.37) and
the log characteristic function ψ0(k) both depend on the choice of R > 0. If the Lévy
measure has a density, as is the case for stable laws, then any R > 0maybe used, since
we always have ϕ{R} = ϕ{−R} = 0. To establish the truncated variance condition (ii),
it is of course su�cient to show that

lim
ε→0

lim
n→∞

kn∑
j=1

Var[Xεnj] = b. (3.40)

Remark 3.35. The proof of Theorem 3.33 is based on a Poisson approximation. First
we approximate Sn ≈ SN where N is Poisson with mean kn, independent from the tri-
angular array elements. Then we use the converge criteria for infinitely divisible laws.
Suppose Yn ≃ [an , bn , ϕn] and Y ≃ [a, b, ϕ] in terms of the Lévy representation. Then
Yn ⇒ Y if and only if ψn(k) → ψ(k) for each k, i.e., the log characteristic functions
converge [146, Lemma 3.1.10]. Write

f(y, k) = eiky − 1 − iky

1 + y2
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and note that y Ü→ f(y, k) is a bounded continuous function such that

f(y, k) = − 12 k
2y2 + O(y2) as y → 0

for any fixed k. Now it is not hard to show that∫
|y|>ε

f(y, k)ϕn(dy) → ∫
|y|>ε

f(y, k)ϕ(dy)

whenever ϕ{|y| = ε} = 0, which must be true for almost every ε > 0. Then

lim
ε→0

lim
n→∞ ∫
|y|>ε

f(y, k)ϕn(dy) = lim
ε→0
∫
|y|>ε

f(y, k)ϕ(dy) = ∫ f(y, k)ϕ(dy)
since ∫ y2I(0 < |y| ≤ ε)ϕ(dy) exists for a Lévy measure. To handle the the remaining
part of the integral term in the Lévy representation for ψn(k)we write

lim
ε→0

lim
n→∞
[[[− 12 k2bn + ∫0<|y|≤ε

f(y, k)ϕn (dy)]]]
= lim
ε→0

lim
n→∞
[[[− 12 k2bn − 1

2 k
2 ∫
0<|y|≤ε

y2ϕn(dy)]]] = − 12 k2b
provided that

lim
ε→0

lim
n→∞
[[[bn + ∫0<|y|≤ε

y2ϕn(dy)]]] = b. (3.41)

Then it can be shown that Yn ⇒ Y if and only if (3.41) holds along with an → a and
ϕn → ϕ, see [146, Theorem 3.1.16]. The proof of Theorem 3.33 uses these ideas, along
with some delicate centering arguments.

Here we prove the traditional central limit theorem with iid summands, to illustrate
the use of Theorem 3.33.

Theorem 3.36 (Central Limit Theorem). Suppose that (Wn) are iid and that μ1 =
E[Wn] and μ2 = E[W2

n ] exist. Then

W1 + ⋅ ⋅ ⋅ +Wn − nμ1
n1/2

⇒ Y ≃ N(0, σ2) (3.42)

where σ2 = μ2 − μ21.

Proof. Define a triangular array with row elements Xnj = n−1/2Wj for j = 1, . . . , n.
Then condition (3.36) holds (see details), and then in order to prove that Sn − an ⇒ Y
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normal, it su�ces to check conditions (i) and (ii) in Theorem 3.33. For condition (i)we
have for each ε > 0 that

kn∑
j=1
ℙ[|Xnj| > ε] = nℙ[|n−1/2Wj | > ε]

= nℙ[|Wj | > n1/2ε]
= nE[I(|Wj | > n1/2ε)]

≤ nE[( Wj

n1/2ε
)2 I(|Wj | > n1/2ε)]

= ε−2E [W2
j I(|Wj | > n1/2ε)] → 0

as n →∞, since μ2 = E[W2
n ] exists. Then (i) holds with ϕ = 0.

Condition (ii) in this case is a form of the Lindeberg Condition. Write

kn∑
j=1

Var[Xεnj] = n {E [(Xεnj)2] − E [Xεnj]2}
= nE [(n−1/2Wj)2I(|n−1/2Wj | ≤ ε)] − nE [n−1/2WjI(|n−1/2Wj| ≤ ε)]2
= E [W2

j I(|Wj | ≤ n1/2ε)] − E [WjI(|Wj | ≤ n1/2ε)]2 → μ2 − μ21
since the first and second moments exist. Then Theorem 3.33 shows that Sn − an ⇒
Y ≃ [a, b, 0] where b = μ2 − μ21 = σ2 = Var(Y). This shows that Y is normal. From
(3.37) we get

an =
kn∑
j=1
E[XRnj] = nE [n−1/2WjI(|Wj | ≤ n1/2R)]
= n1/2 {μ1 − E [Wj I(|Wj | > n1/2R)]}

where !!!!!n1/2E [Wj I(|Wj | > n1/2R)]!!!!! ≤ n1/2E [|Wj|I(|Wj | > n1/2R)]
≤ n1/2E [|Wj |( |Wj |

n1/2R
) I(|Wj | > n1/2R)]

= R−1E [W2
j I(|Wj | > n1/2R)] → 0

since μ2 exists. This shows that an − n1/2μ1 → 0 and then we have Sn − n1/2μ1 =
Sn − an + (an − n1/2μ1) ⇒ Y. Then (3.42) follows.

Details

Theorem3.33 uses the concept of vague convergence:We say that a sequence of σ-finite
Borel measures ϕn(dy) → ϕ(dy) on {y : y ̸= 0} if ϕn(B) → ϕ(B) for any Borel set B
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that is bounded away from zero, and such that ϕ(∂B) = 0. Here ∂B is the topological
boundary of the set B, defined as the closure of B (the intersection of all closed sets
that contain B) minus the interior of B (the union of all open sets contained in B). The
Borelmeasure is a standard tool in real analysis andprobability (e.g., see [35, 62, 180]).
In the physics notation introduced in the details at the end of Section 3.1, wenoted that
a Lévy density can often be interpreted in terms of generalized functions, with Dirac
delta function terms to represents atoms in the Lévy measure. Readers who are more
comfortable with the physics notation may interpret the vague convergence ϕn → ϕ

to mean that, if ϕn(dy) = ϕn(y) dy and ϕ(dy) = ϕ(y) dy, then

ϕn(a, b) =
b∫
a

ϕn(y)dy →
b∫
a

ϕ(y)dy = ϕ(a, b)

for all 0 < a < b or a < b < 0 such that ϕ(y) has no Dirac delta function terms at
the points a, b, i.e., ϕ{a} = ϕ{b} = 0. Stable distributions all have Lévy densities ϕ(y)
with no Dirac delta function terms. However, these Lévymeasures are not finite, since∫∞
0
ϕ(y) dy = ∞ or ∫0−∞ ϕ(y) dy = ∞. In this case, the Lévy measure is called σ-finite

because it assigns finite measure to the sets {y : |y| > 1/n}, and the set {y : y ̸= 0} is
the countable union of these.

If X is any random variable, then the distribution of X is tight, meaning that

ℙ[|X| > r] → 0 as r →∞. (3.43)

Equation (3.43) follows by a simple application of the dominated convergence theo-
rem. It follows that

ℙ[|Xnj| > ε] = ℙ[|Wj| > n1/2ε] → 0

as n →∞, so that condition (3.36) holds.

3.7 One-sided stable limits

Here we prove that one-sided stable laws with Lévy measure (3.10) are the limits for
sums of iid Pareto jumps. We also specify a convenient centering.

Theorem 3.37. Suppose that (Wn) are iid and positive with ℙ[Wn > x] = Cx−α for all
x > C1/α for some C > 0 and 0 < α < 2. Then

n−1/α(W1 + ⋅ ⋅ ⋅ +Wn) − an ⇒ Y (3.44)

for some sequence (an), where Y is a one-sided stable law with Lévy representation

[a, 0, ϕ], and the Lévy measure is given by (3.10). If 0 < α < 1, we can choose an = 0,
and then (3.12) holds. If 1 < α < 2, we can choose an = n1−1/αμ1 where μ1 = E[Wn],
and then (3.16) holds.
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Proof. Define a triangular array Xnj = n−1/αWj for j = 1, . . . , n. Then condition (3.36)
holds (see details), andwe just need to check the convergence criteria (i) and (ii) from
Theorem 3.33. For y > 0 we have

kn∑
j=1
ℙ[Xnj > y] = nℙ[n−1/αWj > y]

= nℙ[Wj > n1/αy]

= nC (n1/αy)−α = Cy−α
whenever n1/αy > C1/α, as well as

kn∑
j=1
ℙ[Xnj < −y] = 0.

Then (i) holds with ϕ(y,∞) = Cy−α for all y > 0, and ϕ(−∞, 0) = 0. This is equivalent
to (3.10). Note that 0 < α < 2 is required here, so that ϕ(dy) is a Lévy measure:

∫
|y|≤R

y2ϕ(dy) =
R∫
0

y2Cαy−α−1dy = [ Cα
2 − α y

2−α]R
0

= Cα

2 − α R
2−α < ∞.

For any ε > 0 we have, whenever n is su�ciently large to make n1/αε > C1/α, that

0 ≤
kn∑
j=1

Var[Xεnj] = n {E [(Xεnj)2] − E [Xεnj]2} ≤ nE [(Xεnj)2]
= nE [(n−1/αWj)2I(|n−1/αWj | ≤ ε)]
= n1−2/αE [W2

j I(|Wj | ≤ n1/αε)]
= n1−2/α

n1/αε∫
C1/α

y2Cαy−1−αdy

= n1−2/α [Cα y2−α
2 − α]n1/αε

C1/α

= n1−2/αCα [ (n1/αε)2−α
2 − α −

(C1/α)2−α
2 − α ]

= n1−2/α Cα

2 − α [n2/α−1ε2−α − C2/α−1]
= ε2−α Cα

2 − α − n
1−2/α α

2 − α C
2/α ∼ ε2−α Cα

2 − α (3.45)

as n →∞, since 1 − 2/α < 0. Then we have

lim
ε→0

lim sup
n→∞

kn∑
j=1

Var[Xεnj] ≤ limε→0 ε
2−α Cα

2 − α = 0
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since 2 − α > 0, so that (ii) holds with b = 0. This proves that Sn − an ⇒ Y0 holds
for some sequence (an), where Sn = Xn1 + ⋅ ⋅ ⋅ + Xnn = n−1/α(W1 + ⋅ ⋅ ⋅ +Wn) is the row
sum of this triangular array, and Y0 is infinitely divisible with Lévy measure ϕ and no
normal component.

Suppose that 0 < α < 1. Theorem 3.33 shows that, if we choose (an) according to
(3.37), then E[eikY0] = eψ0(k) where

ψ0(k) = ∫(eiky − 1 − ikyI(|y| ≤ R))ϕ(dy)
= ∫(eiky − 1)ϕ(dy) − ik∫ yI(|y| ≤ R)ϕ(dy)
= −CΓ(1 − α)(−ik)α − ika (3.46)

by Proposition 3.10, where we can take

a =
R∫
0

y Cαy−α−1dy = Cα [ y1−α
1 − α]R

0

= Cα

1 − α R
1−α (3.47)

for any R > 0, since ϕ has a density. Write

an =
kn∑
j=1
E [XRnj] = nE [n−1/αWjI(|n−1/αWj | ≤ R)]

= n1−1/α
n1/αR∫
C1/α

y Cαy−1−αdy

= n1−1/αCα [ (n1/αR)1−α
1 − α −

(C1/α)1−α
1 − α ]

= Cα

1 − α R
1−α − n1−1/α α

1 − α C
1/α → Cα

1 − αR
1−α = a (3.48)

as n →∞, since 1 − 1/α < 0 in this case.
Let Y be a one-sided stable lawwith characteristic function exp[−CΓ(1−α)(−ik)α ],

so that Y − a = Y0 in view of (3.46). Since an − a → 0 we also have Sn − a = Sn − an +
(an − a) ⇒ Y0, and then we also have Sn = Sn − a + a ⇒ Y0 + a = Y. Hence we can
take an = 0 in this case, and then the limit has characteristic function (3.12).

Suppose that 1 < α < 2. Theorem 3.33 shows that, if we choose (an) according to
(3.37), then E[eikY0] = eψ0(k) where

ψ0(k) = ∫(eiky − 1 − ikyI(|y| ≤ R))ϕ(dy)
= ∫(eiky − 1 − iky) ϕ(dy) + ik∫ yI(|y| > R)ϕ(dy)
= C Γ(2 − α)

α − 1 (−ik)
α + ika (3.49)
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by Proposition 3.12, where we can choose

a =
∞∫
R

y Cαy−α−1dy = Cα [ y1−α
1 − α]∞

R

= Cα

α − 1R
1−α (3.50)

for any R > 0, since ϕ has a density. Using (3.48) we have

an =
Cα

1 − α R
1−α − n1−1/α α

1 − α C
1/α = −a + n1−1/αμ1 (3.51)

since

μ1 = E[Wn] =
∞∫
C1/α

y Cαy−1−αdy = [Cα y1−α
1 − α]∞

C1/α

= Cα

α − 1 (C
1/α)1−α = α

α − 1C
1/α (3.52)

exists in this case.
Let Y = Y0 − a, so that Y has characteristic function (3.16). Since Sn − an ⇒ Y0

and an + a = n1−1/αμ1, it follows that Sn − n1−1/αμ1 = Sn − an − a ⇒ Y0 − a = Y.

Remark 3.38. Theorem 3.37 shows that no centering is needed to get convergence
when 0 < α < 1, and when 1 < α < 2 we can center to zero expectation. The stable
limits in this case will be called centered stable. When 1 < α < 2, it is not hard to
check that a centered stable law has mean zero, by di�erentiating the characteristic
function. See the details at the end of this section.

Details

SinceWj is tight for any fixed j, so that (3.43) holds with X = Wj, it follows that

ℙ[|Xnj| > ε] = ℙ[|Wj| > n1/αε] → 0

as n →∞, so that condition (3.36) holds.
If Y is centered stable with index 1 < α < 2, then μ̂(k) = eψ(k) where ψ(k) =∫ (eiky − 1 − iky)ϕ(dy). Then

d

dk
μ̂(k) = eψ(k)∫ iy (eiky − 1)ϕ(dy)

where the integrand is O(y2) as y → 0, and O(y) as y →∞, so that the integral exists.
Using thegeneral fact that d

dk
μ̂(0) = iE[Y] ifE[|Y|] < ∞ (seeProposition 1.1), it follows

that E[Y] = 0 in this case. The same argument shows that E[Y] = a2 for any infinitely
divisible law that satisfies condition (3.8) in Theorem 3.8, see [146, Remark 3.1.15].
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3.8 Two-sided stable limits

We prove that general two-sided stable laws are the limits for Pareto random walks
that allowbothpositive andnegative jumps. Centering is unnecessarywhen0 < α < 1,
and we can center to mean zero when 1 < α < 2.

Theorem 3.39. Suppose (Wn) are iid with ℙ[Wn > x] = pCx−α and ℙ[Wn < −x] =
qCx−α for all x > C1/α for some C > 0 and 0 < α < 2, and some p, q ≥ 0 such that

p + q = 1. Then
n−1/α(W1 + ⋅ ⋅ ⋅ +Wn) − an ⇒ Y (3.53)

for some sequence (an), where Y is a stable law with Lévy representation [a, 0, ϕ], and
the Lévy measure ϕ is given by (3.30). If 0 < α < 1, we can choose an = 0, and then Y
has characteristic function

μ̂(k) = E[eikY] = exp [ − pCΓ(1 − α)(−ik)α − qCΓ(1 − α)(ik)α]. (3.54)

If 1 < α < 2, we can choose an = n1−1/αμ1 where μ1 = E[Wn], and then Y has charac-

teristic function

μ̂(k) = E[eikY] = exp [pC Γ(2 − α)
α − 1 (−ik)

α + qC Γ(2 − α)
α − 1 (ik)

α] . (3.55)

Proof. The proof is similar to Theorem 3.37. Use the triangular array Xnj = n−1/αWj for
j = 1, . . . , n, so that condition (3.36) holds. For any y > 0 we have

kn∑
j=1
ℙ[Xnj > y] = nℙ[Wj > n1/αy] = npC (n1/αy)−α = pCy−α

and

kn∑
j=1
ℙ[Xnj < −y] = nℙ[Wj < −n1/αy] = qCy−α

whenever n1/αy > C1/α. Then condition (i) from Theorem 3.33 holds with ϕ(y,∞) =
Cpy−α and ϕ(−∞, −y) = Cqy−α for all y > 0. This is equivalent to (3.30). Note that the
condition (3.3) for a Lévy measure requires 0 < α < 2.

For any ε > 0, for all n is su�ciently large, we have

0 ≤
kn∑
j=1

Var[Xεnj] ≤ nE [(Xεnj)2]
= n1−2/αE [W2

j I(|Wj | ≤ n1/αε)]
= ε2−α Cα

2 − α − n
1−2/α α

2 − α C
2/α ∼ ε2−α Cα

2 − α
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as n →∞, by exactly the same argument as the one-sided case (see the proof of The-
orem 3.37), since the distribution ofW2

n is the same. It follows that condition (ii) from
Theorem 3.33 holds with b = 0. Then the centered row sums Sn − an ⇒ Y0 where Y0
is infinitely divisible with no normal component, and Lévy measure (3.30).

Suppose that 0 < α < 1. Theorem 3.33 implies that, if the norming sequence (an)
is chosen according to (3.37), then E[eikY0] = eψ0(k) where

ψ0(k) = ∫(eiky − 1 − ikyI(|y| ≤ R))ϕ(dy)
= ∫(eiky − 1)ϕ(dy) − ik∫ yI(|y| ≤ R)ϕ(dy)
= −pCΓ(1 − α)(−ik)α − qCΓ(1 − α)(ik)α − ika

by (3.31). Here

a = ∫ yI(|y| ≤ R)ϕ(dy)
=

R∫
0

y pCαy−α−1dy +
0∫
−R

y qCα(−y)−α−1dy = Cα

1 − α (p − q)R
1−α (3.56)

which reduces to (3.47) if p = 1. Theorem 3.33 shows that we can choose

an =
kn∑
j=1
E [XRnj] = nE [n−1/αWj I(|Wj | ≤ n1/αR)]

= n1−1/α [[[
n1/αR∫
C1/α

y pCαy−1−αdy +
−C1/α∫
−n1/αR

y qCα|y|−1−αdy]]]
= n1−1/αCα[p( (n1/αR)1−α

1 − α −
(C1/α)1−α
1 − α )

− q( (n1/αR)1−α
1 − α −

(C1/α)1−α
1 − α )]

= Cα

1 − α (p − q)R
1−α − n1−1/α(p − q) α

1 − α C
1/α

→ Cα

1 − α (p − q)R
1−α = a (3.57)

as n →∞, since 1 − 1/α < 0 in this case.
Define Y = Y0 + a. Since an → a it follows that Sn ⇒ Y0 + a = Y. Hence we can

choose an = 0 in this case, and then the limit has characteristic function (3.54).
Suppose that 1 < α < 2. If (3.37) holds, then E[eikY0] = eψ0(k) where

ψ0(k) = ∫(eiky − 1 − ikyI(|y| ≤ R)) ϕ(dy)
= ∫(eiky − 1 − iky)ϕ(dy) + ik∫ yI(|y| > R)ϕ(dy)
= pC Γ(2 − α)

α − 1 (−ik)
α + qC Γ(2 − α)

α − 1 (ik)
α + ika (3.58)
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by (3.33), where

a = ∫ yI(|y| > R)ϕ(dy)
=
∞∫
R

y pCαy−α−1dy +
−R∫
−∞

y qCα(−y)−α−1dy = Cα

α − 1 (p − q)R
1−α

for some arbitrary fixed R > 0. Using (3.57) we have

an =
Cα

1 − α (p − q)R
1−α − n1−1/α(p − q) α

1 − α C
1/α = −a + n1−1/αμ1 (3.59)

since

μ1 = E[Wn] = p
∞∫
C1/α

y Cαy−1−αdy + q
−C1/α∫
−∞

y Cα(−y)−1−αdy

= Cα

α − 1 (p − q)(C
1/α )1−α = (p − q) α

α − 1C
1/α

exists in this case.
Define Y = Y0−a. Since an +a = n1−1/αμ1 it follows that Sn −n1−1/αμ1 ⇒ Y0−a =

Y, and the limit Y has characteristic function (3.55).

Remark 3.40. Theorem 3.39 shows that no centering is needed to get convergence
when 0 < α < 1, and when 1 < α < 2 we can center to zero expectation (see the
details at the end of Section 3.7). The stable limits in this case will be called centered
stable.

Now we extend the convergence in Theorem 3.39 to process limits. The next result
shows that a random walk with power law jumps, suitably centered, converges to an
α-stable Lévy motion. If 0 < α < 1, then no centering is needed. If 1 < α < 2, we can
center to zero expectation.

Theorem 3.41. Suppose (Wn) are iid with ℙ[Wn > x] = pCx−α and ℙ[Wn < −x] =
qCx−α for all x > C1/α for some C > 0 and 0 < α < 2, and some p, q ≥ 0 such that

p + q = 1.
(a) If 0 < α < 1, then

n−1/α
[nt]∑
j=1
Wj ⇒ Zt (3.60)

for all t > 0, where

E[eikZt ] = exp [ − tpCΓ(1 − α)(−ik)α − tqCΓ(1 − α)(ik)α]; (3.61)

(b) If 1 < α < 2, then μ1 = E[Wn] exists and

n−1/α
[nt]∑
j=1
(Wj − μ1) ⇒ Zt (3.62)
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for all t > 0, where

E[eikZt] = exp [tpC Γ(2 − α)
α − 1 (−ik)

α + tqC Γ(2 − α)
α − 1 (ik)

α] . (3.63)

Proof. If 0 < α < 1, then Theorem 3.39 shows that n−1/αS(n) ⇒ Y, where the random
walk S(n) = W1 + ⋅ ⋅ ⋅ +Wn, and the limit Y has characteristic function (3.54). Let μ̂n(k)
be the characteristic function of n−1/αWj, so that μ̂n(k)n → μ̂(k) for all k ∈ ℝ. Then we
have

μ̂n(k)[nt] = (μ̂n(k)n)[nt]/n → μ̂(k)t (3.64)

for any t > 0, and (3.60) follows, where the limit Zt has characteristic function μ(k)t,
so that (3.61) also holds.

If 1 < α < 2, then Theorem 3.39 shows that n−1/αS(n) − n1−1/αμ1 ⇒ Y, where the
limit Y has characteristic function (3.55). Letting μ̂n(k) be the characteristic function
of n−1/α(Wj − μ1), it follows that μ̂n(k)n → μ̂(k) for all k ∈ ℝ. Again (3.64) holds, and
then (3.62) follows, where the limit Zt has characteristic function (3.63).

Theorem 3.41 relates the parameters of a Pareto random walk to the FT of the limit
process, an α-stable Lévy motion Zt. For example, in the case 1 < α < 2 we have
p̂(k, t) = E[e−ikZt] = exp [tpD(ik)α + tqD(−ik)α], where D = CΓ(2 − α)/(α − 1). Then

∂p(x, t)
∂t
= pD ∂

αp(x, t)
∂xα
+ qD ∂

αp(x, t)
∂(−x)α

andwe can see that the weights p, q on the positive andnegative fractional derivatives
come from the relative probability of large jumps in the positive or negative directions.
This is consistent with our earlier conclusions, based on the Poisson approximation.

Remark 3.42. It is also possible to prove Theorem 3.41 directly. We illustrate the proof
in the case 0 < α < 1 and p = 1. Define a triangular array Xnj = n−1/αWj for j =
1, . . . , [nt]. Then condition (i) from Theorem 3.33 holds since:

kn∑
j=1
ℙ[Xnj > y] = [nt]ℙ[n−1/αWj > y] =

[nt]
n

nℙ[Wj > n1/αy] → tCy−α; and

kn∑
j=1
ℙ[Xnj < −y] = [nt]ℙ[n−1/αWj < −y] → 0.

Condition (ii) holds since

0 ≤
kn∑
j=1

Var[Xεnj] ≤ [nt]E [(Xεnj)2] = [nt]n nE [(Xεnj)2]→ 0.
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Then Sn−an ⇒ Z0t , where the limit Z0t is infinitely divisiblewith no normal component
and Lévy measure tϕ(dy), with ϕ given by (3.10). If (3.37) holds, then

E[eikZ0t ] = exp [∫ (eiky − 1 − ikyI(|y| ≤ R)) tϕ(dy)]
= exp [∫ (eiky − 1) tϕ(dy) − ikta]

where a is given by (3.47). Since

an =
kn∑
j=1
E [XRnj] = [nt]E [XRnj] = [nt]n [ Cα1 − α R

1−α − n1−1/α α

1 − α C
1/α]→ ta

as n → ∞, we can let Zt = Z0t − ta, and it follows that (3.60) holds, where E[eikZt] =
exp [∫ (eiky − 1) tϕ(dy)]. Then (3.61) follows from Proposition 3.10.

Remark 3.43. The convergence arguments in Theorem 3.41 shed some light on the
structure of the limit process Zt. This topic will be covered systematically in Chapter 4.
Under the assumptions of this theorem, suppose that (3.60) holds for some 0 < α < 1,
or some 1 < α < 2with E[Wn] = 0. Given s, t > 0, write Sn = n−1/α(W1 + ⋅ ⋅ ⋅ +Wn) and
note that S[n(t+s)] ⇒ Zt+s. We also have

S[n(t+s)] = S[nt] + (S[n(t+s)] − S[nt])
= n−1/α

[nt]∑
j=1
Wj + n−1/α

[n(t+s)]∑
j=[nt]+1

Wj

⇒ Zt + (Zt+s − Zt)
since the two sums are independent. This shows that Zt+s = Zt+(Zt+s−Zt) a sumof two
independent increments. Since the second sum is identically distributed with S[ns], it
also shows that Zt+s − Zt ≃ Zs, i.e., the distribution of the increments is stationary. In
general, we define a Lévy process Zt as an infinitely divisible process with stationary
independent increments. Assuming Zt has characteristic function μ̂(k)t = etψ(k) is
not su�cient to make Zt a Lévy process. For example, take Z ≃ N(0, 2) and define
Zt = t1/2Z. Then Zt has characteristic function e−tk

2
, but Zt does not have independent

increments.



4 Continuous Time Random Walks

We begin this chapter by refining the stable limit theory from Chapter 3. We intro-
duce regular variation as a technical tool to describe the full range of random walks
attracted to a normal or stable limit. This shows that fractional di�usion is a robust
model. Then we extend to the continuous time random walk (CTRW) by imposing a
randomwaiting time between randomwalk jumps. The CTRW is studied as a random
walk in space-time, which is then reduced to a time-changed process in space, using
the fundamental ideas of Skorokhod. Finally, we develop the space-time fractional
di�usion equations that govern CTRW scaling limits.

4.1 Regular variation

Regular variation is a technical tool that formalizes the idea of power law asymptotics.
The necessary and su�cient conditions for the central limit to hold, even in the case
of a normal limit, are written in terms of regular variation. Suppose that (Wn) are iid
random variables, and Y is a random variable that is not degenerate (i.e., there is no
constant y such that ℙ[Y = y] = 1). We want to know when

an(W1 + ⋅ ⋅ ⋅ +Wn) − bn ⇒ Y (4.1)

for some an > 0 and bn ∈ ℝ.
Suppose that R : [A,∞) → (0,∞) is Borel measurable, for some A > 0. We say

that R(x) varies regularly with index ρ, and we write R ∈ RV(ρ), if

lim
x→∞

R(λx)
R(x) = λ

ρ for all λ > 0. (4.2)

Then R(λx) ≈ λρR(x), so that R(x) behaves like a power law as x → ∞. If ρ = 0 we
also say that R(x) is slowly varying. We say that a sequence of positive real numbers
(an) is regularly varying with index ρ, and we write (an) ∈ RV(ρ), if

lim
n→∞

a[λn]
an
= λρ for all λ > 0.

Example 4.1. The function R(x) = xρ log x is regularly varyingwith index ρ. The func-
tion R(x) = x−α[2 + cos x] is not regularly varying, because R(λx)/R(x) oscillates too
fast to approach a limit as x → ∞. The function R(x) = log x is slowly varying. If
R(x) ∈ RV(ρ), then L(x) = x−ρR(x) is slowly varying.

Remark 4.2. If a sequence of positive real numbers (an) is regularly varying with in-
dex ρ, then the function R(x) = a[x] varies regularly with the same index. Conversely,
if a function R(x) varies regularly with index ρ, then the sequence an = R(n) varies

DOI 10.1515/9783110258165-004
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regularly with the same index. The proof is surprisingly delicate, see Meerschaert and
Sche�er [146, Theorem 4.2.9].

LetW be identically distributed withWn and define

U2(x) = E[W2I(|W| ≤ x)] and V0(x) = ℙ[|W| > x] (4.3)

the truncated second moment and tail ofW.

Example 4.3. Suppose that V0(x) = ℙ[W > x] = x−α for some α > 0, for all x ≥ 1.
ThenW has cdf F(x) = ℙ[W ≤ x] = 1 − x−α and pdf f(x) = αx−α−1 for x ≥ 1. For ζ > α
we define the truncated moment

Uζ (x) = E[W ζ I(W ≤ x)] =
x∫
1

yζ f(y) dy

=
x∫
1

αyζ−α−1dy = α

ζ − α [yζ−α]x1
= α

ζ − α [xζ−α − 1] ∼ α

ζ − α x
ζ−α

as x → ∞. Then Uζ (x) → ∞ as x → ∞, i.e., E[W ζ ] does not exist. For 0 ≤ η < α we
define the tail moment

Vη(x) = E[Wη I(W > x)] =
∞∫
x

yη f(y) dy

=
∞∫
x

αyη−α−1dy = α

η − α [yη−α]∞x = α

α − η x
η−α

so that Vη(x) → 0 as x →∞. Combine to obtain the Karamata relation:

xζ−ηVη(x)
Uζ (x)

→ ζ − α
α − η as x →∞. (4.4)

Theorem 4.4 (Karamata Theorem). SupposeW is a randomvariable such thatUζ (x) =
E[|W|ζ I(|W| ≤ x)] and Vη(x) = E[|W|ηI(|W| > x)] exist.
(a) If Uζ (x) is RV(ρ), then ρ = ζ − α ≥ 0 for some α, and (4.4) holds;
(b) If Vη(x) is RV(ρ), then ρ = η − α ≤ 0 for some α, and (4.4) holds;
(c) If (4.4) holds for some α ∈ (η, ζ], then Uζ (x) is RV(ζ − α);
(d) If (4.4) holds for some α ∈ [η, ζ), then Vη(x) is RV(η − α).

Proof. This is a special case of [146, Theorem 5.3.11]. See also Feller [68, VIII.8]. The
proof uses integration by parts to relate Uζ to Vη, along with some hard analysis.
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We say that W belongs to the domain of attraction of Y, and we write W ∈ DOA(Y),
if (4.1) holds for some an > 0 and bn ∈ ℝ, where (Wn) are iid with W, and Y is
nondegenerate. The following theorem gives necessary and su�cient conditions for
W ∈ DOA(Y) in terms of regular variation. It also proves that normal and stable laws
are the only possible limits. The proof is based on Theorem 3.33, the convergence crite-
ria for triangular arrays. It uses regular variation together with the Karamata Theorem
4.4 to compare the tail (condition (i) of Theorem 3.33) and the truncated second mo-
ment (condition (ii) of Theorem 3.33). The first part of the theorem, regarding normal
limits, will be proved in this section. The second part, regarding stable limits, will be
proven in Section 4.2.

Theorem 4.5 (Extended Central Limit Theorem). If W ∈ DOA(Y) then Y is either nor-

mal, or stable with index 0 < α < 2, and:
(a) If Y is normal, thenW ∈ DOA(Y) if and only if U2(x) is slowly varying;
(b) If Y is stable with index 0 < α < 2, thenW ∈ DOA(Y) if and only if V0(x) is regularly

varying with index −α and

lim
x→∞
ℙ[W > x]
V0(x)

= p for some 0 ≤ p ≤ 1. (4.5)

Proof of Theorem 4.5 (a). Suppose that (Wj) are iid with W and that U2(x) is slowly
varying. Then μ1 = E[W] exists (see Proposition 4.14 in the details at the end of this
section). If E[W2] < ∞, we have already proven in Theorem 3.36 that (4.1) holds. Oth-
erwise if E[W2] = ∞, then U2(x) → ∞ as x →∞. Choose an → 0 such that

na2nU2(a−1n ) → σ2 > 0 (4.6)

(see Corollary 4.13 at the end of this section for an explicit construction). Define a tri-
angular array with row elements Xnj = anWj for j = 1, . . . , n. Then condition (3.36)
holds (see details), and so it su�ces to check conditions (i) and (ii) from Theorem 3.33.

Condition (i): Apply Theorem 4.4 (a) with ζ = 2, η = 0, and ρ = 0 to see that the
Karamata equation (4.4) holds with α = 2. Then

kn∑
j=1
ℙ[|Xnj| > ε] = nℙ[|anWj | > ε]

= nV0(a−1n ε)

= (a
−1
n ε)2V0(a−1n ε)
U2(a−1n ε)

⋅ ε−2 ⋅ na2nU2(a−1n ε)

→ 0 ⋅ ε−2 ⋅ σ2

since x2V0(x)/U2(x) → (2 − α)/α = 0 by (4.4), and

na2nU2(a−1n ε) = na2nU2(a−1n ) ⋅
U2(a−1n ε)
U2(a−1n )

→ σ2 ⋅ 1



92 | 4 Continuous Time RandomWalks

by (4.6), and the fact that U2(xε)/U2(x) → 1 as x →∞. This shows that (i) holds with
ϕ{x : |x| > ε} = 0 for all ε > 0, i.e., ϕ = 0, the zero measure.

Condition(ii): Since U2(a−1n ) → ∞ it follows from (4.6) that na2n → 0. Then with
Xεnj = XnjI[|Xnj| ≤ ε] we have

kn∑
j=1

Var[Xεnj] = nE[(Xεnj)2] − nE[Xεnj]2
= nE[(anW)2I(|anW| ≤ ε)] − nE[anWI(|anW| ≤ ε)]2
= na2nU2(a−1n ε) − na2nE[WI(|W| ≤ a−1n ε)]2
∼ na2nU2(a−1n ε) → σ2 (4.7)

sinceE[WI(|W| ≤ a−1n ε)] → μ1 by the dominated convergence theorem, and na2n → 0.
Then it follows from Theorem 3.33 that (4.1) holds with Y normal.

Since the direct half of Theorem 4.5(a) is our main interest, we only sketch the
proof of the converse, highlighting the role of regular variation arguments. Suppose
that (4.1) holds with Y normal. Assume for now that μ1 = E[W] = 0. Then conditions
(i) and (ii) hold from Theorem 3.33. Writing (ii) as in (4.7) it follows that

na2nU2(a−1n ε) − na2nU1(a−1n ε)2 → σ2 = Var(Y). (4.8)

If (4.1) holds with Y nondegenerate, a simple argument using characteristic functions
[146, Lemma 3.3.3] shows that an → 0. Then a dominated convergence argument
yields U1(a−1n ε) = E[WI(|W| ≤ a−1n ε)] → μ1 = 0. A similar argument shows that
U2(a−1n ε) = E[W2I(|W| ≤ a−1n ε)] → E[W2], where 0 < E[W2] ≤ ∞ since W is not
degenerate. It follows that U1(a−1n ε)2 = o(U2(a−1n ε)) as n → ∞, and then (4.8) yields
na2nU2(a−1n ε) → σ2 for all ε > 0. Then an argument similar to the first part of the proof
of Proposition 4.15 in the next section shows that x−2U2(x) varies regularly with index
−2, and it follows that U2 is slowly varying. See Feller [68, XVII.5] or [146, Theorem
8.1.11] for complete details.

Finally, if (4.1) holds with Y normal, then a convergence of types argument [146,
Theorem 8.1.5] shows that (an) is RV(−1/2), and then it follows from condition (ii)
and a regular variation estimate [146, Proposition 8.1.6] that μ1 = E[W] exists, so the
assumption μ1 = 0 entails no loss of generality: Simply replaceWj byWj − μ1, which
changes the shift bn.

Corollary 4.6. We can choose bn = nanμ1 in (4.1) when Y is normal.

Proof. Thiswasalreadyproven inTheorem3.36, in the caseE[W2] < ∞. In thegeneral
case, Theorem 3.33 implies that we can take

bn =
kn∑
j=1
E[XRnj] = nE[anWI(|anW| ≤ R)] = nanE[WI(|W| ≤ a−1n R)] ∼ nanμ1

since E[WI(|W| ≤ a−1n R)] → μ1 as n →∞.
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Remark 4.7. For finite variance jumps, we can take an = n−1/2 in (4.1). For infinite
variance jumps and Y normal, Corollary 4.13 in the details at the end of this section
shows that the sequence (an) is RV(−1/2). Then we can write an = n−1/2ℓn where
(ℓn) is slowly varying. Now Proposition 4.9 together with Remark 4.2 show that for any
ε > 0, for some n0 > 0 we have

n−ε < ℓn < nε (4.9)

for all n ≥ n0. In other words, the norming constants an → 0 about as fast as n−1/2

when Y is normal.

Details

SinceWj is tight for any fixed j, so that (3.43) holds with X = Wj, it follows that

ℙ[|Xnj| > ε] = ℙ[|Wj | > a−1n ε] → 0,

since an → 0 as n →∞, so that condition (3.36) holds.
The theory of regular variation is simpler for monotone functions. We will restrict

to this case, since it su�ces for all our applications. The next four results remain true
if we remove the assumption that R(x) is monotone, but the proofs are significantly
harder, see Seneta [197, Theorem 1.1 and Section 1.5].

Proposition 4.8. If R(x) ismonotone and R(x) ∈ RV(ρ) for some ρ > 0, then R(x) → ∞
as x →∞.

Proof. Fix some λ > 1 large and note that for all δ > 0 small, there exists some x0 > 0
such that

R(λx)
R(x) ≥ λ

ρ(1 − δ) > 1

for all x ≥ x0. Given x > x0, we can write x = ζλnx0 for some unique nonnegative
integer n = nx and some unique real number ζ = ζx ∈ [1, λ). Then

R(x)
R(x0)
= R(ζλ

nx0)
R(x0)

= R(ζλ
nx0)

R(λnx0)
R(λnx0)
R(λn−1x0)

⋅ ⋅ ⋅ R(λx0)
R(x0)
≥ [λρ(1 − δ)]n

tends to infinity as x →∞.

Proposition 4.9. If R(x) is monotone and R(x) ∈ RV(ρ), then for any ε > 0, for some
x0 > 0 we have

xρ−ε < R(x) < xρ+ε (4.10)

for all x ≥ x0.

Proof. The function x−ρ+εR(x) is RV(ε), so it tends to infinity as x →∞ by Proposition
4.8. This proves that xρ−ε < R(x) for all large x. The proof of the upper bound is similar.
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Theorem 4.10 (Uniform Convergence Theorem). SupposeR(x) ismonotoneandR(x) ∈
RV(ρ). Then for any sequence λn → λ > 0, and any sequence xn →∞, we have

R(λnxn)
R(xn)

→ λρ (4.11)

as n →∞.

Proof. Since λn → λ as n → ∞, for any δ > 0 such that λ − δ > 0, there exists some
n0 > 0 such that λ − δ < λn < λ + δ for all n ≥ n0. If R is monotone nondecreasing,
write

R(xn(λ − δ))
R(xn)

≤ R(xnλn)
R(xn)

≤ R(xn(λ + δ))
R(xn)

The left-hand side of the above inequality converges to (λ − δ)ρ, and the right-hand
side converges to (λ + δ)ρ. Since δ > 0 can be made arbitrarily small, it follows that
(4.11) holds. The proof for Rmonotone nonincreasing is similar.

Remark 4.11. The condition that (4.11) holds for all λn → λ > 0 and all xn → ∞ is
equivalent to the condition that (4.2) holds uniformly on compact subsets of λ > 0.
Theorem 4.10 is usually stated in terms of uniform convergence on compact sets, e.g.,
see Seneta [197, Theorem 1.1]. The proof is much harder when R is not monotone.

Proposition 4.12. If R(x) is monotone and R(x) ∈ RV(ρ) for some ρ > 0, then there
exists a sequence rn → ∞ such that R(rn) ∼ n as n → ∞. In that case, the sequence
(rn) varies regularly with index 1/ρ.

Proof. Define rn = inf{x > 0 : R(x) > n}, which exists because R(x) → ∞ by Proposi-
tion 4.8. Since R is monotone, rn ≤ rn+1, so the limit of rn as n → ∞ exists. This limit
cannot be finite: If rn → r < ∞, then rn ≤ r for all n, so R(r + 1) ≥ R(rn + 1) > n by
definition of rn. Then R(r + 1) = ∞, which is a contradiction. Therefore rn → ∞ as
n →∞. Since R is monotone, R(rn + εn) > n for any εn ↓ 0, and R(rn − εn) ≤ n. Write

R(rn)
R(rn + εn)

< R(rn)
n
≤ R(rn)
R(rn − εn)

and apply Theorem 4.10 with λn = (rn + εn)/rn → 1 to see that

R(rn)
R(rn + εn)

= R(rn)
R(λn rn)

→ 1

as n →∞. A similar argument shows that the right-hand side tends to the same limit,
and then it follows that R(rn) ∼ n.

It remains to show that the sequence (rn) varies regularly with index 1/ρ. Since
R(rn) ∼ n, and since R is RV(ρ) and monotone, it follows from Theorem 4.10 that

R(rnxn)
n
= R(rn)

n

R(rnxn)
R(rn)
→ xρ whenever xn → x > 0. (4.12)
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Define xn = r[λn]r−1n for some fixed λ > 0, and write

R(rnxn)
n
= [λn]

n

R(r[λn])
[λn] → λ.

Then a simple proof by contradiction shows that xn → λ1/ρ: If any subsequence (xn� )
of (xn) satisfies xn� → 0, then (4.12) implies that R(rn� xn� )/n� → 0; if xn� → ∞, then
R(rn� xn� )/n� →∞; and if xn� → b ̸= λ1/ρ, then R(rn� xn�)/n� → bρ ̸= λ.

Corollary 4.13. If U2(x) is slowly varying, then (4.6) holds for some an → 0, and (an)
is RV(−1/2).

Proof. If U2 is slowly varying, then R(x) = σ2x2/U2(x) is RV(2). Apply Proposition
4.12 to obtain a sequence rn = a−1n in RV(1/2) such that σ2a2nU2(a−1n ) ∼ n, which is
equivalent to (4.6).

Proposition 4.14. If U2(x) is slowly varying, then E[W] exists.
Proof. Apply Karamata (4.4) to see that x2V0(x)/U2(x) → (2 − α)/α = 0. Then for
some x0 > 0 we have V0(x) ≤ x−2U2(x) for all x ≥ x0. Given any ε > 0, Proposition 4.9
implies that V0(x) ≤ xε−2 for all x ≥ x0. Write

E[|W|] =
∞∫
0

ℙ[|W| > x] dx =
∞∫
0

V0(x) dx ≤ x0 +
∞∫
x0

xε−2dx < ∞

for any 0 < ε < 1.

4.2 Stable Central Limit Theorem

In this section, wewill prove part (b) of Theorem 4.5, the necessary and su�cient con-
ditions for the central limit theorem (4.1) to hold when Y is not normal. We say W is
regularly varying if

nℙ[anW ∈ dy] → ϕ(dy) as n →∞ (4.13)

for some an → 0 and some σ-finite Borel measure ϕ on {y ̸= 0} which is not the zero
measure. The vague convergence in (4.13) is the same as for condition (i) in Theorem
3.33, the convergence criteria for triangular arrays.

Proposition 4.15. Suppose thatW is regularly varying and (4.13) holds. Then:
(a) For some α > 0 we have

ϕ(dy) =
{{{pCαy−α−1dy for y > 0
qCα|y|−α−1dy for y < 0

(4.14)
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for some C > 0 and some p, q ≥ 0 with p + q = 1;
(b) The sequence (an) is RV(−1/α), that is,

a[λn]
an
→ λ−1/α as n →∞ (4.15)

for all λ > 0;
(c) The tail V0(x) = ℙ[|W| > x] is RV(−α) and the tail balance condition (4.5) holds.

Conversely, these two conditions implyW is regularly varying and (4.13) holds.

See details at the end of this section for proof. When Proposition 4.15 holds, we will
also say thatW is RV(−α).

Proof of Theorem 4.5 (b). In view of Proposition 4.15 (c), it su�ces to show that (4.1)
holds with Y nonnormal if and only ifW is RV(−α). Suppose that (Wj) are iid withW,
and thatW is RV(−α) for some 0 < α < 2. Define a triangular array with row elements
Xnj = anWj for j = 1, . . . , n. Then condition (3.36) holds (see details), and so in order
to show that (4.1) holds, it su�ces to check the convergence criteria (i) and (ii) for
triangular arrays in Theorem 3.33. Proposition 4.15 (a) along with (4.13) shows that (i)
holds, where ϕ is given by the formula (4.14). Since 0 < α < 2, it is not hard to check
that ϕ is a Lévy measure. For condition (ii) we apply the Karamata Theorem 4.4 to see
that

x2V0(x)
U2(x)

→ 2 − α
α

as x →∞

so that U2(x) ∼ αx2V0(x)/(2 − α) as x →∞. Then

0 ≤
kn∑
j=1

Var[Xεnj] ≤ nE[(Xεnj)2]
= na2nE[W2I(|anW| ≤ ε)]
= na2nU2(a−1n ε)

∼ na2n
α

2 − α (a
−1
n ε)2V0(a−1n ε)

= α

2 − α ε
2nV0(a−1n ε)

= ε2α

2 − α nℙ[|anW| > ε]

→ ε2α

2 − αϕ{y : |y| > ε} =
ε2α

2 − α Cε
−α

so that

lim
ε→0

lim sup
n→∞

kn∑
j=1

Var[Xεnj] ≤ limε→0
α

2 − α Cε
2−α = 0.

This proves that (4.1) holds, where Y has Lévy representation [0, 0, ϕ]. Then it follows
from Proposition 4.15 (a) that Y is stable with index α.
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Conversely, if (4.1) holds where Y is nonnormal, the triangular array convergence
condition (i) shows that (4.13) holds, where ϕ is not the zero measure. Then W is
RV(−α), and since ϕ is a Lévy measure, it is easy to check that 0 < α < 2.

The next result provides specific details about the centering constants and limit dis-
tribution in the stable case.

Proposition 4.16. Suppose that (4.1) holds, where Y is stable with index 0 < α < 2 and
Lévy measure (4.14).
(a) If 0 < α < 1, we can take bn = 0, and then the limit Y is centered stable with

characteristic function

E[eikY] = exp (−CΓ(1 − α)[p(−ik)α + q(ik)α]) ; (4.16)

(b) If 1 < α < 2, we can take bn = nanE[W], and then the limit Y is centered stable

with mean zero and characteristic function

E[eikY] = exp(C Γ(2 − α)
α − 1 [p(−ik)

α + q(ik)α]) . (4.17)

Proof. We illustrate the proof in the special case where W > 0, so that p = 1. For the
general case, see [146, Theorem 8.2.7]. Suppose that an(W1 + ⋅ ⋅ ⋅ +Wn) − bn ⇒ Y1. In
case (a), by exactly the same argument as for the Pareto (see Proposition 3.10), we get

E[eikY1] = exp [∫(eiky − 1)ϕ(dy) − ik∫ yI(|y| ≤ R)ϕ(dy)]
= exp [−CΓ(1 − α)(−ik)α − ikb]

where

b = ∫
|y|≤R

yϕ(dy) = Cα

1 − α R
1−α .

By Karamata (4.4) we have U1(x) ∼ αxV0(x)/(1−α). The centering constants are given
by

bn =
kn∑
j=1
E[XRnj] =

kn∑
j=1
E[XnjI(|Xnj| ≤ R)]

= nanE[WI(|W| ≤ a−1n R)]
= nanU1(a−1n R)

∼ nan
α

1 − α a
−1
n RV0(a−1n R)

= Rα

1 − α nℙ[|anW| > R] →
Rα

1 − αϕ{|y| > R} = b

since ϕ{|y| > R} = CR−α. Define Y = Y1 + b. Then an(W1 + ⋅ ⋅ ⋅ +Wn) ⇒ Y, and the limit
is centered stable, i.e., stable with characteristic function given by (4.16).
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In case (b), by exactly the same argument as for the Pareto (see Proposition 3.12),
we get

E[eikY1] = exp [∫(eiky − 1 − iky)ϕ(dy) + ik∫ yI(|y| > R)ϕ(dy)]
= exp [C Γ(2 − α)

α − 1 (−ik)
α + ikb]

where

b = ∫
|y|>R

yϕ(dy) = Cα

α − 1R
1−α .

From Karamata (4.4) we get

xV1(x)
U2(x)
→ 2 − α

α − 1 and
x2V0(x)
U2(x)

→ 2 − α
α

so that
V1(x) ∼

2 − α
α − 1 x

−1U2(x) ∼
α

α − 1 xV0(x).

The centering constants are

bn = nanE[WI(|anW| ≤ R)]
= nan {μ1 − E[WI(|W|| > a−1n R)]}
= nanμ1 − nanV1(a−1n R)

∼ nanμ1 − nan
α

α − 1a
−1
n RV0(a−1n R)

= nanμ1 −
Rα

α − 1nℙ[|anW| > R]
∼ nanμ1 −

Rα

α − 1ϕ{|y| > R} = nanμ1 − b

since ϕ{|y| > R} = CR−α . Define Y = Y1 − b. Then

an(W1 + ⋅ ⋅ ⋅ +Wn) − nanμ1 = an
n∑
j=1
(Wj − E[Wj]) ⇒ Y.

This limit Y is centered stable, with characteristic function (4.17), and Remark 3.40
shows that E[Y] = 0.
Remark 4.17. The convergence (4.1) extends to random walk limits. If

an(W1 + ⋅ ⋅ ⋅ +Wn) − bn ⇒ Z1

where Z1 is normal or stable, thenwe also have convergence of the characteristic func-
tions

μ̂n(k)n → μ̂(k) = eψ(k)
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where μn is the distribution of anW − n−1bn, and μ is the distribution of the infinitely
divisible random variable Z1. It follows easily that

μ̂n(k)[nt] = (μ̂n(k)n)[nt]/n → etψ(k)

for any t ≥ 0, which means that

an(W1 + ⋅ ⋅ ⋅ +W[nt]) −
[nt]
n

bn ⇒ Zt (4.18)

for any t ≥ 0. The limit Zt is aLévyprocess, seeSection4.3 formoredetails. If0 < α < 1,
then Proposition 4.16 (a) shows that we can take bn = 0. If 1 < α < 2, then Proposition
4.16 (b) shows that we can take bn = nanE[W]where an → 0, and Corollary 4.6 shows
that the same is true when α = 2. In the case 1 < α ≤ 2, equation (4.18) can also be
written in the form

an

[nt]∑
j=1
(Wj − v)⇒ Zt

where v = E[W]. Using two scales leads to a Lévy process with drift:

an

[nt]∑
j=1
(Wj − v) + n−1 [nt]∑

j=1
v ⇒ Zt + vt (4.19)

since [nt]/n → t. Two di�erent scales are required here since an → 0 at a di�erent
rate than n−1 when α ̸= 1.

Remark 4.18. Some authors use a di�erent centering in Remark 4.17. Suppose that
(4.18) holds where Zt is either normal, or stable with index 1 < α < 2, so that E[W]
exists. Then!!!!!!!! [nt]n bn − tbn

!!!!!!!! = (nt − [nt]n
) bn ≤ (1

n
) nanE[W] = anE[W] → 0.

Now it follows from (4.18) that

an(W1 + ⋅ ⋅ ⋅ +W[nt]) − tbn ⇒ Zt (4.20)

for any t ≥ 0.

Details

Proof of Proposition 4.15. First wewill prove part (c). Suppose thatW is regularly vary-
ing and (4.13) holds. Define B = {y : |y| > x} and G(x) = ϕ(B), and apply (4.13) to see
that

nV0(a−1n x) = nℙ[anW ∈ B] → ϕ(B) = G(x) (4.21)
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as n → ∞ for all x such that G(x+) = G(x−). Since ϕ is not the zero measure, we
have G(x) > 0 for some x > 0. Since G(x) is monotone, it has at most a countable
number of discontinuities. Without loss of generality, we may assume that x = 1 is a
continuity point, with C = G(1) > 0. Define n = n(x) = inf{n > 0 : a−1n+1 > x} so that
a−1n ≤ x < a−1n+1. Then

nV0(a−1n r)
nV0(a−1n+1)

≤ V0(rx)
V0(x)
≤ nV0(a

−1
n+1r)

nV0(a−1n )

where
nV0(a−1n+1r) =

n

n + 1 (n + 1)V0(a
−1
n+1r) → G(r)

if r is a continuity point of G. Define φ(r) = G(r)/G(1). Let n →∞ to see that

lim
x→∞

V0(rx)
V0(x)
= φ(r) (4.22)

if r is a continuity point. If r, λ, and rλ are continuity points, we can take the limit as
x →∞ on both sides of the equation

V0(rλx)
V0(x)

= V0(rλx)
V0(rx)

V0(rx)
V0(x)

to see that φ(rλ) = φ(r)φ(λ). It follows that φ(r) = rρ for some ρ ∈ ℝ (see Seneta [197,
Lemma 1.6]), and then G(r) = Crρ. Hence every r > 0 is a continuity point, so (4.22)
holds for every r > 0. Since G(r) → 0 as r → ∞, ρ < 0. Then V0 varies regularly with
index ρ = −α for some α > 0. Now write

nV+(a−1n )
nV0(a−1n+1)

≤ V+(x)
V0(x)
≤
nV+(a−1n+1)
nV0(a−1n )

and let x → ∞ (which means that n = n(x) → ∞ as well) to see that the tail balance
condition (4.5) holds with p = ϕ{y : y > 1}/ϕ{y : |y| > 1}, so that 0 ≤ p ≤ 1.

Conversely, suppose that V0(x) is RV(−α) and (4.5) holds. Apply Proposition 4.12
with R(x) = C/V0(x) to obtain a sequence rn such that R(rn) ∼ n. Define an = r−1n so
that nV0(a−1n ) = nℙ[|anW| > 1] → C > 0. Since a−1n = rn → ∞, it follows from (4.2)
that

nℙ[|anW| > x] = nV0(a−1n x) = nV0(a−1n )nV0(a
−1
n x)

nV0(a−1n )
→ Cx−α

for all x > 0. Using (4.5) it follows that nℙ[anW > x] ∼ npℙ[|anW| > x] → pCx−α and
similarly for the left tail. This is su�cient to prove that (4.13) holds with ϕ given by
(4.14), which proves part (c) and also part (a). Proposition 4.12 also implies that (rn)
varies regularly with index 1/α. Then (an) varies regularly with index −1/α so that
(4.15) holds, which proves part (b). This concludes the proof.



4.3 Continuous time random walks | 101

IfW isRV(−α) for some0 < α < 2, then (an) isRV(−1/α). ThenProposition 4.9 together
with Remark 4.2 imply that an → 0. SinceWj is tight for any fixed j, so that (3.43) holds
with X = Wj, it follows that

ℙ[|Xnj| > ε] = ℙ[|Wj | > a−1n ε] → 0,

so that condition (3.36) holds.

4.3 Continuous time random walks

In a continuous time random walk (CTRW), we assume a random waiting time be-
tween particle jumps. Let S(n) = Y1 + ⋅ ⋅ ⋅ + Yn be a random walk with iid particle
jumps. Define another random walk T(n) = J1 + ⋅ ⋅ ⋅ + Jn where Jn ≥ 0 are iid waiting
times between particle jumps, so that a particle arrives at location S(n) at time T(n).
Here we also suppose that (Yn) are independent of (Jn), so the CTRW is uncoupled. Let

N(t) = max{n ≥ 0 : T(n) ≤ t}

denote the number of particle jumps by time t ≥ 0, where T(0) = 0. Then the CTRW
S(N(t)) is the particle location at time t ≥ 0. Our goal is to determine the limit process
for this CTRW. Then in Section 4.5, we will derive the governing equation of the CTRW
limit.

Since T(n) is a random walk, its limit distribution can be obtained as we did for
S(n). Suppose that Yn are iid with Y, and that Y ∈ DOA(A) where A is either normal,
or stable with index 0 < α < 2. Then

anS(n) − bn ⇒ A (4.23)

for some an > 0 and bn real. Suppose that bn = 0, e.g., assume that E[Y] = 0 in the
case 1 < α ≤ 2. Then Remark 4.17 shows that we also get random walk convergence

anS([nt]) ⇒ A(t) (4.24)

where the limit A(t) is a Brownianmotion, or an α-stable Lévy motion. Suppose Jn are
iid with J, and J ∈ DOA(D). If E[J] exists, then the renewal theorem (e.g., see Durrett
[62, Theorem 2.4.6]) shows that N(t)/t → λ = 1/E[J] with probability one as t → ∞.
That is, N(t) ≈ λt for t large. The proof of this fact is a simple application of the strong
law of large numbers. Then

anS(N(nt)) ⇒ A(λt)

and the e�ect of the waiting times is just a change of scale (see details). However, if
E[J] = ∞, the CTRW behaves quite di�erently.

Suppose that J ∈ DOA(D) where D is β-stable with 0 < β < 1. For example, we
could take ℙ[J > t] = Bt−β for some B > 0. Then Proposition 4.16 (a) shows that
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cnTn ⇒ D for some cn → 0, and Remark 4.17 shows that the random walk converges:

cnT([nt]) ⇒ D(t) (4.25)

where D(t) is called a β-stable subordinator. Since every Jn ≥ 0, D(t) is a one-sided
stable with p = 1 and q = 0. Also, if 0 < t1 < t2, then cnT([nt1]) ≤ cnT([nt2]) for all n,
which shows that the limit D(t1) ≤ D(t2), i.e., the process D(t) is increasing. In fact,
we have

cnT([nt2]) = cnT([nt1]) + cn(T([nt2]) − T([nt1]))

= cn
[nt1]∑
j=1

Jj + cn
[nt2]∑

j=[nt1]+1
Jj ⇒ D(t1) + [D(t2) − D(t1)]

and since the sums are independent, the process D(t) has independent increments.
Take weak limits on both sides of

cn

[nt2]∑
j=[nt1]+1

Jj ≃ cn
[nt2]−[nt1]∑

j=1
Jj

to see that D(t2)−D(t1) ≃ D(t2 − t1), i.e., the process D(t) has stationary increments. A
process {D(t) : t ≥ 0}with stationary, independent increments is called a Lévy process.
(A subordinator is a Lévy process with nondecreasing sample paths.) Usually we also
assume that D(0) = 0with probability one, which is certainly true here. Clearly a Lévy
process is infinitely divisible, since D(t) = D(t/n) + [D(2t/n) − D(t/n)] + ⋅ ⋅ ⋅ + [D(t) −
D((n − 1)t/n)] is a sum of n iid random variables. Hence the FT of D = D(1) can be
written as E[e−ikD] = eψ(−k) with Fourier symbol ψ(−k) from the Lévy representation
(3.4), and then D(t) has FT etψ(−k) for all t ≥ 0. See Sato [187] or Applebaum [7] for
more information on Lévy processes.

The random walk T(n) and the renewal process N(t) are inverses: Obviously we
have {N(t) ≥ n} = {T(n) ≤ t}, which formalizes the fact that there are at least n jumps
by time t, if and only if the nth jump occurs by time t. In fact, we also have {N(t) ≥
u} = {T(⌈u⌉) ≤ t}where ⌈u⌉ is the smallest integer n ≥ u. The idea of inverse processes
can be used, alongwith the randomwalk limit for T(n), to get the limit behavior of the
renewal process N(t). For ease of notation, we specialize to the case cn = n−1/β . The
general argument uses the fact that (cn) ∈ RV(−1/β) and asymptotic inverses. Using
(4.25) we have

ℙ[c−βN(ct) < u] = ℙ[N(ct) < cβu]
= ℙ[T(⌈cβu⌉) > ct]
= ℙ[c−1T(⌈cβu⌉) > t]
= ℙ[(cβ)−1/βT(⌈cβu⌉) > t]
→ ℙ[D(u) > t] (4.26)
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for all t > 0, since every stable law has a density (we will prove this in Section 4.5).
Define the inverse stable subordinator

E(t) = inf{u > 0 : D(u) > t} (4.27)

which is also the first passage time of the process D(t). It is not hard to check that D, E
are inverses, with {E(t) ≤ u} = {D(u) ≥ t}. Since the inverse stable subordinator E(t)
also has a density (we will also prove this in Section 4.5), we have

ℙ[D(u) > t] = ℙ[D(u) ≥ t] = ℙ[E(t) ≤ u] = ℙ[E(t) < u].
Then it follows from (4.26) that c−βN(ct) ⇒ E(t). Since (Jn) is independent of (Yn), we
also have (c−1/αS([ct]), c−βN(ct)) ⇒ (A(t), E(t))
for each t > 0. To simplify notation, we assume an = n−1/α here. To proceed further,
we need to introduce some ideas about stochastic process convergence.

Finite dimensional convergence: Given 0 < t1 < t2 < ⋅ ⋅ ⋅ < tn < ∞ we want to
show that

(c−1/αS([ct1]), . . . , c−1/αS([ctn])) ⇒ (A(t1), . . . , A(tn)). (4.28)

To check this, define t0 = 0 and S(0) = 0 and note that

c−1/αS([ctk]) − c−1/αS([ctk−1]) = c−1/α
[ctk]∑

j=[ctk−1]+1
Jj ⇒ A(tk) − A(tk−1)

for k = 1, . . . , n, and since the sums are all independent, we also have(c−1/αS([ctk]) − c−1/αS([ctk−1]) : k = 1, . . . , n) ⇒ (A(tk) − A(tk−1) : k = 1, . . . , n)
weak convergence of these n dimensional random vectors. To prove (4.28) we will use
the following fundamental result on weak convergence:

Theorem 4.19 (Continuous Mapping Theorem). If Xc ⇒ X as c →∞ and f(x) is con-
tinuous, then f(Xc)⇒ f(X) as c →∞.

Proof. See for example Billingsley [36].

Define f(x1, . . . , xn) = (x1 , x1 + x2, . . . , x1 + ⋅ ⋅ ⋅ + xn) so that f is continuous, with

f (c−1/αS([ctk]) − c−1/αS([ctk−1]) : k = 1, . . . , n) = (c−1/αS([ctk]) : k = 1, . . . , n)
and

f (A(tk) − A(tk−1) : k = 1, . . . , n) = (A(tk) : k = 1, . . . , n).
Apply Theorem 4.19 to see that (4.28) holds in the sense of finite dimensional distri-
butions. In Section 4.4, we will extend this result to obtain stochastic process conver-
gence.
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Next we consider the waiting times. Given 0 < t1 < t2 < ⋅ ⋅ ⋅ < tn < ∞ and real
numbers u1, . . . , un we can write

ℙ(c−βN(ctk) < uk : k = 1, . . . , n) = ℙ(N(ctk) < cβuk : k = 1, . . . , n)
= ℙ(T(⌈cβuk⌉) > ctk : k = 1, . . . , n)
= ℙ((cβ)−1/βT(⌈cβuk⌉) > tk : k = 1, . . . , n)
→ ℙ(D(uk) > tk : k = 1, . . . , n)
= ℙ(E(tk) < uk : k = 1, . . . , n)

which proves that c−βN(ct) ⇒ E(t) in the sense of finite dimensional distributions.
Since (Jn) is independent of (Yn), we also have(c−1/αS([ct]), c−βN(ct)) ⇒ (A(t), E(t))
in the sense of finite dimensional distributions.

Remark 4.20. Proposition 4.16 (a) shows that if 0 < α < 1 we can always choose
bn = 0. If α = 1, we can always choose bn = 0 if the distribution of W is symmetric.
Corollary 4.6 and Proposition 4.16 (b) show that we can always choose bn = 0 if 1 <
α ≤ 2 and E[W] = 0. Suppose that 1 < α ≤ 2 and v = E[W] ̸= 0. Then Remark 4.17
shows that

an(S[nt] − [nt]v) + n−1[nt]v ⇒ A(t)

as n →∞ for any t > 0, where the limit A(t) = Zt + vt is a Brownian motion with drift
in the case α = 2, or a stable Lévy motion with drift in the case 1 < α < 2. It is not
hard to show, arguing as in (4.28), that we also get convergence in the sense of finite
dimensional distributions in this case.

Details

Suppose that (4.24) holdswith bn = 0, and thatN(nt)/n → λt almost surely as n →∞.
Then a transfer theorem from Becker-Kern, Meerschaert and Sche�er [25, Proposition
4.1] implies that

anS(N(nt)) = anS(n ⋅ N(nt)/n) ⇒ A(λt) as n →∞

for any t > 0. An alternative proof uses the Continuous Mapping Theorem 4.19: Since
the waiting times Jn are independent of the jumps Yn, we also have joint convergence
(anS([nt]), N(nt)/n) ⇒ (A(t), λt). Extend to joint convergence in the Skorokhod space
D[0,∞) using (4.29) in the next section, and mimic the proof of (4.32).
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4.4 Convergence in Skorokhod space

We want to understand CTRW convergence, and the limit process, in terms of sam-
ple paths. These sample paths represent particle traces in the di�usion model. Let
D[0,∞) denote the set of real-valued functions x : [0,∞)→ ℝwhich are continuous
from the right:

lim
ε→0+

x(t + ε) = x(t),

with left-hand limits:
lim
ε→0+

x(t − ε) = x(t−).

In some literature these are called càdlàg functions, anacronym for theFrenchphrase,
“continue à droite, limite à gauche,” whichmeans “continuous on the right, with lim-
its on the left.” We would like to show that c−1/αS([ct]) ⇒ A(t) in the spaceD[0,∞),
and likewise for thewaiting times. Thenwewill use the ContinuousMapping Theorem
4.19 to get the CTRW process limit.

Weak convergence theory requires a topology on the spaceD[0,∞), suitable for
stochastic process convergence. In other words, we need to say what it means for a
sample path xn(t) to be close to x(t). The obvious choice is to require xn(t) → x(t)
for all t, but this excludes the possibility that xn(t) has a jump at the point t − εn for
some εn → 0 and x(t) has a jump of the same size at t. For this reason, Skorokhod
introduced his (J1) topology: In this topology, xn(t) → x(t) in D[0, T] if for some in-
creasing continuous functions λn : [0, T] → [0, T] such that λn(0) = 0, λn(T) = T,
and

lim
n→∞ sup

0≤t≤T
|λn(t) − t| = 0,

we have
lim
n→∞ sup

0≤t≤T
|x(t) − xn(λn(t))| = 0.

Thenwe say that xn(t) → x(t) inD[0,∞) if xn(t) → x(t) inD[0, T] for every continuity
point T > 0 of x(t). This topology is useful if the processes have isolated jumps, as in
a random walk. In fact, Skorokhod [201] proved that if Y ∈ DOA(A) and (4.23) holds,
then

anS([nt]) − tbn ⇒ A(t) inD[0,∞) (4.29)

with this topology. This strengthens (4.20). The Skorokhod M1 topology (see details)
is a bit more flexible. It allows multiple jumps of xn(t) to coalesce into a single jump
of x(t) in the limit. For a beautiful description, and additional discussion, see Avram
and Taqqu [12].

Theorem 3 in Bingham [38] states that if:
(a) Xn(t)⇒ X(t) in the sense of finite dimensional distributions;
(b) X(t) is continuous in probability; and
(c) Xn(t) is monotone,
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then Xn(t) ⇒ X(t) in the spaceD[0,∞)with the Skorokhod (J1) topology. We say that
X(t) is continuous in probability if

ℙ[|X(tn) − X(t)| > ε]→ 0 as n →∞

for all ε > 0, whenever tn → t. Since the sample paths of the stable subordinator
D(u) are strictly increasing, it follows from (4.27) that the sample paths of E(t) are
continuous, and hence E(t) is continuous in probability. Since sample paths of the
process N(t) are monotone nondecreasing, it follows that

c−βN(ct) ⇒ E(t) inD[0,∞). (4.30)

Suppose an = n−1/α to ease notation, and suppose that the random walk jumps
are centered so that bn = 0. Since (Yn) and (Jn) are independent, it follows from (4.29)
and (4.30) that (c−1/αS([ct]), c−βN(ct)) ⇒ (A(t), E(t)) (4.31)

in the product space inD[0,∞) ×D[0,∞). From here it is hard to prove CTRW con-
vergence in the J1 topology. But Theorem 13.2.4 in Whitt [219] shows that x(y(t)) is a
continuous mapping from D[0,∞) × D[0,∞) to D[0,∞) with the M1 topology, so
long as u = y(t) is strictly increasing whenever x(u) ̸= x(u−), i.e., when u is a jump
point of x.

In order to apply this to the CTRW limit, we need to know that u = E(t) is a point of
increase whenever A(u) ̸= A(u−). Since the constant intervals of u = E(t) correspond
to the jumps of the inverse process t = D(u), this is equivalent to the condition that
A(u) and D(u) have no simultaneous jumps. This follows from the fact that A(u) and
D(u) are independent (see details). Then, since xc(u) = c−1/αS([cu]) ⇒ x(u) = A(u)
and yc(t) = c−βN(ct) ⇒ y(t) = E(t) jointly inD[0,∞)×D[0,∞), it follows from (4.31)
and the Continuous Mapping Theorem 4.19 that

c−β/αS(N([ct])) = (cβ)−1/αS(cβ c−βN([ct])) = xcβ (yc(t)) ⇒ x(y(t)) = A(Et) (4.32)

as c → ∞, in the space D[0,∞) with the M1 topology. The convergence (4.32) also
holds in the J1 topology, but the proof is more delicate, see Straka and Henry [210,
Theorem 3.6].

Recall that A(ct) ≃ c1/αA(t) for all c > 0 and t ≥ 0. It is not hard to extend to
finite dimensional distributions, using the fact that A(t) has independent increments.
A process with this scaling property for finite dimensional distributions is called self-
similarwith index 1/α, see for example Embrechts andMaejima [64]. SinceD(t) is also
stable, the processes D(t) is self-similarwith index 1/β. We have noted previously that
{E(t) ≤ u} = {D(u) ≥ t}. In fact, we also have

{E(tk) ≤ uk ∀ k = 1, . . . , n} = {D(uk) ≥ tk∀ k = 1, . . . , n}

for any 0 < t1 < t2 < ⋅ ⋅ ⋅ < tn < ∞ and real numbers u1, . . . , un. It follows that
E(t) is self-similar with index β. Then, since A(u) and E(t) are independent, the CTRW
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limit process A(E(t)) is self-similar with index β/α. This index codes the rate at which
a plume of particles spreads away from their center of mass.

Remark 4.21. Suppose 1 < α ≤ 2 and that v = E[W] ̸= 0, and suppose that an = n−1/α
to easenotation. Thenanother continuousmappingargument alongwith (4.29) shows
that

c−1/α
[ct]∑
j=1
(Wj − v) + c−1 [ct]∑

j=1
v ⇒ A�(t) (4.33)

as c → ∞, in the space D[0,∞) with the J1 topology, where A�(t) = A(t) + vt is a
Brownian motion with drift in the case α = 2, or a stable Lévy motion with drift in the
case 1 < α < 2. Then (4.31) extends to(c−1/α(S([ct]) − [ct]v) + c−1[ct]v, c−βN(ct)) ⇒ (A�(t), E(t)) (4.34)

and (4.32) extends to

c−β/α(S(N([ct])) − N([ct])v) + c−1N([ct])v ⇒ A�(Et). (4.35)

Details

Suppose that t > r > 0. In Section 4.5, wewill prove that every stable lawhas a density.
Since D(t) − D(r) is identically distributed with D(t − r), and D(t − r) has a density,
D(t − r) > 0 and D(t) > D(r) with probability one, i.e., the process D(t) is strictly
increasing.

Since D is strictly increasing, if D(u) ≥ t, then D(y) > t for all y > u, so that
E(t) ≤ u. Since D is right-continuous, if D(u) < t, then D(y) < t for all y > u su�ciently
close to u, so E(t) > u. This proves that {E(t) ≤ u} = {D(u) ≥ t}.

The SkorokhodM1 topology is defined as follows: The graph of a function x(t) in
D[0, T] is the set {(t, x(t)) : 0 ≤ t ≤ T}. The completed graph also contains the points
{px(t)+(1−p)x(t−) : 0 ≤ p ≤ 1}, so that it becomes a connected compact subset ofℝ×
[0, T]. A parametric representation (u(s), r(s)) is a continuous function that maps the
interval s ∈ [0, 1] onto the completed graph, such that u(s) is an increasing function
from [0, 1]onto [0, T]. Then xn → x inD[0, T]with theM1 topology if andonly if there
exists a parametric representation (u(s), r(s)) of x(t) and parametric representations
(un(s), rn(s)) of xn(t) such that

lim
n→∞ sup

0≤s≤1
[|un(s) − u(s)| + |rn(s) − r(s)|] = 0.

Also xn(t) → x(t) inD[0,∞) if xn(t) → x(t) inD[0, T] for every T > 0 that is a point
of continuity of x(t). See Whitt [219] for additional discussion.

Since the stable Lévy processes A(u) and D(u) are independent, they have no si-
multaneous jumps. This follows from consideration of the two dimensional Lévy pro-
cess (A(u), D(u)). The Lévy Representation Theorem 6.8 in dimension d > 1 will be
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discussed in Chapter 6. Remark 6.19 shows that every jump of the two dimensional
Lévy process (A(u), D(u)) lies on one of the coordinate axes. Then it follows from the
Lévy-Itô Decomposition Theorem [187, Theorem 19.2] that every jump of (A(u), D(u))
lies on one of the coordinate axes, i.e., A(u) and D(u) have no simultaneous jumps

The full proof of the CTRW limit depends on asymptotic inverses. Suppose that
anS(n) ⇒ A (centered jumps) and bnT(n) ⇒ D. Define b(c) = b[c] for c > 0, and note
that 1/b ∈ RV(1/β). The asymptotic inverse b̃(c) = inf{x > 0 : b(x) < c−1} of 1/b is
regularly varying with index β, and b(b̃(c)) ∼ 1/c, see Seneta [197, p. 21]. The proof is
similar to Proposition 4.12. Write

ℙ[b̃(c)−1N(ct) < u] = ℙ[N(ct) < b̃(c)u]
= ℙ[T(⌈b̃(c)u⌉) > ct]
= ℙ[c−1T(⌈b̃(c)u⌉) > t]
≈ ℙ[b(b̃(c))T(⌈b̃(c)u⌉) > t]
→ ℙ[D(u) > t] = ℙ[E(t) < u].

Extend to finite dimensional convergence as before, and then to D[0,∞). Use inde-
pendence to get joint convergence(anS([ct]), b̃(c)−1N(ct)) ⇒ (A(t), E(t))
in D[0,∞) × D[0,∞). Define a(c) = a[c] and A(c) = a(b̃(c)), and apply Whitt [219,
Theorem 13.2.4] along with continuous mapping to get

A(c)S(N([ct])) = a(b̃(c))S(b̃(c) b̃(c)−1N([ct])) ⇒ A(Et)

in theM1 topology. For complete details, see Meerschaert and Sche�er [151, Theorem
4.2]. For J1 convergence, see Henry and Straka [210].

4.5 CTRW governing equations

In Section 4.4, we showed that the CTRW limit is A(E(t)). The outer process x = A(u) is
an α-stable Lévy motion with index 0 < α ≤ 2, the long-time limit of the randomwalk
of particle jumps. The inner process u = E(t) is the inverse of a β-stable subordinator
D(t) with index 0 < β < 1, the limit of the random walk of waiting times. If α = 2,
then A(u) is a Brownian motion. In this section, we develop the fractional di�usion
equation that governs the probability densities of the CTRW limit.

First note that x = A(u) has a density function p(x, u) for all u > 0. This follows
by the Fourier inversion formula

p(x, u) = 1

2π

∞∫
−∞

eikxp̂(k, u) dk (4.36)
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from Theorem 1.4. Since A(u) is the limit of a CTRW with centered jumps, it follows
from Corollary 4.6 and Proposition 4.16 that the FT of A(u) is

p̂(k, u) = E[e−ikA(u)] = exp (Du[p(ik)α + q(−ik)α]), (4.37)

where D > 0 if 1 < α ≤ 2, and D < 0 if 0 < α < 1. A computation using complex
exponential functions (see details) shows that |p̂(k, u)| ≤ exp(−D0u|k|α), where D0 >
0 for 1 < α ≤ 2, and also for 0 < α < 1. Then it follows that p̂(k, u) is absolutely
integrable for all u > 0, and so (4.36) implies that x = A(u) has a density.

Since t = D(u) is also stable, it has a density g(t, u) for all u > 0. Write

ℙ[E(t) ≤ u] = ℙ[D(u) ≥ t] =
∞∫
t

g(r, u) dr = 1 −
t∫
0

g(r, u) dr

which implies that u = E(t) has a density

h(u, t) = − d
du

t∫
0

g(r, u) dr (4.38)

for all u > 0 and t > 0. Then a conditioning argument gives the density m(x, t) of
x = A(E(t)):

ℙ[A(E(t)) ≤ x] = E[ℙ[A(E(t)) ≤ x|E(t)]]
=
∞∫
0

ℙ[A(u) ≤ x|E(t) = u]PE(t)(du)

=
∞∫
0

ℙ[A(u) ≤ x]h(u, t) du

so that

m(x, t) = d

dx

∞∫
0

ℙ[A(u) ≤ x]h(u, t) du

=
∞∫
0

d

dx
ℙ[A(u) ≤ x]h(u, t) du

=
∞∫
0

p(x, u)h(u, t) du. (4.39)

(In the details at the end of this section, we will prove that the derivative can be taken
inside the integral in (4.39).) Heuristically, we write

ℙ[A(E(t)) = x] ≈∑
u

ℙ[A(u) = x]ℙ[E(t) = u].
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Recall from (4.37) that p̂(k, u) = euψ(−k) where the Fourier symbol of the stable
law x = A(u) is ψ(−k) = D[p(ik)α + q(−ik)α]. Take derivatives to get

d

du
p̂(k, u) = ψ(−k)euψ(−k) = D[p(ik)α + q(−ik)α] p̂(k, u)

and note that p̂(k, 0) ≡ 1. Inverting the FT shows that the density p(x, u) of the outer
process x = A(u) solves the space-fractional di�usion equation

∂

∂u
p(x, u) = Dp ∂

α

∂xα
p(x, u) + Dq ∂α

∂(−x)α p(x, u) (4.40)

with the Dirac delta function initial condition p(x, 0) = δ(x). The distribution function
P(x, u) = ℙ[A(u) ≤ x] solves the same space-fractional di�usion equation

∂

∂u
P(x, u) = Dp ∂

α

∂xα
P(x, u) + Dq ∂α

∂(−x)α P(x, u)

with the Heaviside function initial condition: P(x, 0) = H(x) = I(x ≥ 0). This is related
to the fact that δ(x) = ∂xH(x) in terms of weak or distributional derivatives. See the
details at the end of Section 3.1 for more information.

Since t = D(u) is the limit of a random walk with positive jumps, it follows from
Proposition 4.16 (a) that D(u) is one-sided stable with characteristic function

E[eikD(u)] = exp [−BuΓ(1 − β)(−ik)β] ,
whereB > 0dependson the sequenceof normingconstants cn in (4.25). If thenorming
constants cn are chosen so that B = 1/Γ(1 − β), then E[eikD(u)] = exp(−u(−ik)β) for
0 < β < 1 (see details). Then the Laplace transform

g̃(s, u) =
∞∫
0

e−stg(t, u) dt = E[e−sD(u)] = e−usβ (4.41)

for all u ≥ 0 and all s > 0. There are two ways to make this rigorous. One is to develop
the theory of positive infinitely divisible laws using Laplace transforms, see for exam-
ple Sato [187]. The other is to prove the Laplace transform g̃(s, u) exists for complex s,
see Zolotarev [228]. See the details at the end of this section for more information.
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Then the density (4.38) of u = E(t) has LT

h̃(u, s) =
∞∫
0

e−sth(u, t) dt

= −
∞∫
0

e−st( d

du

t∫
0

g(r, u)dr) dt
= − d

du

∞∫
0

e−st
t∫
0

g(r, u)drdt

= − d
du

∞∫
0

g(r, u)(∞∫
r

e−stdt) dr
= − d

du

∞∫
0

g(r, u)s−1e−rsdr

= − d
du
[s−1e−usβ]

= s−1sβe−usβ = sβ−1e−usβ (4.42)

and the density (4.39) of x = A(E(t)) has FLT

m̄(k, s) =
∞∫
0

∞∫
−∞

e−ste−ikxm(x, t) dx dt

=
∞∫
0

∞∫
−∞

e−ste−ikx
∞∫
0

p(x, u)h(u, t) du dx dt

=
∞∫
0

( ∞∫
−∞

e−ikxp(x, u) dx) (∞∫
0

e−sth(u, t) dt) du
=
∞∫
0

euψ(−k)sβ−1e−us
β

du

= sβ−1
∞∫
0

e−u[s
β−ψ(−k)]du = sβ−1

sβ − ψ(−k)
(4.43)

by Fubini, using the fact that |p̂(k, u)| = |euψ(−k)| ≤ exp(−D0u|k|α) (see details).
Rewrite (4.43) in the form

sβm̄(k, s) − sβ−1 = ψ(−k)m̄(k, s)

and note that m̂(k, 0) = E[e−ikA(E(0))] ≡ 1 since A(0) = E(0) = 0. Invert the LT to get
∂
β
t m̂(k, t) = ψ(−k)m̂(k, t)
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where ∂βt is the Caputo fractional derivative. Then invert the FT to see that the density
m(x, t)of the CTRW limit process x = A(E(t)) solves the space-time fractional di�usion
equation

∂
β
tm(x, t) = Dp

∂α

∂xα
m(x, t) + Dq ∂α

∂(−x)αm(x, t). (4.44)

If the Lévy measure of A = A(1) is given by (4.14) (e.g, for Pareto jumps ℙ[Y > y] ∼
pCy−α andℙ[Y < −y] ∼ qCy−α with an = n−1/α in (4.1)) , then the fractional dispersiv-
ity constant:

D =
{{{−CΓ(1 − α) if 0 < α < 1;
C
Γ(2 − α)
α − 1 if 1 < α < 2.

If α = 2, then A(u) is normal with mean zero and variance 2Du, since

p̂(k, u) = E[eikA(u)] = exp(Du(ik)2) = exp(− 12σ2k2)
with σ2 = 2Du. We have developed the space-time fractional di�usion equation (4.44)
from the extended central limit theorem, and connected the parameters of this equa-
tion to those of the continuous time random walk. The fractional derivative in space
codes power law jumps, leading to anomalous super-di�usion. The fractional deriva-
tive in timemodels power lawwaiting times, leading to anomalous sub-di�usion. The
CTRW combines both e�ects. For example, if α = 2β, then the limit A(E(t)) has the
same scaling as a Brownian motion.

For practical applications, we would like to explicitly compute solutions to the
space-time fractional di�usion equation (4.44). We know that the point source solu-
tion with constant coe�cients is an integral (4.39) involving the density p(x, u) of a
stable Lévy motion, and the density h(u, t) of an inverse stable subordinator. Since
we know an explicit formula for p̂(k, u), in principle we can use the FT inversion for-
mula (4.36) to compute p(x, u). In practice, this is a hard integral! But it does reduce to
“nicer” forms that are easier to numerically integrate. Nolan [163] has developed fast
and accurate computer codes to compute the stable density, see his personal web page
for more information. There are also R codes, based on the same ideas. We demon-
strate these codes in Section 5.1.

As for the inverse stable density, recall that t = D(u) has a density g(t, u) with FT

ĝ(k, u) =
∞∫
0

e−iktg(t, u) dt = E[e−ikD(u)] = e−u(ik)β (4.45)

and it follows that D(u) ≃ u1/βD(1). To check this, write

E[e−ik u1/βD(1)] = E[e−i(ku1/β)D(1)] = e−1(iku1/β)β = e−u(ik)β = E[e−ikD(u)].
Let gβ(t) = g(t, 1) be the density of D = D(1), a standard stable subordinator. Then
D(u) has density

g(t, u) = u−1/βgβ(u−1/β t)
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by a simple change of variables (or just di�erentiate ℙ[u1/βD ≤ t]). Write

ℙ[E(t) ≤ u] = ℙ[D(u) ≥ t]
= ℙ[u1/βD ≥ t]
= ℙ[D ≥ tu−1/β]
= ℙ[(D/t)−β ≤ u] (4.46)

which shows that E(t) ≃ (D/t)−β for all t > 0. Di�erentiate (4.46) to see that u = E(t)
has density (see details)

h(u, t) = t
β
u−1−1/βgβ(tu−1/β). (4.47)

Then (4.39) becomes

m(x, t) =
∞∫
0

p(x, u) t
β
u−1−1/βgβ(tu−1/β) du

and we can compute this explicitly using existing codes for the stable density. An al-
ternative form can be obtained by substituting r = tu−1/β, which leads to

m(x, t) =
∞∫
0

p(x, (t/r)β)gβ(r) dr. (4.48)

Remark 4.22. The waiting time process t = D(u) has a density g(t, u) with FT
ĝ(k, u) = e−u(ik)β and hence

d

du
ĝ(k, u) = −(ik)β ĝ(k, u).

Invert the FT to see that g(t, u) solves the fractional partial di�erential equation

∂

∂u
g(t, u) = − ∂

β

∂tβ
g(t, u)

using the Riemann-Liouville derivative. Note that here the roles of space and time are
reversed. The inverse stable process u = E(t) has a density h(u, t) with LT h̃(u, s) =
sβ−1e−us

β
and FLT

h̄(k, s) =
∞∫
0

e−ikuh̃(u, s) du =
∞∫
0

e−ikusβ−1e−us
β

du = sβ−1

sβ + ik
.

Rewrite in the form
sβ h̄(k, s) − sβ−1 = −ikh̄(k, s)

and invert to see that this density solves

∂
β
t h(u, t) = −

∂

∂u
h(u, t), (4.49)
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using the Caputo derivative in time. This is a degenerate case of the CTRWwith Yn = 1.
Then x = A(u) = u (the shift semigroup), E[e−ikA(u)] = e−iku, and ψ(k) = ik. It is also
possible to derive the CTRWgoverning equation (4.44) from (4.49), togetherwith (4.39)
and (4.40). If wewish to interpret (4.49) as a di�erential equation on u ∈ ℝ then, since
the function u Ü→ h(u, t) has a jump at the point u = 0, the derivative ∂h/∂u must
be interpreted as a weak derivative, as in Remark 2.13. For an alternative derivation of
the governing equation for h(u, t) using LT in both variables, and the explicit form of
the limit h(0+, t), see Hahn, Kobayashi, and Umarov [82]. An explicit formula for the
moments of E(t)was given by Piryatinska, Saichev andWoyczynski [168]. For a recent
survey on the inverse stable subordinator, see Meerschaert and Straka [154].

Remark 4.23. In Remark 4.21 we showed that, when the random walk jumps have a
finitemean in the case 1 < α ≤ 2, the CTRW scaling limit is A�(E(t)). The outer process
x = A�(u) is a Brownian motion with drift in the case α = 2, or a stable Lévy motion
with drift in the case 1 < α < 2. When 1 < α < 2, the probability densities p(x, u) of
A�(u) solve the space-fractional di�usion equation with drift

∂

∂u
p(x, u) = −v ∂

∂x
p(x, u) + Dp ∂

α

∂xα
p(x, u) + Dq ∂α

∂(−x)α p(x, u) (4.50)

and the probability densities m(x, t) of the CTRW limit process A�(E(t)) solve the
space-time fractional equation

∂
β
tm(x, t) = −v

∂

∂x
m(x, t) + Dp ∂

α

∂xα
m(x, t) + Dq ∂α

∂(−x)αm(x, t). (4.51)

If α = 2 then the same equations apply, and in particular, the probability densities
of the process A�(E(t)), a Brownian motion with drift where the time variable is re-
placed by an independent inverse stable subordinator, solve the time-fractional di�u-
sion equation with drift

∂
β
tm(x, t) = −v

∂

∂x
m(x, t) + D ∂2

∂x2
m(x, t). (4.52)

Remark 4.24. There is an interesting connection between the CTRWscaling limit pro-
cess A(E(t)) in the normal case α = 2, and iterated Brownian motion. Given a Brownian
motion A(t), take another independent Brownian motion B(t) and consider the sub-
ordinated process A(|B(t)|). Allouba and Zheng [4] and Burdzy [43] develop governing
equations and other properties of this process. Baeumer, Meerschaert and Nane [20]
show that the process A(E(t)) with β = 1/2 has the same governing equation and the
same one dimensional distributions. This is related to the fact that the first passage
times of a Brownian motion are stable with index β = 1/2. Some related results for
subordinated Brownian motion in a bounded domain are included in Meerschaert,
Nane and Vellaisamy [140].
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Details

Define the signum function sgn(k) = +1 for k ≥ 0 and sgn(k) = −1 for k < 0. Write
(ik)α = (i sgn(k)|k|)α = |k|αei sgn(k)πα/2 = |k|α[cos θ + i sgn(k) sin θ] where θ = πα/2.
Then (ik)α = a + ib where a = |k|α cos θ. A similar argument shows that (−ik)α =
|k|αe−i sgn(k)θ = |k|α[cos θ − i sgn(k) sin θ]. Then p(ik)α + q(−ik)α is a complex number
with real part equal to (p + q)|k|α cos θ = |k|α cos(πα/2). Hence

|p̂(k, u)| = | exp (Du[p(ik)α + q(−ik)α])| = exp(Du|k|α cos(πα/2)) = e−D0u|k|α (4.53)

where D0 = −D cos(πα/2) > 0: D < 0 and cos(πα/2) > 0 when 0 < α < 1; and D > 0
and cos(πα/2) < 0 when 1 < α ≤ 2.

Di�erentiation inside the integral in (4.39) is justified as follows. Consider y > 0
(the case y < 0 is treated similarly). Since

p(x, u) = d

dx
ℙ[A(u) ≤ x]

we have

m(x, t) = d

dx

∞∫
0

ℙ[A(u) ≤ x]h(u, t) du = d

dx

∞∫
0

x∫
−∞

p(v, u) dv h(u, t) du.

Write the last expression as a di�erence quotient, and simplify to get

m(x, t) = lim
y→0

∞∫
0

(y−1 x+y∫
x

p(v, u) dv) h(u, t) du.
It follows from (4.36) and (4.53) that!!!!!!!!!!!!y−1 x+y∫x p(v, u) dv

!!!!!!!!!!!! ≤ sup
v∈[x,x+y]

|p(v, u)| ≤ 1

2π

∞∫
−∞
|p̂(k, u)| dk

≤ 1

2π

∞∫
−∞

e−D0u|k|α dk := C0 <∞

since D0 > 0. Then
∞∫
0

!!!!!!!!!!!!y−1 x+y∫x p(v, u) dv
!!!!!!!!!!!! h(u, t) du ≤ ∞∫0 C0h(u, t) du = C0,

and the dominated convergence theorem justifies di�erentiation under the integral.
The justification for the di�erentiation under the integral in the derivation of the

LT of E(t) in (4.42) is similar. Write

lim
y→0

∞∫
0

e−st
t∫
0

g(r, u + y) − g(r, u)
y

dr dt,
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and

g(r, u) = 1

2π

∞∫
−∞

eikr ĝ(k, u) dk = 1

2π

∞∫
−∞

eikre−u(ik)
β

dk

so that !!!!!!!! g(r, u + y) − g(r, u)y

!!!!!!!! ≤ 1

2π

∞∫
−∞

!!!!!!e−u(ik)β !!!!!! !!!!!1 − e−y(ik)β !!!!!|y| dk.

Note that
!!!!!e−u(ik)β !!!!! = e−u|k|β cos(πβ/2) with cos(πβ/2) > 0 since 0 < β < 1, and apply the

mean value theorem to see that!!!!!1 − e−y(ik)β !!!!!
|y| ≤ e

|y||k|β cos(πβ/2) − 1
|y| ≤ |k|βe(u/2)|k|β cos(πβ/2)

if |y| < u/2, which holds eventually since y → 0, and u > 0 is fixed in this argument.
It follows that!!!!!!!! g(r, u + y) − g(r, u)y

!!!!!!!! ≤ 1

2π

∞∫
0

|k|βe(−u/2)|k|β cos(πβ/2) dk := C1 <∞

for any r > 0. Therefore
∞∫
0

e−st
t∫
0

!!!!!!!! g(r, u + y) − g(r, u)y

!!!!!!!! dr dt ≤ 1

2π

∞∫
0

e−sttC1 dt <∞,

and the argument can be completed using the dominated convergence theorem.
Suppose cnTn ⇒ D where Tn = J1 + ⋅ ⋅ ⋅ + Jn and Jn are iid with J ∈ DOA(D). If D

has Lévy measure ϕ(r,∞) = Br−β concentrated on the positive real line (e.g., if ℙ[J >
t] = Bt−β and cn = n−1/β), then Proposition 4.16 shows that E[eikD] = exp(−BΓ(1 −
β)(−ik)β). Define a new set of norming constants ̃cn = [BΓ(1−β)]−1/βcn (this reduces to
[nBΓ(1− β)]−1/β in the case of Pareto jumps) and note that c̃nTn ⇒ [BΓ(1− β)]−1/βD =
D̃. Write

E[eikD̃] = E[eik[BΓ(1−β)]−1/βD] = exp(−BΓ(1 − β)(−ik[BΓ(1 − β)]−1/β)β) = e−(−ik)β

which shows that the limit is a standard stable subordinator.
For positive random variables, it is possible to develop an alternative theory of

infinitely divisible laws based on Laplace transforms, see for example Sato [187]. The
theory is similar to what was presented in Section 3.1, using Laplace transforms in-
stead of characteristic functions. Since a positive random variable cannot have a nor-
mal distribution, the Lévy representation takes the simplified form E[e−sY] = eψ(s),
where s > 0 and

ψ(s) = −as +
∞∫
0

(e−sy − 1)ϕ(dy) (4.54)
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for some a ≥ 0, and some Lévy measure ϕ(dy). This Lévy representation is unique.
The Lévy measure ϕ(dy) on {y : y > 0} satisfies ϕ(R,∞) <∞ and

R∫
0

yϕ(dy) <∞ (4.55)

for all R > 0. A computation very similar to Proposition 3.10 shows that a centered
one-sided stable law with Lévy measure (3.10) has Laplace symbol

ψ(s) =
∞∫
0

(e−sy − 1) Cαy−α−1dy = −CΓ(1 − α)sα (4.56)

for 0 < α < 1. If C = 1/Γ(1 − α) we get a standard stable subordinator with Laplace
transform E[e−sY] = exp(−sα).

One way to connect these two theories of infinitely divisible laws is to view the
Laplace transform as a function of a complex variable. The Laplace transform

e−us
β =
∞∫
0

e−stg(t, u) dt (4.57)

exists for any s = ik + y with k real and y > 0, see Zolotarev [228, Lemma 2.2.1].
Hence we can substitute s = ik into the formula (4.57) for the LT of the positive random
variable D(u), to get the corresponding FT formula (4.45).

To show that (4.47) holds, write ℙ[E(t) ≤ u] = ℙ[D ≥ tu−1/β] = 1 − Gβ(tu−1/β)
where Gβ(u) is the cdf of D, so that

gβ(u) =
d

du
Gβ(u).

Then

h(t, u) = d

du
[1 − Gβ(tu−1/β)]

= −gβ(tu−1/β)
d

du
[tu−1/β]

which reduces to (4.47).
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5 Computations in R

In this chapter, we demonstrate computer codes that the reader can use to simulate
randomwalks and their stochastic process limits, as well as the corresponding proba-
bility densities. These densities solve the fractional di�usion equations that are amain
focus of this book.

5.1 R codes for fractional di�usion

The R programming language is a sophisticated and useful platform for probability
and statistics [171]. This freely available open source code can be downloaded and
installed on a wide variety of Unix, Windows, and Apple computer systems. See www.
r-project.org for additional details. Once you have installed R on your computer, the
easiest way to run a program is to type the code into a plain text file (or download), cut
and paste the entire program into the R console window, and press the “Enter” key.

D=1.0

v=3.0

t=5.0

mu=v*t

sigma=sqrt(2*D*t)

x = seq(mu-4*sigma, mu+4*sigma, 0.1*sigma)

density=dnorm(x, mean = mu, sd = sigma)

plot(x,density,type="l",lwd=3)

Fig. 5.1: R code to plot solutions to the traditional di�usion equation with drift (5.1) at time t = 5.0
with velocity v = 3.0 and dispersion D = 1.0.

Example 5.1. The simple R code listed in Figure 5.1 plots the solution p(x, t) to the
traditional di�usion equation with drift

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t) + D ∂2

∂x2
p(x, t) (5.1)

for any time t > 0, with drift velocity v ∈ ℝ and dispersion D > 0. This code uses the
fact that the solution to (5.1) is a normal pdf with mean μ = vt and standard deviation
σ = √2Dt for any t > 0. The R function dnorm produces a normal density with a spec-
ified mean and standard deviation. E�cient R code is based on vector mathematics.
The vector x is a sequence of numbers from μ−4σ to μ+4σ in increments of0.1σ. If you
type x into the R console window after running the code in Figure 5.1, and press the

DOI 10.1515/9783110258165-005
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“Enter” key, youwill see this vector of n = 81 numbers. The command dnorm takes the
vector x as input, and outputs a vector density consisting of the normal pdf at each
value of the input vector. The command plot displays the points (x[i], density[i])
for i = 1, 2, . . . , n and connects them with a curved line (graph type="l"). Figure
5.2 shows the output from running the R code in Figure 5.1. The same graph was also
displayed as Figure 1.1 in Chapter 1. To obtain plots for other values of the input pa-
rameters D, v, and t, edit the file containing the source code, cut and paste this edited
code back into the R console window, and press the “Enter” key.
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Fig. 5.2: Result of running the R code in Figure 5.1.

To save the output in the R graphicswindow, right-click and select a format for the
graphics file (e.g., postscript). Production of this book used the freely available LATEX
package for mathematical typesetting, with encapsulated postscript (eps) graphics.
See www.latex-project.org for more details, documentation, instructions on how to
download and install LATEX on your computer, and helpful examples.

Example 5.2. The next example compares the solution to the di�usion equationwith
drift (5.1) at di�erent times t1, t2, t3 > 0. The code in Figure 5.3 is very similar to Figure
5.1, repeated for each value of the time variable. The R command lines adds another
curve to an existing graph. Figure 5.4 shows the graphical output. The same graph
was also displayed as Figure 1.2. A good way to learn R is to start by running the same
program listed here, and checking that the output is identical. Then modify the code
slightly (e.g., change one of the input variables, or add a fourth curve) and check to
see that the output is reasonable. This will also help build your intuition about the
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D=1.0

v=3.0

t1=1.0

mu=v*t1

sigma=sqrt(2*D*t1)

x = seq(mu-4*sigma, mu+10*sigma, 0.1*sigma)

density=dnorm(x, mean = mu, sd = sigma)

plot(x,density,type="l",lwd=3)

t2=2.0

mu=v*t2

sigma=sqrt(2*D*t2)

x2 = seq(mu-4*sigma, mu+4*sigma, 0.1*sigma)

density=dnorm(x2, mean = mu, sd = sigma)

lines(x2,density,lty="dotted",lwd=3)

t3=3.0

mu=v*t3

sigma=sqrt(2*D*t3)

x3 = seq(mu-4*sigma, mu+4*sigma, 0.1*sigma)

density=dnorm(x3, mean = mu, sd = sigma)

lines(x3,density,lty="dashed",lwd=3)

Fig. 5.3: R code to compare solutions to the traditional di�usion equation with drift (5.1) at times
t1 = 1.0 (solid line), t2 = 2.0 (dotted line), and t3 = 3.0 (dashed line). The velocity v = 3.0 and
dispersion D = 1.0.

underlying di�usionmodel. For example, you should be able to predict and check the
result of changing the input parameter v.

Our next goal is to plot solutions to the fractional di�usion equation. This requires us
to plot a stable density. There are existing R codes to plot stable densities, but they rely
on an alternative parametrization, popularized by Samorodnitsky and Taqqu [185].
Recall that the signum function sgn(k) = +1 for k ≥ 0 and sgn(k) = −1 for k < 0.

Proposition 5.3. The characteristic functionof a general stable randomvariable Y with

Lévy representation [a, 0, ϕ] and Lévy measure (3.30) with index 0 < α < 2, α ̸= 1 can
be written in the form

E[eikY] = exp [ikμ − σα|k|α (1 − iβ sgn(k) tan (πα
2
))] (5.2)

where μ = a, β = p − q, and

σα = C Γ(2 − α)
1 − α cos (πα

2
) . (5.3)

In this case, we will write Y ≃ Sα(β, σ, μ).
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Fig. 5.4: Result of running the R code in Figure 5.3, displaying solutions to equation (5.1) at times
t1 = 1.0 (solid line), t2 = 2.0 (dotted line), and t3 = 3.0 (dashed line). The velocity v = 3.0 and
dispersion D = 1.0.

Proof. If 0 < α < 1, then it follows from Example 3.27 that

E[eikY] = exp [ika + pA(−ik)α + qA(ik)α] (5.4)

where A = −CΓ(1 − α) < 0. If 1 < α < 2, then it follows from Example 3.29 that (5.4)
holds with A = CΓ(2 − α)/(α − 1) > 0. Since Γ(2 − α) = (1 − α)Γ(1 − α), we can also
write A = CΓ(2 − α)/(α − 1) in the case 0 < α < 1. Use eiθ = cos θ + i sin θ for θ ∈ ℝ to
write

(ik)α = (eiπ/2k)α

= |k|αei sgn(k)πα/2

= |k|α[ cos(πα/2) + i sgn(k) sin(πα/2)]
= |k|α cos(πα/2)[1 + i sgn(k) tan(πα/2)]. (5.5)

Then (−ik)α = |k|α cos(πα/2)[1 − i sgn(k) tan(πα/2)] and so
pA(−ik)α + qA(ik)α = pA|k|α cos(πα/2)[1 − i sgn(k) tan(πα/2)]

+ qA|k|α cos(πα/2)[1 + i sgn(k) tan(πα/2)]
= A cos(πα/2)|k|α[1 − i(p − q) sgn(k) tan(πα/2)] (5.6)

and (5.2) follows. Note that the parameter σ > 0 for 0 < α < 1 and for 1 < α < 2, since
1 − α and cos(πα/2) both change sign at α = 1.

Remark 5.4. It is not hard to check, using characteristic functions, that if Y ≃
Sα(β, 1, 0) then σY+μ ≃ Sα(β, σ, μ). Hence σ is a scale parameter, and μ is a centering
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parameter. Some authors call Y ≃ Sα(β, 1, 0) a standard stable law. There are several
additional parameterizations for stable laws. The seminal book of Zolotarev [228] lays
out several useful parameterizations. The parametrization in Nolan [163] makes the
density f(y) a smooth function of all four parameters. The problem is that e(ik)

α → eik

as α → 1, and this limit is the characteristic function of a point mass.

Remark 5.5. If α = 2 then (5.2) also holds. Then Y ≃ N(μ, 2σ2) and the skewness β is
irrelevant, since tan(πα/2) = 0 in this case. If α = 1 then a formula somewhat di�erent
than (5.2) holds, since tan(πα/2) is undefined. The characteristic function of a general
stable random variable Y with Lévy representation [a, 0, ϕ] and Lévy measure (3.30)
with index α = 1 can be written in the form

E[eikY] = exp [ikμ − σα|k|(1 + iβ(2
π
) sgn(k) ln |t|)] (5.7)

where μ = a, β = p − q, and
σα = C ⋅ π

2
, (5.8)

see Meerschaert and Sche�er [146, Theorem 7.3.5] for complete details.

Remark 5.6. In Section 4.5 we defined the standard stable subordinator as the stable
law with characteristic function ̂f (k) = exp(−(−ik)α) when 0 < α < 1. In Proposition
5.3 we can take μ = 0, β = 1, and σα = cos(πα/2).

library(stabledist)

x = seq(-5, 10, 0.1)

density = dstable(x, alpha=1.5, beta=1.0, gamma=1.0, delta=0.0, pm=1)

plot(x,density,type="l")

grid()

Fig. 5.5: R code to plot a standard centered stable density with characteristic function (5.2), where
μ = 0.0, σ = 1.0, α = 1.5, and β = 1.0.

Example 5.7. The R code in Figure 5.5 plots a stable density f(y) for any values of the
tail index α ∈ (0, 2], skewness β ∈ [−1, 1], scale σ > 0, and center μ ∈ (−∞,∞). It re-
lies on the dstable command from theRpackage stabledist, a freely available pack-
age of R codes for financial engineering and computational finance. See [221] for more
details. You need to install the stabledist package on your R platform before you
run the code in Figure 5.5. First try Packages > Load package to see if stabledist is
available. If not, then use Packages > Install package(s)and select a convenient
site for download to your computer. The calculation of the stable density behind the
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dstable command uses the sophisticated method of Nolan [163] to numerically com-
pute the inverse Fourier transform. The option pm=1 specifies the Samorodnitsky and
Taqqu parameterization (5.2). The parameters alpha and beta are as in equation (5.2).
The scale parameter gamma is σ, and delta is the center μ, for this parametrization.
Figure 5.6 shows the output from running the R code in Figure 5.5. Here we have set
μ = 0.0, σ = 1.0, α = 1.5, and β = 1.0 to get a standard stable pdf that is totally posi-
tively skewed. This pdf represents the limit distribution of sums of iid positive jumps
with power law tails V0(x) = ℙ[W > x] = Cx−α or, more generally, when V0(x) is
RV(−α) and the right tail dominates.
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Fig. 5.6: Result of running the R code in Figure 5.5, a standard stable pdf with characteristic function

(5.2), where μ = 0.0, σ = 1.0, α = 1.5, and β = 1.0.

In order to plot solutions to the fractional di�usion equation

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t) + Dp ∂

α

∂xα
p(x, t) + Dq ∂α

∂(−x)α p(x, t) (5.9)

for 1 < α < 2, we need to convert to the parametrization of Proposition 5.3.

Proposition 5.8. The solution p(x, t) to the space-fractional di�usion equation (5.9)
with index 1 < α < 2 is Sα(β, σ, μ) with μ = vt, β = p − q, and σα = Dt| cos(πα/2)|.

Proof. It follows from Example 3.29 that the point source solution p(x, t) to (5.9) has
characteristic function p̂(−k, t) = exp [ikvt + pDt(−ik)α + qDt(ik)α]. Write

pDt(−ik)α + qDt(ik)α = Dt cos(πα/2)|k|α[1 − i(p − q) sgn(k) tan(πα/2)]
by an argument similar to Proposition 5.8. Now compare (5.2).
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Example 5.9. The R code in Figure 5.7 plots the solution to the space-fractional dif-
fusion equation (5.9) for any time t > 0, with drift velocity v ∈ ℝ, dispersion D > 0,
index 1 < α ≤ 2, and 0 ≤ q ≤ 1. In this case, we have set t = 5.0 with velocity v = 2.0
and dispersion D = 1.0, for α = 1.5 and q = 0 (totally positively skewed). The output
of this code was displayed in Figure 1.3.

library(stabledist)

D=1.0

v=2.0

a=1.5

q=0.0

t=5.0

mu=v*t

pi=3.1415927

g=(D*t*abs(cos(pi*a/2)))^(1/a)

b=1-2*q

x = seq(mu-5*g, mu+5*g, 0.1*g)

p=dstable(x, alpha=a, beta=b, gamma = g, delta = mu, pm=1)

plot(x,p,type="l",lwd=3)

Fig. 5.7: R code to plot the solution p(x, t) to the space-fractional di�usion equation (5.9) at time
t = 5.0 with velocity v = 2.0 and dispersion D = 1.0, for α = 1.5 and q = 0.

Remark 5.10. It follows fromExample 3.27 that the solution to the fractional di�usion
equation

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t) − Dp ∂

α

∂xα
p(x, t) − Dq ∂α

∂(−x)α p(x, t) (5.10)

for 0 < α < 1 has characteristic function p̂(−k, t) = exp [ikvt − pDt(−ik)α − qDt(ik)α].
The only di�erence is a change of sign from D to −D (we assume that D > 0). Then
an argument similar to Proposition 5.8 shows that p(x, t) is Sα(β, σ, μ) with the same
parameters as for the case 1 < α < 2, i.e., μ = vt, β = p − q, and σα = Dt| cos(πα/2)|.
Hence the R code in Figure 5.7 can also be used to solve the fractional di�usion equa-
tion (5.10) in the case 0 < α < 1.

Example 5.11. The R code in Figure 5.8 compares the solution to the space-fractional
di�usion equation (5.9) at times t1, t2, t3 > 0, with drift velocity v ∈ ℝ, dispersion
D > 0, index 1 < α ≤ 2, and 0 ≤ q ≤ 1. The output of this codewas displayed in Figure
1.4. It compares the solution at times t1 = 3.0, t2 = 5.0, and t3 = 8.0 with velocity
v = 3.0 and dispersion D = 1.0, for α = 1.5 and q = 0 (positive skew). This is an
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library(stabledist)

D=1.0

v=3.0

a=1.5

q=0.0

t1=3.0

t2=5.0

t3=8.0

pi=3.1415927

b=1-2*q

mu1=v*t1

g1=(D*t1*abs(cos(pi*a/2)))^(1/a)

x = seq(mu1-5*g1, mu1+10*g1, 0.1*g1)

p=dstable(x, alpha=a, beta=b, gamma = g1, delta = mu1, pm=1)

plot(x,p,type="l",lwd=3)

mu2=v*t2

g2=(D*t2*abs(cos(pi*a/2)))^(1/a)

p2=dstable(x, alpha=a, beta=b, gamma = g2, delta = mu2, pm=1)

lines(x,p2,lty="dotted",lwd=3)

mu3=v*t3

g3=(D*t3*abs(cos(pi*a/2)))^(1/a)

p3=dstable(x, alpha=a, beta=b, gamma = g3, delta = mu3, pm=1)

lines(x,p3,lty="dashed",lwd=3)

Fig. 5.8: R code to compare solutions p(x, t) to the space-fractional di�usion equation (5.9) at times
t1 = 3.0, t2 = 5.0, and t3 = 8.0 with velocity v = 3.0 and dispersion D = 1.0, for α = 1.5 and q = 0.

illustration of anomalous super-di�usion. The pdf spreads from its center of mass like
t1/1.5 which is faster than the t1/2 spreading for a traditional di�usion.

Example 5.12. The R code in Figure 5.9 plots the density of a stable subordinator Y
with characteristic function E[exp(ikY)] = exp(−(−ik)α) for 0 < α < 1, using Remark
5.6 and the parametrization (5.2). Note that the Laplace transform of the density of Y is
E[exp(−sY)] = exp(−sα). Figure 5.10 plots the density of the stable subordinator with
index α = 0.75. Note that this density is always supported on the positive real line.

Example 5.13. The R code in Figure 5.11 plots the solution to the time-fractional dif-
fusion equation

∂
β
t p(x, t) = D

∂2

∂x2
p(x, t) (5.11)
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library(stabledist)

x = seq(0, 5, 0.01)

a=0.75

pi=3.1415927

g=(cos(pi*a/2))^(1/a)

density = dstable(x, alpha=a, beta=1.0, gamma=g, delta=0, pm=1)

plot(x,density,type="l")

grid()

Fig. 5.9: R code to plot the pdf of a standard stable subordinator with index a ∈ (0, 1).
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Fig. 5.10: Result of running the R code in Figure 5.9, pdf of a standard stable subordinator with index

α = 0.75.

for any time t > 0, with a Caputo derivative of order 0 < β < 1, and dispersion D > 0.
This is a special case of (4.44)with α = 2. It represents the scaling limit of a CTRWwith
mean zero jumps in the domain of attraction of a normal law (e.g., mean zero finite
variance jumps), separated by power law waiting times with index β. The solution to
(5.11) is the pdf of A(E(t)), where A(t) is a Brownian motion, and E(t) is an inverse
stable subordinator. The R code in Figure 5.11 is based on the formula (4.39) where
p(x, u) is the pdf of A(u) and h(u, t) is the pdf of E(t). In the code, we use the fact that
p(x, u) is normal with mean zero and variance 2Du along with the alternative form

m(x, t) =
∞∫
0

p(x, (t/r)β )g(r) dr (5.12)

where g(r) is a the standard stable subordinator pdf, see (4.48). This form is convenient
for computations, because the pdf g(r) canbe calculated once, andused over and over
for every value of the time t > 0. Since we have an analytical formula for the normal
density, computing p(x, (t/r)β ) is a simple matter. The integral in (5.12) is evaluated
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library(stabledist)

dr=0.5

r=seq(dr,5000.0,dr)

b=0.75

pi=3.1415927

g=(cos(pi*b/2))^(1/b)

h=dstable(r, alpha = b, beta = 1.0, gamma = g, delta = 0, pm=1)

D=1.0

mcall <- function(y,t) {

sum(dnorm(y, mean = 0.0, sd =sqrt(D*(t/r)^b) )*h*dr)

}

x=seq(-5.0,5.0,0.1); m=x; t=0.1

for (i in 1:length(x)){

m[i]=mcall(x[i],t)}

plot(x,m,type="l")

Fig. 5.11: R code to plot the solution to the time-fractional di�usion equation (5.11) for any time t > 0.
Here β = 0.75 and D = 1.0.

numerically by a simple Euler (rectangle) approximation. Figure 5.12 shows the output
for time t = 0.1 with β = 0.75 and dispersion D = 1.0. Note the sharp peak at x =
0, which is typical of the time-fractional di�usion profile. This same plot was shown
previously as Figure 2.3.

Example 5.14. The R code in Figure 5.14 compares the solution to the time-fractional
di�usion equation (5.11) at times t1, t2 , t3 > 0, with fractional derivative of order 0 <
β < 1 and dispersion D > 0. Figure 5.13 compares the solution at times t1 = 0.1,
t2 = 0.3, and t3 = 0.8 with β = 0.75 and dispersion D = 1.0. This plot illustrates
anomalous sub-di�usion. The limit process A(E(t)) is self-similar with Hurst index
β/2 < 1/2, so the solution spreads at a slower rate than a traditional di�usion.

5.2 Sample path simulations

This section introduces R codes to simulate the sample paths of stochastic processes,
including randomwalks, Brownianmotion, stable Lévymotion, CTRW, andCTRWlim-
its. First we will simulate one dimensional processes, then we will explore the prop-
erties of two dimensional sample paths. The limit theory for two or more dimensions
will be presented in Chapter 6.
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Fig. 5.12: Result of running the R code in Figure 5.11, the solution to time-fractional di�usion equa-

tion (5.11) at time t = 0.1 with β = 0.75 and dispersion D = 1.0
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Fig. 5.13: Solution to time-fractional di�usion equation (5.11) at times t1 = 0.1 (solid line), t2 = 0.3
(dotted line), and t3 = 0.8 (dashed line) with β = 0.75 and dispersion D = 1.0.
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library(stabledist)

dr=0.5; b=0.75; D=1.0; pi=3.1415927; g=(cos(pi*b/2))^(1/b)

r=seq(dr,5000.0,dr)

h=dstable(r, alpha = b, beta = 1.0, gamma = g, delta = 0, pm=1)

mcall <- function(y,t) {

sum(dnorm(y, mean = 0.0, sd =sqrt(D*(t/r)^b) )*h*dr)

}

x=seq(-5.0,5.0,0.1)

m=x; t1=0.1

for (i in 1:length(x)){

m[i]=mcall(x[i],t1)}

plot(x,m,type="l")

t2=0.3

m2=x

for (i in 1:length(x)){

m2[i]=mcall(x[i],t2)}

lines(x,m2,lty="dotted")

t3=0.8

m3=x

for (i in 1:length(x)){

m3[i]=mcall(x[i],t3)}

lines(x,m3,lty="dashed")

Fig. 5.14: R code to compare solutions to the time-fractional di�usion equation (5.11) at times at
times t1 = 0.1, t2 = 0.3, and t3 = 0.8. Here β = 0.75 and D = 1.0.

Example 5.15. We showed in Example 3.31 that a random walk S(n) = W1 + ⋅ ⋅ ⋅ +Wn

with iid mean zero finite variance jumps converges to a Brownian motion A(t). In fact
we have c−1/2S([ct]) ⇒ A(t) in D[0,∞) with the Skorokhod J1 topology (e.g., see
Billingsley [37]). To illustrate this sample path convergence, we will use R to simu-
late a random walk. Figure 5.15 lists the R code to simulate a random walk whose iid
jumps are uniform on the interval [−1, 1]. Since these jumps have mean zero and fi-
nite variance, the simulated randomwalk converges to a Brownianmotion in the scal-
ing limit. The runif command in R produces a vector of (iid) uniform random vari-
ates. The cumsum command returns the cumulative sum of a vector, i.e., given a vector
[Wi : i = 1, . . . , n] it returns the vector with ith entry S(i) = W1 + ⋅ ⋅ ⋅ + Wi. Then the
plot shows the points [(i, S(i)) : i = 1, . . . , n] connected by straight line segments.
Figure 5.16 shows a typical output from running the R code in Figure 5.15. Since this
Monte Carlo simulation involves random numbers, every run produces a di�erent pic-
ture. However, these pictures all have similar features. Each plot can be considered
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t=seq(1:100)

W=runif(t, min=-1, max=1)

S=cumsum(W)

plot(t,S,type="l")

Fig. 5.15: R code to simulate a random walk with iid uniform [−1, 1] jumps.
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Fig. 5.16: Simulated random walk, the result of running the R code in Figure 5.15.

as a graphical representation of the path followed by a randomly selected particle.
Running the same R simulation over and over shows paths of di�erent particles.

One way to illustrate convergence to a Brownian motion is to vary the length of
the random walk in the R code from Figure 5.15. Just change t=seq(1:100) to, say,
t=seq(1:10) and then t=seq(1:50) and so forth. Once the sequence length is large
enough, increasing it further does not significantly e�ect the general appearance of
the graphical output. Of course the axis lengths will change. In fact, you can check
that the scale on the vertical axis is roughly the square root of the horizontal scale.

Example 5.16. Figure 5.17 lists the R code to simulate a Brownian motion. In fact, we
approximate the Brownian motion by a random walk with iid N(0, 1) jumps. Then
S(n) ≃ N(0, n) approximates a standard Brownian motion A(t). The approximation
A(t) ≈ S([t]) is exact when t is an integer, and the graph interpolates between these
points. Since our simulation uses 1000 points, the di�erence between the exact and
simulated sample path is indistinguishable to the human eye. Figure 5.18 shows a typ-
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t=seq(1:1000)

W=rnorm(t, mean=0, sd=1.0)

A=cumsum(W)

plot(t,A,type="l")

Fig. 5.17: R code to simulate a standard Brownian motion.
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Fig. 5.18: Simulated Brownian motion, the result of running the R code in Figure 5.17.

ical output from running the R code in Figure 5.17. Running the same code over and
over will generate statistically identical but individually distinct sample paths of a
di�using particle following a Brownian motion.

The sample paths of a Brownian motion have many interesting properties. The
sample paths are (with probability one in the spaceD[0,∞)) everywhere continuous,
but nowhere di�erentiable. They do not have bounded variation over finite intervals,
i.e., the length of the path {(t, A(t)) : a ≤ t ≤ b} is infinite. More specifically, if we
subdivide the path into smaller increments and join these points by straight lines, the
total length of these lines tends to infinity as the mesh of the partition tends to zero.

In fact, the graph is a (random) fractal of dimension d = 3/2. Fractals are sets
whose dimension is not an integer. There are several notions of dimension (Hausdor�
dimension, packing dimension, etc.) but the easiest to explain is the box dimension.
Suppose that it requires C(n) boxes of size 1/n to cover a set. If there is a number

d = lim
n→∞

log C(n)
log n
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then we call d the box dimension. For example, it takes C(n) = Ln boxes to cover a
line of length L, so that d = 1. It takes C(n) = Vn3 to cover a cube of volume V, so
the cube has dimension d = 3. The proof that the graph of a Brownian motion has
(almost surely) dimension d = 3/2 requires some deep analysis, e.g., see Falconer [65,
Theorem 16.4].

One interesting property of fractals is self-similarity (or self-a�nity)whichmeans,
essentially, that zooming in or out on the graph produces a similar shape. For our
sample path simulations, we can illustrate self-similarity by increasing the length of
the simulated Brownian motion (i.e., change t=seq(1:1000) to t=seq(1:10000)) or
longer). The resulting graphs are more or less indistinguishable.

It is often overlooked that Brownianmotion and the di�usion equation provide an
approximatemodel for di�usingparticles. The theory of relativity puts anupper bound
on the distance a particle can travel in a finite time, but the normal pdf is positive on
the entire real line. A real physical particle in the physical world cannot trace a path
of unbounded variation (infinite length) in finite time. A real particle has a velocity,
but the sample path of a Brownianmotion does not, since the derivative is undefined.
(It has, in some sense, an infinite speed.) From the point of view of probability, we
understand that Brownian motion and the resulting di�usion equation are merely an
approximation, valid at late time (aftermanyparticle jumps have accumulated). In the
real world, the randomwalk is the fundamental physical model, and the limit process
is a very useful approximation.

If you go back now to the simulation in Figure 5.15 and extend the length of the se-
quence of jumps simulated (i.e., change t=seq(1:100) to t=seq(1:1000)) or longer)
you can see that the random walk becomes indistinguishable from a Brownian mo-
tion. If you change the distribution of the randomwalk jumps (e.g., change runif(t,

min=-1, max=1) to runif(t, min=-5, max=5)or even to a di�erentmean zero finite
variance distribution) then the same e�ect persists. This illustrates the random walk
convergence to a Brownian motion in a very concrete way.

Example 5.17. Figure 5.19 provides the R code to simulate a random walk with iid
Pareto jumps. The simulation uses the fact that if W has cdf F(y) = ℙ[W ≤ y] then
W ≃ F−1(U) where U is uniform on [0, 1]. This is easy to check:

ℙ[F−1(U) ≤ y] = ℙ[U ≤ F(y)] = F(y).
See Press et al. [170, Chapter 7] for more details. Applying this idea to a Pareto with
ℙ[W > x] = Cx−α we have

ℙ[(U/C)−1/α > x] = ℙ[U < Cx−α] = Cx−α
for x > C1/α which shows that (U/C)−1/α has a Pareto distribution, when U is uniform
on [0, 1]. Using (3.52) we see that the Pareto has mean μ1 = C1/αα/(α −1)when α > 1.
The code simulates a randomwalkwith iid Pareto jumps, corrected tomean zero. Then
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C=1.0

alpha=1.5

t=seq(1:100)

U=runif(t)

Y=(U/C)^(-1/alpha)-(alpha/(alpha-1))*C^(1/alpha)

S=cumsum(Y)

plot(t,S,type="l")

Fig. 5.19: R code to simulate a random walk with iid Pareto jumps.
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Fig. 5.20: Simulated random walk with Pareto jumps, the result of running the R code in Figure 5.19.

c−1/αS([ct]) ⇒ A(t), a mean zero α-stable Lévy motion (see Section 4.4). Figure 5.20
showsa typical output from running theRcode inFigure 5.19. Theoverall negativedrift
compensates for the occasional large positive jumps. For a Paretowith0 < α < 2, these
jumps persist in the long-time scaling limit. To check this, change the length of the
simulated sequence and note that, unlike the finite variance random walk simulated
previously, the large positive jumps remain prominent at any length scale.

Tounderstandwhy this happens, consider the compoundPoissonapproximation.
We have Sn = Xn1 + ⋅ ⋅ ⋅ + Xnn ⇒ A = A(1) stable where Xnj = anWj are the rescaled
randomwalk jumps.We can take an = n−1/α in the Pareto case. Since nℙ[anWj > R] →
ϕ(R,∞) = CR−α is the mean number of jumps of size greater than R, the probability
of any one jump exceeding this threshold is approximately n−1CR−α, but since there
are n independent jumps, the probability of at least one of those jumps exceeding the
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threshold is approximately

1 − (1 − CR−α
n
)n ≈ 1 − e−CR−α ≈ CR−α

for R > 0 su�ciently large. Furthermore, this is the probability that at least one jump
Wj exceeds n1/αR, which is comparable to the total sum since S(n) ≈ n1/αA. Hence
the largest jump is comparable to the entire sum. Since nℙ[anWj > R] → 0 for finite
variance jumps, the largest jump there is a negligible part of the sum. This is onemain
distinguishing property of heavy tailed random walks.

C=1.0

alpha=1.5

p=0.3

t=seq(1:100)

U=runif(t)

Y=(U/C)^(-1/alpha)-(alpha/(alpha-1))*C^(1/alpha)

V=runif(t)

for (i in 1:length(t)){

if (V[i]>p) Y[i]=-Y[i]}

S=cumsum(Y)

plot(t,S,type="l")

Fig. 5.21: R code to simulate a random walk with iid power law jumps.

Example 5.18. Figure 5.21 provides the R code to simulate a random walk with iid
power law jumps. The code is similar to Figure 5.19. First we simulate iid Pareto jumps
(Wn) and correct to mean zero. Then we adjust by drawing a random number U uni-
form on [0, 1] and changing the sign of this jump, to give a negative jump, with prob-
ability q = 1 − p. The resulting code simulates a random walk with iid power law
jumps, corrected to mean zero, as in Theorem 3.41. Then c−1/αS([ct]) ⇒ A(t), a mean
zero α-stable Lévy motion with both positive and negative jumps. Figure 5.22 shows a
typical output from running the R code in Figure 5.21. The sample path contains occa-
sional large jumps, which can be either positive or negative. Again, if we lengthen the
random walk sequence, we eventually get to the point where the resulting graphs are
insensitive to the overall length of the simulation. This illustrates the convergence to
a self-similar limit process.

Example 5.19. The R code in Figure 5.23 simulates a symmetric stable Lévy motion.
The simulated process is actually a random walk with iid stable jumps, using the R
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Fig. 5.22: Simulated random walk with power law jumps, the result of running the R code in Figure

5.21.

command rstable to generate a vector of iid stable random variates. This command
is also part of the stabledistpackage introduced in Example 5.7. Figure 5.24 shows a
typical samplepath, obtainedby running theRcode inFigure 5.23. Note theoccasional
large jumps. Sincewe simulate a stable Lévymotionwith β = p−q = 0wehave p = 1/2
and q = 1/2, i.e., the large jumps are equally likely to be positive or negative. Sincewe
set μ = delta = 0, the process is compensated to mean zero.

The graph of a stable Lévy motion with index 1 < α < 2 is also a random fractal,
with dimension d = 2 − 1/α, see Falconer [65, Section 16.3]. This extends the result
mentioned in Example 5.16 for Brownian motion, where d = 2 − 1/2. The fractal di-
mension describes the “roughness” of the particle traces. As α decreases from 2 to 1,
the sample paths become smoother.

Example 5.20. The R code in Figure 5.25 simulates a continuous time random walk
(CTRW) with iid Pareto waiting times and iid power law jumps. The method for simu-
lating the jumps is the same as in Example 5.18. Themethod for simulating the waiting
times is the same as Example 5.17. The CTRW is actually a randomwalk in space-time,
i.e., a two-dimensional random walk in which the horizontal axis represents elapsed
time, and the vertical axis represents the spatial location. Hence the R code is quite
similar to what we have seen before. The only di�erence is that we plot the cumulative
sum S(i) of the jumps against the cumulative sum T(i) of thewaiting times, rather than
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library(stabledist)

t=seq(1:1000)

Y=rstable(t, alpha = 1.5, beta = 0.0, gamma=1.0, delta=0.0, pm=1)

A=cumsum(Y)

plot(t,A,type="l")

Fig. 5.23: R code to simulate a stable Lévy motion.
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Fig. 5.24: Simulated stable Lévy motion, the result of running the R code in Figure 5.23.

plotting S(i) versus i. Figure 5.26 shows a typical sample path, obtained by running the
R code in Figure 5.25. Note the long jumps in space, and also the long jumps in time.
Bothwill persist in the scaling limit, as the simulated sequencegets longer. Eventually,
the character of the simulated sample paths becomes insensitive to the length of the
sequence, an illustration of the CTRW limit (4.32). If we replace the simulated jumps
by iidmean zero finite variance jumps as in Example 5.15, the outer process A(t) in the
scaling limit is a Brownian motion. In this case, the jumps in space disappear in the
limit. If we replace the Paretowaiting times by somepositive iid randomvariableswith
finitemean (e.g., use runif(t, min=0, max=1)) then the resulting sample paths very
closely resemble those from Example 5.18, as we discussed in Section 4.3. The CTRW
sample paths represents particle traces, in which a particle can stick at some point for
a random period before the next jump. If the waiting time pdf has a su�ciently heavy
tail, this significantly a�ects the movement of particles over the long term.
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C=1.0; alpha=1.5; p=0.3; B=1.0; beta=0.8

t=seq(1:1000)

U=runif(t)

Y=(U/C)^(-1/alpha)-(alpha/(alpha-1))*C^(1/alpha)

V=runif(t)

for (i in 1:length(t)){

if (V[i]>p) Y[i]=-Y[i]}

S=cumsum(Y)

U=runif(t)

J=(U/B)^(-1/beta)

T=cumsum(J)

plot(T,S,type="l")

Fig. 5.25: R code to simulate a continuous time random walk (CTRW).
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Fig. 5.26: Simulated CTRW, the result of running the R code in Figure 5.25.
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library(stabledist)

a=1.5

skew=0.0

b=0.8

t=seq(1:1000)

Y=rstable(t,alpha=a, beta=skew)

A=cumsum(Y)

pi=3.1415927

g=(cos(pi*b/2))^(-1/b)

J=rstable(t, alpha=b, beta=1.0, gamma=g, delta=0, pm=1)

T=cumsum(J)

plot(T,A,type="l")

Fig. 5.27: R code to simulate the CTRW scaling limit process.

0 10000 20000 30000 40000 50000 60000

0
2

0
4

0
6

0
8

0

T

A

Fig. 5.28: Simulated CTRW limit, the result of running the R code in Figure 5.27.
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Example 5.21. The R code in Figure 5.27 simulates the CTRW scaling limit process
A(E(t)) from (4.32). Figure 5.28 shows a typical sample path, obtained by running the
R code in Figure 5.27. The outer process x = A(u) is symmetric stable with index α =
1.5 and the inner process u = E(t) is the inverse of a standard stable subordinator
t = D(u) with index β = 0.8. Actually the simulation approximates this process by
a CTRW with stable particle jumps, and stable waiting times. Note that the graph of
(t, A(E(t)) is essentially the same as the graph of (D(u), A(u)), since E(D(u)) = u for
all u ≥ 0. The only di�erence is that the horizontal jumps in the graph of (D(u), A(u))
are connected by a continuous line in the graph of (t, A(E(t)), see Meerschaert, Nane
and Xiao [143] for additional details. Since R code connects the plotted points with a
continuous line, the resulting graph is approximate only in terms of the discretization
of the Lévy processes: The code simulates the two independent Lévy processes A(u)
and D(u) using random walks with iid stable jumps, as in Example 5.19. Note that the
limit process retains the long jumps in both space and time. Some results on the fractal
dimension of the CTRW limit process are contained in [143].

We conclude this section with two examples that illustrate the sample paths of vector-
valued stochastic processes. Fromaphysics point of view, it is quitenatural to consider
particle traces in two or three dimensions, since the real world is not one dimensional.
Furthermore, we have already seen that the CTRW is fundamentally a randomwalk in
two dimensions (one space and one time). Vector randomwalks, their limit processes,
and their governing equations will be developed in Chapter 6.

t=seq(1:5000)

X=rnorm(t, mean=0, sd=1.0)

A1=cumsum(X)

Y=rnorm(t, mean=0, sd=1.0)

A2=cumsum(Y)

plot(A1,A2,type="l")

Fig. 5.29: R code to simulate a two dimensional Brownian motion.

Example 5.22. Figure 5.29 shows the R code to simulate a Brownian motion in two
dimensions. The code is a simple modification of Example 5.16. The two dimensional
Brownian motion is A(t) = (A1(t), A2(t)) where A1(t) and A2(t) are two independent
one dimensional Brownianmotions. A vector Brownianmotion is the scaling limit of a
randomwalk with vector jumps, when the iid jumps havemean zero and finite second
moments. Figure 5.30 shows a typical sample path. The sample path of a Brownian
motion inℝd for d ≥ 2 is a random fractal with dimension two.
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Fig. 5.30: Simulated Brownian motion in two dimensions, the result of running the R code in Figure

5.29.

Example 5.23. The R code in Figure 5.31 simulates a two dimensional stable Lévy
motion with index α = 1.8. The code is a simple modification of Example 5.19. This
process is the scaling limit of a vector random walk with iid Pareto jumps in each co-
ordinate. Figure 5.32 shows a typical sample path. In contrast to Brownianmotion, the
sample path of a vector stable Lévymotion shows occasional large jumps. The sample
path of an α-stable Lévy motion inℝd for d ≥ 2 is a random fractal with dimension α,
extending the result for Brownian motion (see Blumenthal and Getoor [39] and Meer-
schaert and Xiao [156, Theorem 3.2]). Hence we can see that the power law index, the
order of the fractional derivative, and the fractal dimension are all the same. The two
dimensional stable Lévy motion is A(t) = (A1(t), A2(t))where A1(t) and A2(t) are two

library(stabledist)

t=seq(1:5000)

X=rstable(t, alpha = 1.8, beta = 0.0, gamma=1.0, delta=0.0, pm=1)

A1=cumsum(X)

Y=rstable(t, alpha = 1.8, beta = 0.0, gamma=1.0, delta=0.0, pm=1)

A2=cumsum(Y)

plot(A1,A2,type="l")

Fig. 5.31: R code to simulate a two dimensional stable Lévy motion.



142 | 5 Computations in R

−150 −100 −50 0 50 100

−
1

5
0

−
1

0
0

−
5

0
0

A1

A
2

Fig. 5.32: Simulated stable Lévy motion in two dimensions, the result of running the R code in Figure

5.31.

independent one dimensional stable Lévy motions. If we take the index α1 of A1(t) to
be di�erent than the index α2 of the second component A2(t), the resulting process is
called an operator stable Lévy motion. Operator stable Lévy motions are scaling limits
of a vector random walk when the power law index of the Pareto jump pdf depends
on the coordinate. It is a simple matter to simulate an operator stable Lévy motion,
by editing the index alpha in the code. For more information on simulating operator
stable sample paths, and additional examples, see Cohen et al. [51].



6 Vector Fractional Di�usion

Since many applied problems require a more realistic model in a 2-dimensional or
3-dimensional physical space, this chapter extends the fractional di�usionmodel de-
veloped in previous chapters to a vector setting.

6.1 Vector random walks

Suppose that (Xn) and (Yn) are two independent sequences of iid random variables.
The two dimensional random walk with coordinates Sn = X1 + ⋅ ⋅ ⋅ + Xn and Rn =
Y1 + ⋅ ⋅ ⋅ + Yn represents the position of a particle in the (x, y) plane after n jumps.
Suppose that E[Xn] = E[Yn] = 0 and E[X2n] = E[Y2n ] = 2D for some constant D > 0.
Then it follows from Example 3.31 that

n−1/2S[nt] ⇒ Zt and n−1/2R[nt] ⇒ Wt

where Zt andWt are two independent Brownianmotions. In vector notation, we have

n−1/2 (S[nt]
R[nt]
)⇒ ( Zt

Wt
) (6.1)

as n → ∞. The limit process in (6.1) is a two dimensional Brownian motion with in-
dependent components. A typical sample path was shown in Figure 5.30. If p1(x, t) is
the pdf of Zt and p2(y, t) is the pdf ofWt, then the vector limit has a pdf

p(x, y, t) = p1(x, t)p2(y, t) =
1√4πDt e−x2/4Dt 1√4πDt e−y2/4Dt

= 1

4πDt
e−(x

2+y2)/4Dt (6.2)

whose Fourier transform

p̂(k, ℓ, t) = ∫∫ e−ikxe−iℓyp(x, y, t) dy dx
= ∫ e−ikxp1(x, t) dx∫ e−iℓyp2(y, t) dy = e−Dtk2e−Dtℓ2

solves the di�erential equation

d

dt
p̂(k, ℓ, t) = [−Dk2 − Dℓ2]p̂(k, ℓ, t) = [D(ik)2 + D(iℓ)2]p̂(k, ℓ, t).

Inverting the FT shows that p(x, y, t) solves the two dimensional di�usion equation

∂

∂t
p(x, y, t) = D ∂2

∂x2
p(x, y, t) + D ∂2

∂y2
p(x, y, t). (6.3)

DOI 10.1515/9783110258165-006
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This is an isotropic di�usion equation. Figure 6.1 shows level sets of the isotropic pdf
(6.2). It was produced using the R code in Figure 6.11, listed at the end of this chapter.
Since the density p(x, y, t) only depends on x2 + y2, the level sets are circles, and the
pdf is rotationally symmetric. This means that the di�usion looks the same in any or-
thogonal coordinate system centered at the origin. Because Zt is isotropic, any rotation
and/or reflection in Figure 5.30 produces an equally likely sample path.

x

y

−1

0

1

−1 0 1

Fig. 6.1: Level sets of the solution (6.2) to the isotropic di�usion equation (6.3) at time t = 1 with
dispersivity parameter D = 2.

To develop a more general, anisotropic di�usion equation, suppose that the two
independent randomwalks haveE[Xn] = E[Yn] = 0 butE[X2n] = 2D1 > 0 andE[Y2n ] =
2D2 > 0. Then a very similar argument shows that (6.1) holds and the limit has pdf
p(x, y, t) that solves

∂

∂t
p(x, y, t) = D1

∂2

∂x2
p(x, y, t) + D2

∂2

∂y2
p(x, y, t). (6.4)

Here we have

p(x, y, t) = 1√4πD1t e−x2/4D1 t
1√4πD2t e−y2/4D2 t

= 1

4πt√D1D2 exp [− 1
4t
( x2
D1
+ y

2

D2
)] . (6.5)



6.1 Vector random walks | 145

Figure 6.2 shows level sets of the anisotropic pdf (6.5). Now the level sets are ellipses,
whoseprincipal axes are the x and y coordinates, so there is a preferred coordinate sys-
tem. Figure 6.2 was produced using the R code in Figure 6.12 at the end of this chapter.
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Fig. 6.2: Level sets of the solution (6.5) to the anisotropic di�usion equation (6.4) at time t = 1 with
dispersivity parameters D1 = 2 and D2 = 1/2.

For vector random walks, it is natural to adopt a vector coordinate system. Given
an m × nmatrix

A =(a11 ⋅ ⋅ ⋅ a1n
...

...
am1 ⋅ ⋅ ⋅ amn

) = [aij]
we define the transpose

A� = [aji] =(a11 ⋅ ⋅ ⋅ am1
...

...
a1n ⋅ ⋅ ⋅ amn

) .

The transpose of the column vector (a d × 1matrix)

x =(x1...
xd

)
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is the row vector x� = (x1, . . . , xd). The inner product

x ⋅ y = x�y = (x1, . . . , xd)(y1...
yd

) = d∑
j=1
xjyj

for two column vectors of the same dimension is defined by matrix multiplication.
Then x ⋅ y = y ⋅ x. The outer product

xx� =(x1...
xd

) (x1, . . . , xd) =(x1x1 ⋅ ⋅ ⋅ x1xd
...

...
xdx1 ⋅ ⋅ ⋅ xdxd

)
is a matrix, while the inner product is a scalar.

Given a d-dimensional random vector

X =(X1...
Xd

)
we define the mean vector

E[X] =(E[X1]...
E[Xd]
) =(μ1...

μd

) = μ ∈ ℝd ,
and the covariance matrix (using the outer product)

Q = Cov(X) = E[(X − μ)(X − μ)�]

=(E[(X1 − μ1)(X1 − μ1)] ⋅ ⋅ ⋅ E[(X1 − μ1)(Xd − μd)]...
...

E[(Xd − μd)(X1 − μ1)] ⋅ ⋅ ⋅ E[(Xd − μd)(Xd − μd)]
) ,

a d × d matrix whose jj entry is the variance of Xj, and whose ij entry for i ̸= j is the
covariance of Xi and Xj.

Now we can extend the simple arguments of Chapter 1 to the vector case. Later in
this chapter, wewill provide amore general treatment based on the theory of infinitely
divisible random vectors and triangular arrays. Let X = (X1, . . . , Xd)� be a random
vector in ℝd with cumulative distribution function (cdf)

F(x) = F(x1, . . . , xd) = ℙ[X1 ≤ x1, . . . , Xd ≤ xd] = ℙ[X ≤ x].
Then F(x) = μ{y ∈ ℝd : y ≤ x} where y ≤ x means that yi ≤ xi for all i = 1, 2, . . . , d. If
the cdf F(x) is di�erentiable, then the probability density function (pdf)

f(x) = f(x1, . . . , xd) =
∂

∂x1
⋅ ⋅ ⋅ ∂
∂xd

F(x1 , . . . , xd)
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and the probability measure

μ(B) = ℙ[X ∈ B] = ∫
x∈B

F(dx) = ∫
x∈B

f(x) dx.

The characteristic function

μ̂(k) = E[eik⋅X] = ∫ eik⋅xμ(dx) = ∫ eik⋅xF(dx)
so that, if the pdf f(x) exists, then its Fourier transform (FT) is given by

̂f (k) = ∫ e−ik⋅xf(x) dx = μ̂(−k).
Suppose that the d-dimensional random vector X has a pdf f(x) = f(x1 , . . . , xd) and
write the FT of X in the form

̂f (k) = E[e−ik⋅X] = ∫ e−ik⋅xf(x) dx
= ∫ (1 − ik ⋅ x + 1

2 (−ik ⋅ x)
2 + ⋅ ⋅ ⋅ ) f(x) dx

= 1 − ik ⋅ μ − 1
2 ∫ k�x x�kf(x) dx + ⋅ ⋅ ⋅

where k is a column vector with k� = (k1, . . . , kd). If the random vector X has mean
E[X] = 0 and covariance Q = E[XX�] = ∫ xx� f(x) dx then

̂f (k) = 1 − 1
2 k
�E[XX�]k + ⋅ ⋅ ⋅ = 1 − 1

2 k
�Qk + ⋅ ⋅ ⋅

is the FT of X. If (Xn) are iid with X, then the vector sum Sn = X1 + ⋅ ⋅ ⋅+Xn has FT ̂f (k)n
and the rescaled sum n−1/2Sn has FT

̂f (k/√n)n = (1 − 1
2 k
�Qk

n
+ ⋅ ⋅ ⋅)n → exp(− 12 k

�Qk) (6.6)

which shows that
n−1/2Sn ⇒ Y (6.7)

where the limit has FT exp(− 12 k�Qk). The limit Y is a multidimensional Gaussian pdf
with mean zero and covariance matrix Q. Its probability density function is

g(x) = (2π)−d/2 |det(Q)|−1/2 exp [− 12 x�Q−1x]
where det(Q) is the determinant of the matrix Q, see details at the end of this section
for more information.

Next, consider a vector randomwalk S[nt] = X1 + ⋅ ⋅ ⋅+X[nt] where (Xn) are iid with
μ = E[Xn] = 0 and Cov(Xn) = E[XnX�n] = 2D is invertible. Then the rescaled random
walk n−1/2S[nt] has FT

̂f (k/√n)[nt] = (1 − k�Dk
n
+ ⋅ ⋅ ⋅)[nt] → exp(−k�Dtk)
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and the Lévy Continuity Theorem (see details) yields

n−1/2S[nt] ⇒ Zt . (6.8)

If p(x, t) is the pdf of Zt then

p̂(k, t) = exp(−k�Dtk) = exp[(ik)�Dt(ik)], (6.9)

which solves
d

dt
p̂(k, t) = (ik)�D(ik)p̂(k, t).

Invert the FT to see that p(x, t) solves

∂

∂t
p(x, t) = ∇ ⋅ D∇p(x, t), (6.10)

the vector di�usion equation in natural vector notation. Here we use x�y = x ⋅ y, the
fact that (ik) ̂f (k) is the FT of

∇f(x) =( ∂

∂x1
f(x1, . . . , xd)

...
∂

∂xd
f(x1, . . . , xd)

) ,

and the fact that (ik) ⋅ F̂(k) is the FT of ∇ ⋅ F(x) when F(x) = (f1(x), . . . , fd(x))� is a
vector-valued function of the vector x = (x1, . . . , xd)� (see details). Inverting the FT in
(6.9) shows that

p(x, t) = (4πt)−d/2 |det(D)|−1/2 exp [− 1
4t
x�D−1x] ,

see details at the end of this section.
We can also add a drift: The process Zt + vt has FT

p̂(k, t) = E[e−ik⋅(vt+Zt)] = exp(−ik ⋅ vt − k�Dtk), (6.11)

which solves
d

dt
p̂(k, t) = [−ik ⋅ v + (ik)�D(ik)] p̂(k, t).

Invert the FT to get the vector di�usion equation with drift

∂

∂t
p(x, t) = −v ⋅ ∇p(x, t) + ∇ ⋅ D∇p(x, t). (6.12)

Inverting (6.11) shows that

p(x, t) = (4πt)−d/2 |det(D)|−1/2 exp [− 1
4t
(x − vt)�D−1(x − vt)] , (6.13)
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see details at the end of this section.
Remark 6.1. The geometry of the solution (6.13) is determined by the structure of the
dispersion tensorD. For simplicity, suppose that the drift velocity v = 0. SinceD is sym-
metric and positive definite, there is an orthonormal basis of eigenvectors b1 . . . , bd
with corresponding eigenvalues ai such that Dbi = aibi for 1 ≤ i ≤ d. For any x ∈ ℝd
we can write x = ∑dj=1 xjbj where xj = x ⋅ bj. Note that

b�iD
−1bj = b�ia−1j bj = a−1j (bi ⋅ bj) =

{{{0 if i ̸= j;
a−1j if i = j.

Then

x�D−1x = ( d∑
i=1
xibi)�D−1( d∑

j=1
xjbj)

=
d∑
i=1

d∑
j=1
xixjb
�
iD
−1bj

=
d∑
i=1
a−1i x

2
i

and then (6.13) reduces to

p(x, t) = (4πt)−d/2 [ d∏
i=1
a
−1/2
i ] exp[− 14t d∑

i=1

x2i
ai
] .

The level sets of this pdf are ellipsoids

x21
a1
+ ⋅ ⋅ ⋅ +

x2d
ad
= C

whose principal axes are the eigenvector coordinates b1, . . . , bd. The level sets are
widest in the direction of the eigenvector with the largest eigenvalue. Recall that 2D is
also the covariance matrix of the random walk jumps Xn. You can check (e.g., using
Lagrange multipliers) that this eigenvector maximizes the variance E[(Xn ⋅ θ)2] over
all unit vectors ‖θ‖ = 1.
Remark 6.2. The Gaussian limit in (6.7) depends on the choice of norming. Assume
as before that (Xn) are iid with mean E[Xn] = 0 and covariance matrix Q = E[XnX�n].
If A is any matrix, then

(n−1/2A)
n∑
j=1
Xj = n−1/2

n∑
j=1
AXj ⇒ AY ≃ N(0, AQA�)

since the iid random vectors AXn have covariance matrix AQA�. Hence n−1/2A is an-
other suitable sequence of norming operators. (We could also apply the Continuous
MappingTheorem4.19: If n−1/2Sn ⇒ Y, thenA(n−1/2Sn)⇒ AY.) If we chooseA so that
A�QA = I (see details), then Z = AY ≃ N(0, I). Since Sn is a vector, matrix norming is
quite natural.
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Remark 6.3. We say that the d × d matrix U is orthogonal if U−1 = U�. It is easy to
check that UZ ≃ Z for U orthogonal and Z ≃ N(0, I): Just note that UZ has FT

E[e−ik⋅UZ] = E[e−iU�k⋅Z] = exp[− 12 (U
�k)�(U�k)] = exp[− 12 k

�UU�k] = exp[− 12 ‖k‖
2]

using the fact that U�U = U−1U = I. We say that the orthogonal matrix U is a sym-
metry of Z. Geometrically, orthogonal matrices U are the norm-preserving coordinate
changes, i.e., rotations and reflections. Suppose that Sn = X1+⋅ ⋅ ⋅+Xn is a randomwalk
whose iid jumps satisfy E[Xn] = 0 and E[X2n] = I, so that n−1/2Sn ⇒ Z ≃ N(0, I). If Un
are orthogonal, then we also have n−1/2UnSn ⇒ Z, so that n−1/2Un is another suitable
sequence of norming matrices. To check this, use FT and the fact that the orthogo-
nal matrices form a compact set. For any subsequence, there is a further subsequence
Un → U along which the FT of n−1/2UnSn converges:

̂f (n−1/2U�nk)n = (1 − 1
2 (U�nk)�I(U�nk)

n
+ ⋅ ⋅ ⋅)n → exp(− 12 k

�UU�k) = exp(− 12 ‖k‖
2).

Since the every subsequence has a further subsequence that converges to the same
limit, the Lévy Continuity Theorem implies that n−1/2UnSn ⇒ Y. If In → I, a simi-
lar argument shows that n−1/2UnInSn ⇒ Z. For more information on symmetry, and
the permissible sequences of norming operators, see Meerschaert and Sche�er [146,
Section 2.3].

Details

In (6.3)weused the fact that theFTof ∂f(x, y)/∂x is (ik) ̂f (k, ℓ), and theFTof ∂f(x, y)/∂y
is (iℓ) ̂f (k, ℓ). The proof is a direct application of the corresponding one dimensional
formula (1.14). For example, suppose that f(x, y) is integrable, and that ∂f(x, y)/∂y
exists and is integrable. Then (1.14) implies

∞∫
−∞

e−iℓy
∂

∂y
f(x, y) dy = (iℓ)

∞∫
−∞

e−iℓyf(x, y) dy

for each x, and then
∞∫
−∞

∞∫
−∞

e−ikxe−iℓy
∂

∂y
f(x, y) dy dx =

∞∫
−∞

e−ikx(iℓ)
∞∫
−∞

e−iℓyf(x, y) dy dx

= (iℓ) ̂f (k, ℓ).
If ∂f(x, y)/∂x also exists and is integrable, then it follows that the vector-valued func-
tion∇f(x, y) = (∂f(x, y)/∂x, ∂f(x, y)/∂y)� has FT ((ik) ̂f (k, ℓ), (iℓ) ̂f (k, ℓ))�. Note that, for
a vector-valued function F(x, y) = (f(x, y), g(x, y))� , we define the FT

F̂(k, ℓ) =
∞∫
−∞

∞∫
−∞

e−ikxe−iℓyF(x, y) dy dx = ( ̂f (k, ℓ)
ĝ(k, ℓ))
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where

̂f (k, ℓ) =
∞∫
−∞

∞∫
−∞

e−ikxe−iℓyf(x, y) dy dx

ĝ(k, ℓ) =
∞∫
−∞

∞∫
−∞

e−ikxe−iℓyg(x, y) dy dx.

Now extending to ℝd in vector notation shows that (ik) ̂f (k) is the FT of the gradient
vector ∇f(x).

In (6.10) we use the fact that (ik) ⋅ F̂(k) is the FT of ∇ ⋅ F(x), when F(x) =
(f1(x), . . . , fd(x))� is a vector-valued function of the vector x = (x1, . . . , xd)�. Write

(ik) ⋅ F̂(k) =(ik1...
ikd

) ⋅( ̂f1(k)...
̂fd(k)
)

and note that ikj ̂fj(k) is the FT of ∂fj(x)/∂xj for all j = 1, 2, . . . , d. Then (ik) ⋅ F̂(k) is
the FT of

d∑
j=1

∂fj(x)
∂xj
=(∂/∂x1...

∂/∂xd
) ⋅(f1(x)...

fd(x)
) = ∇ ⋅ F(x).

In (6.7) we use the Lévy continuity theorem for the vector Fourier transform. The
statement of this theorem is exactly the same as for random variables. Suppose that
Xn , X are random vectors on ℝd. Let ̂fn(k) = E[e−ik⋅Xn] and ̂f (k) = E[e−ik⋅X]. The Lévy
Continuity Theorem [146, Theorem 1.3.6] states that Xn ⇒ X if and only if ̂fn(k)→ ̂f (k).
More precisely, Xn ⇒ X implies that ̂fn(k) → ̂f (k) for each k ∈ ℝd, uniformly on
compact subsets. Conversely, if Xn is a sequence of random vectors such that ̂fn(k)→
̂f (k) for each k ∈ ℝd, and the limit ̂f (k) is continuous at k = 0, then ̂f (k) is the FT of
some X, and Xn ⇒ X.

The general solution to the di�usion equation (6.12) comes from inverting the FT
to obtain a normal density. Since the limit in (6.6) is continuous at k = 0, the Lévy
continuity theorem implies that it is the FT of some random vector Y, i.e., we have
E[e−ik⋅Y] = exp(− 12 k�Qk). Using the general fact that (AB)� = B�A� for vectors and
matrices, it is easy to see that the covariance matrix is symmetric: Q� = E[(XX�)�] =
E[(X�)�(X)�] = E[XX�] = Q. The covariance matrix is also non-negative definite: For
any vector a ∈ ℝd we have a�Qa = E[a�X X�a] = E[(a ⋅ X)2] ≥ 0. Of course it is
possible that X is supported on some lower dimensional subspace ofℝd and, to avoid
this, we will assume that Q is positive definite, meaning that a�Qa > 0 when a ̸= 0.
This is equivalent to assuming that the distribution of X is not concentrated on some
lower dimensional a�ne subspace, i.e., there is no a ̸= 0 such that X⋅a is almost surely
constant. In this case, we say that the distribution of X is full. Then a deep result from
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linear algebra (the Principal Axis Theorem, e.g., see Curtis [53, Theorem 31.9]) implies
that Q has an orthonormal basis of eigenvectors v1, . . . , vd such that ‖vi‖2 = vi ⋅ vi = 1
and vi ⋅ vj = 0 for i ̸= j, with Qvi = λivi for some eigenvalues λj > 0.

For any vectors x, y ∈ ℝd and any d×dmatrix Awe have x ⋅Ay = x�Ay = (A�x)�y =
A�x ⋅ y. Define A to be the unique matrix (linear operator) such that Avi = λ−1/2i vi

for every i = 1, 2, . . . , d. Note that vi ⋅ Avi = λ−1/2i and vi ⋅ Avj = 0 for i ̸= j. Then
A�vi ⋅ vi = vi ⋅Avi = λ−1/2i for all i = 1, 2, . . . , d, and A�vi ⋅ vj = 0 for j ̸= i. It follows that
A�vi = λ−1/2i vi for all i = 1, 2, . . . , d. Then AQA�vi = vi for all i = 1, 2, . . . , d. Since
v1, . . . , vd forms a basis for ℝd, it follows that AQA� = I, the d × d identity matrix.
Then the FT of Z = AY is

̂f (k) = E [e−ik⋅Z] = E [e−ik⋅AY]
= E [e−iA�k⋅Y]
= exp [− 12 (A�k)�QA�k]
= exp [− 12 k�AQA�k]
= exp [− 12 k�Ik] = exp [− 12 (k21 + ⋅ ⋅ ⋅ + k2d)] = d∏

j=1
e−k

2
j /2

which inverts to

f(z) =
d∏
j=1

1√2π e−z2j /2 = (2π)−d/2 e−‖z‖2/2
the density of random vector inℝd with iidN(0, 1) components. This pdf is isotropic,
since it only depends on z through its norm ‖z‖. The pdf of Y comes from a change of
variables z = Ay with dz = det(A) dy, so that for any Borel set B ⊆ ℝd we have

ℙ[Y ∈ B] = ℙ[A−1Z ∈ B] = ℙ[Z ∈ AB]
= ∫
z∈AB

f(z) dz = ∫
Ay∈AB

f(Ay)det(A) dy

where det(A) = λ−1/21 ⋅ ⋅ ⋅ λ
−1/2
d is the determinant (product of the eigenvalues) of the

matrix A. This shows that the random vector limit Y in (6.6) has pdf

f(Ay)det(A) = (2π)−d/2 det(A)e−(Ay)�(Ay)/2

= (2π)−d/2 |det(Q)|−1/2 exp [− 12 y�Q−1y] (6.14)

since A�A = Q−1, which is easy to check, and two basic facts about determinants:
det(A) = det(A�) and det(AB) = det(A)det(B) (e.g., see Curtis [53]). Since the limit Zt
in (6.8) has FT exp(−k�Dtk), we can set Q = 2Dt in (6.14) to see that Zt has pdf

p(x, t) = (4πt)−d/2 |det(D)|−1/2 exp [− 1
4t
x�D−1x]

using the fact that det(2tD) = (2t)d det(D). Another change of variables shows that
Zt + vt has pdf (6.13) with FT p̂(k, t) = exp(−ikvt − k�Dtk). This shows that the pdf
(6.13) solves the vector di�usion equation with drift (6.12).
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6.2 Vector random walks with heavy tails

Suppose that (Xn) and (Yn) are two independent sequences of zero mean iid random
variables with heavy tails, such that

n−1/αS[nt] ⇒ Zt and n−1/βR[nt] ⇒ Wt

where Sn = X1 + ⋅ ⋅ ⋅ + Xn, Rn = Y1 + ⋅ ⋅ ⋅ + Yn, and Zt,Wt are independent stable Lévy
motions with index α, β ∈ (1, 2). In vector notation, we have(n−1/αS[nt]

n−1/βR[nt]
)⇒ ( Zt

Wt
) (6.15)

as n →∞. Figure 5.32 shows a typical sample path of the vector limit process in (6.15)
in the case α = β = 1.8. Since the limit has independent components, it follows im-
mediately from Theorem 3.41 that this process has a pdf p(x, y, t) with FT

p̂(k, ℓ, t) = ∫∫ e−ikxe−iℓyp(x, y, t) dy dx = etψ1(−k)etψ2(−ℓ)

where

ψ1(k) = p1D1(−ik)α + q1D1(ik)α and ψ2(ℓ) = p2D2(−iℓ)β + q2D2(iℓ)β

for some Di > 0 and some pi , qi ≥ 0 with pi + qi = 1. Then

d

dt
p̂(k, ℓ, t) = [ψ1(−k) + ψ2(−ℓ)]p̂(k, ℓ, t)

and inverting the FT shows that p(x, y, t) solves the two dimensional fractional di�u-
sion equation

∂

∂t
p(x, y, t) = p1D1

∂α

∂xα
p(x, y, t) + q1D1

∂α

∂(−x)α p(x, y, t)

+ p2D2
∂β

∂yβ
p(x, y, t) + q2D2

∂β

∂(−y)β
p(x, y, t). (6.16)

The fractional partial di�erential equation (6.16) governs the densities of a two dimen-
sional operator stable Lévy motion. If α = β, then this reduces to a two dimensional
stable Lévy motion. For α = β = 2, equation (6.16) reduces to the two dimensional
di�usion equation (6.3), whose solutions are rotationally symmetric (isotropic). The
geometry for two dimensional stable Lévy motions is more complicated.

The solution p(x, y, t) to the two dimensional di�usion equation (6.3) has FT

p̂(k, ℓ, t) = exp [−Dt(k2 + ℓ2)] .
The rotational symmetry of solutions comes from the fact that the FT only depends
on (k, ℓ) through k2 + ℓ2 which is rotationally invariant. Even if we assume α = β,
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D1 = D2, and pi = qi in (6.16), we only get a rotationally symmetric solution in the
special case α = 2. It follows from Proposition 5.8 that

p̂(k, ℓ, t) = exp [D1t cos(πα/2)(|k|α + |ℓ|α)] .
The term |k|α + |ℓ|α is not rotationally symmetric unless α = 2, making Brownian
motion a very special case of a stable Lévy motion. Figure 6.3 shows level sets of
the solution p(x, y, t) to the two dimensional fractional di�usion equation (6.16) with
α = β = 1.2 and pi = qi. There is a clear anisotropy here, and a preferred coordinate
system. The R code for Figure 6.3 is listed Figure 6.13 at the end of this chapter.

x

y

−1

0

1

−1 0 1

Fig. 6.3: Level sets of the solution p(x, y, t) to the two dimensional fractional di�usion equation
(6.16) at time t = 5 with parameters α = β = 1.2, D1 = D2 = 0.5, and p1 = p2 = q1 = q2 = 1/2.

The general d-dimensional randomwalk Sn = X1 + ⋅ ⋅ ⋅+Xn is a sum of iid random
vectors. Suppose that (Xn) are iid with X, and assume that X is full, i.e., there is no
a ̸= 0 such that X ⋅ a is almost surely constant. If there exist linear operators on ℝd
(i.e., d × d matrices) An and vectors bn ∈ ℝd such that AnSn − bn ⇒ Y, we say that
X belongs to the generalized domain of attraction of Y, and we write X ∈ GDOA(Y). In
the special case of scalar norming An = an I for some real numbers an > 0, we say that
X belongs to the domain of attraction of Y, and we write X ∈ DOA(Y).

Example 6.4. Suppose that X = (X1, . . . , Xd)� has independent components, where
each Xi ∈ DOA(Yi) for some stable randomvariables Yi with index αi ∈ (0, 2]. For ease
of notation, suppose that the norming constants are of the form n−1/αi for each com-
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ponent. (In the general case, the norming sequence isRV(−1/αi).) Define the diagonal
norming operators

An =
(((
(

n−1/α1 0 0 ⋅ ⋅ ⋅ 0

0 n−1/α2 0 ⋅ ⋅ ⋅ 0

0 0 n−1/α3
...

...
...

. . .

0 0 ⋅ ⋅ ⋅ 0 n−1/αd

)))
)

,

and note that, since AnSn − bn has independent components,

AnSn − bn ⇒ Y =(Y1...
Yd

) .

Remark 4.17 implies random walk convergence: AnS[nt] − tbn ⇒ Zt where Z1 ≃ Y.
In view of Proposition 4.16, if all 1 < αi < 2, we can take bn = nAnE[X], and if all
0 < αi < 1, we can set bn = 0. The ith component of the limit process Zt is a stable
Lévymotionwith index αi, and pdf pi(xi , t). Since these components are independent,
Zt has pdf

p(x, t) = p(x1 , . . . , xd , t) =
d∏
i=1
pi(xi , t)

a product of one dimensional stable densities. Suppose all 1 < αi < 2. Then p(x, t)
has FT

p̂(k, t) = E [e−ik⋅Zt] = exp (t [ψ1(−k1) + ⋅ ⋅ ⋅ + ψd(−kd)] )
where ψj(kj) = pjDj(−ikj)αj + qjDj(ikj)αj for each 1 ≤ j ≤ d, for some Dj > 0 and some
pj , qj ≥ 0 with pj + qj = 1. Then

d

dt
p̂(k, t) = [ψ1(−k1) + ⋅ ⋅ ⋅ + ψd(−kd)]p̂(k, t)

and inverting the FT shows that p(x, t) solves the d-dimensional fractional di�usion
equation

∂

∂t
p(x, t) =

d∑
j=1
[pjDj ∂αj

∂(xj)αj
p(x, t) + qjDj

∂αj

∂(−xj)αj
p(x, t)] . (6.17)

The fractional partial di�erential equation (6.17) governs the probability densities of
a d-dimensional operator stable Lévy motion, whose components are independent
stable Lévy motions with indices α1, . . . , αd. If all αj = α and all Dj = D and all pj =
qj = 1/2, then it follows from Proposition 5.8 that

p̂(k, t) = exp [Dt cos(πα/2) d∑
j=1
|kj|α].
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These solutions are not rotationally symmetric, since the sum∑dj=1 |kj|α is rotationally
invariant only when α = 2.
Example 6.5. Suppose that B(t) is a Brownian motion in ℝd such that E [e−ik⋅B(t)] =
exp [−k�tQk]. Then B(t) ≃ N(0, 2tQ). Let Dt be a standard stable subordinator with
pdf g(u, t) such that

g̃(s, t) = E [e−sDt] = ∞∫
0

e−sug(u, t) du = e−tsβ

for some 0 < β < 1, as in (4.41). Define Zt = B(Dt) for t ≥ 0. This subordinated process
has FT

p̂(k, t) = E [e−ik⋅Zt] = E [e−ik⋅B(Dt)]
=
∞∫
0

E[e−ik⋅B(Dt)!!!!Dt = u]g(u, t) du
=
∞∫
0

E[e−ik⋅B(u)]g(u, t) du
=
∞∫
0

e−(k
�Qk)ug(u, t) du = e−t(k�Qk)β (6.18)

for all t ≥ 0. Suppose for example thatQ = c1/β I for some c > 0. Then the subordinated
process Zt has characteristic function

p̂(−k, t) = E [eik⋅Zt] = e−tc‖k‖2β = etψ(k)
where the Fourier symbol ψ(k) = −c‖k‖α with α = 2β. This is the isotropic stable Lévy
motion in ℝd with index 0 < α < 2, a natural extension of a standard, rotationally
symmetric Brownian motion.

The fractional Laplacian operator ∆β is defined by specifying that ∆β f(x) has FT
−‖k‖2β ̂f (k) for suitable functions f(x). If β = 1, this reduces to the usual Laplacian
∆f(x) = ∇ ⋅ ∇f(x), whose FT is (ik) ⋅ (ik) ̂f (k) = −‖k‖2 ̂f (k). The subordinated process Zt
from Example 6.5, in the special case Q = c1/β I, has a FT p̂(k, t) = e−tc‖k‖2β that solves

d

dt
p̂(k, t) = −c‖k‖2β p̂(k, t).

Invert to obtain the isotropic vector fractional di�usion equation

∂

∂t
p(x, t) = c∆βp(x, t) (6.19)

for 0 < β < 1. When β = 1, this reduces to the vector di�usion equation (6.10) with
D = cI. Since the FT is rotationally symmetric, the solutions of (6.19) are invariant
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under rotations and reflections. The pdf in (6.18) has elliptical symmetry. Solutions
to (6.17) in the case pi = qi are symmetric with respect to reflection across the ith
coordinate axis. For 0 < α < 2, there are three distinct Fourier symbols

−‖k‖α ̸= (ik1)α + ⋅ ⋅ ⋅ + (ikd)α ̸= −|k1|α − ⋅ ⋅ ⋅ − |kd|α

which are all equal in the case α = 2. These symbols give rise to three di�erent Lévy
processes, corresponding to three di�erent stable limits, when 0 < α < 2. See the
details at the end of this section for more information.

The stable Lévy processwith Fourier symbolψ1(k) = (ik1)α+⋅ ⋅ ⋅+(ikd)α is the limit
of randomwalks whose jumps have iid components consisting of only positive power
law jumps. The process with Fourier symbol ψ2(k) = −|k1|α − ⋅ ⋅ ⋅ − |kd|α is the limit of
random walks whose jumps have iid components consisting of symmetric power law
jumps. The isotropic stable process constructed in Example 6.5 will be shown to arise
as the limit of a random walk with iid spherically symmetric power law jumps. Take
X = RΘ where ℙ[R > r] = Cr−α and Θ is uniformly distributed over the unit sphere.
We will show in Section 6.4 that n−1/α(X1 + ⋅ ⋅ ⋅ + Xn) ⇒ Zt when (Xn) are iid with
X. In the case of finite second moments, a random walk with spherically symmetric
jumps gives the same limit as a randomwalkwhose jumps have iid (one-dimensional)
symmetric components. In the case of heavy tails, these two limits are di�erent. In the
next section, we will build the necessary machinery of infinitely divisible laws and
triangular arrays, to make these statements rigorous.

Details

Recall from Remark 6.3 that U is orthogonal if U−1 = U�. Then

‖Ux‖2 = (Ux)�(Ux) = x�U�Ux = x�U−1Ux = x�Ix = ‖x‖2

so that the linear transformation x Ü→ Ux preserves the Euclidean norm. If X is a
random vector on ℝd with FT ̂f (k) = E[e−ik⋅X] and A is a d × d matrix then, since
k ⋅ AX = A�k ⋅ X, the transformed random vector AX has FT

E[e−ik⋅AX] = E[e−iA�k⋅X] = ̂f (A�k).
The solution to (6.19) has FT p̂(k, t) = E[e−ik⋅Zt] = exp [−tc‖k‖2β]. If U is orthogonal,

then so isU� = U−1, and it follows thatUZt has the sameFT p̂(U�k, t) = exp [−tc‖k‖2β]
as Zt. This proves that UZt ≃ Zt, so that every orthogonal transformation (every rota-
tion and reflection) is a symmetry of this process.

The process Zt in (6.18) is elliptically symmetric. Apply the construction in Section
6.1 to obtain a matrix A such that AQA� = I. Then the process AZt has FT

p̂(A�k, t) = e−t((A�k)�Q(A�k))β = e−t(k�AQA�k)β = e−t(k�Ik)β = e−t‖k‖2β
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so that UAZt ≃ AZt for every orthogonal U. It follows that A−1UAZt ≃ Zt so that
A−1UA is a symmetry of Zt for every orthogonal U. The level sets of the pdf are ellip-
soids whose principal axes are the eigenvectors of A (i.e., the eigenvectors of Q). More
information on symmetries for stable and operator stable laws can be found in Cohen,
Meerschaert and Rosiński [51], see also [146, Section 7.2] and references therein.

Solutions of (6.17) with pi = qi are symmetric with respect to the linear transfor-
mation (x1, . . . , xi , . . . , xd) Ü→ (x1, . . . , −xi , . . . , xd) sinceψi(ki) = ψi(−ki). However,
they are not spherically or elliptically symmetric.

6.3 Triangular arrays of random vectors

In this section, we begin to develop the general theory of fractional di�usion in multi-
ple dimensions, starting with the Lévy representation for infinitely divisible laws. We
say that a randomvector Y is infinitely divisible if Y ≃ X1+ ⋅ ⋅ ⋅+Xn for every positive in-
teger n, where (Xn) are independent and identically distributed (iid) random vectors.
If Xn ≃ μn, then this is equivalent to μ̂(k) = μ̂n(k)n.

Example 6.6. If Y ≃ N(a, Q) (normal with mean a and covariance matrix Q), then
μ̂(k) = exp(ik ⋅ a − 1

2 k
�Qk). Take μ̂n(k) = exp(ik ⋅ n−1a − 1

2 k
�(n−1Q)k) to see that Y is

infinitely divisible, the sum of n iidN(n−1a, n−1Q) random vectors.

Example 6.7. AcompoundPoisson randomvector Y = W1+⋅ ⋅ ⋅+WN = SN is a random
sum, where Sn = W1 + ⋅ ⋅ ⋅+Wn, (Wj) ≃ ω(dy) are iid random vectors, and N is Poisson
with E[N] = λ, independent of (Wj). Then

F(y) = ℙ[Y ≤ y] = ℙ[SN ≤ y]
=
∞∑
j=0
ℙ[SN ≤ y|N = j]ℙ[N = j]

=
∞∑
j=0
ℙ[Sj ≤ y]e−λ λ

j

j!
.

Then Y has characteristic function

μ̂(k) =
∞∑
j=0
ω̂(k)je−λ λ

j

j!

= e−λ
∞∑
j=0

[λω̂(k)]j
j!

= e−λeλω̂(k) = eλ[ω̂(k)−1].
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Take μ̂n(k) = e(λ/n)[ω̂(k)−1] to see that Y is infinitely divisible. This argument is identical
to Example 3.3, using vector notation. Continuing as in Section 3.1, write

μ̂(k) = eλ[ω̂(k)−1] = exp (λ [∫ eik⋅xω(dx) − 1])
= exp (λ [∫ (eik⋅x − 1)ω(dx)])
= exp (∫ (eik⋅x − 1)ϕ(dx))

where the Lévy measure ϕ(dx) = λ ω(dx) (jump intensity) controls the number and
size of jumps that make up the random sum. In particular, ϕ(B) is the expected num-
ber of jumps in B for any Borel set B bounded away from zero.

A Lévy measure ϕ(dy) on ℝd is a σ-finite Borel measure such that∫
0<‖y‖≤R

‖y‖2ϕ(dy) <∞ and ϕ{y : ‖y‖ > R} <∞ (6.20)

for all R > 0. The next theorem extends the Lévy representation from Theorem 3.4 to
random vectors.

Theorem 6.8 (Lévy representation for random vectors). A random vector Y ≃ μ on

ℝd is infinitely divisible if and only if its characteristic function μ̂(k) = E[eik⋅Y] = eψ(k)
where

ψ(k) = ik ⋅ a − 1
2 k
�Qk + ∫(eik⋅y − 1 − ik ⋅ y

1 + ‖y‖2 )ϕ(dy) (6.21)

for some a ∈ ℝd, some symmetric nonnegative definite matrix Q, and some Lévy mea-
sure ϕ(dy). This Lévy representation μ ≃ [a, Q, ϕ] is unique.

Proof. The proof is based on a compound Poisson approximation, see Meerschaert
and Sche�er [146, Theorem 3.1.11].

Example 6.9. If Y ≃ N(a, Q) then Theorem 6.8 holds with Y ≃ [a, Q, 0].

Example 6.10. If Y is compound Poisson, then Theorem 6.8 holds with Y ≃ [a, 0, ϕ],
where ϕ(dy) = λ ω(dy), and

a = ∫ y

1 + ‖y‖2 ϕ(dy).

The Lévy representation (6.21) is a natural extension of the one dimensional formula
(3.4). Note that the Lévy representation implies that any infinitely divisible law can be
written as a sum of two independent components, one Gaussian, and one Poissonian.

In a triangular array of random vectors {Xnj : j = 1, . . . , kn; n = 1, 2, 3, . . .} the
row sums Sn = Xn1 + ⋅ ⋅ ⋅ + Xnkn have independent summands for each n ≥ 1, and
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kn → ∞ as n → ∞. A general result [146, Theorem 3.2.14] states that Y is infinitely
divisible if and only if Sn − an ⇒ Y for some an ∈ ℝd and some triangular array that
satisfies

lim
n→∞ sup

1≤j≤kn
ℙ[‖Xnj‖ > ε] = 0 for all ε > 0. (6.22)

Define the truncated random vectors XRnj = XnjI(‖Xnj‖ ≤ R) and recall that a sequence
of σ-finite Borel measures ϕn(dy) → ϕ(dy) on {y : y ̸= 0} if ϕn(B) → ϕ(B) for any
Borel set B bounded away from zero such that ϕ(∂B) = 0 (vague convergence). The
next result extends Theorem 3.33 to random vectors.

Theorem 6.11 (Triangular array convergence for random vectors). Given a triangular

array such that (6.22) holds, there exists a random vector Y such that Sn − an ⇒ Y for

some an ∈ ℝd if and only if:
(i)

kn∑
j=1
ℙ[Xnj ∈ dy]→ ϕ(dy) for some σ-finite Borel measure on {y : y ̸= 0}; and

(ii) lim
ε→0

lim sup
n→∞

kn∑
j=1

Cov[Xεnj] = limε→0 lim inf
n→∞

kn∑
j=1

Cov[Xεnj] = Q.

In this case, Y is infinitely divisible with Lévy representation [a, Q, ϕ], where a ∈ ℝd
depends on the centering sequence (an). We can take

an =
kn∑
j=1
E[XRnj] (6.23)

for any R > 0 such that ϕ{y : ‖y‖ = R} = 0, and then E[eik⋅Y] = eψ0(k) where

ψ0(k) = − 12 k
�Qk + ∫(eik⋅y − 1 − ik ⋅ yI(‖y‖ ≤ R)) ϕ(dy). (6.24)

Proof. The proof follows the same ideas as the one dimensional case, using a Pois-
son approximation. The main ideas (see details) are similar to Remark 3.35. For the
complete proof, see [146, Theorem 3.2.2].

Remark 6.12. To establish vague convergence (i), it su�ces to show

kn∑
j=1
ℙ[Xnj ∈ A]→ ϕ(A) (6.25)

for sets of the form A = {tθ : t > r, θ ∈ B} where r > 0 and B is a Borel subset of the
unit sphere S = {y ∈ ℝd : ‖y‖ = 1}. Both (6.23) and (6.24) depend on the choice of
R > 0. If the Lévy measure has a density, then any R > 0 may be used. To establish
condition (ii), it is su�cient to show that

lim
ε→0

lim sup
n→∞

k�Qnk = lim
ε→0

lim inf
n→∞ k�Qnk = k�Qk (6.26)
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for all k ∈ ℝd, where
Qn =

kn∑
j=1

Cov(Xεnj).

As an illustration, weprove the vector central limit theorem in the case of finite second
moments.

Theorem 6.13 (Vector Central Limit Theorem). Suppose that (Wn) are iid and that μ =
E[Wn] and Q = E[(Wn − μ)(Wn − μ)�] exist. Then

n−1/2
n∑
j=1
(Wj − μ)⇒ Y ≃ N(0, Q). (6.27)

Proof. The proof is quite similar to Theorem 3.36, extending to vector notation. Define
the triangular array rowelements Xnj = n−1/2Wj for j = 1, . . . , n. Then condition (6.22)
holds (see details), and so it su�ces to check conditions (i) and (ii) in Theorem 6.11.
For condition (i) we have for each ε > 0 that

kn∑
j=1
ℙ[‖Xnj‖ > ε] = nℙ[n−1/2‖Wj‖ > ε]

= nℙ[‖Wj‖ > n1/2ε]

≤ nE[( ‖Wj‖
n1/2ε
)2 I(‖Wj‖ > n1/2ε)]

= ε−2E [‖Wj‖2I(‖Wj‖ > n1/2ε)]→ 0

as n →∞, since E[‖Wn‖2] exists (see details). Then (i) holds with ϕ = 0.
As for condition (ii), use the general fact that Cov(X) = E[XX�] − E[X]E[X]� (see

details) to write

kn∑
j=1

Cov[Xεnj] = nE [(Xεnj) (Xεnj)�] − nE [Xεnj]E [Xεnj]�
= nE [(n−1/2Wj)(n−1/2Wj)�I(‖n−1/2Wj‖ ≤ ε)]
− nE [n−1/2Wj I(‖n−1/2Wj‖ ≤ ε)] E [n−1/2Wj I(‖n−1/2Wj‖ ≤ ε)]�
= E [WjW

�
j I(‖Wj‖ ≤ n1/2ε)]

− E [Wj I(‖Wj‖ ≤ n1/2ε)] E [Wj I(‖Wj‖ ≤ n1/2ε)]�
→ E [WjW

�
j ] − E [Wj] E [Wj]� = Cov(Wj) = Q
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as n →∞. Then Theorem 6.11 implies that Sn −an ⇒ Y ≃ [a, Q, 0] ≃ N(a, Q) for some
a ∈ ℝd. Since ϕ = 0, for any R > 0 we can take

an =
kn∑
j=1
E[XRnj] = nE [n−1/2Wj I(‖Wj‖ ≤ n1/2R)]
= n1/2 {μ − E [Wj I(‖Wj‖ > n1/2R)]}

where μ = E[Wj] and"""""n1/2E [Wj I(‖Wj‖ > n1/2R)]""""" ≤ n1/2E [‖Wj‖I(‖Wj‖ > n1/2R)]
≤ n1/2E [‖Wj‖( ‖Wj‖

n1/2R
) I(‖Wj‖ > n1/2R)]

= R−1E [‖Wj‖2I(‖Wj‖ > n1/2R)] → 0

since E[‖Wn‖2] exists. This shows that an − n1/2μ → 0, and then (6.27) follows.

Corollary 6.14. Suppose (Wn) are iid and μ = E[Wn] and Q = E[(Wn − μ)(Wn − μ)�]
exist. Then

n−1/2
[nt]∑
j=1
(Wj − μ)⇒ Zt ≃ N(0, tQ). (6.28)

for all t > 0.

Proof. The proof is essentially identical to Theorem 3.41. Theorem 6.13 shows that
(6.28)holds for t = 1, with Z1 = Y. Let μ̂n(k)be the characteristic functionof n−1/2(Wj−
μ), so that μ̂n(k)n → μ̂(k) = E[eik⋅Y] for all k ∈ ℝd. Then we also have

μ̂n(k)[nt] = (μ̂n(k)n)[nt]/n → μ̂(k)t
for any t > 0, which shows that (6.28) holds for any t > 0.

Details

If X is any random vector, then the distribution of X is tight, meaning that

ℙ[‖X‖ > r] → 0 as r →∞. (6.29)

Equation (6.29) follows by a simple application of the dominated convergence theo-
rem. It follows that

ℙ[‖Xnj‖ > ε] = ℙ[‖Wj‖ > n1/2ε]→ 0

as n →∞, so that condition (6.22) holds.
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If X is a random vector with μ = E[X] then
Q = Cov(X) = E [(X − μ)(X − μ)�]

= E [XX� − μX� − Xμ� + μμ�]
= E [XX�] − μE [X]� − E [X] μ� + μμ�
= E [XX�] − μμ� − μμ� + μμ� = E [XX�] − μμ�

which we used in the proof of Theorem 6.13.
Let μi denote the ith coordinate of the mean vector μ = E[X] and let Qij = E[(Xi −

μi)(Xj − μj)�] denote the ij entry of the covariance matrix Q = Cov(X). The proof of
Theorem 6.13 also used the fact that, in this case,

E [‖X‖2] = E [X21 + ⋅ ⋅ ⋅ + X2d] = d∑
i=1
(Qii + μ2i )

exists, since the mean and covariance matrix exist.
Theproof of Theorem6.11uses a compoundPoissonapproximation Sn ≈ SN where

N is Poisson with E[N] = kn. We sketch the main ideas here. For the complete proof,
see [146, Theorem 3.2.2]. Let μ̂(k) = eψ(k) = E[eik⋅Y] and let μ̂n(k) = eψn(k) be the
characteristic function of the appropriately shifted compound Poisson random vector
SN ≃ [bn , Qn , ϕn]. Then μn ⇒ μ if and only ifψn(k)→ ψ(k) [146, Lemma 3.1.10].Write

f(y, k) = eik⋅y − 1 − ik ⋅ y
1 + ‖y‖2

and note that y Ü→ f(y, k) is a bounded continuous function such that

f(y, k) = − 12 (k ⋅ y)
2 + O((k ⋅ y)2) as y → 0

for any fixed k. If condition (i) holds, then it is not hard to show that∫
‖y‖>ε

f(y, k)ϕn (dy)→ ∫
‖y‖>ε

f(y, k)ϕ(dy)

whenever ϕ{‖y‖ = ε} = 0, which must be true for almost every ε > 0. Then

lim
ε→0

lim
n→∞ ∫
‖y‖>ε

f(y, k)ϕn (dy) = lim
ε→0
∫
‖y‖>ε

f(y, k)ϕ(dy) = ∫ f(y, k)ϕ(dy)
since ∫ ‖y‖2I(0 < ‖y‖ ≤ ε)ϕ(dy) exists for a Lévy measure. Now observe that

lim
ε→0

lim
n→∞
[[[− 12 k�Qnk + ∫0<‖y‖≤ε

f(y, k)ϕn(dy)]]]
= lim
ε→0

lim
n→∞
[[[− 12 k�Qnk − 1

2 ∫
0<‖y‖≤ε

k�y y�k ϕn(dy)]]] = − 12 k�Qk
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whenever

lim
ε→0

lim
n→∞
[[[Qn + ∫0<‖y‖≤ε

yy�ϕn(dy)]]] = Q. (6.30)

Then it can be shown that SN − an ⇒ Y for suitable an ∈ ℝd if this condition holds.
Note that ∫

0<‖y‖≤ε

yy�ϕn(dy) = knE[XnjX�njI(‖Xnj‖ ≤ ε)]

is the un-centered covariance matrix of the truncated row element. This leads to con-
dition (ii). Finally, argue that convergence of the random sum implies convergence
without the Poisson randomization [146, Theorem 3.2.12].

As in the one variable case, some alternative forms of the Lévy representation
(6.21) are also useful.

Theorem 6.15. Suppose Y ≃ μ is infinitely divisible with characteristic function μ̂(k) =
eψ(k) and (6.21) holds. Then we can also write μ̂(k) = eψ0(k) where

ψ0(k) = ik ⋅ a0 − 1
2 k
�Qk + ∫ (eik⋅y − 1 − ik ⋅ yI(‖y‖ ≤ R)) ϕ(dy) (6.31)

for any R > 0, for some unique a0 depending on R and a. Furthermore:
(a) If ∫

0<|y|≤R

‖y‖ϕ(dy) <∞ (6.32)

then we can also write μ̂(k) = eψ1(k) where

ψ1(k) = ik ⋅ a1 − 1
2 k
�Qk + ∫ (eik⋅y − 1)ϕ(dy) (6.33)

for some unique a1 depending on a0; and

(b) If ∫
|y|>R

‖y‖ϕ(dy) <∞ (6.34)

then we can also write μ̂(k) = eψ2(k) where

ψ2(k) = ik ⋅ a2 − 1
2 k
�Qk + ∫(eik⋅y − 1 − ik ⋅ y)ϕ(dy) (6.35)

for some unique a2 depending on a0.

Proof. The proof is similar to Theorem 3.8. The integral

δ0 = ∫( y

1 + ‖y‖2 − yI(‖y‖ ≤ R))ϕ(dy)
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exists, since the integrand is bounded and O(‖y‖3) as y → 0. If we take a0 = a − δ0,
then ψ(k) = ψ0(k). If (6.32) holds, then ψ0(k) = ψ1(k), where

a1 = a0 − ∫
0<‖y‖≤R

yϕ(dy).

If (6.34) holds, then ψ0(k) = ψ2(k), where

a2 = a0 + ∫
‖y‖>R

yϕ(dy).

Uniqueness follows from Theorem 6.8.

Remark 6.16. It can be shown by di�erentiating the characteristic function that
E[Y] = a2 for any infinitely divisible law that satisfies condition (6.34) in Theorem
6.15, see [146, Remark 3.1.15] for details.

6.4 Stable random vectors

Stable random vectors are the weak limits of random walks with power law jumps.
Each jump is of the form X = WΘ, where ℙ[W > r] = Cr−α for some C > 0 and
some 0 < α < 2, and Θ is a random unit vector. The distribution of the stable limit is
determined, up to centering, by C, α, and the distribution of Θ.

Theorem 6.17. Suppose Xn = WnΘn are iid random vectors in ℝd with ℙ[Wn > r] =
Cr−α iid Pareto for some 0 < α < 2, and Θn are iid random unit vectors with probability

measure M(dθ), independent of (Wn). Then

n−1/α(X1 + ⋅ ⋅ ⋅ + Xn) − an ⇒ Y (6.36)

for some an ∈ ℝd, where Y is infinitely divisible with Lévy representation [a, 0, ϕ] and

ϕ{tθ : t > r, θ ∈ B} = Cr−αM(B) (6.37)

for any r > 0 and any Borel subset B of the unit sphere. If 0 < α < 1, we can choose
an = 0, and then the limit Y is centered stable with characteristic function

E[eik⋅Y] = exp[[[−CΓ(1 − α) ∫‖θ‖=1(−ik ⋅ θ)αM(dθ)]]] . (6.38)

If 1 < α < 2, we can choose an = n1−1/αE[Xn], and then the limit Y is centered stable

with mean zero and characteristic function

E[eik⋅Y] = exp[[[C Γ(2 − α)α − 1 ∫
‖θ‖=1

(−ik ⋅ θ)αM(dθ)]]] . (6.39)
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Proof. Consider a triangular array Xnj = n−1/αXj for 1 ≤ j ≤ n = kn. Condition (6.22)
holds (see details), and so we only need to check conditions (i) and (ii) from Theorem
6.11, see also Remark 6.12. For condition (i) it su�ces to prove that (6.25) holds for
A = {tθ : t > r, θ ∈ B}, where B is a Borel subset of the unit sphere. For n su�ciently
large we have

kn∑
j=1
ℙ[Xnj ∈ A] = nℙ[n−1/αXj ∈ A]

= nℙ[n−1/αWjΘj ∈ A]
= nℙ[n−1/αWj > r, Θj ∈ B]
= nℙ[Wj > n1/α r]ℙ[Θj ∈ B]
= nC(n1/α r)−αM(B) = Cr−αM(B)

which shows that (i) holds with the Lévy measure (6.37).
To prove condition (ii), write
k�Qnk = nk� Cov(Xεnj)k = nVar(k ⋅ Xεnj)

≤ nE [(k ⋅ Xεnj)2]
= nE [(n−1/αWj)2I(|Wj | ≤ n1/αε)(Θj ⋅ k)2]
= nE [(n−1/αWj)2I(|Wj | ≤ n1/αε)]E [(Θj ⋅ k)2]
≤ n1−2/α E [W2

j I(|Wj | ≤ n1/αε)] ‖k‖2
= (ε2−α Cα

2 − α − n
1−2/α α

2 − α C
2/α) ‖k‖2 (6.40)

by (3.45) and the fact that (k ⋅ θ)2 ≤ ‖k‖2 for any unit vector ‖θ‖ = 1. It follows that

lim
ε→0

lim sup
n→∞

k�Qnk ≤ lim
ε→0

lim
n→∞(ε2−α Cα

2 − α − n
1−2/α α

2 − α C
2/α) ‖k‖2

= lim
ε→0

ε2−α
Cα

2 − α ‖k‖
2 = 0

since 0 < α < 2, so that 1 − 2/α < 0 and 2 − α > 0. Then Theorem 6.11 implies
that Sn − an ⇒ Y0 holds for some sequence (an), where Sn = n−1/α(X1 + ⋅ ⋅ ⋅ + Xn),
Y0 ≃ [a, 0, ϕ], and (6.37) holds.

Suppose 0 < α < 1. It follows from (6.37) that the Lévy measure

ϕ(dy) = αCr−α−1drM(dθ) (6.41)

in polar coordinates y = rθ with r > 0 and ‖θ‖ = 1 (see details), so we can choose (an)
according to (6.23) for any R > 0. Then E[eik⋅Y0] = eψ0(k) where

ψ0(k) = ∫
‖θ‖=1

∞∫
0

(eik⋅rθ − 1 − ik ⋅ rθI(‖rθ‖ ≤ R)) αCr−α−1drM(dθ)
= ∫
‖θ‖=1

ψ(k, θ)M(dθ) (6.42)
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using (3.46), where

ψ(k, θ) =
∞∫
0

(ei(k⋅θ)r − 1 − i(k ⋅ θ)rI(r ≤ R)) αCr−α−1dr
= −CΓ(1 − α)(−ik ⋅ θ)α − (ik ⋅ θ)a (6.43)

and a is given by (3.47). It follows that

ψ0(k) = −CΓ(1 − α) ∫
‖θ‖=1

(−ik ⋅ θ)αM(dθ) − ik ⋅ b

where

b = a ∫
‖θ‖=1

θM(dθ) = Cα

1 − α R
1−α E[Θj].

Then Y = Y0+b is a centered stable random vector with characteristic function (6.38).
Use (6.23) along with (3.48) to write

an =
kn∑
j=1
E [XRnj] = nE [n−1/αWjI(|Wj | ≤ n1/αR)]E[Θj]

= [ Cα
1 − α R

1−α − n1−1/α α

1 − α C
1/α]E[Θj]→ Cα

1 − α R
1−α E[Θj] = b (6.44)

as n → ∞, since 1 − 1/α < 0 in this case. Then Sn − b = Sn − an + (an − b) ⇒ Y0, so
Sn = Sn − b + b ⇒ Y0 + b = Y. Hence we can take an = 0 in this case, and then the
limit has characteristic function (6.38).

Now suppose that 1 < α < 2. Theorem6.11 shows that, if we choose (an) according
to (6.23), then E[eik⋅Y0] = eψ0(k) where (6.42) holds with

ψ(k, θ) = C Γ(2 − α)
α − 1 (−ik ⋅ θ)

α + (ik ⋅ θ)a (6.45)

by (3.49), where a is given by (3.50). It follows that

ψ0(k) = C
Γ(2 − α)
α − 1 ∫

‖θ‖=1

(−ik ⋅ θ)αM(dθ) + ik ⋅ b

where

b = aE[Θj] = Cα

α − 1R
1−α E[Θj].

Then Y = Y0−b is a centered stable random vector with characteristic function (6.39).
Using (6.44) we have

an = [ Cα
1 − α R

1−α − n1−1/α α

1 − α C
1/α] E[Θj] = −b + n1−1/αμ (6.46)
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where

μ = E[Xj] = E[Wj] E[Θj] =
α

α − 1C
1/α E[Θj] (6.47)

by (3.52). Since Sn − an ⇒ Y0 and an + b = n1−1/αμ, it follows that Sn − n1−1/αμ =
Sn − an − b ⇒ Y0 − b = Y. Hence we can take an = n1−1/αE[Xj] in this case, and
then the limit has characteristic function (6.39). Then it follows from Remark 6.16 that
E[Y] = 0.
Proposition 6.18. The characteristic function of a general stable random vector Y with

Lévy measure (6.37) and index 0 < α < 2, α ̸= 1 can be written in the form

E[eik⋅Y] = exp[[[ik ⋅ μ − ∫‖θ‖=1 |θ ⋅ k|α (1 − i sgn(θ ⋅ k) tan (πα2 )) Λ(dθ)]]] (6.48)

with center μ and spectral measure

Λ(dθ) = C Γ(2 − α)
1 − α cos (πα

2
)M(dθ). (6.49)

In this case, we will write Y ≃ Sα(Λ, μ).

Proof. If 1 < α < 2, then (6.39) implies

E[eik⋅Y] = exp[[[A ∫‖θ‖=1(−ik ⋅ θ)αM(dθ)]]] (6.50)

with A = CΓ(2 − α)/(α − 1). If 0 < α < 1, then (6.38) implies that (6.50) holds with
A = −CΓ(1 − α) = CΓ(2 − α)/(α − 1). Now use (5.5) to write

E[eik⋅Y] = exp[[[A ∫‖θ‖=1 |k ⋅ θ|α cos(πα/2)[1 − i sgn(k ⋅ θ) tan(πα/2)]M(dθ)]]] (6.51)

so that Y + μ satisfies (6.48) and (6.49) holds.

Remark 6.19. The spectral measure Λ(dθ) in (6.49) is an arbitrary positive finite Borel
measure on the unit sphere, since both 1 − α and cos (πα/2) change sign at α = 1. In
one dimension, we have Λ{+1} = pσα and Λ{−1} = qσα where the skewness β = p − q
in the notation of Proposition 5.3. The spectral measure plays a role similar to the co-
variance matrix, i.e., it controls the dependence of the components of the stable ran-
dom vector Y = (Y1, . . . , Yd)�. If Λ(dθ) is a discrete measure that only assigns positive
weight to the coordinate axes, then it follows easily from (6.50) that Y1, . . . , Yd are
independent. In fact, Y1, . . . , Yd are independent if and only if Λ is concentrated on
the coordinate axes, see Meerschaert and Sche�er [147, Lemma 2.3].
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Remark 6.20. If α = 2, then (6.48) reduces to the characteristic function of a normal
random vector Y ≃ N(μ, Q) where the covariance matrix

Q = 2 ∫
‖θ‖=1

θθ�M(dθ). (6.52)

The characteristic function of a general stable random vector Y with Lévy measure
(6.37) and index α = 1 can be written in the form

E[eik⋅Y] = exp[[[ik ⋅ μ − ∫‖θ‖=1 |θ ⋅ k|(1 + i(2π) sgn(θ ⋅ k) ln |θ ⋅ k|)Λ(dθ)]]] (6.53)

with center μ and spectral measure

Λ(dθ) = C (π
2
)M(dθ). (6.54)

These formulas (6.48)and (6.53) describe the entire class of limit distributions for sums
of iid random vectors with scalar norming, see [146, Theorem 7.3.16].

Theorem 6.21. Suppose Xn = WnΘn are iid random vectors with ℙ[Wn > r] = Cr−α
for some 0 < α < 2, and Θn are iid with probability measure M(dθ) on the unit sphere,
independent ofWn.

(a) If 0 < α < 1, then

n−1/α
[nt]∑
j=1
Xj ⇒ Zt (6.55)

for all t > 0, where

E [eikZt] = exp[[[−tD ∫‖θ‖=1(−ik ⋅ θ)αM(dθ)]]] (6.56)

and D = CΓ(1 − α);
(b) If 1 < α < 2, then μ = E[Xn] exists and

n−1/α
[nt]∑
j=1
(Xj − μ)⇒ Zt (6.57)

for all t > 0, where

E [eikZt] = exp[[[tD ∫‖θ‖=1(−ik ⋅ θ)αM(dθ)]]] (6.58)

and D = CΓ(2 − α)/(α − 1).
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Proof. The proof is essentially identical to Theorem 3.41. For example, in the case 0 <
α < 1, Theorem 6.17 shows (6.55) and (6.56) hold for t = 1, with Z1 = Y. Let μ̂n(k) be
the characteristic function of n−1/αXj, so that μ̂n(k)n → μ̂(k) = E[eik⋅Y] for all k ∈ ℝd.
Then we also have

μ̂n(k)[nt] = (μ̂n(k)n)[nt]/n → μ̂(k)t
for any t > 0, which shows that (6.55) and (6.56) hold for any t > 0.

Details

Since Xj = WjΘj is tight for any fixed j, so that (6.29) holds with X = Xj, it follows that

ℙ[‖Xnj‖ > ε] = ℙ[‖Xj‖ > n1/αε]→ 0

as n →∞, so that condition (6.22) holds.
In (6.40) we used the fact that

Xεnj = n−1/αWjΘjI(‖n−1/αWjΘj‖ ≤ ε) = n−1/αWjI(|Wj | ≤ n1/αε)Θj

since ‖Θj‖ = 1. We also used the general fact that, if Q = Cov(X) = E[(X − μ)(X − μ)�]
with μ = E[X], then E[k ⋅ X] = k ⋅ μ and

k�Qk = E[k�(X − μ)(X − μ)�k] = E[(k ⋅ (X − μ))2] = Var[k ⋅ X]
for any fixed k ∈ ℝd.

To establish (6.41), write A = {tθ : t > r, θ ∈ B} and note that∫
tθ∈A

αCt−α−1dtM(dθ) =
∞∫
r

αCt−α−1dt ∫
θ∈B

M(dθ) = Cr−αM(B).

This is su�cient to prove (6.41) since sets of this form determine the measure ϕ.

6.5 Vector fractional di�usion equation

Theorem 6.21 shows that a vector random walk with power law jumps converges to a
vector stable Lévymotion Zt. Suppose 1 < α < 2. Then (6.58) shows that the pdf p(x, t)
of Zt has FT

p̂(k, t) = exp[[[tD ∫‖θ‖=1(ik ⋅ θ)αM(dθ)]]]
and then

d

dt
p̂(k, t) = ψ(−k)p̂(k, t) (6.59)
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where the Fourier symbol

ψ(−k) = D ∫
‖θ‖=1

(ik ⋅ θ)αM(dθ). (6.60)

Equation (6.59) represents the FT of the equation

∂

∂t
p(x, t) = Lp(x, t)

where the generator Lf(x) has FTψ(−k) ̂f (k). Wewould like to understand themeaning
of this generator in terms of fractional derivatives.

First we consider the FT (ik ⋅ θ)α ̂f (k). If α = 1, then (ik ⋅ θ) ̂f (k) = (ik) ̂f (k) ⋅ θ is the
FT of the directional derivative (use the chain rule)

Dθ f(x) = d
dt
f(x + tθ)!!!!t=0

= d
dt
f(x1 + tθ1 , . . . , xd + tθd)!!!!t=0

= [ ∂
∂x1

f(x + tθ)θ1 + ⋅ ⋅ ⋅ +
∂

∂xd
f(x + tθ)θd]

t=0
= ∇f(x) ⋅ θ (6.61)

defined for any unit vector θ ∈ ℝd. We will define the fractional directional derivative
Dαθ f(x) to be the function with FT (ik ⋅ θ)α ̂f (k). It is not hard to check (see details)
that Dαθ f(x) is the (positive Riemann-Liouville) fractional derivative of the function
t Ü→ f(x + tθ) evaluated at t = 0.

Take e1 = (1, 0, . . . , 0)�, e2 = (0, 1, 0, . . . , 0)�, and so forth, the standard coordi-
nate vectors. If θ = ej, then k ⋅ ej = kj and

Dαej f(x) =
∂α

∂(xj)α
f(x1, . . . , xd)

is the fractional partial derivative in this coordinate. Now define

∇αM f(x) = ∫
‖θ‖=1

Dαθ f(x)M(dθ). (6.62)

Then D∇αM f(x) has FT ψ(−k) ̂f (k), where the Fourier symbol ψ(−k) is given by (6.60),
see details at the end of this section. Inverting the FT in (6.59) shows that the density
p(x, t) of Zt solves the vector fractional di�usion equation

∂

∂t
p(x, t) = D∇αMp(x, t) (6.63)

for 1 < α < 2. Next we add a drift: For v ∈ ℝd the FT of vt + Zt is

p̂(k, t) = E [e−ik⋅(vt+Zt)] = exp(−ik ⋅ vt + Dt ∫
‖θ‖=1

(ik ⋅ θ)αM(dθ)) .
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Then

d

dt
p̂(k, t) =(−ik ⋅ v + D ∫

‖θ‖=1

(ik ⋅ θ)αM(dθ)) p̂(k, t). (6.64)

Inverting the FT in (6.64) shows that the density p(x, t) of vt + Zt solves the vector
fractional di�usion equation with drift

∂

∂t
p(x, t) = −v ⋅ ∇p(x, t) + D∇αMp(x, t) (6.65)

for 1 < α < 2. This equation was introduced in Meerschaert, Benson and Baeumer
[137]. It was originally applied to describe the movement of contaminant particles in
ground water in a heterogeneous aquifer by Schumer et al. [194]. It has also been ap-
plied by Cushman and Moroni [56] to model particle traces in a laboratory setting. If
0 < α < 1, then (6.65) governs vt + Zt with D < 0.

Example 6.22. Suppose that M{ej} = 1/d for j = 1, . . . , d where e1, . . . ed are the
standard coordinate vectors. Then∫

‖θ‖=1

(ik ⋅ θ)αM(dθ) =
d∑
j=1
(ik ⋅ ej)αd−1 = d−1

d∑
j=1
(ikj)α

since kj = k ⋅ ej. Then

∇αM f(x) = d−1
d∑
j=1

∂α

∂(xj)α
f(x)

and the vector fractional di�usion equation

∂

∂t
p(x, t) = D0

d∑
j=1

∂α

∂(xj)α
p(x, t) (6.66)

with D0 = D/d governs the scaling limit Zt of a randomwalk with Pareto jumps evenly
scattered over the positive coordinate axes. Here the components of Zt are iid α-stable
Lévy motions that are totally positively skewed (p = 1 and q = 0, so that the skewness
β = 1). Figure 6.4 shows a typical solution on ℝ2 in the case α = 1.3, obtained us-
ing a small modification of the R code from Figure 6.13: Set a1=1.3, a2=1.3, q1=0.0,
q2=0.0, and t=2.0. The mean of the pdf in Figure 6.4 is zero, but the mode is shifted
into the negative, to balance the heavy positive tail.
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x1

x
2

−1

0

1

−1 0 1

Fig. 6.4: Level sets of the solution p(x, t) to the fractional di�usion equation (6.66) in dimension
d = 2 at time t = 2 with α = 1.3 and D0 = 0.5.

Example 6.23. Suppose thatM(dθ) = M(−dθ) (origin symmetric) for all ‖θ‖ = 1. Then
it follows using (5.6) with p = q = 1/2 that∫

‖θ‖=1

(ik ⋅ θ)αM(dθ) = ∫
‖θ‖=1

(ik ⋅ θ)αM(−dθ)

= ∫
‖θ‖=1

(−ik ⋅ θ)αM(dθ)

= ∫
‖θ‖=1

[12 (ik ⋅ θ)
α + 1

2 (−ik ⋅ θ)
α]M(dθ)

= cos(πα/2) ∫
‖θ‖=1

|k ⋅ θ|αM(dθ).

For example, ifM{ej} = M{−ej} = 1/(2d) for for j = 1, . . . , d then∫
‖θ‖=1

(ik ⋅ θ)αM(dθ) = d−1
d∑
j=1
[12 (ikj)α + 1

2 (−ikj)
α] = d−1 cos(πα/2) d∑

j=1
|kj|α

and (6.63) reduces to

∂

∂t
p(x, t) = D1

d∑
j=1
[ ∂α

∂(xj)α
p(x, t) + ∂α

∂(−xj)α
p(x, t)] (6.67)
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where D1 = D/(2d). Some authors define the fractional Laplacian in one dimension,
df(x)/d|x|α, as the inverse FT of−|k|α ̂f (k). This is also called theRiesz fractional deriva-
tive. Then we can rewrite (6.67) in the form

∂

∂t
p(x, t) = D0

d∑
j=1

∂α

∂|xj|α
p(x, t) (6.68)

where D0 = −D cos(πα/2)/d. Equation (6.67) governs the scaling limit Zt of a random
walk with Pareto jumps evenly scattered over the positive and negative coordinate
axes. The components of Zt are iid symmetric α-stable Lévymotions. A typical solution
was graphed in Figure 6.3.

Example 6.24. Suppose that M(dθ) is uniform over the unit sphere ‖θ‖ = 1. Write
k = ρω in polar coordinates with ρ > 0 and ‖ω‖ = 1. Then∫

‖θ‖=1

(ik ⋅ θ)αM(dθ) = cos(πα/2) ∫
‖θ‖=1

|k ⋅ θ|αM(dθ)

= cos(πα/2)ρα ∫
‖θ‖=1

|ω ⋅ θ|αM(dθ)

= Bρα = B‖k‖α

where

B = cos(πα/2) ∫
‖θ‖=1

|ω ⋅ θ|αM(dθ)

= cos(πα/2) ∫
‖θ‖=1

|θ1|αM(dθ)

by symmetry, since the integral in the first line does not depend on choice ofω, so that
we can set ω = e1. Note that B is a constant that only depends on α and the dimension
d, with B > 0 for 0 < α < 1 and B < 0 for 1 < α < 2. Now (6.59) becomes

d

dt
p̂(k, t) = DB‖k‖α p̂(k, t).

If 1 < α < 2 then this inverts to

∂

∂t
p(x, t) = D3∆α/2p(x, t),

a version of (6.19) with c = D3 = −BD > 0, involving the fractional Laplacian of order
β = α/2. The case 0 < α < 1 leads to the same di�erential equation, with D3 = BD >
0. This isotropic vector fractional di�usion equation governs the scaling limit Zt of a
random walk with power law jumps, whose angle is evenly scattered over the entire
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unit sphere. The components of Zt are symmetric α-stable Lévy motions, but they are
not independent. This is clear because the FT

E [e−ik⋅Zt] = e−tD3‖k‖α ̸=
d∏
j=1
e−tD3|kj |α

and the quantity on the right-hand side is the product of the FT of the components.

It is instructive to contrast the normal case α = 2 with the stable case 1 < α < 2. If
α = 2 then

D ∫
‖θ‖=1

(ik ⋅ θ)αM(dθ) = −D ∫
‖θ‖=1

k�θ θ�kM(dθ) = −k�Qk

where the dispersion tensor Q = D ∫ θ θ�M(dθ). Then (6.63) reduces to the vector dif-
fusion equation

∂

∂t
p(x, t) = ∇ ⋅ Q∇p(x, t). (6.69)

This equation governs the scaling limit Zt of a random walk whose jumps have finite
secondmoments, see Corollary 6.14. The dispersion tensor Q controls particle spread-
ing, see Remark 6.1. This also reflects the jump distribution: The longest jumps tend
to be in the direction of the eigenvector corresponding to the largest eigenvalue of the
matrix Q. If Q = cI, then (6.63) reduces to the isotropic di�usion equation

∂

∂t
p(x, t) = c∆p(x, t) (6.70)

since ∇ ⋅ ∇ = ∆. Here Zt is an isotropic Brownian motion. If the jump distribution is
spherically symmetric, or if the jumps have iid symmetric components, or if the jumps
have iid positive components (corrected to mean zero), then we get the same limit
process, since all three types of jumps have the same covariance matrix. This stands
in direct contrast to the stable case, where these three types of random walks lead to
three di�erent limits.

Remark 6.25. Please note that∇αM is an extension of the common (abuse of) notation
∇2 = ∇ ⋅ ∇ = ∆, so that ∇αM f(x) is scalar-valued. The operator ∇αM is an asymmetric
version of the fractional Laplacian, not a fractional gradient vector.
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Details

Fix ‖θ‖ = 1 and define g(t) = f(x + tθ) for t ∈ ℝ. Then the positive Riemann-Liouville
fractional derivative of order 0 < α < 1 is given by the generator form

dαg(t)
dtα
= 1

Γ(1 − α)

∞∫
0

[g(t) − g(t − r)] αr−α−1dr

= 1

Γ(1 − α)

∞∫
0

[f(x + tθ) − f(x + (t − r)θ)] αr−α−1dr. (6.71)

A simple substitution y = x − a shows that f(x − a) has FT∫ e−ik⋅xf(x − a) dx = ∫ e−ik⋅(y+a)f(y) dy = e−ik⋅a ̂f (k).
Use this fact to show that the last expression in (6.71) for t = 0 has FT

1

Γ(1 − α)

∞∫
0

̂f (k) [1 − e−ik⋅rθ] αr−α−1dr = (ik ⋅ θ)α ̂f (k)
using (3.14):

I(α) =
∞∫
0

(eiky − 1) αy−α−1dy = −Γ(1 − α)(−ik)α .
The proof for 1 < α < 2 is similar.
A rigorous proof of the generator form (6.62) for the vector fractional derivative

∇αM f(x) relies on the theory of semigroups and generators. The following result is the
vector version of Theorem 3.17.

Theorem 6.26. Suppose that Zt is a Lévy process on ℝd, and that E[eik⋅Z1] = eψ(k)
where ψ(k) is given by (6.21). Then Tt f(x) = E[f(x − Zt)] defines a C0 semigroup on

C0(ℝd) with generator

Lf(x) = −a ⋅ ∇f(x) + 1
2∇ ⋅ Q∇f(x) + ∫(f(x − y) − f(x) + y ⋅ ∇f(x)1 + ‖y‖2 )ϕ(dy). (6.72)

If f and all its partial derivatives up to order two are elements of C0(ℝd), then f ∈
Dom(L). If f and all its partial derivatives up to order two are also elements of L1(ℝd),
then ψ(−k) ̂f (k) is the FT of Lf(x).

Proof. The proof is essentially identical to the one variable case presented in Theorem
3.17, see Sato [187, Theorem 31.5] and Hille and Phillips [90, Theorem 23.14.2].

As in the one variable case, there are some alternative forms of the generator. The next
result extends Theorem 3.23.
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Theorem 6.27. Suppose that Zt is a Lévy process on ℝd, and that E[eik⋅Z1] = eψ(k)
where ψ(k) is given by (6.21). Then we can also write the generator (6.72) in the form

Lf(x) = −a0 ⋅ ∇f(x) + 1
2∇ ⋅ Q∇f(x)

+ ∫ (f(x − y) − f(x) + y ⋅ ∇f(x)I(‖y‖ ≤ R))ϕ(dy) (6.73)

for any R > 0, for some unique a0 depending on R and a. Furthermore:

(a) If (6.32) holds, then we can also write

Lf(x) = −a1 ⋅ ∇f(x) + 1
2∇ ⋅ Q∇f(x) + ∫ (f(x − y) − f(x))ϕ(dy) (6.74)

for some unique a1 depending on a0; and

(b) If (6.34) holds, then we can also write

Lf(x) = −a2 ⋅ ∇f(x) + 1
2∇ ⋅ Q∇f(x)

+ ∫ (f(x − y) − f(x) + y ⋅ ∇f(x))ϕ(dy) (6.75)

for some unique a2 depending on a0.

Proof. The proof is very similar to Theorem 6.15. In view of Theorem 6.26, we know
that the generator formula (6.72) holds. Since the integral

δ0 = ∫( y

1 + ‖y‖2 − yI(‖y‖ ≤ R)) ϕ(dy)
exists, we can take a0 = a − δ0, and then (6.73) follows. If (6.32) holds, the integral

a1 = a0 − ∫
0<|y|≤R

yϕ(dy)

exists, and then (6.74) follows from (6.73). If condition (6.34) holds, then

a2 = a0 + ∫
|y|>R

yϕ(dy)

exists, and (6.75) follows from (6.73).

Example 6.28. Suppose that Z1 is centered stable with index 0 < α < 1 and char-
acteristic function (6.38). Use (6.74) to write the generator the corresponding stable
semigroup in the form

Lf(x) = ∫ (f(x − y) − f(x)) ϕ(dy)
where ϕ(dy) is given by (6.41). Make a change of variable y = rθ to see that

Lf(x) = ∫
‖θ‖=1

∞∫
0

(f(x − rθ) − f(x)) αCr−α−1drM(dθ).

If we take C = 1/Γ(1 − α), then this shows that Lf(x) = −∇αM f(x).
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Example 6.29. Suppose that Z1 is centered stable with index 1 < α < 2 and charac-
teristic function (6.39). Use Theorem 6.27 (b) to write the generator in the form

Lf(x) = ∫ (f(x − y) − f(x) + y ⋅ ∇f(x)) ϕ(dy)
where ϕ(dy) is given by (6.41). A change of variable y = rθ leads to

Lf(x) = ∫
‖θ‖=1

∞∫
0

(f(x − rθ) − f(x) + rθ ⋅ ∇f(x)) αCr−α−1drM(dθ).

If we take C = (α − 1)/Γ(2 − α), then Lf(x) = ∇αM f(x).

6.6 Operator stable laws

Suppose that (Xn) are iid with some full random vector X on ℝd. Recall from Section
6.2 that X ∈ GDOA(Y) if

AnSn − bn ⇒ Y (6.76)

for some linear operators An and vectors bn. In this case, we say that Y is operator
stable. If An = an I for some an > 0, then Y is stable with index α ∈ (0, 2].

Example 6.30. If the components of X are independent Pareto randomvariableswith
di�erent indices αi ∈ (0, 1), Example 6.4 shows that (6.76) holds with bn = 0 and

An = diag(n−1/α1 , . . . , n−1/αd ) =(n−1/α1 0

. . .

0 n−1/αd

) .

and furthermore,
AnS[nt] ⇒ Z(t) (6.77)

where the limit Z(t) is an operator stable Lévy motion with independent components,
and Z(1) ≃ Y. The pdf p(x, t) of Z(t) has FT

p̂(k, t) = E [e−ik⋅Z(t)] = exp[[−t d∑
j=1
Dj(ikj)αj]] .

This pdf p(x, t) solves the vector fractional di�usion equation

∂

∂t
p(x, t) =

d∑
j=1
[[−Dj ∂αj∂x

αj
j

p(x, t)]] (6.78)

for some Di > 0. Since the pdf

p(x, t) =
d∏
j=1
pj(xj , t)
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is the product of stable densities with di�erent indices αi, the right tail xj Ü→ p(x, t)
falls o� at a di�erent rate ≈ x−αj−1j in each coordinate. Figure 6.5 shows level sets of a
typical solution p(x, t) in ℝ2 with α1 = 0.8 and α2 = 0.6, obtained using the R code
from Figure 6.14 at the end of this chapter.

x1

x
2

1

2

3

1 2 3

Fig. 6.5: Level sets of the solution p(x, t) to the fractional di�usion equation (6.78) at time t = 3 in
dimension d = 2, with α1 = 0.8, α2 = 0.6, and D1 = D2 = 0.5.

The scaling also varies with the coordinate. In fact, the operator stable Lévy mo-
tion Z(t) has operator scaling

Z(ct) ≃ cBZ(t) (6.79)

where the scaling matrix

B = diag(1/α1, . . . , 1/αd) =(1/α1 0

. . .

0 1/αd
)

and we define the matrix power

cB = diag(c1/α1 , . . . , c1/αd ) =(c1/α1 0

. . .

0 c1/αd

) .
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To check this, let

Z(t) =(Z1(t)...
Zd(t)
)

and recall that each component is self-similar with Zj(ct) ≃ c1/αjZj(t) for all c > 0 and
t > 0. Then

Z(ct) =(Z1(ct)...
Zd(ct)
) =(c1/α1Z1(t)...

c1/αdZd(t)
) =(c1/α1 0

. . .

0 c1/αd

)(Z1(t)...
Zd(t)
) = cBZ(t).

Remark 6.31. The random walk convergence (6.77) extends easily to finite dimen-
sional distributions. The argument is essentially identical to (4.28). The operator scal-
ing (6.79) also holds in the sense of finite dimensional distributions, i.e., for any 0 <
t1 < t2 < ⋅ ⋅ ⋅ < tn <∞ we have

(Z(ct1), . . . , Z(ctn)) ≃ (cBZ(t1), . . . , cBZ(tn)).

To see this, note that Z(ctk) − Z(ctk−1) ≃ Z(c(tk − tk−1)) ≃ cBZ(tk − tk−1) since Z(t) has
stationary increments. Since Z(t) has independent increments, it follows that(Z(ctk) − Z(ctk−1) : k = 1, . . . , n) ≃ (cB[Z(tk) − Z(tk−1)] : k = 1, . . . , n)
and then apply the Continuous Mapping Theorem 4.19. Then Z(t) is operator self-
similar with exponent B. For more on operator self-similar processes, see Embrechts
and Maejima [64].

Remark 6.32. The random walk convergence (6.77) also extends to convergence in
the Skorokhod space. Let D([0,∞),ℝd) denote the set of real-valued functions x :

[0,∞)→ ℝd which are continuous from the rightwith left-hand limits. Equipwith the
Skorokhod J1 topology, defined exactly as in Section 4.4. Thenwe also have AnS[nt] ⇒
Z(t) inD([0,∞),ℝd)with this topology, see [146, Theorem 4.1] for complete details.

To proceed further, we need to introduce some additional notation. Thematrix expo-
nential is defined by

exp(A) =
∞∑
n=0

An

n!
= I + A + A

2

2!
+ ⋅ ⋅ ⋅ (6.80)

for any d × d matrix A. Thematrix power is defined by

tA = exp(A log t) = I + A log t + (log t)
2

2!
A2 + ⋅ ⋅ ⋅ (6.81)

for any t > 0.
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Example 6.33. If

A = diag(a, b) = (a 0

0 b
)

then

An = diag(an , bn) = (an 0

0 bn
)

and

exp(A) = (1 0

0 1
) + (a 0

0 b
) + 1

2!
(a2 0

0 b2
) + ⋅ ⋅ ⋅

= (1 + a + a2/2! + ⋅ ⋅ ⋅ 0

0 1 + b + b2/2! + ⋅ ⋅ ⋅) = (ea 0

0 eb
) .

Then

tA = exp(A log t) = exp[(a log t 0

0 b log t
)] = (ea log t 0

0 eb log t
) = (ta 0

0 tb
) .

More generally, if A = diag(a1 , . . . , ad), then tA = diag(ta1 , . . . , tad ). Some typical
orbits t Ü→ tAx for di�erent unit vectors x are shown as solid lines in Figure 6.6. Each
orbit intersects the unit circle (dashed line) exactly once at the point t = 1. The R code
for plotting these orbits is shown in Figure 6.15 at the end of this chapter.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x
2

Fig. 6.6: Eight orbits t Ü→ tAx from Example 6.33 with a = 0.7 and b = 1.2 grow out from the origin

as t increases. Each orbit intersects the unit circle (dashed line) at t = 1 when x is a unit vector.
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Example 6.34. Suppose that

A = (a 1

0 a
) = (a 0

0 a
) + (0 1

0 0
) = D + N

where D = aI is a diagonalmatrix, and DN = ND. It is not hard to check, using the def-
inition of the matrix exponential, that DN = ND implies exp(N + D) = exp(N) exp(D).
The matrix N is a nilpotent matrix, i.e., Nk = 0 for any su�ciently large integer k > 0.
In fact we have

N2 = (0 1

0 0
)(0 1

0 0
) = (0 0

0 0
)

so that Nk = 0 for all k > 1. Then

tN = I + N log t + 0 + ⋅ ⋅ ⋅ = (1 0

0 1
) + (0 log t

0 0
) = (1 log t

0 1
)

and tD = diag(ta , ta) = ta I so that

tA = (ta 0

0 ta
)(1 log t

0 1
) = (ta ta log t

0 ta
) .

Some typical orbits tAx are shown as solid lines in Figure 6.7. Each orbit tAxwith x ̸= 0
passes through the unit circle (dashed line) exactly once. The R code for plotting these
orbits is shown in Figure 6.16 at the end of this chapter.

Example 6.35. Suppose that

A = (a −1
1 a
) = D + Q

where D = aI is a diagonal matrix,

Q = (0 −1
1 0
)

is skew-symmetric, and DQ = QD. Write

Q2 = (0 −1
1 0
)(0 −1

1 0
) = (−1 0

0 −1)
Q3 = (−1 0

0 −1)(0 −11 0
) = ( 0 1

−1 0
)

Q4 = ( 0 1

−1 0
)(0 −1

1 0
) = (1 0

0 1
)

Q5 = Q4Q = Q
Q6 = Q4Q2 = Q2
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Fig. 6.7: Six orbits t Ü→ tAx from Example 6.34 with a = 0.5 grow out from the origin as t increases.

Each orbit intersects the unit circle (dashed line) exactly once at the point t = 1 when x is a unit

vector.

and so forth, so that

exp(cQ) = (1 0

0 1
) + c(0 −1

1 0
) + c2

2!
(−1 0

0 −1) + c33! ( 0 1

−1 0
) + ⋅ ⋅ ⋅

= (1 − c2/2! + c4/4! + ⋅ ⋅ ⋅ −c + c3/3! − c5/5! + ⋅ ⋅ ⋅
c − c3/3! + c5/5! + ⋅ ⋅ ⋅ 1 − c2/2! + c4/4! + ⋅ ⋅ ⋅ )

= (cos c − sin c
sin c cos c

) = Rc
the rotation matrix that rotates each vector x = (r cos θ, r sin θ)� counterclockwise by
an angle c: Rcx = (r cos(c + θ), r sin(c + θ))� . Then tQ = exp(Q log t) = Rlog t and

tA = (ta 0

0 ta
) Rlog t = (ta cos(log t) −ta sin(log t)

ta sin(log t) ta cos(log t) ) .
The orbits tAx are counter-clockwise spirals, see Figure 6.8. The R code for plotting
these orbits is shown in Figure 6.17 at the end of this chapter.

Remark 6.36. The computations in Examples 6.33–6.35 can be extended to explicitly
compute the matrix power tA for any d × dmatrix A, using the Jordan decomposition,
see [146, Section 2.2]. The matrix exponential is also important in the theory of linear
di�erential equations. Thevector di�erential equation x� = Ax; x(0) = x0 hasaunique
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Fig. 6.8: Four orbits t Ü→ tAx from Example 6.35 with a = 0.5 grow out from the origin as t increases.

Each orbit intersects the unit circle (dashed line) exactly once at t = 1 when x is a unit vector.

solution x(t) = exp(At)x0, so the orbits t Ü→ exp(At)x0 are the solution curves for
this system of linear di�erential equations (e.g., see Hirsch and Smale [91]). The orbits
s Ü→ sAx0 trace out the same curves with a di�erent parametrization t = log s.

Theorem6.17 showed that α-stable randomvectors are randomwalk limitswith jumps
of the form X = WΘ, where W is a Pareto random variable with tail index α, and Θ
is a random unit vector. Operator stable random vectors are limits of random walks
with a more general jump distribution that allows the tail index α to vary with the
coordinate. Let B = diag(1/α1, . . . , 1/αd) for some αi ∈ (0, 2). That is, B is a diagonal
matrix whose eigenvalues λi = 1/αi > 1/2. If all αi ∈ (1, 2) then every eigenvalue
λi ∈ (1/2, 1).

Suppose ℙ[W > r] = Cr−1 is a Pareto random variable with index α = 1, and
Θ = (θ1 , . . . , θd)� is a randomunit vector with distributionM(dθ), independent ofW.
Write

X = WBΘ =(W1/α1 0

. . .

0 W1/αd

)(θ1...
θd

) (6.82)

and note that ℙ[W1/α > r] = ℙ[W > rα] = Cr−α so that the ith diagonal entry in the
matrixWB is a Pareto random variable with index αi. Note also that these entries are
not independent!
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Take (Xn) iid with X = WBΘ in (6.82), and let Sn = X1 + ⋅ ⋅ ⋅ + Xn. In Section 6.7, we
will prove that X ∈ GDOA(Y) and (6.76) holds for some bn ∈ ℝd, and in fact

n−BSn − bn ⇒ Y. (6.83)

This operator stable limit Y has Lévy representation [a, 0, ϕ], where a depends on
the choice of centering bn, and the Lévy measure ϕ reflects the operator scaling. Next
we will compute this Lévy measure, using condition (i) of Theorem 6.11. The proof of
condition (ii) is more complicated, and will be deferred to Section 6.7.

To establish the vague convergence condition (i) in Theorem 6.11, it su�ces to
show

kn∑
j=1
ℙ[Xnj ∈ U]→ ϕ(U) (6.84)

for sets of the form U = {tBθ : t > r, θ ∈ V} where r > 0 and V is a Borel subset of the
unit sphere. A substitution s = nt shows that

nBU = {nB tBθ : t > r, θ ∈ V}
= {(nt)Bθ : t > r, θ ∈ V}
= {sBθ : s/n > r, θ ∈ V}
= {sBθ : s > nr, θ ∈ V}.

Then for n su�ciently large we have

nℙ[n−BX ∈ U] = nℙ[X ∈ nBU]
= nℙ[WBΘ ∈ nBU]
= nℙ[W > nr, Θ ∈ V] = n C(nr)−1M(V) = Cr−1M(V).

This proves that condition (i) holds with

ϕ{tBθ : t > r, θ ∈ V} = Cr−1M(V). (6.85)

Example 6.37. If we take α1 = ⋅ ⋅ ⋅ = αd = α ∈ (0, 2) in (6.82), then B = (1/α)I and
WBΘ = W1/αΘ, whereW1/α is a Pareto random variable with index α. Then Theorem
6.17 applies to show that (6.83) holds, where the α-stable random vector Y in the limit
has Lévy measure (6.37). Substitute s = tα in (6.85) to see that

ϕ{tθ : t > r, θ ∈ V} = ϕ{(tα)Bθ : t > r, θ ∈ V}
= ϕ{sBθ : s1/α > r, θ ∈ V}
= ϕ{sBθ : s > rα , θ ∈ V} = C(rα)−1M(V) = Cr−αM(V).

Hence the operator stable Lévy measure (6.85) reduces to the stable Lévy measure
(6.37) when the exponent B is a scalar multiple of the identity.
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Example 6.38. Suppose that ℙ[Θ = ej] = 1/d for j = 1, . . . , d, where e1, . . . , ed are
the standard coordinate vectors. Since tBej = t1/αj ej for all t > 0, it follows from (6.85)
that ϕ is concentrated on the positive coordinate axes. A substitution s = tαj yields

ϕ{tej : t > r} = ϕ{(tαj )Bθ : t > r}
= ϕ{sBθ : s > rαj , θ ∈ V} = Cr−αjM(ej).

Then it follows from the Lévy representation (6.21) that E[eik⋅Y] = eψ(k) where

ψ(k) = ik ⋅ a +
d∑
j=1
∫(eik⋅rej − 1 − ik ⋅ rej

1 + r2 ) Cαjr−αj−1drM(ej)
=

d∑
j=1
[ikjaj + d−1 ∫(eikjr − 1 − ikjr

1 + r2 ) Cαjr−αj−1dr] = d∑
j=1
ψj(kj).

Note that the jth component of Y has characteristic function E[eikjYj ] = E[eik(ej⋅Y)].
Then Y has independent stable components Yj = ej ⋅ Y with index αj and Fourier
symbol ψj(−kj).

Remark 6.39. The formula (6.85) implies that ϕ has operator scaling:

cϕ(dy) = ϕ(c−Bdy) for all c > 0. (6.86)

To see this, substitute s = t/c to get

ϕ(c−BU) = ϕ{c−B tBθ : t > r, θ ∈ V}
= ϕ{(t/c)Bθ : t > r, θ ∈ V}
= ϕ{sBθ : s > r/c, θ ∈ V} = C(r/c)−1M(V) = c ϕ(U).

In fact, it is easy to check that the operator scaling relation (6.86) is equivalent to (6.85)
with CM(V) = ϕ{tBθ : t > 1, θ ∈ V}.

Remark 6.40. We have noted previously in (6.41) that the stable Lévy measure
ϕ(dy) = αCr−α−1drM(dθ) in polar coordinates y = rθ with r > 0 and ‖θ‖ = 1.
The operator stable Lévy measure can be written in a similar manner

ϕ(dy) = Cr−2drM(dθ) (6.87)

where y = rBθ for some r > 0 and ‖θ‖ = 1. These are called the Jurek coordinates, see
Jurek and Mason [100]. For these coordinates to make sense, the function r Ü→ ‖rBx‖
must be strictly increasing for all x ̸= 0. Then there is a unique unit vector θ such
that x = rBθ for some unique r > 0. This can be accomplished with a specific non-
Euclidean norm [146, Lemma 6.1.5]. For the usual Euclidean norm inℝ2, r Ü→ ‖rBx‖ is
always strictly increasing in the coordinate system that puts B in Jordan form, see [146,
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Fig. 6.9: Jurek coordinates x = rBθ in the case B = diag(0.7, 1.2). Dashed lines show the sets

r = 1/2, 1, 2.

Remark 6.1.6]. This was the case in Examples 6.33–6.35, since all those matrices are in
canonical Jordan form. The Jurek coordinates are illustrated in Figure 6.9. The R code
for plotting these orbits is shown in Figure 6.18 at the end of this chapter. Sinceϕ is the
jump intensity, the Jurek coordinates describe particle jumps in a curved coordinate
system with operator scaling. They reduce to the usual polar coordinate system if B =
I.

Remark 6.41. The operator scaling of the Lévy measure can also be visualized using
Figure 6.9. Suppose C = 1 in (6.85), so that the exterior of the unit circle S in Figure
6.9 has ϕ-measure equal to 1. The exterior of the larger dashed curve is the set {tBθ :
t > 2, θ ∈ S}, so (6.85) implies that it has ϕ-measure 1/2. The exterior of the smaller
dashed curve is the set {tBθ : t > 1/2, θ ∈ S}, so it has ϕ-measure 2.

Remark 6.42. The name operator stable comes from a paper of Sharpe [198]. Expo-
nents and symmetries of operator stable laws were characterized by Holmes, Hudson
andMason [92]. Hudson, Jurek and Veeh [93] showed that there is some exponent that
commutes with every symmetry.
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6.7 Operator regular variation

In this section, we show that operator stable laws with no normal component are the
weak limits of random walks with operator scaling power law jumps of the form X =
WBΘ. The following result extends Theorem 6.17 to operator stable limits.

Theorem 6.43. Suppose that B is a d × d matrix whose eigenvalues λj = aj + ibj all
have real part aj > 1/2. Suppose Xn = WB

nΘn where (Wn) are iid with ℙ[Wn > r] = Cr−1
for some C > 0, and Θn are iid random unit vectors with probability measure M(dθ),
independent of (Wn). Then

n−B(X1 + ⋅ ⋅ ⋅ + Xn) − an ⇒ Y (6.88)

for some an ∈ ℝd , where Y is infinitely divisible with Lévy representation [a, 0, ϕ] and
Lévy measure (6.85).

The proof of Theorem 6.43 requires some regular variation tools. We say that a random
vector X varies regularly if

nℙ[AnX ∈ dy]→ ϕ(dy) as n →∞ (6.89)

where An is invertible, ‖An‖ → 0, and ϕ is a σ-finite Borel measure on {y ̸= 0} that
is not concentrated on any lower dimensional subspace. The next result is the vector
version of Proposition 4.15.

Proposition 6.44. Suppose that X varies regularly, so that (6.89) holds. Then:
(a) The limit measure ϕ(dy) satisfies (6.85) for some B whose eigenvalues all have pos-

itive real part;

(b) The sequence (An) can be chosen to be RV(−B), that is,

A[λn]A
−1
n → λ−B as n →∞ (6.90)

for all λ > 0.

Proof. This is [146, Theorem 6.1.24].

In the situation of Proposition 6.44, we say that (the probability distribution of) X
varies regularly with exponent B, and we write X ∈ RV(B). The matrix norming in
(6.89) is critical, as it allows the tails of X to fall o� at a di�erent power law rate in
di�erent directions. For more information on regularly varying probability measures,
see [146, Chapter 6].

Proof of Theorem 6.43. Condition (i) of Theorem 6.11 was already established in Sec-
tion 6.6. The proof of condition (ii) uses a vector version of the Karamata Theorem 4.4.
Define the truncated moments and tail moments

Uζ (r, θ) = E [|X ⋅ θ|ζ I(|X ⋅ θ| ≤ r)]
Vη(r, θ) = E [|X ⋅ θ|η I(|X ⋅ θ| > r)] (6.91)
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and note that these are just the truncated and tail moments of the one dimensional
projection X ⋅ θ. Order the eigenvalues λj = aj + ibj so that a1 ≤ ⋅ ⋅ ⋅ ≤ ad. Then [146,
Theorem 6.3.4] shows that

V0(r, θ) = ℙ[|X ⋅ θ| > r]
is uniformly R-O varying: For any δ > 0 there exist 0 < m < M < ∞ and r0 > 0 such
that

mλ−δ−1/a1 ≤ V0(rλ, θ)
V0(r, θ)

≤ Mλδ−1/ad for all λ ≥ 1 (6.92)

for any r ≥ r0 and any ‖θ‖ = 1. Now define αj = 1/aj so that α1 ≥ ⋅ ⋅ ⋅ ≥ αd. Then we
also have

r−δ−α1 < ℙ[|X ⋅ θ| > r] < rδ−αd (6.93)

for all r > 0 su�ciently large. Since every ai > 1/2, we also have αi ∈ (0, 2).
Suppose Uζ and Vη exist. Then the vector Karamata theorem [146, Theorem 6.3.8]

implies that, if Vη is uniformly R-O varying, then for some C > 0 and r0 > 0 we have

rζ−ηVη(r, θ)
Uζ (r, θ)

≥ C for all r ≥ r0 and all ‖θ‖ = 1. (6.94)

In order to prove condition (ii), fix k ∈ ℝd and write k = ρϑ for some ρ > 0 and
‖ϑ‖ = 1. Then

nVar [k ⋅ (n−BX)ε)] ≤ nE [{k ⋅ (n−BX)ε)}2]
= nE [(k ⋅ n−BX)2I(‖n−BX‖ ≤ ε)]
≤ nE [(k ⋅ n−BX)2I(|n−BX ⋅ ϑ| ≤ ε)]
= nE [(k ⋅ n−BX)2I(|n−BX ⋅ k| ≤ ε1)]

where ε1 = ρε. It is not hard to check, using the definition of the matrix exponential,
that (tB)� = tB�

. Write n−B
�

k = rnθn where rn > 0 and ‖θn‖ = 1, and recall the general
fact that x ⋅ Ay = A�x ⋅ y. Then

nE [(k ⋅ n−BX)2I(|n−BX ⋅ k| ≤ ε1)] = nE [(n−B�

k ⋅ X)2I(|X ⋅ n−B�

k| ≤ ε1)]
= nE [(rnθn ⋅ X)2I(|rnθn ⋅ X| ≤ ε1)]
= nr2nE [|X ⋅ θn|2I(|X ⋅ θn| ≤ r−1n ε1)]
= nr2nU2(r−1n ε1, θn).

Now apply (6.94) to see that

nr2nU2(r−1n ε1, θn) ≤ nr2nC−1(r−1n ε1)2V0(r−1n ε1, θn)
= C−1ε21nV0(r−1n ε1, θn)

= C−1ε21 nV0(r−1n , θn)
V0(r−1n ε1 , θn)
V0(r−1n , θn)
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where

nV0(r−1n , θn) = nℙ[|X ⋅ θn| > r−1n ]
= nℙ[|X ⋅ rnθn | > 1]
= nℙ[|X ⋅ n−B�

k| > 1]
= nℙ[|n−BX ⋅ k| > 1]
= nℙ[n−BX ∈ U]→ ϕ(U)

with U = {y : |y ⋅ k| > 1}. Since every eigenvalue of B has positive real part, it follows
from [146, Theorem 2.2.4] that r−1n → ∞ as n → ∞. Then (6.92) implies that for any
δ > 0 we have

V0(r−1n ε1, θn)
V0(r−1n , θn)

= V0(r−1n ε1, θn)
V0(ε−11 (ε1r−1n ), θn)

≤ 1

m
(ε−11 )δ+α1

for all n su�ciently large, where α1 = 1/a1 ∈ (0, 2). Then we have

lim
ε→0

lim sup
n→∞

nVar [k ⋅ (n−BX)ε)] ≤ lim
ε→0

C−1ε21 ϕ(U)
1

m
ε
−δ−α1
1 = 0

which proves condition (ii). Then Theorem 6.11 implies that (6.88) holds for some an ∈
ℝd, where Y is infinitely divisiblewith Lévy representation [a, 0, ϕ] and Lévymeasure
(6.85).

Remark 6.45. If every eigenvalue of B has real part ai > 1, then every αi < 1, and we
can set an = 0 in (6.88). In this case, the limit has characteristic function E[eik⋅Y] =
eψ(k) with

ψ(k) = ∫(eik⋅y − 1)ϕ(dy) = ∫
‖θ‖=1

∞∫
0

(eik⋅rBθ − 1) Cr−2dr M(dθ). (6.95)

If every eigenvalue of B has real part ai ∈ (1/2, 1), then every αi ∈ (1, 2), and we can
set an = nE[n−BX] in (6.88) (if E[X] = 0, we can set an = 0). In this case, the limit has
characteristic function E[eik⋅Y] = eψ(k) with

ψ(k) = ∫(eik⋅y − 1 − ik ⋅ y)ϕ(dy)
= ∫
‖θ‖=1

∞∫
0

(eik⋅rBθ − 1 − ik ⋅ rBθ) Cr−2dr M(dθ)
and E[Y] = 0. The proof is similar to Theorem 6.17, using vector regular variation, see
[146, Theorem 8.2.7].

Remark 6.46. Suppose that (6.88) holds with an = 0. Then an argument very similar
to Theorem 6.21 shows that we also get random walk convergence

n−BS[nt] ⇒ Zt
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where Zt is an operator stable Lévy motion with Z1 ≃ Y. Suppose that every ai > 1.
Then

p̂(k, t) = E[e−ik⋅Zt] = etψ(−k)
where ψ(k) is given by (6.95). It follows that

d

dt
p̂(k, t) = ∫(eik⋅y − 1) p̂(k, t)ϕ(dy)

which inverts to

∂

∂t
p(x, t) = ∫ [p(x − y, t) − p(x, t)] ϕ(dy)
= ∫
‖θ‖=1

∞∫
0

[p(x − rBθ, t) − p(x, t)] Cr−2dr M(dθ). (6.96)

If we define the generalized fractional derivative

∇BM f(x) = ∫
‖θ‖=1

∞∫
0

[f(x) − f(x − rBθ)] r−2dr M(dθ) (6.97)

using (6.74), then we can write (6.96) in the form

∂

∂t
p(x, t) = −C∇BMp(x, t).

This generalized fractional di�usion equation governs the densities of operator stable
Lévy motions with no normal component. If B = (1/α)I, then (6.96) reduces to the
vector fractional di�usion equation (6.63) that governs a vector stable Lévy motion:
Substitute s = r1/α to get

∇BMp(x, t) = ∫
‖θ‖=1

∞∫
0

[p(x, t) − p(x − r1/αθ, t)] r−2dr M(dθ)
= ∫
‖θ‖=1

∞∫
0

[p(x, t) − p(x − sθ, t)] (sα)−2αsα−1ds M(dθ)

= ∫
‖θ‖=1

∞∫
0

[p(x, t) − p(x − sθ, t)] αs−α−1ds M(dθ)

= Γ(1 − α)∇αMp(x, t).

When all ai ∈ (1/2, 1), the generalized fractional derivative is defined by

∇BM f(x) = ∫
‖θ‖=1

∞∫
0

[f(x − rBθ) − f(x) + rBθ ⋅ ∇f(x)] r−2dr M(dθ) (6.98)
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using Theorem 6.27 (b), and the generalized fractional di�usion equation

∂

∂t
p(x, t) = C∇BMp(x, t)

governs the densities of an operator stable Lévy motion with this exponent B.

6.8 Generalized domains of attraction

Recall from Section 6.2 that X ∈ GDOA(Y) if

AnSn − bn ⇒ Y (6.99)

for some linear operatorsAn and vectors bn. Here Sn = X1+⋅ ⋅ ⋅+Xn and (Xn) are iidwith
some full random vector X on ℝd. In this case, we say that Y is operator stable. The
necessary and su�cient conditions for X ∈ GDOA(Y) are written in terms of regular
variation. Recall from Section 6.7 that X ∈ RV(B) if and only if

nℙ[AnX ∈ dy]→ ϕ(dy) as n →∞ (6.100)

where
A[λn]A

−1
n → λ−B for all λ > 0 (6.101)

for some linear operator B whose eigenvalues all have positive real part. Then we also
have

c ϕ(dy) = ϕ(c−Bdy) for all c > 0. (6.102)

The next result extends Theorem 4.5 to random vectors. It also shows that the limits
of power law randomwalks in Theorem 6.43 cover all possible limits in (6.99) when Y
has no normal component.

Theorem 6.47 (Generalized CLT for Random Vectors). If X ∈ GDOA(Y), then Y is in-

finitely divisible with Lévy representation [a, Q, ϕ].
(a) If Y is normal and E[X] = 0, then X ∈ GDOA(Y) and (6.99) holds for some bn ∈ ℝd

if and only if

nF(A�nkn)→ k�Qk for all kn → k ̸= 0 (6.103)

where F(k) = E[|X ⋅ k|2I(|X ⋅ k| ≤ 1)];
(b) If Y hasnonormal component, thenX ∈ GDOA(Y)and (6.99) holds for some bn ∈ ℝd

if and only if X ∈ RV(B) for some B whose eigenvalues all have real part ai > 1/2,
and (6.100) holds.

Proof. Define the triangular array row elements Xnj = AnXj for j = 1, . . . , n. Then
condition (6.22) holds (see details). If X ∈ RV(B) for some Bwhose eigenvalues all have
real part ai > 1/2, then condition (i) from Theorem 6.11 holds, since this condition
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is identical to (6.100). The proof of condition (ii) is exactly the same as Theorem 6.43,
using An in place of n−B. Conversely, if X ∈ GDOA(Y) and Y has no normal component,
it follows from condition (i) in Theorem 6.11 that X ∈ RV(B) and (6.102) holds. Since ϕ
is a Lévy measure, (6.20) holds, and a simple estimate (a special case of [146, Lemma
7.1.7]) shows that every eigenvalue of B has real part ai > 1/2.

The proof of part (a) is similar to Theorem 4.5, using the vector Karamata theorem.
Condition (6.103) is equivalent to condition (ii) from Theorem 6.11 when condition (i)
holds with ϕ = 0, and the vector Karamata theorem is used to show that condition (i)
holds with ϕ = 0, see [146, Theorem 8.1.3].

Remark 6.48. The convergence criterion (6.103) in Theorem 6.47 (a) can also be
stated in terms of regular variation. A real-valued (Borel measurable) function F(x) =
F(x1 , . . . , xd) on ℝd varies regularly at x = 0 if

nF(L−1n xn)→ φ(x) > 0 for all xn → x ̸= 0 (6.104)

where
L[λn]L

−1
n → λ−B for all λ > 0 (6.105)

for some linear operator Bwhose eigenvalues all have negative real part. Thenwe also
write F ∈ RV0(B). In this case, [146, Proposition 5.1.2] implies that

c φ(x) = φ(c−Bx) for all c > 0. (6.106)

If Y is normal andE[X] = 0, then [146, Theorem 8.1.3] shows that (6.99) holds for some
bn ∈ ℝd if and only if F ∈ RV0(−(1/2)I). In this case, (6.104) holds with L−1n = A�n and
φ(k) = k�Qk, so that B = −(1/2)I, see [146, Corollary 8.1.8]. If we assume only that
(6.104) holds for some sequence of invertible linear operators Ln such that ‖Ln‖→ 0,
then we can always choose Ln to be regularly varying, such that (6.105) holds, under
some mild technical conditions, see [146, Theorem 5.2.16].

Remark 6.49. When Y is normal, X ∈ GDOA(Y) implies that μ = E[X] exists. The
proof uses vector regular variation, see [146, Theorem 8.1.6]. In this case, we can ap-
ply Theorem 6.47 to the centered random vector X − E[X], and F(k) is the truncated
variance. Hence the assumption E[X] = 0 entails no loss of generality. In fact, X ∈
GDOA(Y) with Y normal implies that every one dimensional projection X ⋅ θ belongs
to the domain of attraction of a one dimensional normal law, see [146, Corollary 8.1.12].

Remark 6.50. If F ∈ RV0(−(1/2)I) and (6.103) holds, then [146, Theorem5.3.4] implies
that the truncated secondmoment U2(r, θ) = E [|X ⋅ θ|2I(|X ⋅ θ| ≤ r)] is slowly varying,
uniformly in ‖θ‖ = 1. That is, we have

U2(λr, θr)
U2(r, θr)

→ 1 as r →∞

for all λ > 0 and all θr → θ. Hahn and Klass [81] characterize the normal GDOA in
terms of uniform slow variation of the truncated second moment.
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If An = an I in (6.99) then we say that X belongs to the domain of attraction of Y and
we write X ∈ DOA(Y).

Remark 6.51. If X ∈ DOA(Y) and Y ≃ [a, 0, ϕ] then (6.101) reduces to

a[λn]a
−1
n → λ−1/α for all λ > 0 (6.107)

for some α ∈ (0, 2), since B = (1/α)I for some (1/α) > 1/2. Then an is RV(−1/α) as in
the case of random variables. Of course this must be true, for if (6.99) holds with An =
anI, then every one dimensional projection X ⋅ θ belongs to the domain of attraction
of the random variable Y ⋅ θ with the same sequence of norming constants.

The next result extends Theorem 4.5 to random vectors with the same power law tail
behavior in every coordinate. It also shows that the scalar-normed limits of power law
random walks in Theorem 6.17 cover all possible limits when X ∈ DOA(Y) and Y has
no normal component. This verifies that Proposition 6.18 describes all stable random
vectors with index 0 < α < 2, α ̸= 1.

Theorem 6.52. If X ∈ DOA(Y), then Y is either normal, or stable with some index 0 <
α < 2, and:
(a) If Y is normal, then μ = E[X] exists and X ∈ DOA(Y) if and only if

nF(ankn)→ k�Qk for all kn → k ̸= 0 (6.108)

where F(k) = E[|(X − μ) ⋅ k|2I(|(X − μ) ⋅ k| ≤ 1)];
(b) If Y is stable, then X ∈ DOA(Y) and (6.99) holds with An = anI for some bn ∈ ℝd if

and only if V(r) = ℙ[‖X‖ > r] is regularly varying with index −α, and

P[ X‖X‖ ∈ D!!!!‖X‖ > r] = P[‖X‖ > r, X
‖X‖ ∈ D]

V(r) → Λ(D)
Λ(S) (6.109)

for some σ-finite Borel measure Λ(dθ) on the unit sphere. Then Y ≃ Sα(Λ, μ) in the
notation of Proposition 6.18, for some μ ∈ ℝd depending on (an).

Proof. Part (a) follows using Remark 6.49 and applying Theorem 6.47 (a) to X − μ. Part
(b) follows from Theorem 6.47 (b) with B = (1/α)I. With this exponent, it follows from
(6.102) and Remark 6.39 that

ϕ{t1/αθ : t > r, θ ∈ V} = r−1Λ(V) (6.110)

for all r > 0 and all Borel subsets V of the unit sphere, where the spectral measure
Λ(V) = ϕ{rθ : r > 1, θ ∈ V}. Substitute s = t1/α to see that

ϕ{sθ : s > r, θ ∈ V} = r−αΛ(V). (6.111)

Then Proposition 6.18 shows that Y ≃ Sα(Λ, μ). A regular variation argument shows
that (6.109) is equivalent to (6.100) with An = anI and limit measure (6.111). The argu-
ment is similar to Proposition 4.15, see [146, Theorem 8.2.18].
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Remark 6.53. When X ∈ GDOA(Y) and Y is normal, we can always chooseAn in (6.99)
to be regularly varying with index −(1/2)I, as noted in Remark 6.48. Then we can also
writeAn = n−1/2Gn where (Gn) is slowly varying, so thatG[λn]G−1n → I as n →∞ for all
λ > 0. If we write Gnx = rnθn for rn > 0 and ‖θn‖ = 1, then rn is slowly varying, and θn
is very slowly varying, i.e., each coordinate of θen is slowly varying. Roughly speaking
Gnx grows like log n, and rotates like log log n. The same is true for X ∈ GDOA(Y) and Y
stable, except that we write An = n−1/αGn. For more details, see [146, Corollary 8.1.14].
Hahn and Klass [80, 81] provide examples to show that the GDOA of a spherically
symmetric normal or stable law is strictly larger than the DOA, i.e., there exist X such
that the convergence (6.99) requires operator norming.

Suppose X ∈ GDOA(Y) and take (Yn) iid with Y. The term operator stable comes from
the fact [146, Theorem 7.2.1] that for all n, for some bn ∈ ℝd, we have

Y1 + ⋅ ⋅ ⋅ + Yn ≃ nBY + bn (6.112)

where B is any exponent of Y. That is, (6.99) holds with Sn = Y1 + ⋅ ⋅ ⋅ + Yn, An = n−B,
and convergence in distribution is replaced by the stronger condition of equality in
distribution. If Y ≃ N(a, Q), we can take B = (1/2)I. If Y is stable, then (6.112) holds
with B = (1/α)I. If Y is operator stable with no normal component and (6.102) holds,
then (6.112) holds with the same exponent B [146, Corollary 8.2.11]. Exponents need
not be unique, because of symmetry. For example, it follows by a computation similar
to Example 6.35 that B = (1/2)I + Q is an exponent of Y ≃ N(a, cI) for any skew-
symmetric matrix Q. The exact relation between exponents and symmetries is given
in [146, Theorem 7.2.11].

Example 6.54. Ageneral operator stable law can have both a normal component and
a non-normal Poissonian component. For example, suppose X ∈ GDOA(Y) and X has
independent components, which are either Pareto with tail index 0 < α < 2, or have
a finite variance. Then it follows from Theorems 3.36 and 3.37 that (6.99) holds with
An = diag(n−1/α1 , . . . , n−1/αd ) where αi = 2 for the finite variance components, and
αi ∈ (0, 2) for the heavy tailed components. Make a simple change of coordinates so
that α1 ≥ . . . ≥ αd. Then we can write the norming operator in block-diagonal form

An = (A1n 0

0 A2n
)

with A2n = diag(n−1/αm+1 , . . . , n−1/αd ) and A1n = n−1/2Im, where Im is them×m identity
matrix. The limit Y = (Y1, Y2)� where Y1 is an m dimensional normal random vector
on a subspace ofℝd, Y2 is a d−m dimensional operator stable random vector with no
normal component on another subspace, and the intersection of these two subspaces
is the single point x = 0. The exponent of this operator stable random vector is

B = (B1 0

0 B2
)
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x1

x
2

−1

0

1

−1 0 1

Fig. 6.10: Level sets of the solution p(x, t) to the fractional di�usion equation (6.113) at time t = 1 in
dimension d = 2, with α1 = 2.0, α2 = 1.4, and D1 = D2 = 1.

whereB1 = (1/2)Im andB2 = diag(1/αm+1, . . . , 1/αd). Thedensity p(x, t)of the corre-
sponding operator stable Lévy process Zt = (Z1t , Z2t )� with Z1 ≃ Y solves the fractional
di�usion equation

∂

∂t
p(x, t) =

d∑
j=1
[[Dj ∂αj∂x

αj
j

p(x, t)]] (6.113)

where αi = 2 for 1 = 1, 2, . . . ,m, 0 < αi < 2 for i > m, Di < 0 for 0 < αi < 1, and
Di > 0 for 1 < αi ≤ 2 (here we assume αi ̸= 1). Figure 6.10 shows level sets of a typical
solution p(x, t) in ℝ2 with α1 = 2.0 and α2 = 1.4, obtained using the R code from
Figure 6.19.
The spectral decomposition takes Example 6.54 one step further. Suppose that Y is
operator stable with exponent B and (6.112) holds. Theorem 7.2.1 in [146] shows that
every eigenvalue λj = aj + ibj of the exponent B has real part ai ≥ 1/2. Make a change
of coordinates so that a1 ≤ ⋅ ⋅ ⋅ ≤ ad and write

B =(B1 . . .

Bp

)
where p is the number of distinct values of ai, every eigenvalue of the mj × mj matrix
Bj has real part aj, andm1 + ⋅ ⋅ ⋅ +mp = d. Projecting (6.112) onto mj-dimensional sub-
spaces shows that Y = (Y1, . . . , Yp)�, where each component Y j is anmj-dimensional
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operator stable random vector with exponent Bj, see [146, Theorem 7.2.9]. Since every
eigenvalue of Bj has the same real part aj, we say that the operator stable law Y j is
spectrally simple.

Furthermore, [146, Theorem 8.3.24] shows that we can take

An =(A1n . . .

A
p
n

)
in these coordinates, where every Ajn is RV(−Bj). Then X = (X1, . . . , Xp)� and we can
apply Theorem 6.47 (a) to the normal component. Theorem 6.47 (b) describes each
spectrally simple operator stable component, and (6.93) implies that the tails of X j

fall o� like r−αj where αj = a−1j ∈ (0, 2). The tails of a spectrally simple operator sta-
ble law need not be regularly varying, but they are R-O varying with the same upper
and lower tail index, see [146, Theorem 6.4.15] for complete details. It follows from the
Lévy representation (3.4) that the normal component is independent of the remaining
components. The dependence of the remaining non-normal spectrally simple opera-
tor stable components is coded through the Lévy measure.

Suppose that (6.99) holds with bn = 0. Then it follows as in the proof of Theorem
6.21 that we also get random walk convergence

AnS[nt] ⇒ Zt

where Zt is an operator stable Lévy motion with Z1 ≃ Y. If every ai > 1, then the
density p(x, t) of Zt solves the operator scaling fractional di�usion equation

∂

∂t
p(x, t) = C∇BMp(x, t) (6.114)

for some C < 0, where the generalized fractional derivative ∇BM is given by (6.97). If
every ai ∈ (1/2, 1), then p(x, t) solves (6.114) for some C > 0, with ∇BM given by (6.98).
Add a drift to see that the density p(x, t) of vt + Zt solves the generalized fractional

advection-dispersion equation (GADE)

∂

∂t
p(x, t) = −v ⋅ ∇p(x, t) + C∇BMp(x, t). (6.115)

Applications of operator stable laws and the GADE will be discussed in Section 7.12.
Details

Since Xj is tight for any fixed j, equation (6.29) holds with X = Xj. Write

ℙ[‖Xnj‖ > ε] = ℙ[‖AnXj‖ > ε] = ℙ[‖Xj‖ ∈ A−1n Bε]
where the set Bε = {x ∈ ℝd : ‖x‖ > ε}. If X ∈ GDOA(Y) and Y is full, then a simple
argument with characteristic functions (a special case of [146, Lemma 3.3.3]) shows
that ‖An‖ → 0 as n → ∞. Since ‖x‖ = ‖AnA−1n x‖ ≤ ‖An‖ ‖A−1n x‖, it follows that
‖A−1n x‖ > ε/‖An‖→∞ for all x ∈ Bε, and then it follows that condition (6.22) holds.
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library(lattice)

x = seq(-2,2,.01)

y = seq(-2,2,.01)

u <- dnorm(x, mean = 0.0, sd = 2.0)

v <- dnorm(x, mean = 0.0, sd = 2.0)

r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(x=x, y=y)

grid$z <- r

levelplot(z~x*y, grid, cuts = 8,

region=FALSE, contour=TRUE, labels=FALSE)

Fig. 6.11: R code to plot the isotropic two dimensional Gaussian density with independent compo-

nents in Figure 6.1.

library(lattice)

x = seq(-2,2,.01)

y = seq(-2,2,.01)

u <- dnorm(x, mean = 0.0, sd = 2.0)

v <- dnorm(x, mean = 0.0, sd = 1.0)

r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(x=x, y=y)

grid$z <- r

levelplot(z~x*y, grid, cuts = 8,

region=FALSE, contour=TRUE, labels=FALSE)

Fig. 6.12: R code to plot the anisotropic two dimensional Gaussian density with independent compo-

nents in Figure 6.2.
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library(lattice)

library(stabledist)

D1=0.5 ; D2=0.5

v1=0.0 ; v2=0.0

a1=1.2 ; a2=1.2

q1=0.5 ; q2=0.5

t=5.0

mu1=v1*t ; mu2=v2*t

pi=3.1415927

g1=(D1*t*abs(cos(pi*a1/2)))^(1/a1)

g2=(D2*t*abs(cos(pi*a2/2)))^(1/a2)

b1=1-2*q1 ; b2=1-2*q2

x = seq(-2,2,.01)

y = seq(-2,2,.01)

u = dstable(x, alpha=a1, beta=b1, gamma = g1, delta = mu1, pm=1)

v = dstable(y, alpha=a2, beta=b2, gamma = g2, delta = mu2, pm=1)

r = as.vector(outer(u, v, FUN = "*"))

grid = expand.grid(x=x, y=y)

grid$z = r

levelplot(z~x*y, grid, cuts = 8, region=FALSE,

contour=TRUE, labels=FALSE)

Fig. 6.13: R code to plot level curves of the solution p(x, y, t) to the two dimensional fractional di�u-
sion equation (6.16) shown in Figure 6.3.
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library(lattice)

library(stabledist)

D1=0.5 ; D2=0.5

v1=0.0 ; v2=0.0

a1=0.8 ; a2=0.6

q1=0.0 ; q2=0.0

t=3.0

#

mu1=v1*t ; mu2=v2*t

pi=3.1415927

g1=(D1*t*abs(cos(pi*a1/2)))^(1/a1)

g2=(D2*t*abs(cos(pi*a2/2)))^(1/a2)

b1=1-2*q1 ; b2=1-2*q2

x1 = seq(0,4,.01)

x2 = seq(0,4,.01)

u <- dstable(x1, alpha=a1, beta=b1, gamma=g1, delta=mu1, pm=1)

v <- dstable(x2, alpha=a2, beta=b2, gamma=g2, delta=mu2, pm=1)

r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(x1=x1, x2=x2)

grid$z <- r

levelplot(z~x1*x2, grid, cuts = 12, region=FALSE,

contour=TRUE, labels=FALSE)

Fig. 6.14: R code to plot level curves of the solution p(x, t) to the vector fractional di�usion equation
(6.78) shown in Figure 6.5.
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a1=0.7; a2=1.2

t=seq(0.001,10,.1)

x1=t^a1

x2=t^a2

plot(x1,x2,type="l",xlim=c(-3,3),ylim=c(-3,3))

lines(-x1,-x2,type="l")

lines(-x1,x2,type="l")

lines(x1,-x2,type="l")

lines(x1,0*x2,type="l")

lines(-x1,0*x2,type="l")

lines(0*x1,x2,type="l")

lines(0*x1,-x2,type="l")

theta=seq(0,6.29,.1)

x1=cos(theta)

x2=sin(theta)

lines(x1,x2,lty="dashed")

Fig. 6.15: R code to plot orbits t Ü→ tAx for Example 6.33.

a=0.5

t=seq(0.0001,10,.01)

x1=t^a*log(t)

x2=t^a

plot(x1,x2,type="l",xlim=c(-3,3),ylim=c(-3,3))

lines(-x1,-x2,type="l")

lines(3*x1,3*x2,type="l")

lines(-3*x1,-3*x2,type="l")

lines(x1,0*x2,type="l")

lines(-x1,0*x2,type="l")

t=seq(0,6.29,.1)

x1=cos(t)

x2=sin(t)

lines(x1,x2,lty="dashed")

Fig. 6.16: R code to plot orbits t Ü→ tAx for Example 6.34.
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a=0.5

t=seq(-8,4,.05)

x1=exp(a*t)*cos(t)

x2=exp(a*t)*sin(t)

plot(x1,x2,type="l",xlim=c(-3,3),ylim=c(-3,3))

lines(-x1,-x2,type="l")

x1=-exp(a*t)*sin(t)

x2=exp(a*t)*cos(t)

lines(x1,x2,type="l")

lines(-x1,-x2,type="l")

t=seq(0,6.29,.1)

x1=cos(t)

x2=sin(t)

lines(x1,x2,lty="dashed")

Fig. 6.17: R code to plot orbits t Ü→ tAx for Example 6.35.

a1=0.7; a2=1.2

t=seq(0.001,10,.1)

x1=t^a1

x2=t^a2

plot(x1,x2,type="l",xlim=c(-3,3),ylim=c(-3,3))

lines(-x1,-x2,type="l")

lines(-x1,x2,type="l")

lines(x1,-x2,type="l")

lines(x1,0*x2,type="l")

lines(-x1,0*x2,type="l")

lines(0*x1,x2,type="l")

lines(0*x1,-x2,type="l")

theta=seq(0,6.3,.1)

x1=cos(theta)

x2=sin(theta)

lines(x1,x2,lty="dashed")

lines(2^a1*x1,2^a2*x2,lty="dashed")

lines(.5^a1*x1,.5^a2*x2,lty="dashed")

Fig. 6.18: R code to plot Jurek coordinates for Remark 6.40.
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library(lattice)

library(stabledist)

D1=1.0 ; D2=1.0

v1=0.0 ; v2=0.0

a1=2.0 ; a2=1.4

q1=0.0 ; q2=0.0

t=1.0

#

mu1=v1*t ; mu2=v2*t

pi=3.1415927

g1=(D1*t*abs(cos(pi*a1/2)))^(1/a1)

g2=(D2*t*abs(cos(pi*a2/2)))^(1/a2)

b1=1-2*q1 ; b2=1-2*q2

x1 = seq(-2,2,.01)

x2 = seq(-2,2,.01)

u <- dstable(x1, alpha=a1, beta=b1, gamma=g1, delta=mu1, pm=1)

v <- dstable(x2, alpha=a2, beta=b2, gamma=g2, delta=mu2, pm=1)

r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(x1=x1, x2=x2)

grid$z <- r

levelplot(z~x1*x2, grid, cuts = 8, region=FALSE,

contour=TRUE, labels=FALSE)

Fig. 6.19: R code to plot level curves of the solution p(x, t) to the fractional di�usion equation (6.113)
shown in Figure 6.10.
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7 Applications and Extensions

In this final chapter, we discuss a few of the many applications and extensions being
developed today in the rapidly growing research area of fractional di�usion.

7.1 The fractional Poisson process

The classical Brownian motion and Poisson process are the most famous and useful
continuous time stochastic processes in both theory and applications. In this section,
we discuss the fractional Poisson process. It generalizes the classical Poisson process
to allow long waiting times between events.

In Example 3.2 we showed that a Poisson random variable Y with mean E[Y] =
λ > 0 is infinitely divisible, with characteristic function E[eikY] = eψ(k) where ψ(k) =
λ[eik − 1]. The classical Poisson process N(t) is a Lévy process with E[eikN(t)] = etψ(k),
so that N(t) has a Poisson distribution with mean λt. The family of linear operators
Tt f(x) = E[f(x−N(t))] forms a semigroup on the Banach space C0(ℝ). Given a discrete
random variable X with probability mass function (pmf) f(x), the semigroup Tt f(x)
gives the pdf of the discrete random variable X +N(t), a Poisson process with random
initial state. Let p(n, t) = ℙ[N(t) = n] denote the pmf of the discrete random variable
N(t). Then p(0, 0) = 1 and p(n, 0) = 0 for n = 1, 2, 3, . . ., and we can take FT to see
that p̂(k, t) = E[e−ikN(t)] = etψ(−k) for all t ≥ 0. Use the convolution property (2.1) of
the FT to see that

q(x, t) = Tt f(x) =
∞∑
n=0

f(x − n)p(n, t)

has FT q̂(k, t) = etψ(−k) ̂f (k) for all t ≥ 0. It follows that

∂

∂t
q̂(k, t) = ψ(−k)q̂(k, t) = λ(e−ik − 1)q̂(k, t) (7.1)

for all t ≥ 0. Invert (7.1) using the shift property (3.25) of the FT to see that

∂

∂t
q(x, t) = λ [q(x − 1, t) − q(x, t)] ; q(x, 0) = f(x). (7.2)

for all t ≥ 0.
Equation (7.2) is a Cauchyproblem on the Banachspace C0(ℝ): ∂q/∂t = Lq; q(0) =

f where the generator Lf(x) = λ[f(x − 1) − f(x)]. By comparing the Fourier symbol
ψ(k) = λ[eik−1]with theLévy representation (3.4), it is easy to see thatN(1) ≃ [a, b, ϕ]
with b = 0, ϕ{1} = λ is a single point mass, and

a = ∫ y

1 + y2 ϕ(dy) =
λ

2
.

DOI 10.1515/9783110258165-007
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Then the generator can also obtained from Theorem 3.17. If f(0) = 1, then q(x, t) =
Tt f(x) = p(x, t), and it is easy to check that the Poisson distribution

p(n, t) = ℙ[N(t) = n] = e−λt (λt)
n

n!
(7.3)

solves the Cauchy problem (7.2) with initial condition q(n, 0) = f(n).
The fractional Poisson process can be defined by Nβ(t) = N(Et) where Et is the

inverse
Et = inf{u > 0 : D(u) > t} (7.4)

of a standard stable subordinator D(u), so that

E[e−sD(u)] = e−usβ (7.5)

for all s > 0, for some 0 < β < 1. We assume that D(u) and hence Et are independent
of N(t), and then a simple conditioning argument shows that the pmf of the fractional
Poisson process is given by

m(n, t) = ℙ[Nβ(t) = n] =
∞∫
0

p(n, u)h(u, t) du (7.6)

where h(u, t) is the pdf of the inverse stable subordinator u = Et. Then, using (4.47)
and (4.48), we can write the pmf of the fractional Poisson process Nβ(t) = N(Et) as

m(n, t) =
∞∫
0

p(n, u) t
β
u−1−1/βgβ(tu−1/β) du =

∞∫
0

p(n, (t/r)β )gβ(r) dr (7.7)

where gβ(r) is the pdf of D(1), and p(n, t) is the Poisson pmf given by (7.3).
Take FT in (7.6) to see that

m̂(k, t) = E[e−ikNβ(t)] =
∞∫
0

p̂(k, u)h(u, t) du =
∞∫
0

euψ(−k)h(u, t) du (7.8)
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and then take LT using (4.42) to see that the FLT

m̄(k, s) =
∞∫
0

e−stm̂(k, t) dt

=
∞∫
0

e−st
∞∫
0

euψ(−k)h(u, t) du dt

=
∞∫
0

(∞∫
0

e−sth(u, t) dt) euψ(−k) du
=
∞∫
0

sβ−1e−us
β

euψ(−k) du

= sβ−1
∞∫
0

e−u[s
β−ψ(−k)]du = sβ−1

sβ − ψ(−k)
(7.9)

by Fubini, a special case of (4.43). Rewrite (7.9) in the form

sβm̄(k, s) − sβ−1 = ψ(−k)m̄(k, s) = λ(e−ik − 1)m̄(k, s)

and invert the LT to get
∂
β
t m̂(k, t) = λ(e−ik − 1)m̂(k, t)

where ∂
β
t is the Caputo fractional derivative. Here we use the fact that m̂(k, 0) = 1.

Then invert the FT, using the shift property (3.25) of the FT, to see that the pmf m(n, t)
of the fractional Poisson process solves the time-fractional equation

∂
β
tm(n, t) = λ [m(n − 1, t) − m(n, t)] . (7.10)

Equation (7.10) explains why we call Nβ(t) a fractional Poisson process: Its pmf solves
the time-fractional analogue (7.10) of the Cauchy problem (7.2) for the classical Poisson
process.

The form N(Et) of the fractional Poisson process is quite similar to the CTRW limit
A(Et) in Chapter 4. The only di�erence is that the outer process is now a Poisson pro-
cess, instead of a normal or stable Lévy process. In fact, the fractional Poisson process
is also a kind of CTRW limit. But in order to get the Poisson process as the limit of the
jump process, we have to use triangular arrays. This is necessary in view of Theorem
4.5, which states that ordinary random walk limits are either normal or stable. Con-
sider a triangular array {Xnj : j = 1, . . . , kn; n = 1, 2, 3, . . .} of CTRW jumps, where
Xnj is Poisson with mean λ/n. The CTRW row sums

Sn(kn) = Xn1 + ⋅ ⋅ ⋅ + Xnkn
are then Poisson with mean λkn/n. Taking kn = [nt], it follows that

Sn([nt]) ⇒ N(t) (7.11)
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as n → ∞ for any t ≥ 0 (see details). Argue as in Section 4.3 that (7.11) holds in the
sense of finite dimensional distributions, and then apply Theorem 3 in Bingham [38],
as in Section 4.4, to conclude that (7.11) holds inD[0,∞)with the Skorokhod J1 topol-
ogy.

Next assume iid waiting times Jn ≃ J with a Pareto distribution ℙ[J > t] = Bt−β
where 0 < β < 1 and B = 1/Γ(1 − β). Let Tn = J1 + ⋅ ⋅ ⋅ + Jn be the time of the nth CTRW
jump, and let R(t) = max{n ≥ 0 : Tn ≤ t} denote the number of jumps by time t ≥ 0. It
follows from (4.30) with c = n1/β that

n−1R(n1/β t)⇒ Et (7.12)

as n → ∞ in the Skorokhod space D[0,∞) with the J1 topology, where where Et is
the inverse (7.4) of the standard stable subordinator D(t) with index 0 < β < 1. Since
waiting times and jumps are independent, it follows that

(Sn([nt]), n−1R(n1/β t)) ⇒ (N(t), Et )

in the J1 topology. Since N(t) and D(t) are independent Lévy processes, they have al-
most surely no simultaneous jumps. Then it follows from the continuous mapping
theorem and Theorem 13.2.4 in Whitt [219], as in Section 4.4, that

Sn(R(n1/β t)) = Sn(n ⋅ n−1R(n1/β t)⇒ N(Et)

in the Skorokhod M1 topology. This shows that the fractional Poisson process is a
CTRW limit.

Actually, the fractional Poisson process is itself a CTRW. The Poisson process N(t)
is a CTRWwith iid exponential waiting timesℙ[Jn > t] = e−λt and deterministic jumps
Yn = 1, see for example Ross [179, Proposition 5.1]. The fractional Poisson process
Nβ(t) is a CTRW with the same deterministic jumps, and iid waiting times

ℙ[Wn > t] = Eβ(−λtβ) (7.13)

for some 0 < β < 1, using the Mittag-Le�er function (2.29). This definition of the frac-
tional Poisson process is due to Laskin [115]. It can be motivated by the fact that the
Mittag-Le�er function is a natural extension of the exponential, due to its power se-
ries definition. Mainardi and Gorenflo [129, Eq. (5.26)] show that the tail of the Mittag-
Le�er function satisfies

Eβ(−λtβ) ∼
t−β

λΓ(1 − β) as t →∞,

and it follows that the waiting times of the fractional Poisson process are heavy tailed.
To see that this CTRW is a fractional Poisson process, let

τn = sup{t > 0 : N(Et) < n} (7.14)
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denote the timewhen the fractional Poisson process enters the state n. Then it su�ces
to show that τn = W1 + ⋅ ⋅ ⋅ +Wn where the waiting timesWn between state transitions
are iid Mittag-Le�er distributed, as in (7.13). Note that {N(t) < n} = {Tn > t} for the
classical Poisson process. In other words, there have been less than n arrivals by time
t > 0 if and only if the time of the nth arrival is greater than t. Apply this to (7.14), using
the fact that Et is independent of the Poisson process N(t), to conclude that

τn = sup{t > 0 : Et < Tn}. (7.15)

The rest of the argument is delicate, involving sample paths properties of the process
t = D(u) and its inverse u = Et. We will give a heuristic argument here, see [141,
Theorem 2.1] for complete details: Since u = Et = Tn at t = τn, we have τn = t = D(u) =
D(Tn). Recall that the LT of the exponential distribution is

E(e−sJn) =
∞∫
0

e−stλe−λtdt = λ

λ + s

for any λ > 0 and s > 0. Then we can use (7.5) to write

E[e−sτ1] = E[e−sD(T1)] = E [E (e−sD(J1)!!!!J1)] = E [e−J1sβ] = λ

λ + sβ
(7.16)

for any λ > 0 and s > 0.
Nextwewill show that theMittag-Le�er randomvariableWn in (7.13) has the same

LT as D(T1). Recall from (2.31) that the function G(t) = Eβ(−λtβ) has LT

G̃(s) = sβ−1

sβ + λ
for any λ > 0 and any sβ > λ. Let fβ(t) = ∂t[1 − G(t)] be the Mittag-Le�er pdf of Wn .
Integrate by parts to see that

E(e−sWn ) =
∞∫
0

e−stfβ(t) dt

=
∞∫
0

se−st (1 − G(t)) dt

= s [1
s
− sβ−1

λ + sβ
] = λ

λ + sβ
(7.17)

for any λ > 0 and any sβ > λ. Then the uniqueness theorem for LT (moment generating
functions) implies thatW1 ≃ τ1. The general case n > 1 involves computing the joint
LT of τ1, τ2, . . . , τn, see [141, Theorem 2.1] for complete details.

Remark 7.1. Theheuristic formula τn = D(Tn) is not exactly true. Rather,wehave τn =
D(Tn−), which can be di�erent if the process D(u) has a jump at u = Tn. Then we will
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have D(u) > D(u−) since D(u) is a strictly increasing element of the Skorokhod space
D[0,∞), and hence is right-continuous with left-hand limits. However, we do have
ℙ[D(u−) = D(u)] = 1 since D(u) is a Lévy process, and therefore has no fixed points
of discontinuity. Since Tn is independent of D(u), it follows that D(Tn) ≃ D(Tn−) and
hence the LT of the pdf of τn = D(Tn−) is the same as that of D(Tn), and in particular,
(7.16) is the correct LT for τ1. See [141, Theorem 2.1] for more details.

Remark 7.2. The CTRW representation of the fractional Poisson process canbe useful
for simulations. One only needs to compute the jump times τn = W1 + ⋅ ⋅ ⋅ + Wn by
simulating iid Mittag-Le�er waiting times, e.g., using the MittagLeffleRpackage in
R. This gives the exact sample paths of the fractional Poisson process. It can also be
useful to consider a fractional compound Poisson process S(N(Et)) where Sn = X1 +
⋅ ⋅ ⋅ + Xn is the sum of iid random variables or vectors. This process jumps to the point
S(n) at time τn, and hence it can also be simulated exactly using the same approach.

Details

To show that (7.11) holds, note that the left-hand side is Poisson with mean λ[nt]/n,
and hence its characteristic function

E[eikSn([nt])] = eλψ(k)[nt]/n→ eλtψ(k) = E[eikN(t)],
since the limitN(t) is Poissonwithmean λt. Then it follows fromTheorem 1.3 that (7.11)
holds.

7.2 LePage series representation

As an application of the Poisson representation in Section 3.4, we now develop a very
interesting series representation for stable laws and their domains of attraction. Sup-
pose that (Wj) are iid Pareto withℙ[Wj > x] = Cx−α for some 0 < α < 1. Then Theorem
3.37 shows that

n−1/α
n∑
j=1
Wj ⇒ Y (7.18)

where the α-stable limit Y has characteristic function

E[eikY] = exp [−CΓ(1 − α)(−ik)α] . (7.19)

Suppose that (Uj) are iid uniform random variables on (0, 1) with ℙ[Uj ≤ x] = x for
0 ≤ x ≤ 1. Then we can take

Wj = (Uj/C)−1/α
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since

ℙ[(Uj/C)−1/α > x] = ℙ[U−1/αj > C−1/αx]
= ℙ[Uj < Cx−α] = Cx−α

for all x > C1/α, asnoted inExample 5.17. This is a special caseof the inverse cdfmethod
for simulating random variables: If F(x) = ℙ[X ≤ x] and U is uniform on (0, 1), then
F−1(U) ≃ X (e.g., see Press et al. [170, Chapter 7]).

SupposeNt is a Poisson processwith rate λ = 1. Take (En) iidwithℙ[En > t] = e−t,
the waiting times between jumps for this process, and let

Γn = E1 + ⋅ ⋅ ⋅ + En

be the time of the nth jump. Thenwe have the inverse process relation {Nt ≥ n} = {Γn ≤
t} as in Section 4.3. Now let

U(1) ≤ ⋅ ⋅ ⋅ ≤ U(n)
denote the order statistics of the sequence U1, . . . , Un. A standard result in extreme
value theory (e.g., see Resnick [175, p. 322] or Bickel and Doksum [32]) states that( Γ1

Γn+1
, . . . ,

Γn
Γn+1
) ≃ (U(1), . . . , U(n)) .

That is, the first n arrival times are uniformly distributed in the interval [0, Γn+1].
Now write

n−1/α
n∑
j=1
Wj = n−1/α

n∑
j=1
(Uj/C)−1/α

= n−1/α
n∑
j=1
(U(j)/C)−1/α

≃ C1/αn−1/α
n∑
j=1
(Γj/Γn+1)−1/α

= C1/α ( Γn+1
n
)1/α n∑

j=1
Γ
−1/α
j ⇒ Y

where Y is a stable random variable with characteristic function (7.19). The strong law
of large numbers implies that

Γn+1
n
= E1 + ⋅ ⋅ ⋅ + En+1

n + 1 ⋅ n + 1
n
→ 1 almost surely, as n →∞.

Then it follows using the Continuous Mapping Theorem 4.19 that

C1/α
n∑
j=1
Γ
−1/α
j ⇒ Y.



212 | 7 Applications and Extensions

In other words, the infinite series converges in distribution to a stable randomvariable
with characteristic function (7.19):

C1/α
∞∑
j=1
Γ
−1/α
j ≃ Sα(1, σ, 0) (7.20)

where σα = CΓ(1−α) cos(πα/2). In fact, the series converges almost surely, seeLePage,
Woodroofe, and Zinn [124].

Remark 7.3. The argument above can be extended to anyW ∈ DOA(Y)with Y stable.
Suppose an(W1 + ⋅ ⋅ ⋅ + Wn) ⇒ Y, where (Wn) are iid with W > 0, and let V0(x) =
ℙ[W > x]. Then nV0(a−1n x) → x−α for all x > 0, for some choice of an . A regular
variation argument (a special case of Lemma 1.2 in Meerschaert and Sche�er [145])
shows that anV−10 (n−1y)→ y−1/α . Roughly speaking, the argument equates

nV0(a−1n x) ≈ x−α

V0(a−1n x) ≈ n−1x−α

a−1n x ≈ V−10 (n−1x−α)
x ≈ anV−10 (n−1x−α)

and then substitutes y = x−α to get y−1/α ≈ anV
−1
0 (n−1y). The Skorokhod Theo-

rem (e.g., see Athreya and Lahiri [9, Theorem 9.4.1]) implies that (W1, ⋅ ⋅ ⋅ ,Wn) ≃
(V−10 (U1), . . . , V−10 (Un)), and then

an

n∑
j=1
Wj ≃

n∑
j=1
anV
−1
0 (Γj/Γn+1)→

∞∑
i=1
Γ
−1/α
i ≃ Y.

See LePage, Woodroofe, and Zinn [124] for complete details.

Remark 7.4. The series representation (7.20) can be extended to Lévy processes. Sup-
pose Zt is an α-stable Lévy process with index 0 < α < 1 and Lévy measure (3.10). For
Vj iid uniform on (0, T), we have

Zt ≃ (tC)1/α
∞∑
j=1
I(Vj ≤ t)Γ−1/αj (7.21)

for all0 < t < T. Note thatVj is the exact time of the jth largest jumpof the process Zt in
the interval 0 < t < T. This representation extends to certain infinitely divisible Lévy
processes Zt ≃ [0, 0, tϕ], with Γ−1/αj replaced by G−1(Γj), where G(r,∞) = ϕ(r,∞),
see Rosiński [177].

To get a series representation for two-sided stable laws, assume ℙ[Wj > x] = pCx−α
and ℙ[Wj < −x] = qCx−α for x > C1/α, for some 0 < α < 1 and C > 0, where C > 0,
p, q ≥ 0, and p + q = 1. We can construct this sequence of iid random variables by
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setting Wj = ΘjXj with iid random signs ℙ[Θj = +1] = p, ℙ[Θj = −1] = q, and
ℙ[Xj > x] = Cx−α iid Pareto independent of Θj. Now write

n−1/α
n∑
j=1
Wj = n−1/α

n∑
j=1
Θj(U(j)/C)−1/α

≃ C1/α ( Γn+1
n
)1/α n∑

j=1
ΘjΓ
−1/α
j ⇒ Y.

It follows using the strong law of large numbers that

C1/α
∞∑
j=1
ΘjΓ
−1/α
j ≃ Sα(β, σ, 0) (7.22)

with index β = p − q and σα = CΓ(1 − α) cos(πα/2).

Remark 7.5. The series representation (7.22) was extended to operator stable laws by
Hahn, Hudson, and Veeh [79]. There Γ−1/αj is replaced by Γ−Bj , and Θj are iid accord-
ing to the mixing measure M(dθ). The series representation for operator stable Lévy
processes was modified and applied to operator stable laws in Cohen, Meerschaert
and Rosiński [51] to provide a fast and accuratemethod for simulating operator stable
sample paths.

Remark 7.6. The series representation for α > 1 requires centering. In this case, Γ−1/αj

has a finite mean, and the centering is needed to make the sum

∞∑
j=1
(ΘjΓ−1/αj − E[Θj]E [Γ−1/αj ])

converge to a mean zero stable law, see LePage, Woodroofe, and Zinn [124]. If p = q,
then E[Θj] = 0, and no centering is required. LePage, Podgórski, and Ryznar [123]
proved almost sure convergence for stable series representations with centering. The
centering is more delicate when α = 1.

Example 7.7. Here we present a simple application of the LePage series representa-
tion to extreme value theory. Take Wj iid Pareto with index 0 < α < 1. Let Mn =
max(W1, . . . ,Wn) = W(n). Then Mn ≃ C1/α(Γ1/Γn+1)−1/α so that

n−1/αMn ≃ n−1/αC1/α(Γ1/Γn+1)−1/α

= C1/α ( Γn+1
n
)1/α Γ−1/α1

→ C1/αΓ−1/α1
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with probability one, by the strong law of large numbers. Then we have n−1/αMn ⇒
C1/αΓ−1/α1 . This extreme value limit has the Frechét distribution:

ℙ[C1/αΓ−1/α1 ≤ x] = ℙ[C1/αE−1/α1 ≤ x]
= ℙ[E−1/α1 ≤ C−1/αx]
= ℙ[E1 ≥ Cx−α] = exp(−Cx−α)

for x ≥ 0.

Example 7.8. The LePage series representation is also useful to compute the weak
limit for self-normalized sums of heavy tailed random variables. Take Wj = ΘjXj as
before: Xn iid Pareto with 0 < α < 1, and iid random signs. Then∑nj=1Wj√∑nj=1W2

j

≃
C1/α (Γn+1/n)1/α ∑nj=1 ΘjΓ−1/αj√C2/α (Γn+1/n)2/α ∑nj=1 Γ−2/αj

=
∑nj=1 ΘjΓ−1/αj√∑nj=1 Γ−2/αj

⇒
∑∞j=1 ΘjΓ−1/αj√∑∞j=1 Γ−2/αj

= Y1√Y2
(7.23)

so the weak limit of the self-normalized sum is a ratio of two dependent stable laws:
Y1 has index α, and Y2 has index α/2. In fact, we have(n−1/α n∑

j=1
Wj , n
−2/α

n∑
j=1
W2
j )⇒ (Y1, Y2)

where the limit Y = (Y1, Y2)� is operator stable with exponent B = diag(1/α, 2/α) and
the Lévy measure ϕ of Y is concentrated on the set {y : y2 = y21}, see Meerschaert
and Sche�er [146, Corollary 10.1.8]. The convergence (7.23) extends to arbitrary X ∈
DOA(Y1) using the ideas in Remark 7.3, see Logan, Mallows, Rice and Shepp [125].

7.3 Tempered stable laws

Tempered stable laws reduce the probability of extremely large jumps, so that all mo-
ments exist. This canbepreferable in applicationswhere themoments have a physical
meaning. Another motivation for considering a tempered power law comes from tail
estimation. If p = ℙ[X > x] ≈ Cx−α as x →∞, then log p ≈ log C−α log x, and a log-log
plot of the upper order statistics fits a line with slope −α. In many practical applica-
tions, this is true up to some point, beyond which the most extreme order statistics
fall short of the power law model (e.g., see Aban, Meerschaert and Panorska [1]). For
such applications, a tempered model may provide a better fit to real data.

For a general treatment of tempered stable laws and their governing equations,
see Baeumer and Meerschaert [19]. To illustrate the basic idea, suppose Y > 0 is a
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stable random variable with index 0 < α < 1 and pdf f(y) such that

̃f (s) = E[e−sY] =
∞∫
0

e−syf(y) dy = exp [ − Dsα] (7.24)

for all s > 0, where D > 0. The exponentially tempered function e−λyf(y) is not a pdf,
since it will not integrate to 1. In fact, we have by (7.24) that

∞∫
0

e−λyf(y) dy = exp [ − Dλα]
and it follows that fλ(y) = e−λyf(y) exp [Dλα] is a pdf, called the (exponentially) tem-
pered stable pdf. This pdf has LT

̃fλ(s) =
∞∫
0

e−sye−λyf(y) exp [Dλα] dy = exp [ − D{(s + λ)α − λα}].
Zolotarev [228, Lemma 2.2.1] implies that (7.24) holds with s = λ + ik for any λ > 0 and
k ∈ ℝ, and then it follows by essentially the same argument that

̂fλ(k) =
∞∫
0

e−ikye−λyf(y) exp [Dλα] dy = exp [ − D{(λ + ik)α − λα}]. (7.25)

It is obvious from (7.25) that the tempered stable law with pdf fλ(y) is infinitely
divisible with Fourier symbol ψλ(−k) = −D{(λ + ik)α − λα}. Note that this reduces to
the stable case when λ = 0. Now we will show that this infinitely divisible law comes
from exponentially tempering the Lévy measure. It follows from Proposition 3.10 that
the random variable Y with LT (7.24) has characteristic functionE[eikY] = eψ(k) where

ψ(k) = ∫ (eiky − 1)ϕ(dy)
and ϕ(dy) = Cαy−α−1dyI(y > 0), where D = CΓ(1 − α). Define the tempered Lévy
measure

ϕλ(dy) = e−λyCαy−α−1dyI(y > 0).
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Since ∫ y I(0 < y ≤ R)ϕλ(dy) < ∞, it follows from Theorem 3.8 (a) that there exists a
unique infinitely divisible law with characteristic function eψ1(k) where

ψ1(k) = ∫(eiky − 1)ϕλ(dy)
=
∞∫
0

(eiky − 1) e−λyCαy−α−1dy
=
∞∫
0

(e(ik−λ)y − e−λy) Cαy−α−1dy
=
∞∫
0

(e(ik−λ)y − 1) Cαy−α−1dy − ∞∫
0

(e−λy − 1) Cαy−α−1dy
= −CΓ(1 − α)(λ − ik)α + CΓ(1 − α)λα = ψλ(k). (7.26)

This shows that tempering a positive stable law is equivalent to tempering its Lévy
measure.

Now suppose that Zt is a tempered α-stable Lévy process whose pdf p(x, t) has FT

p̂(k, t) = E[e−ikZt ] = exp [tψλ(−k)] = exp [−Dt{(λ + ik)α − λα}] .
What is the governing equation of this process? Clearly p̂(k, t) solves the di�erential
equation

d

dt
p̂(k, t) = −D{(λ + ik)α − λα}p̂(k, t)

and so we know that p(x, t) solves

∂

∂t
p(x, t) = Lp(x, t)

where Lf(x) is the inverse FT of ψλ(−k) ̂f (k). In order to understand the operator L, it
is easiest to go back to the LT.

The pdf p(x, t) of the tempered α-stable Lévy process Zt has LT

p̃(s, t) =
∞∫
0

e−sxp(x, t) dx = exp [−Dt{(λ + s)α − λα}] .
This LT solves the di�erential equation

d

dt
p̃(s, t) = −D{(λ + s)α − λα}p̃(s, t)

and inverting the LT shows that p(x, t) solves

∂

∂t
p(x, t) = Lp(x, t)
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where Lf(x) is the inverse LT of −D{(λ + s)α − λα} ̃f (s). Now we will use the fact that

∞∫
0

e−sxeλxf(x) dx = ̃f (s − λ) (7.27)

and the fact (proven in the details at the end of Section 2.3) that the Riemann-Liouville
fractional derivative of order 0 < α < 1 has LT

∞∫
0

e−sx
dα

dxα
[f(x)] dx = sα ̃f (s).

Putting these two facts together, we see that

∞∫
0

e−sx
dα

dxα
[eλxf(x)] dx = sα ̃f (s − λ).

Using (7.27) one more time, we see that

∞∫
0

e−sxe−λx
dα

dxα
[eλxf(x)] dx = (s + λ)α ̃f (s).

This shows that the generator of the tempered stable semigroup is defined (for suitable
functions f ) by

Lf(x) = e−λx d
α

dxα
[eλxf(x)] − λα f(x).

We call

∂
α,λ
x f(x) = e−λx d

α

dxα
[eλxf(x)] − λα f(x) (7.28)

the (positive) tempered fractional derivative of order 0 < α < 1. With this notation, the
pdf of the tempered fractional Lévy motion solves the tempered fractional di�usion

equation
∂

∂t
p(x, t) = −D∂α,λx p(x, t).

Remark 7.9. A general theory of tempered stable laws in ℝd has been developed by
Rosiński [178]. Exponentially tempered stable processes were originally proposed by
Koponen [110] as a model for turbulent velocity fluctuations, and developed further
by Cartea and del Castillo-Negrete [45]. Tempered stable random variables (and Lévy
processes) are the weak limits of triangular arrays where the row elements follow a
power law jump distribution with exponential tempering, and the tempering strength
tends to zero at a specific rate as kn → ∞, see Chakrabarty and Meerschaert [46].
Tempering can also be applied to the waiting times in a CTRW framework, and then
a tempered fractional derivative in time replaces the usual first order time derivative,
leading to a tempered fractional Cauchyproblem. Tempered stable lawswere applied in
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Meerschaert, Zhang and Baeumer [157] to a variety of problems in geophysics. In those
applications, the tempering is in the time variable. The tempered space-fractional dif-
fusion is applied to hydrology in Zhang [227]. In a typical application, λ > 0 is very
small, so that the pdf fλ(y) is indistinguishable from the stable pdf f(y) until |y| is quite
large. A useful method for simulating tempered stable random variables is presented
in Baeumer and Meerschaert [19, Section 4].

Now suppose that Y is stable with index 1 < α < 2 and Lévy measure ϕ(dy) =
Cαy−α−1dyI(y > 0) as in Proposition 3.12. In this case, the pdf f(y) > 0 for all y ∈ ℝ, but
the left tail f(y) → 0 faster than e−λy as y →∞ for any λ > 0, so the Laplace transform
integral exists over the entire real line. In fact, Zolotarev [228, Lemma 2.2.1] shows that

̃f (λ + ik) = E[e−(λ+ik)Y] =
∞∫
−∞

e−(λ+ik)yf(y) dy = exp [D(λ + ik)α] (7.29)

for all λ > 0 and all k ∈ ℝ, where D = CΓ(2 − α)/(α − 1). Then
∞∫
−∞

e−λyf(y) dy = exp [Dλα]
and so fλ(y) = e−λyf(y) exp [ − Dλα] is a pdf on −∞ < y <∞. Its FT is given by

̂fλ(k) = exp [D{(λ + ik)α − λα}], (7.30)

the same form as 0 < α < 1 except for a change of sign.
Here it is also true that exponentially tempering the pdf is equivalent to tempering

the Lévy measure, up to a shift: Define

ϕλ(dy) = e−λyCαy−α−1dyI(y > 0)

and note that, since ∫ y I(y > R)ϕλ(dy) <∞, Theorem 3.8 (b) implies that there exists
a unique infinitely divisible randomvariableY0with characteristic functionE[eikY0] =
eψ2(k) where

ψ2(k) =
∞∫
0

(eiky − 1 − iky) e−λyCαy−α−1dy
=
∞∫
0

(e(ik−λ)y − 1 − (ik − λ)y) Cαy−α−1dy
−
∞∫
0

(e−λy − 1 + λy) Cαy−α−1dy − ik ∞∫
0

(e−λy − 1) y Cαy−α−1dy
= C Γ(2 − α)

α − 1 (λ − ik)
α − C Γ(2 − α)

α − 1 λα − ika (7.31)
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using Proposition 3.12 twice, where

a = α

α − 1

∞∫
0

(e−λy − 1) C(α − 1)y−(α−1)−1dy
= α

α − 1 [−CΓ(1 − (α − 1))λ(α−1)]
= −C Γ(2 − α)

α − 1 αλα−1 (7.32)

using Proposition 3.10 and noting that α − 1 ∈ (0, 1). Then

E[eikY0] = exp [D{(λ − ik)α − λα + ikαλα−1}]
where D = CΓ(2 − α)/(α − 1). Similar to Remark 3.38, it is not hard to check that

E[Y0] = (−i) d
dk
E[eikY0]k=0 = 0.

If we define a tempered stable Lévy process Zt with Z1 ≃ Y0, then E[Zt] = 0.
Figure 7.1 illustrates the meaning of the truncation parameter λ, in the case α = 1.2.
The bottom left panel is almost indistinguishable from the corresponding stable Lévy
motion, compare Figure 5.24. As λ grows, the large jumps diminish, and for large λ the
sample path resembles a Brownianmotion, compare Figure 5.18. The sample paths in
Figure 7.1 were simulated using an exponential rejection scheme, see [19, Section 4]
for details.

The density of Zt has FT

p̂(k, t) = exp [Dt{(λ + ik)α − λα − ikαλα−1}].
This FT solves the di�erential equation

d

dt
p̂(k, t) = D{(λ + ik)α − λα − ikαλα−1}p̂(k, t)

and inverting the FT shows that p(x, t) solves

∂

∂t
p(x, t) = Lp(x, t)

where Lf(x) is the inverse FT ofD{(λ+ik)α −λα−ikαλα−1} ̂f (k). An argument very similar
to the case 0 < α < 1 shows that the generator is defined (for suitable functions f ) by

Lf(x) = e−λx d
α

dxα
[eλxf(x)] − λα f(x) − αλα−1f �(x).

We call

∂
α,λ
x f(x) = e−λx d

α

dxα
[eλxf(x)] − λα f(x) − αλα−1f �(x) (7.33)
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Fig. 7.1: Tempered stable Lévy motion Zt with α = 1.2, showing the e�ect of the tempering parame-
ter λ, from Baeumer and Meerschaert [19].

the (positive) tempered fractional derivative of order 1 < α < 2. With this notation,
the pdf of the tempered fractional Lévy motion with drift Zt + vt solves the tempered
fractional di�usion equation with drift

∂tp(x, t) = −v∂xp(x, t) + D∂α,λx p(x, t).

A two-sided tempered stable Lévy process has Lévymeasureϕλ(dy) = e−λ|y|ϕ(dy)
where ϕ is the Lévy measure (3.30) of an arbitrary nonnormal stable law. Thenwe can
write Zt = Z+t − Z−t where Z+t and Z−t are two independent one-sided tempered stable
Lévy processeswith the same index. If Z+t has Lévymeasureϕ(dy) = pCαy−α−1dyI(y >
0) and Z−t has Lévymeasureϕ(dy) = qCα|y|−α−1dyI(y < 0), then it is not hard to check
that the pdf p(x, t) of Zt solves the two-sided tempered fractional di�usion equation

∂tp(x, t) = qD∂α,λ(−x)p(x, t) + pD∂
α,λ
x p(x, t)

where the Fourier symbol of the negative tempered fractional derivative is obtained by
substituting −k for k in the Fourier symbol of the positive tempered fractional deriva-
tive. In the next section, we will consider alternative forms of the tempered fractional
derivative, similar to our analysis of the fractional derivative in Chapter 2.
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7.4 Tempered fractional derivatives

We first defined a fractional derivative dα f(x)/dxα in Chapter 1 as the function with FT
(ik)α ̂f (k). Then in Chapters 2–3, we studied some alternative forms in terms of finite
di�erences, convolution integrals, and the generator formula for a semigroup. Our
present goal is to apply the same analysis to the tempered fractional derivative. For
complete details, see Baeumer and Meerschaert [19].

Recall from Section 7.3 that a one-sided tempered stable Lévy process Zt with in-
dex 0 < α < 1 has characteristic function

E[eikZt ] = etψλ(k)

where ψλ(k) = −D{(λ − ik)α − λα} for some λ > 0 and D > 0. The pdf p(x, t) of Zt has
FT

p̂(k, t) = E[e−ikZt] = etψλ(−k)
which solves

d

dt
p̂(k, t) = ψλ(−k)p̂(k, t) = −D{(λ + ik)α − λα}p̂(k, t)

and so p(x, t) solves the tempered fractional di�usion equation

∂

∂t
p(x, t) = −D∂α,λx p(x, t).

The tempered fractional derivative ∂α,λx f(x) has FT {(λ + ik)α − λα} ̂f (k), and we know
from (7.26) that

∞∫
0

(eiky − 1) e−λyCαy−α−1dy = −CΓ(1 − α)[(λ − ik)α − λα].
Set C = 1/Γ(1 − α) to see that

−
∞∫
0

(e−iky − 1) e−λy α

Γ(1 − α) y
−α−1dy = (λ + ik)α − λα

and apply this formula to see that

{(λ + ik)α − λα} ̂f (k) =
∞∫
0

( ̂f (k) − e−iky ̂f (k)) e−λy α

Γ(1 − α) y
−α−1dy.

Inverting the FT shows that (for suitable functions f ) the generator form of the (posi-
tive) tempered fractional derivative of order 0 < α < 1 is given by

∂
α,λ
x f(x) =

∞∫
0

(f(x) − f(x − y))e−λy α

Γ(1 − α) y
−α−1dy (7.34)
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using Theorem 3.23 (a). This reduces to the generator form (2.17) of the fractional
derivative when λ = 0. An alternative proof uses Theorem 3.17.

Canwe also extend theGrünwald finite di�erence form (2.1) to tempered fractional
derivatives? Recall from Section 2.1 that

dαf(x)
dxα
= lim
h→0

∆α f(x)
hα

(7.35)

where

∆α f(x) = (I − B)α f(x) =
∞∑
j=0
(α
j
) (−1)j f(x − jh)

is written in terms of the shift operator Bf(x) = f(x − h). In Section 2.2 we used the
Grünwald form tomotivate thegenerator form.Nowwe reverse that process, to explore
one possible idea of a finite di�erence formula for the tempered fractional derivative.
In the case of a fractional derivative, we can use the asymptotic expression (2.5) for
the Grünwald weights,

wj = (−1)j (α
j
) ∼ −α

Γ(1 − α) j
−α−1 as j →∞,

to write

dα f(x)
dxα
=
∞∫
0

[f(x) − f(x − y)] α

Γ(1 − α) y
−α−1dy

≈
∞∑
j=1
[f(x) − f(x − jh)] α

Γ(1 − α) (jh)
−α−1h

= h−α
∞∑
j=1
[f(x) − f(x − jh)] α

Γ(1 − α) j
−α−1

≈ h−α
∞∑
j=1
[f(x − jh) − f(x)] wj

= h−α [[∞∑j=1 f(x − jh)wj − f(x) ∞∑j=1wj]] = h−α ∞∑j=0 f(x − jh)wj
since∑∞j=1 wj = −w0 = −1 by (2.11). The Grünwald weights form a discrete approxima-
tion of the Lévy measure. (For more on this topic, see Meerschaert and Sche�er [148,
Section 5].) Inspired by this heuristic argument, we may consider a kind of tempered
finite di�erence operator

∆αλ f(x) =
∞∑
j=0
(α
j
) (−1)je−λjhf(x − jh) = ∞∑

j=0
wje
−λjhf(x − jh). (7.36)

It follows from (2.2) that
∞∑
j=0
wje
−λjh =

∞∑
j=0
(α
j
) (−1)je−λjh = (1 − e−λh)α (7.37)
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and, using this fact, we can write

∂
α,λ
x f(x) =

∞∫
0

(f(x) − f(x − y))e−λy α

Γ(1 − α) y
−α−1dy

≈
∞∑
j=1
[f(x) − f(x − jh)] e−λjh α

Γ(1 − α) (jh)
−α−1h

= h−α
∞∑
j=1
[f(x) − f(x − jh)] e−λjh α

Γ(1 − α) j
−α−1

≈ h−α
∞∑
j=1
[f(x − jh) − f(x)] e−λjhwj

= h−α [[∞∑j=1 f(x − jh)e−λjhwj − f(x) ∞∑j=1 e−λjhwj]]
= h−α [[∞∑j=0 f(x − jh)e−λjhwj − f(x)(1 − e−λh)α]] (7.38)

where, in the last line, we add w0f(x) to each term, and apply (7.37). This leads us to
the following conjecture:
Proposition 7.10 (Baeumer’s formula). For a bounded function f , such that f and its

derivatives up to some order n > 1+ α exist and are absolutely integrable, the tempered
fractional derivative defined by (7.34) exists, and

∂
α,λ
x f(x) = lim

h→0
∆α,λ f(x)
hα

(7.39)

where the tempered finite di�erence operator

∆α,λ f(x) =
∞∑
j=0
(α
j
) (−1)je−λjhf(x − jh) − (1 − e−λh)α f(x). (7.40)

Nowwe will prove this conjecture. Of course we would not have presented the discus-
sion above, if it did not lead to a positive result! The rather informal presentation is
intended to illustrate, for the beginning researcher, the thought process behind the re-
sult. In mathematical research, it is necessary (but not su�cient) to master the meth-
ods of mathematical proof. One also needs to guess, by some method, what result
might be true, and then try to prove it. In this case, our first guess (7.36) had to be
adjusted, by the second term in (7.40).
Proof. Write

h−α∆α,λf(x) = h−α [[∞∑j=0(αj) (−1)je−λjhf(x − jh) − (1 − e−λh)α f(x)]]
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and take FT to get

h−α
∞∑
j=0
(α
j
) (−1)je−λjhe−ikjh ̂f (k) − h−α(1 − e−λh)α ̂f (k)

= h−α
∞∑
j=0
(α
j
) (−1)je−(λ+ik)jh ̂f (k) − h−α(1 − e−λh)α ̂f (k)

= h−α(1 − e−(λ+ik)h)α ̂f (k) − h−α(1 − e−λh)α ̂f (k)
→ (λ + ik)α ̂f (k) − λα ̂f (k)

by the same Taylor expansion argument as in the proof of Proposition 2.1. Apply the
continuity theorem for FT to see that (7.39) holds for each x ∈ ℝ. Note that z = e−(λ+ik)h
is a complexnumberwithnorm |z| < 1, so that the series in (7.40) converges absolutely,
uniformly in x, in view of (2.2). The proof that ∂α,λx f(x) exists as the inverse FT of [(λ +
ik)α − λα] ̂f (k) is essentially identical to Proposition 2.5.
Remark 7.11. The proof of Proposition 7.10 extends immediately to the case 1 < α < 2,
with exactly the same proof, to show that

e−λx
dα

dxα
[eλxf(x)] − λα f(x) = lim

h→0
∆α,λ f(x)
hα

(7.41)

for 1 < α < 2, where ∆α,λf(x) is given by the same formula (7.40). In fact, (7.41) holds
true, by the same proof, for any α > 0. From this it is easy to derive a finite di�er-
ence formula for the tempered fractional derivative (7.33) of order 1 < α < 2, see [19,
Proposition 3]. Similar to Remark 2.2, a shifted version of the finite di�erence formula
is useful for numerical solutions of the tempered fractional di�usion equation, see [19,
Proposition 6].

Remark 7.12. The generator form of the negative tempered fractional derivative is

∂
α,λ
(−x)f(x) =

∞∫
0

(f(x) − f(x + y))e−λy α

Γ(1 − α) y
−α−1dy (7.42)

using Theorem 3.23 (a). This reduces to the generator form (3.32) of the negative frac-
tional derivative when λ = 0. This form is the generator of a Lévy process with Lévy
measure

ϕ(dy) = e−λ|y|Cα|y|−α−1dyI(y < 0).

We also have the obvious modification of Proposition 7.10: For a bounded function f ,
such that f and its derivatives up to some order n > 1 + α exist and are absolutely
integrable, the negative tempered fractional derivative defined by (7.42) exists, and

∂
α,λ
(−x)f(x) = lim

h→0

∆
α,λ
(−x)f(x)
hα

(7.43)
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where the tempered finite di�erence operator

∆
α,λ
(−x)f(x) =

∞∑
j=0
(α
j
) (−1)je−λjhf(x + jh) − (1 − e−λh)α f(x). (7.44)

Remark 7.13. The generator form for 1 < α < 2 can be obtained by inverting the FT

ψ2(−k) ̂f (k) = {(λ + ik)α − λα − ikαλα−1} ̂f (k)

of the positive tempered fractional derivative of order 1 < α < 2 in (7.33). Substitute
C = (α − 1)/Γ(2 − α) in (7.31) and (7.32) to get

∞∫
0

(eiky − 1 − iky) e−λy α(α − 1)
Γ(2 − α) y

−α−1dy = (λ − ik)α − λα + ikαλα−1 = ψ2(k).

Then the inverse FT of

ψ2(−k) ̂f (k) =
∞∫
0

(e−iky ̂f (k) − ̂f (k) + iky ̂f (k)) e−λy α(α − 1)
Γ(2 − α) y

−α−1dy

is

∂
α,λ
x f(x) =

∞∫
0

(f(x − y) − f(x) + yf �(x)) e−λy α(α − 1)
Γ(2 − α) y

−α−1dy (7.45)

using Theorem 3.23 (b). Equation (7.45) is the generator form of the positive tempered
fractional derivative of order 1 < α < 2. When λ = 0, (7.45) reduces to the generator
form (2.20) for the positive fractional derivative of order 1 < α < 2. An alternative
proof uses Theorem 3.17.

7.5 Distributed order fractional derivatives

The distributed order fractional derivative is defined by

∂
ν(dβ)
t f(t) =

1∫
0

∂
β
t f(t)ν(dβ) (7.46)

where ν(dβ) is a finite Borel measure on the unit interval (0, 1), and ∂βt is the Caputo
fractional derivative (2.33). The distributed order time-fractional di�usion equation

∂
ν(dβ)
t p(x, t) = D ∂2

∂x2
p(x, t), (7.47)

where D > 0, was introduced by Chechkin et al. [48, 49] in the physics literature.
If ν(dβ) is a pointmass at some β ∈ (0, 1), then (7.47) reduces to the time-fractional

di�usion equation (2.39), a model for subdi�usion where solutions spread at the rate
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tβ/2 for all t > 0. If ν has point masses at 0 < β1 < ⋅ ⋅ ⋅ < βn < 1, we get a linear
combinationof fractional timederivatives of di�erent orders. Chechkin et al. [48] show
that in this case, the spreading rate is asymptotically equal to to tβ1/2 as t → ∞, so
the smallest β dominates. If (7.47) includes fractional derivatives of arbitrarily small
order β > 0, this suggests that solutions to (7.47) will spread at a rate slower than tβ/2
for any β > 0. Suppose for example that

ν(dβ) =
{{{Aβα−1dβ 0 < β < B
0 B < β < 1

(7.48)

for some α > 0, A > 0, and B < 1. We will show that this leads to ultraslow di�usion,
where the solution to (7.47) spreads like (log t)α/2 for all t > 0 su�ciently large, slower
than any power law. The cuto� at B < 1 is required for technical reasons, see details.

Recall from Section 2.3 that the Caputo fractional derivative ∂
β
t f(t) has Laplace

transform sβ ̃f (s) − sβ−1f(0). Then for suitable functions f(t) the Laplace transform of
∂
ν(dβ)
t f(t) is

∞∫
0

e−st∂
ν(dβ)
t f(t) dt =

1∫
0

[sβ ̃f (s) − sβ−1f(0)] ν(dβ). (7.49)

Now we will apply the alternative theory of infinitely divisible subordinators Y > 0
based on Laplace transforms, see the details at the end of Section 4.5. This Lévy rep-
resentation takes the simplified form E[e−sY] = e−ψ(s), where s > 0 and

ψ(s) = as +
∞∫
0

(1 − e−sy)ϕ(dy)
for some a ≥ 0, and some Lévy measure ϕ(dy). This Lévy representation is unique.
The Lévy measure ϕ(dy) on {y : y > 0} satisfies ϕ(R,∞) <∞ and

R∫
0

yϕ(dy) <∞ (7.50)

for all R > 0. Now use (7.49) to write
∞∫
0

e−st∂
ν(dβ)
t f(t) dt = ψ(s) ̃f (s) − s−1ψ(s)f(0), (7.51)

where

ψ(s) =
1∫
0

sβν(dβ).

Recall from (4.56), which is just from Proposition 3.10 with s = −ik, that
∞∫
0

(1 − e−sy) Cβy−β−1dy = CΓ(1 − β)sβ
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for all s > 0, for any 0 < β < 1. Set C = C(β) = 1/Γ(1 − β) and substitute into (7.49) to
see that (7.51) holds with

ψ(s) =
1∫
0

sβν(dβ) =
B∫
0

∞∫
0

(1 − e−sy) βy−β−1dy C(β)Aβα−1dβ
=
∞∫
0

(1 − e−sy)ϕ(dy),
where

ϕ(dy) =
B∫
0

βy−β−1dy C(β)Aβα−1dβ.

Let p(β) = C(β)Aβα−1 for 0 < β < B, and p(β) = 0 otherwise. Since Γ(x) is a decreasing
function for 0 < x < 1, with Γ(1) = 1, we have C(β) ≤ 1 for all 0 < β < 1. Then

M =
B∫
0

p(β)dβ =
B∫
0

C(β)Aβα−1dβ ≤
B∫
0

Aβα−1dβ <∞.

Since we can divide both sides of (7.47) by the constant M, it entails no loss of gener-
ality to assume thatM = 1, and then p(β) is a pdf. Now we can also write simply

ϕ(dy) =
B∫
0

βy−β−1dy p(β) dβ. (7.52)

Next we want to show that ϕ(dy) is a Lévy measure. Take any R > 0 and write

ϕ(R,∞) =
∞∫
R

B∫
0

βy−β−1p(β) dβ dy

=
B∫
0

∞∫
R

βy−β−1dy p(β) dβ

=
B∫
0

R−βp(β) dβ (7.53)

using the Fubini-Tonelli Theorem. The last integral is bounded above bymax{1, R−B},
since p(β) is a pdf. Nowwe just need to check that (7.50) holds, see details. Then ϕ(dy)
is a Lévy measure, and ψ(s) is the Lévy symbol of some subordinator.

Let Dψ(u) be the Lévy subordinator with E[e−sDψ(u)] = e−uψ(s) for all s > 0. Using
some deep semigroup arguments, Corollary 2.1 in Kovács andMeerschaert [112] shows
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that Dψ(u) has a density g(t, u), which is a smooth function of both t > 0 and u > 0.
Define the inverse process E

ψ
t = inf{u > 0 : Dψ(u) > t}, so that

{Eψt ≤ u} = {Dψ(u) ≥ t}. (7.54)

Theorem 3.1 in [112] shows that E
ψ
t has a density h(u, t) that is a smooth function of

u > 0. Now we can argue as in Section 2.4, using (7.54), that

h(u, t) = d

du
ℙ[Eψt ≤ u] = d

du
ℙ[Dψ(u) ≥ t] = d

du
[[1 − t∫

0

g(y, u) dy]]
with LT

h̃(u, s) = − d
du
[s−1 g̃(s, u)]

= − d
du
[s−1e−uψ(s)] = s−1ψ(s)e−uψ(s) (7.55)

using the fact that integration corresponds to multiplication by s−1 in LT space. See
Meerschaert and Sche�er [153, Theorem 3.1] for complete details.

Let f(x, u) be the PDF of B(u), independent of Dψ(u), and use a simple condition-
ing argument, as in Section 2.4, to see that B(Eψt ) has PDF

p(x, t) =
∞∫
0

f(x, u)h(u, t) du.

Take FT and then LT to see that

p̄(k, s) =
∞∫
0

e−st
∞∫
−∞

e−ikxp(x, t) dx dt

=
∞∫
0

e−st
∞∫
−∞

e−ikx
∞∫
0

f(x, u)h(u, t) du dx dt

=
∞∫
0

( ∞∫
−∞

e−ikxf(x, u) dx)(∞∫
0

e−sth(u, t) dt) du
=
∞∫
0

e−uDk
2

s−1ψ(s)e−uψ(s)du = s−1ψ(s)
ψ(s) + Dk2 .

See [153, Theorem 3.6] for complete details. Rewrite in the form ψ(s)p̄(k, s)−s−1ψ(s) =
−Dk2 p̄(k, s), invert the LT using (7.51) along with p̂(k, 0) = 1 to get

∂
ν(dβ)
t p̂(k, t) = −Dk2 p̂(k, t),

then invert the FT to see that the pdf p(x, t) of B(Eψt ) solves the distributed order time-
fractional di�usion equation (7.47).
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Next we want to construct a CTRW model for B(Eψt ). Take S(n) = Y1 + ⋅ ⋅ ⋅ + Yn
iid with E[Yi] = 0 and E[Y2i ] = 2D. It follows from the Central Limit Theorem that
n−1/2S(nt) ⇒ B(t) for any t > 0, see Example 3.31. This gives a suitable model for the
CTRW jumps. A suitable model for the CTRW waiting times is more delicate. In view
of Theorem 4.5, no random walk with iid waiting times can converge to Dψ(u), which
is neither normal nor α-stable. Hence it is necessary to consider a triangular array.

Nowwewill use an idea fromMeerschaert and Sche�er [152, Section 3]. Take {Bn :
n = 1, 2, 3, . . .} iid with pdf p(β). Then, for each n = 1, 2, 3, . . ., define iid waiting
times {Jnj : j = 1, 2, 3, . . . , kn}with distribution

P{Jnj > t|Bn = β} =
{{{1 0 ≤ t < n−1/β

n−1t−β t ≥ n−1/β
. (7.56)

Given any t > 0, let kn = [nt], and consider the triangular array of waiting times
{Jnj : j = 1, 2, . . . , kn; n = 1, 2, 3, . . .}. At any time scale n, the waiting times Jnj are
iid conditionally Pareto distributed, conditional on the random power law indices Bn.
The time of the kth CTRW jump is given by the row sum

Tnk =
k∑
j=1
Jnj

for any k = 1, 2, 3, . . . at any time scale n.
Remark 7.14. If we define (Jj) iid Pareto with ℙ[Jj > t] = t−β then

ℙ[n−1/β Jj > t] = ℙ[Jj > n1/β t] = (n1/β t)−β = n−1t−β ,
which is the same as (7.56). This shows that, conditional on Bn = β, the norming for
this triangular array is the same as in Theorem 3.37.

Next we want to show that Tn[nt] ⇒ Dψ(t) for any t > 0, using the convergence crite-
ria for triangular arrays, Theorem 3.33. The proof is quite similar to Theorem 3.37. To
show that condition (i) holds with kn = [nt], suppose u > 0 and note that for any n
su�ciently large we have

[nt]ℙ[Jnj > u] = [nt]
B∫
0

ℙ[Jnj > u|B1 = β]p(β) dβ

= [nt]
n

B∫
0

u−βp(β) dβ

→ t

B∫
0

u−βp(β) dβ = t ϕ(u,∞),
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using (7.53). Hence condition (i) holds. See details for the proof that condition (ii)
holds. Then it follows from Theorem 3.33 that Tn[nt] − an ⇒ Dψ(t) for some center-
ing constants an. Finally we want to argue that an can be made as small as we like by
choosing R > 0 su�ciently small. Again, the proof is quite similar to Theorem 3.37, see
details. Then we have shown that Tn[nt] ⇒ Dψ(t).

Now consider a triangular array of CTRWwith jumps (Yj) and waiting times (Jnj).
We have already shown that n−1/2S(nt) ⇒ B(t) and Tn[nt] ⇒ Dψ(t). The number of
jumps by time t > 0 at time scale n is defined by Nnt = max{k ≥ 0 : Tnk ≤ t}, and then
we can argue as in Section 4.3 that n−1Nn(t) ⇒ E

ψ
t , see details. The CTRW particle

position at time t ≥ 0 and scale n = 1, 2, 3, . . . is given by S(Nnt ). Now argue as in
Section 4.3, assuming the jumps (Yj) are independent of the waiting times (Jnj), that(n−1/2S(nt), n−1Nnt )⇒ (B(t), Eψt )
in the sense of finite dimensional distributions. Then it follows as in Section 4.4 that

n−1/2S(Nnt ) = n−1/2S(n ⋅ n−1Nnt )⇒ B(Eψt )

in the Skorokhod M1 topology, see [153, Corollary 2.4] for complete details. Conver-
gence in the J1 topology follows from Straka andHenry [210, Theorem 3.6]. This estab-
lishes a CTRWmodel for the distributed order fractional di�usion equation (7.47).

Finally we explain how the distributed order fractional di�usion equation (7.47)
with ν(dβ) given by (7.48) models ultraslow di�usion. The Lévy symbol

ψ(s) =
1∫
0

sβν(dβ) =
1∫
0

eβ log sν(dβ) = ν̃(− log s)

where the LT

ν̃(r) =
1∫
0

e−rβν(dβ) =
B∫
0

e−rβAβα−1dβ = Ar−α
rB∫
0

e−xxα−1dx = Ar−αΓ(α, rB)

using the incomplete gamma function. As r →∞we have ν̃(r) ∼ Ar−αΓ(α), and hence

ψ(s) ∼ AΓ(α)(− log s)−α as s → 0.

The CTRW limit process B(Eψt ) has mean zero and, since E[B(t)2] = 2Dt, a simple

conditioning argument shows that Var[B(Eψt )] = 2DE[Eψt ]. Let

m(t) = E[Eψt ] =
∞∫
0

ℙ[Eψt ≥ u] du =
∞∫
0

ℙ[Dψu ≤ t] du
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and take LT as in (7.55) to get

m̃(s) =
∞∫
0

e−st
∞∫
0

ℙ[Dψu ≤ t] du dt

=
∞∫
0

(∞∫
0

e−stℙ[Dψu ≤ t] dt) du
=
∞∫
0

s−1e−uψ(s) du = s−1ψ(s)−1 ∼ Cs−1(− log s)α

as s → 0, where C−1 = AΓ(α). Example 2.10 shows that the function f(t) = tp on t ≥ 0
has LT ̃f (s) = s−p−1Γ(p + 1) for any p > −1. An extension of this argument yields the
Karamata Tauberian Theorem:

f(t) ∼ tpL(t) as t →∞ ⇐⇒ ̃f (s) ∼ s−p−1Γ(p + 1)L(1/s) as s → 0, (7.57)

assuming that p > −1, L(t) is slowly varying, and f(t) ismonotone for t > 0 su�ciently
large (see Theorem 4, p. 446 in Feller [68]). Since E

ψ
t is nondecreasing, the moment

function m(t) = E[Eψt ] is clearly monotone. Note that − log s = log(1/s), and that the
function L(t) = C(log t)α is slowly varying. Then we can apply (7.57) with p = 0 to see
that m(t) ∼ C(log t)α as t →∞. Hence the stochastic process B(Eψt )models ultraslow

di�usion, since its variance Var[B(Eψt )] ∼ 2DC(log t)α for some α > 0. Remark 3.2
in [153] shows that ℙ[Jnj > t] is also slowly varying as t → ∞. Hence the ultraslow
di�usion results from very long waiting times.

Details

To show that (7.52) defines a Lévy measure, we also need to check that (7.50) holds.
Write

R∫
0

yϕ(dy) =
R∫
0

y

B∫
0

βy−β−1dy p(β) dβ =
B∫
0

R∫
0

yβy−β−1dy p(β) dβ

=
B∫
0

β

1 − β R
1−βp(β) dβ. (7.58)

Then the integral (7.58) is bounded above by Bmax{R, R1−B}/(1 − B). This along with
upper bound on (7.53) shows that ϕ(dy) is a Lévy measure. Equation (7.58) also shows
the reason for the cuto� at B < 1: If we integrate to β = 1, then (7.58) diverges.

To show that condition (ii)holds, first note that the conditional density of Jnj given
Bn = β is

ψn(u|β) =
{{{0 0 ≤ u < n−1/β

n−1βu−β−1 u ≥ n−1/β
. (7.59)
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Then for any n su�ciently large we can write

[nt]Var[Jεnj] ≤ [nt]
ε∫
0

u2
B∫
0

ψn(u|β)p(β) dβ du

= [nt]
B∫
0

ε∫
n−1/β

u2n−1βu−β−1 du p(β) dβ

= [nt]
n

B∫
0

ε2−β
β

2 − β p(β) dβ −
[nt]
n

B∫
0

n1−2/β
β

2 − β p(β) dβ.

Since β/(2 − β) ≤ 1 and 1 − 2/β < −1, the second integral

B∫
0

n1−2/β
β

2 − β p(β) dβ ≤ n
−1

1∫
0

p(β) dβ = 1
n
,

and then it follows that the second term tends to zero as n → ∞. Since ε2−β < ε for
0 < ε < 1 and 0 < β < 1, the first integral is bounded above by

ε

B∫
0

β

2 − β p(β) dβ ≤ ε.

Then it follows that

lim
ε→0

lim sup
n→∞
[nt]Var[Jεnj] ≤ limε→0 tε = 0.

This shows that condition (ii) holds.
Next we show that an can be made as small as we like by choosing R > 0 su�-

ciently small. By (3.37) we can take

an = knE[JRnj] = [nt]
R∫
0

B∫
0

uψn(u|β) du p(β) dβ

= [nt]
B∫
0

R∫
n−1/β

un−1βu−β−1 du p(β) dβ

= [nt]
n

B∫
0

β

1 − β R
1−βp(β) dβ − [nt]

n

B∫
0

n1−1/β
β

1 − β p(β) dβ.

Since n1−1/β ≤ n1−1/B and 1 − 1/B < 0, it follows that the second term tends to zero
as n → ∞. Since R1−β < R1−B for 0 < R < 1, the first integral tends to zero as R → 0.
Hence the lim sup of the first termas n →∞ canbemade arbitrarily small by choosing
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R > 0 su�ciently small. As in the proof of Theorem3.37, this implies that Tn[nt] ⇒ Dψ(t)
without any centering.

To show that n−1Nnt ⇒ E
ψ
t , let ⌈x⌉ denote the smallest integer greater than or

equal to x ≥ 0, and note that as in Section 4.3 we have {Nnt ≥ x} = {Tn⌈x⌉ ≤ t}. Next
observe that Tn⌈nt⌉ ⇒ Dψ(t) for any t > 0. This is easy to check using characteristic

functions, as in (3.64). Since both Dψ(x) and Eψt have a density, it follows that

ℙ[Dψ(u) > t] = ℙ[Dψ(u) ≥ t] = ℙ[Eψt ≤ u] = ℙ[Eψt < u].
Now we can argue as in Section 4.3 that

ℙ[n−1Nnt < x] = ℙ[Nnt < nx] = ℙ[Tn⌈nx⌉ > t]
→ ℙ[Dψ(x) > t] = ℙ[Eψt < x]

using (7.54) and Tn⌈nt⌉ ⇒ Dψ(t). This shows that n−1Nnt ⇒ E
ψ
t .

7.6 Pearson di�usions

The di�usion equation with constant coe�cients

∂

∂t
p = − ∂

∂x
[vp] + ∂2

∂x2
[Dp] (7.60)

from (1.9) governs the scaling limit of a random walk with finite variance jumps. In
this section, we consider Pearson di�usions governed by (7.60) with space-variable co-
e�cients

D(x) = d0 + d1x + d2x2 and v(x) = a0 + a1x. (7.61)

A Pearson di�usion is a Markov process that can tend to steady state: X(t) ⇒ X(∞) as
t → ∞. Then the densitym(x) of the limit variable X(∞) is a time-invariant solution
to equation (7.60): p(x, t) = m(x) for all t ≥ 0. The steady state density of a Pearson
di�usion follows one of the six classes of Pearson distributions: normal, gamma, beta,
Student-t, inverse gamma, or F-distribution.

A Pearson di�usion is a time-homogeneous Markov process whose transition den-
sity p(x, t; y) is the conditional pdf of x = Xt given X0 = y. For any initial state X0 = y,
the function p = p(x, t) = p(x, t; y) solves the forward equation (7.60) with the point
source initial condition p(x, 0) = δ(x − y). Then the forward semigroup

Tt f(x) = ∫p(x, t; y)f(y) dy (7.62)

gives the pdf of Xt, given that X0 has pdf f(x). The function p(x, t) = Tt f(x) solves a
Cauchy problem

∂

∂t
p(x, t) = Lp(x, t); p(x, 0) = f(x) (7.63)

where the generator of the forward equation is

Lf(x) = − ∂
∂x
[v(x)f(x)] + ∂

2

∂x2
[D(x)f(x)] . (7.64)
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The forward equation is sometimes called the Fokker-Planck equation, especially in
applications to physics. For Markov processes, it is common for technical reasons to
first consider the backward semigroup

T∗t g(y) = E[g(Xt)|X0 = y] = ∫p(x, t; y)g(x) dx. (7.65)

If g(y) = I(y ∈ B) for some Borel set B, then T∗t g(y) = ℙ[Xt ∈ B|X0 = y], the probability
of finding a particle in the set B after time t > 0, given that it started at location y at
time t = 0. The function p(y, t) = T∗t g(y) solves the backward equation

∂

∂t
p(y, t) = v(y) ∂

∂y
p(y, t) + D(y) ∂

2

∂y2
p(y, t) (7.66)

with initial condition p(y, 0) = g(y). The backward equation is simpler, because the
coe�cients v and D appear outside the derivatives.

If a steady-state solution p = p(x, t) =m(x) to (7.60) exists, it satisfies:

0 = − ∂
∂x
[v(x)m(x)] + ∂2

∂x2
[D(x)m(x)]. (7.67)

Integrating (7.67) once yields

d

dx
[D(x)m(x)] − v(x)m(x) = C1 . (7.68)

With C1 = 0, equation (7.68) reduces to

m�(x)
m(x) =

v(x) − D�(x)
D(x) =

(a0 − d1) + (a1 − 2d2)x
d0 + d1x + d2x2

. (7.69)

Equation (7.69) is the famous Pearson equation, introduced by K. Pearson [166] in 1914
to unify the six classes of Pearson distributions.

The six types of Pearson di�usions will be described in Remark 7.19 at the end of
this section. The study of Pearson di�usions began with Kolmogorov [108] and Wong
[220], and continued inFormanandSørensen [72], Avram, LeonenkoandRabehasaina
[11], Leonenko and Šuvak [121, 120], and Avram, Leonenko and Šuvak [10]. For the
remainder of this section,wewill restrict our attention to Pearsondi�usions of type (1–
3), where the steady state densitym(x) is normal, gamma, or beta. Then the backward
equation (7.66) can be solved by separation of variables. See Leonenko, Meerschaert
and Sikorskii [122, Theorem 3.2 and Remark 3.5] for a complete and detailed proof.
Next we will sketch the main ideas of the proof. Write (7.66) in the form of a Cauchy
problem

∂

∂t
p(y, t) = Gp(y, t); p(y, 0) = g(y) (7.70)

where

Gg(y) = v(y) ∂g(y)
∂y
+ D(y)∂

2g(y)
∂y2

(7.71)
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is the generator of the backward semigroup. Suppose that p(y, t) = S(t)φ(y) solves
(7.70), where the functions S and φ may depend on x. Then

∂

∂t
[S(t)φ(y)] = G[S(t)φ(y)],

which is equivalent for non-zero functions to

1

S(t)
dS(t)
dt
= Gφ(y)
φ(y) . (7.72)

Equation (7.72) canhold only if both sides are equal to a constant. Denote this constant
by −λ, and consider the two resulting equations: The Sturm-Liouville equation

Gφ = −λφ (7.73)

and the time equation
dS(t)
dt
= −λS(t). (7.74)

Recall from Section 2.3 that φ is an eigenfunction of G if (7.73) holds for some complex
number λ. Write the Sturm-Liouville equation (7.73) using (7.71) and (7.61) to get

(d0 + d1x + d2x2)φ�� + (a0 + a1x)φ� + λφ = 0. (7.75)

The steady state solutions m(x) for Pearson di�usions of type (1–3) are the normal,
gamma, and beta probability density functions. In these three cases, (7.75) is solved
by the Hermite, Laguerre, or Jacobi polynomials, respectively (see Remark 7.19). Each
of these families of polynomials forms an orthogonal system:

∫Qn(x)Qm(x)m(x)dx = {{{c2n > 0 if n = m,
0 if n ̸= m

(7.76)

such that GQn(x) = −λnQn(x) for all n, where Q0(x) ≡ 1 and 0 = λ0 < λ1 < λ2 < ⋅ ⋅ ⋅
with λn →∞. The corresponding solutions to the time equation (7.74) have the form

Sn(t) = e−λn t

since the exponential functions are the eigenfunctions of the first derivative. Then
p(y, t) = e−λn tQn(y) solves the Cauchy problem (7.70) with initial condition p(y, 0) =
Qn(y). Since any finite linear combination of these functions will also solve equation
(7.70), is it reasonable to consider the infinite sum

p(y, t) =
∞∑
n=0

bne
−λn tQn(y). (7.77)

If

g(x) =
∞∑
n=0

bnQn(x) (7.78)
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where the series converges uniformly on compact sets, then some analytic estimates
show that the series (7.77) can be di�erentiated term-by-term, so that the function
p(y, t) in (7.77) solves equation (7.66). If the polynomials Qn(x) are normalized so that
c2n = 1 in (7.76), then ∫ g(x)Qn (x)m(x) dx = bn for all n.

Then it follows from (7.78) that (7.77) solves the backward equation (7.66) with initial
condition p(y, 0) = g(y).

Equating (7.65) to (7.77) we see that

p(y, t) = T∗t g(y) =
∞∑
n=0

bne
−λn tQn(y)

=
∞∑
n=0
(∫ g(x)Qn(x)m(x) dx) e−λn tQn(y)

= ∫(m(x) ∞∑
n=0

e−λn tQn(x)Qn(y)) g(x) dx. (7.79)

Then

p(x, t; y) = m(x)
∞∑
n=0

e−λn tQn(x)Qn(y) (7.80)

is the transition density for the Pearson di�usion Xt. This heuristic argument is made
rigorous in Proposition 7.21 in the details at the end of this section, which proves that
(7.80) is the point source solution to the forward equation (7.60) and the backward
equation (7.70) for Pearson di�usions of type (1–3).

A very similar separation of variables argument shows that

Tt f(x) = ∫p(x, t; y)f(y) dy
solves the forward equation (7.60) with initial condition p(x, 0) = f(x), where p(x, t; y)
is given by (7.80), for any initial function such that

f(x)
m(x) =

∞∑
n=0

bnQn(x) (7.81)

where the series converges uniformly on compact sets. See [122, Theorem 3.3 and Re-
mark 3.5] for details.
Example 7.15. A type (1) Pearson di�usion has D(x) constant. Suppose that D(x) = 1,
and v(x) = −x. Then equation (7.69) becomes

m�(x)
m(x) = −x,

and it is easy to check that the normal density

m(x) = 1√2π e−x2/2
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is a solution to this equation. The eigenfunction equation (7.75) becomes

φ�� − xφ� + λφ = 0, (7.82)

The eigenfunctions are the Hermite polynomials Hn(x) and the corresponding eigen-
values are λn = n for n ≥ 0. The first three Hermite polynomials are H0 = 1, H1(x) = x,
H2(x) = x2 − 1. Check that each of these functions solves (7.82) with λ = n.

Remark 7.16. Sincewe always haveQ0(x) ≡ 1, and since λn > 0 for all n > 0, it follows
from (7.80) that p(x, t; y) → m(x) as t → ∞ for any y, i.e., the Pearson di�usion Xt
tends to the same steady state distributionm(x) regardless of the initial state X0 = y.
See [122, Theorems 4.6–4.8] for details.

Remark 7.17. The forward equation (7.60) can be derived from the backward equation
(7.66) using integration by parts. Since the Pearson di�usion Xt is a Markov process,
its transition densities satisfy the Chapman-Kolmogorov equation

p(x, t + s; y) = ∫p(x, s; z)p(z, t; y) dz (7.83)

which adds up the probabilities of all the paths that transition from X(0) = y to X(t +
s) = x through somepointX(t) = z in between (e.g., seeKarlin andTaylor [102, p. 286]).
Equation (7.83) canbe established by an argument similar to (3.29). Let p(x, t) = Tt f(x),
and use (7.83) to write

p(x, s + t) = TsTt f(x) = Tsp(x, t) = ∫p(x, s; y)p(y, t) dy
for all s, t > 0. Observe that

∂p(x, t + s)
∂t

= ∂p(x, t + s)
∂s

,

and assuming that the derivative can be taken inside the integral, arrive at

∂p(x, s + t)
∂t

= ∫ p(y, t)∂p(x, s; y)
∂s

dy.

Apply the backward equation (7.66) to get

∂p(x, s + t)
∂t

= ∫ p(y, t)[v(y)∂p(x, s; y)
∂y
+ D(y)∂

2p(x, s; y)
∂y2

] dy.
Integrate by parts twice to get

∂p(x, s + t)
∂t

= ∫( ∂2
∂y2
[D(y)p(y, t)] − ∂

∂y
[v(y)p(y, t)])p(x, s; y) dy,

assuming that the boundary terms vanish. Then let s → 0, and use the fact that
p(x, s; y) → δ(x − y) as s → 0 to get the forward equation

∂p(x, t)
∂t
= ∂2

∂x2
[D(x)u(x, t)] − ∂

∂x
[v(x)u(x, t)].

See [102, p. 219] and the details at the end of this section for more information.
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Remark 7.18. We saw in Section 1.1 that the di�usion equation (1.9) governs a Brow-
nian motion with drift, the scaling limit of a random walk Sn = W1 + ⋅ ⋅ ⋅ + Wn with
iid finite variance jumps. The forward equation (7.60) with parameters v(x) and D(x)
governs the scaling limit of a Markov process Xt = W1 + ⋅ ⋅ ⋅ + WN(t), where N(t) is a
standard Poisson process with E[N(t)] = t, and the jump distribution depends on the
current state: Given Xt = x, the next jump has mean v(x) and variance 2D(x). Then a
suitably normalized version of the Markov process Xt converges to the Pearson di�u-
sion with these coe�cients. See Barkai, Metzler and Klafter [22] and Kolokoltsov [109]
for additional details. In applications, this model is useful when the particle velocity
v(x) and dispersivity D(x) vary in space.

Details

A Pearson di�usion is a Markov process defined on the state space E = (a, b) ⊆ ℝ1,
where we allow infinite endpoints. The interval (a, b) is chosen so that D(x) > 0 for
x ∈ (a, b). AMarkov process on the state space E is a stochastic process on E with the
Markov property:

ℙ[Xt+s ∈ B|Xt = y, Xt1 = y1 . . . , Xtn = yn] = ℙ[Xt+s ∈ B|Xt = y]
for any Borel set B ⊆ E, s > 0, 0 < t1 < ⋅ ⋅ ⋅ < tn < t, and y, y1 , . . . , yn ∈ E. We say that
a Markov process Xt is time-homogeneous if

ℙ[Xt+s ∈ B|Xs = y] = ℙ[Xt ∈ B|X0 = y].
Then the Markov process has stationary increments. A Lévy process is one example of
a time-homogeneous Markov process, with independent increments.

The existence of a Markov process Xt on E whose backward semigroup has the
generator (7.71) follows from Ikeda and Watanabe [95, Theorem 6.1]. That theorem
proves the existence of a Markov process with generator (7.71), where v(x) and D(x)
are continuous functions of x. Further, when the coe�cients satisfy a local Lipschitz
condition, the Markov process is unique. The local Lipschitz condition holds for the
coe�cients (7.61), and the correspondingMarkov process is called a Pearson di�usion.
The proof of [95, Theorem 6.1] is based on the theory of stochastic di�erential equa-
tions. The process Xt is defined as the solution to the stochastic di�erential equation

dXt = v(Xt)dt + σ(Xt)dBt

where D(x) = σ2(x)/2 and Bt is a standard Brownianmotion, see [95] for more details.
The general solution to (7.67) can be obtained as in Karlin and Taylor [102, p. 221].

Multiply both sides of (7.68) by the integrating factor

s(x) = exp
{{{− x∫

a0

v(y)
D(y)dy
}}} ,
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where a0 is an arbitrary point in (a, b), and note that s�(x) = −v(x)s(x)/D(x). Then
(7.68) reduces to

d

dx
(s(x)D(x)m(x)) = C1s(x). (7.84)

Equation (7.84) is solved by another integration

m(x) = C1
S(x)

s(x)D(x) + C2
1

s(x)D(x) , (7.85)

where

S(x) =
x∫
a0

s(y)dy

is called the scale function of the di�usion. The constants C1 and C2 are chosen so
thatm(x) > 0 for x ∈ E, and ∫m(x)dx = 1. If a non-negative integrable solution of
equation (7.67) does not exist, the stationary density does not exist. If a non-negative
integrable solution of (7.67) exists, then it can be normalized so that it integrates to
one [102, p. 221]. If the distribution of X(0) has this density m(x), then X(t) has the
same density for all t > 0 (e.g., see [102, p. 220]). For Pearson di�usions, we choose
C1 = 0.

To prove that (7.80) is the transition density of a type (1–3) Pearson di�usion, use
[122, Remark 3.4] to see that any smooth function g(y) with compact support in E can
be written in the form (7.78), where the series converges uniformly on compact sets.
Since the indicator function of any compact interval B ∈ E can be approximated arbi-
trarily closely by such functions, it follows that

ℙ[g(Xt)|x0 = y] = ∫
x∈B

p(x, t; y)g(x) dx

for all such intervals. Then it follows that p(x, t; y) is the conditional density of Xt
given X0 = y. The Fubini argument in (7.79) can be justified using Lemma 7.28.

In Remark 7.17, we outlined the derivation of the forward equation from the back-
ward equation, following the brief discussion in [102, p. 219]. Here we provide some
additional detail. As discussed in [69, 70, 102], the backward equation plays a cen-
tral role in the theory of di�usion processes. Some analytical di�culties arise when
considering the forward equation. Suppose that f, g : E → ℝ are twice continuously
di�erentiable and have compact support in E. Then it is easy to check, using integra-
tion by parts, that∫[Lf(x)]g(x) dx = ∫ f(y)[Gg(y)] dy. That is, wehave ⟨Lf, g⟩ = ⟨f, Gg⟩
where the inner product ⟨f, g⟩ = ∫ f(x)g(x) dx. The derivation of Remark 7.17 also as-
sumed that the derivative can be passed through the integral. Since this does not al-
ways hold in general, the forward equation does not follow directly from the backward
equation without additional assumptions.

There are six types of Pearson di�usions, corresponding to six classes of solutions
to the ordinary di�erential equation (7.75). The solutions vary depending on the degree
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of polynomial D(x) in (7.61) (zero, one, or two) and, if D(x) has degree two, on the
discriminant of D(x) (zero, positive, or negative), see [11, 72]. These solution classes
also vary in terms of the spectrum of the operator G: The spectrum of a linear operator
A defined on a Banach space B is the set of complex numbers λ such that A − λI has
no bounded inverse. If B = ℝn and A is an n × n matrix, then the spectrum is the
set of eigenvalues of the matrix A. If B is a space of functions, and if Af = λf for
some f ̸= 0 in B, then f is an eigenfunction of A with eigenvalue λ, and λ belongs to
the spectrum of A. For the first three types of Pearson di�usions, the spectrum of the
operatorG is purely discrete, and the sequence of eigenvalues increases to infinity. For
the three remaining types of Pearson di�usions, the spectrum has a (possibly empty)
finite discrete part, and a continuous part called the essential spectrum. A complete
description of all six classes of Pearson di�usions is included below.

If the spectrum of the generator G is purely discrete, the Sturm-Liouville problem
(7.73) is solved by an infinite system of classical orthogonal polynomials {Qn}. This
system is calledorthonormal if c2n = 1 for all n in (7.76). Then this systemofpolynomials
forms an orthonormal basis for the space of functions L2(E,m(x) dx) consisting of all
Borel measurable functions f : E → ℝ such that ∫ |f(x)|2m(x)dx < ∞, with the inner
product ⟨f, g⟩m = ∫ f(x)g(x)m(x) dx. Any function g ∈ L2(E,m(x) dx) can be written
in the form (7.78) for some constants bn, where the series on the right hand side of
(7.78) converges in the L2 sense:∫ !!!!!!!!!!g(x) − N∑

n=0
bnQn(x)

!!!!!!!!!!2m(x) dx → 0 as N →∞.

The coe�cients in (7.78) are computed using the inner product: gn = ⟨g, Qn⟩m for all n.
Some additional technical conditions (see Szegő [212, pp. 245–248] and [186, p. 381])
are needed to assert that (7.78) holds point-wise.

Remark 7.19. In this remark, we catalog the six types of Pearson di�usions in terms
of their invariant densities, and their polynomial families of eigenfunctions. Types (1–
3) have a purely discrete spectrum, and types (4–6) have a mixture of discrete and
continuous spectrum.
(1) TheOrnstein-Uhlenbeck (OU) process is obtainedwhenD(x) in (7.61) is a constant.

The traditional parametrization for the process is

v(x) = −θ(x − μ), D(x) = θσ2 .

The convenience of this parametrization is in separating the distributional and
covariance parameters. For a stationary OU process, θ is a correlation function
parameter, and μ and σ are distribution parameters. The state space is E = ℝ1
and the stationary distribution is normal:

m(x) = 1

σ√2π exp [− (x − μ)2
2σ2
] , x ∈ ℝ. (7.86)
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When θ < 0, the process is transient. When θ > 0, the di�usion is a stationary OU
process when the initial distribution has density m(x). The eigenvalues of (−G)
are λn = θn, n ≥ 0. The corresponding eigenfunctions are Hermite polynomials.
The first three Hermite polynomials are H0 = 1, H1(x) = x, H2(x) = x2 − 1. The
Rodrigues formula

Hn(x) = (−1)n [m(x)]−1
dn

dxn
m(x), x ∈ ℝ, n = 0, 1, 2, . . .

can be used to compute the remaining polynomials.
(2) The Cox-Ingersoll-Ross (CIR) process is obtained when D(x) is a first degree poly-

nomial D(x) = d1x + d0. Wemay suppose d0 = 0 (after normalizing, which would
change a0 to a0 − a1d0/d1). If d1 > 0 then the process is a CIR (square root
Feller) di�usion on the state space E = (0,∞), see Cox, Ingersoll and Ross [52].
If d1 < 0, then the state space is E = (−∞, 0), where D(x) is positive. This case
can be reduced to the case d1 > 0 by a simple reparametrization. The traditional
parametrization of the CIR process is

v(x) = −θ (x − b
a
) , D(x) = θ

a
x.

The invariant density is gamma:

m(x) = ab

Γ(b) x
b−1e−ax x > 0. (7.87)

The eigenvalues are λn = θn, n ≥ 0. The orthogonal polynomials are the Laguerre
polynomials L(b−1)n (ax) for n = 0, 1, 2, . . . where

L
(γ)
n (x) =

1

n!
x−γex

dn

dxn
[xn+γe−x].

(3) The Jacobi di�usion process is obtainedwhen D(x) is a second degree polynomial
with positive discriminant. Suppose D(x) = d2(x − x1)(x − x2), and d2 < 0. The
state space is E = (x1 , x2) with x1 < x2. After rescaling we may assume d2 = −1,
and after a linear change of variables x̃ = 2x − (x1 + x2)/(x2 − x1), we can take

v(x) = −(a + b + 2)x + b − a, D(x) = 1 − x2 .

In the recurrent case a, b > −1, we obtain the Beta density:

m(x) = (1 − x)a(1 + x)b Γ(a + b + 2)
Γ(b + 1)Γ(a + 1)2a+b+1

, x ∈ (−1, 1). (7.88)

The eigenvalues are λn = n(n + a + b + 1), n ≥ 0. The orthogonal polynomials are
Jacobi polynomials given by the formula:

2nn!P
(a,b)
n (x) = (−1)n(1 − x)−a(1 + x)−b

dn

dxn
{(1 − x)a+n(1 + x)b+n} .
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(4) The Student di�usion process is obtained when D(x) is a second degree polyno-
mial with negative discriminant, and d2 > 0. The state space is E = ℝ, and the
traditional parametrization is

v(x) = −θ(x − μ), D(x) = θa [(x − μ�)2 + δ2]
The invariant density is

m(x) = c(μ, μ� , a, δ)
exp [(μ − μ�

aδ
)Arctan( x − μ�

δ
)]

[1 + ( x − μ�
δ
)2]1+1/(2a) ,

where x ∈ ℝ, 1 + 1/(2a) > 1/2, and

c(μ, μ� , a, δ) =
Γ (1 + 1

2a
)

δ√π Γ (1
2
+ 1

2a
) ∞∏k=0[[[[[1 +(

μ − μ�
2aδ

1 + 1

2a
+ k
)2]]]]]
−1

.

Note that in the symmetric case (μ = μ�) the density function is

m(x) = c(μ, a, δ) 1[1 + ( x − μ
δ
)2]1+1/(2a) , x ∈ ℝ.

In the classical parametrization for the Student distribution, with degrees of free-
dom ν = 1 + (1/a), this reduces to

m(x) =
Γ ( ν + 1

2
)

δ√π Γ ( ν
2
) 1[1 + ( x − μ

δ
)2](ν+1)/2 , x ∈ ℝ.

Only a finite number of central moments of the invariant distribution exist; the
nth central moment exists if n < ν. Also, the invariant density has heavy tails that
decrease like |x|−(1+ν).
In this case, there are only finitely many simple eigenvalues in [0, Λ], where Λ =
θν2/(4(ν − 1)), ν > 1, and the absolutely continuous spectrum of multiplicity two
is in (Λ,∞), see Leonenko and Šuvak [121]. The simple eigenvalues are

λn =
θ

ν − 1n(ν − n), 0 ≤ n ≤ ⌊ ν2⌋ .
The orthogonal polynomials are generalized Romanovski polynomials given by
the Rodrigues formula:

R0(x) = 1,

Rn(x) = δn [1 + ( x − μ
δ
)2](ν+1)/2 dn

dxn
[1 + ( x − μ

δ
)2]n−(ν+1)/2

n = 1, . . . , ⌊ ν
2
⌋ .
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(5) The reciprocal gamma di�usion is obtained in the case of zero discriminant, with
the polynomial D(x) proportional to x2 (after a change of variables). The coe�-
cients are

v(x) = −θ (x − a

b − 1) , D(x) = θ

b − 1 x
2,

where θ > 0, a > 0, b > 1. The invariant density is the inverse gamma:

m(x) = ab

Γ(b) x
−b−1e−a/x, x > 0.

This is a heavy tailed di�usion, whose moments of order n exist only for n < b.
The discrete part of the spectrum of (−G) consists of finitely many eigenvalues
given by

λn =
nθ(b − n)
b − 1 , 0 ≤ n ≤ ⌊b

2
⌋ .

These eigenvalues lie within [0, Λ] , and the continuous part of the spectrum has
multiplicity one and lies inside (Λ,∞), see Leonenko and Šuvak [120], where the
cut-o�

Λ = θb2

4(b − 1) .

The orthogonal polynomials in the point spectrum case are generalized Bessel
polynomials:

B̃0(x) = 1,

B̃n(x) = xb+1e(a/x)
dn

dxn
[x2n−(b+1)e−(a/x)] , n ∈ {1, . . . , ⌊b

2
⌋} , b > 1.

(6) The Fisher-Snedecor di�usion is obtained when D(x) is a second degree polyno-
mial with positive discriminant. After transformations, we can assume that the
first root of D(x) is negative, and the second is zero, so the state space is E =
(0,∞). The coe�cients are

v(x) = −θ (x − b

b − 2) , D(x) = θ

a(b − 2) x(ax + b)

where the parameters a ≥ 2, b > 2, and θ > 0. The invariant density is the density
of F-distribution (also known as Fisher-Snedecor distribution):

m(x) = x(a/2)−1(ax + b)−(a+b)/2
a−(a/2)b−b/2B (a/2, b/2)

, x > 0,

where B is the beta function

B(a, b) =
1∫
0

xa−1(1 − x)b−1dx = Γ(a)Γ(b)
Γ(a + b) , a > 0, b > 0.
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This is another heavy-tailed di�usion. The moments of order 2n exist when 2n <
b. Only finitely many discrete eigenvalues exist, and they are given by the formula

λn =
θ

b − 2n(b − 2n), 0 ≤ n ≤ ⌊b
4
⌋ , b > 2.

The cut-o� for the discrete spectrum is

Λ = θb2

8(b − 2) , b > 2,

so that the essential spectrum lies in (Λ,∞). The essential spectrumhasmultiplic-
ity one, see Avram, Leonenko and Šuvak [10]. The orthogonal polynomials have
no common name in this case; in [10] they are called Fisher-Snedecor polynomi-
als since they are orthogonal with respect to the Fisher-Snedecor density. These
polynomials {F̃n(x), n = 0, 1, . . . , ⌊b/4⌋} are given by the Rodrigues formula:

F̃0(x) = 1,

F̃n(x) = x1−(a/2)(ax + b)(a+b)/2
dn

dxn
[2nx(a/2)+n−1(ax + b)n−(a+b)/2] ,

n ∈ {1, . . . , ⌊b
4
⌋} .

Remark 7.20. The heavy tailed Pearson di�usions (4–6) have only a finite number
N of orthogonal polynomials, because only a finite number of moments exist for the
invariant distribution. SinceQn(x) is the polynomial of degree n, Q2

n(x) has degree 2n.
For case (4), moments of order 2n exists only for 2n < ν, so N = ⌊ν/2⌋. For case (5),
these moments exists only for 2n < b, so N = ⌊b/2⌋. For case (6), moments of order
2n < b/2 exist, so that N = ⌊b/4⌋.

Proposition 7.21. For the Pearson di�usions (1–3) the series

p(x, t; y) = m(x)
∞∑
n=0

e−λn tQn(y)Qn(x), (7.89)

where {Qn, n ≥ 0} are Hermite, Laguerre or Jacobi polynomials, converges for fixed
t > 0, x, y ∈ E. Equation (7.89) can be di�erentiated term by term on any finite intervals

t ∈ [t1 , t2], 0 < t1 < t2, x, y ∈ [x1, x2] ⊂ E, and hence the function p(x, t; y) in (7.89)
satisfies the backward and forward equations (7.70) and (7.60).

Proof. Recall that the eigenvalues are λn = θn in theHermite and Laguerre cases (1–2),
and λn = n(n + a + b +1) in the Jacobi case (3). In the rest of the proof, we will assume
without loss of generality that μ = 0 and σ = 1 in the OU case (1), and a = 1 in the CIR
case (2).

The orthonormal Hermite polynomials

H̄n(x) = Hn(x)/ ‖Hn(x)‖ =
1√n! Hn(x), n = 0, 1, 2, .....
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satisfy (7.76) with Qn = H̄n and c2n = 1 for all n. For orthonormal Hermite polynomials
(e.g., see Sansone [186, p. 369])

H̄n(x) ≤ Kex
2/4n−1/4(1 + |x/√2|5/2), (7.90)

where K is a constant that does not depend on x.
To make the system of Laguerre polynomials orthonormal, we use the fact that

∞∫
0

|L(b−1)n (x)|2xb−1e−xdx =
Γ(b + n)
n!

.

The orthonormal system of polynomials in this case is given by

L̄
(b−1)
n (x) =

L
(b−1)
n (ax)√Γ(b + n)/(Γ(b)n!) .

For orthonormal Laguerre polynomials [186, p. 348]

L̄
(b−1)
n (x) = O( ex/2

x(2b−1)/4
n−1/4) , (7.91)

uniformly for x in finite intervals [x1 , x2].
Finally, for Jacobi polynomials using the fact that

1∫
−1

(P(a,b)n (x))2(1 − x)a(1 + x)bdx = c2n =
2a+b+1

2n + a + b + 1
Γ(n + a + 1)Γ(n + b + 1)
Γ(n + 1)Γ(n + a + b + 1) ,

we obtain the orthonormal system

P̄
(a,b)
n (x) =

P
(a,b)
n (x)
cn

. (7.92)

From [212, p. 196] we have

P̄
(a,b)
n (x) = C(x, a, b) cos(Nθ + γ) + O(n−1), (7.93)

where x = cos θ, N = n + 1/2(a + b + 1), and γ = −(a + 1/2)π/2.
Convergence of the series (7.89) for fixed x, y ∈ E and t > 0 follows from the above

relations. Specifically, in the Hermite case,

|e−λn tQn(y)Qn(x)| ≤
C(x, y)e−nθt

n1/2
.

In the Laguerre case,

|e−λn tQn(y)Qn(x)| ≤
C(x, y)e−nθt

n1/2
.

In the Jacobi case
|e−λn tQn(y)Qn(x)| ≤ C(x, y)e−n(n+a+b+1)t.
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Above and later in the proof, we use notation C(x, y) for constants not all equal but
not dependent on n. These constants may also depend on the parameters of the dis-
tributions (i.e., the coe�cients v(x) and D(x) in (7.61)).

Now we show that the series in (7.89) can be di�erentiated term by term, and in
view of standard results in analysis (e.g., see Rudin [181, Theorem 7.16, p. 151; Theo-
rem 7.17, p. 152]) this would follow from absolute and uniform convergence on finite
intervals of the series that involve the derivatives:

∞∑
n=0

∂

∂t
e−λn tQn(y)Qn(x),

∞∑
n=0

e−λn tQ�n(y)Qn(x),

∞∑
n=0

e−λn tQ��n (y)Qn(x).

For the derivative with respect to t, we have!!!!!!!! ∂∂t e−λn tQn(y)Qn(x)!!!!!!!! ≤ C(x, y)θn1/2e−nθt
for the Hermite and Laguerre cases, and for the Jacobi case!!!!!!!! ∂∂t e−λn tQn(y)Qn(x)!!!!!!!! ≤ C(x, y)n(n + a + b + 1)e−n(n+a+b+1)t.
The terms on the right hand side of the two inequalities above form series that con-
verge uniformly for t ∈ [t1, t2] , x, y ∈ [x1, x2] ⊂ E. For the derivatives with respect to
y, we use the properties ofHermite, Laguerre, and Jacobi polynomials. For theHermite
series involving derivatives in y, we use the relation (e.g., see Abramowitz and Stegun
[3, p. 783]):

d

dx
Hn(x) = nHn−1(x).

For orthonormal Hermite polynomials,

d

dx
H̄n(x) =

n√n!Hn−1(x) = √nH̄n−1(x),
and so in this case !!!!!e−λn tQ�n(y)Qn(x)!!!!! ≤ C(x, y)e−nθt ( n

n − 1)1/4 .
For the second derivative in space, use the di�erential equation (7.75):

H��n (y) = yH�n(y) − nHn(y).

The series involving the first derivative in space was treated above, and for the second
term !!!!!e−λn tnH̄n(y)H̄n(x)!!!!! ≤ C(x, y)e−nθt√n,
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and this upper bound leads to the series that converge uniformly for t ∈ [t1 , t2].
For Laguerre polynomials (e.g., see Szegő [212, p. 102 ])

d

dx
L
(b−1)
n (x) = −L(b)n−1(x),

and for orthonormal Laguerre polynomials

d

dx
L̄
(b−1)
n (x) = −

(n − 1)b/2
n(b−1)/2

L̄
(b)
n−1(x).

The last quantity behaves like C(x, b)n1/4 uniformly on finite intervals (see Sansone
[186, p. 348]). Therefore in this case!!!!!e−λn tQ�n(y)Qn(x)!!!!! ≤ C(x, y)e−nθt
and the rest of the argument for the series involving the first derivative in space is
the same as for Hermite polynomials. The same argument also applies to the second
derivative in space because, for Laguerre polynomials, equation (7.75) has the form

y
d2

dy2
L
(b−1)
n = (y − b) d

dy
L
(b−1)
n (y) − nL(b−1)n (y).

For Jacobi polynomials,

(2n + a + b)(1 − x2) d
dx
P
(a,b)
n (x) = n(a − b − (2n + a + b)x)P(a,b)n (x)+

2(n + a)(n + b)P(a,b)n−1 (x)
and for orthonormal Jacobi polynomials

d

dx
P̄
(a,b)
n (x) =

n(a − b − (2n + a + b)x)
(2n + a + b)(1 − x2) P̄

(a,b)
n (x)

+ 2(n + a)(n + b)
(2n + a + b)(1 − x2)

√n/(n − 1)P̄(a,b)n−1 (x).

The first term in the last relation leads to the series∑
n

ne−λn t P̄(a,b)n (y)P̄(a,b)n (x)

that converges because it is dominated by the absolutely convergent series

C(x, y)∑
n

ne−n(n+a+b+1)t.

The second term in the expression for the derivative of the normalized Jacobi polyno-
mial behaves in the same way as the first, and finally, the expression for the second
derivative from (7.75) is

(1 − y2) d
2

dy2
P
(a,b)
n (y) = −((b − a) − (a + b − 2)y)

d

dy
P
(a,b)
n (y)

− n(n + a + b + 1)P(a,b)n (y).
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The termwith thefirst derivativewas treated above. The second term leads to the series∑
n

e−λn tn(n + a + b + 1)P̄(a,b)n (y)P̄(a,b)n (x)

which is dominated by the series C(x, y)∑n n2e−n(n+a+b+1)t. This completes the proof
of term by term di�erentiation of (7.89).

It remains to note that each term of the series in (7.89) satisfies the backward and
forward equations. For the backward equation, with operator G acting on y,

Gm(x) e−λn tQn(y)Qn(x) = −λnm(x) e−λn tQn(y)Qn(x) =
∂

∂t
m(x) e−λn tQn(y)Qn(x),

sinceQn(y) is an eigenfunctionof (−G)with the eigenvalue λn . For the forward (Fokker-
Planck) equation, the left hand side is

∂

∂t
[m(x) e−λn tQn(y)Qn(x)] = −λnm(x) e−λn tQn(y)Qn(x).

For the right-hand side, use the fact that m(x) satisfies time-independent Fokker-
Planck equation, and therefore

1

2

d2

dx2
[σ2(x)m(x)]e−λn tQn(y)Qn(x) − d

dx
[μ(x)m(x)]e−λn tQn(y)Qn(x) = 0.

Then the right-hand side of the equation is

1

2

∂2

∂x2
[σ2(x)m(x)e−λn tQn(y)Qn(x)] − ∂

∂x
[μ(x)m(x)e−λn tQn(y)Qn(x)]

= 1
2
σ2(x)m(x) e−λn tQn(y)Q��n (x) +

d

dx
[σ2(x)m(x)]e−λn tQn(y)Q�n(x)

+ 1
2

d2

dx2
[σ2(x)m(x)]e−λn tQn(y)Qn(x)

− d
dx
[μ(x)m(x)]e−λn tQn(y)Qn(x) − μ(x)m(x) e−λn tQn(y)Q�n(x)

= 1
2
σ2(x)m(x) e−λn tQn(y)Q��n (x) +

d

dx
[σ2(x)m(x)]e−λn tQn(y)Q�n(x)

− μ(x)m(x) e−λn tQn(y)Q�n(x). (7.94)

Using the fact thatm(x) satisfies (7.68) with C1 = 0, i.e,
d

dx
[σ2(x)m(x)] = 2m(x) μ(x),

equation (7.94) reduces to

1

2
σ2(x)m(x) e−λn tQn(y)Q��n (x) + 2m(x) μ(x)e−λn tQn(y)Q�n(x)

− μ(x)m(x) e−λn tQn(y)Q�n(x)

= 1
2
σ2(x)m(x) e−λn tQn(y)Q��n (x) − m(x) μ(x)e−λn tQn(y)Q�n(x)

=m(x) e−λn tQn(y)[GQn(x)] = −λnm(x) e−λn tQn(y)Qn(x)
which finishes the proof.
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Remark 7.22. As discussed in Feller [69], it follows from Proposition 7.21 that the so-
lutions of Cauchy problems for the forward equation (7.63) and the backward equation
(7.66) are given by

T∗t f(x) = ∫p(x, t; y)f(y) dy
and

Tt f(x) = ∫p(x, t; y)g(x) dx
respectively, where the transition density p(x, t; y) is given by (7.89).

7.7 Fractional Pearson di�usions

The time-fractional di�usion equation with constant coe�cients

∂
β
t p(x, t) = −

∂

∂x
[vp(x, t)] + ∂2

∂x2
[Dp(x, t)] (7.95)

from (4.52) governs the scaling limit of a CTRW with finite variance jumps and power
law waiting times, see Remark 4.23. The CTRW scaling limit process A�(Et) whose
probability densities p(x, t) solve this time-fractional di�usion equation is a Brown-
ian motion with drift, where the time variable t has been replaced by an independent
inverse stable subordinator Et. In this section, we allow the coe�cients of the time-
fractional forward equation (7.95) to vary in space, thereby extending the results of Sec-
tion 7.6 to the case of a time-fractional derivative. First we consider a time-fractional
backward equation

∂
β
t p = Gp(y, t) = v(y)

∂

∂y
p(y, t) + D(y) ∂

2

∂y2
p(y, t) (7.96)

with initial condition p(y, 0) = g(y). Note that x is a constant in this equation. The
Caputo fractional derivative ∂βt of order 0 < β ≤ 1 in (7.96) is defined by (2.33). Equa-
tion (7.96) is the time-fractional analog of the backward equation (7.66) considered in
Section 7.6.

The fractional backward equation (7.96) governs a stochastic process that is not
Markovian. Let Dt be a standard stable subordinator with Laplace transform

E[e−sDt ] = exp{−tsβ}, s ≥ 0. (7.97)

As in Section 2.3, we define the inverse (hitting time, first passage time) process

Et = inf{x > 0 : Dx > t}. (7.98)

Let X1(t) be a Pearson di�usion whose transition densities p1(x, t; y) solve the back-
ward Kolmogorov (7.66) and forward Fokker-Planck equation (7.60) with the point
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source initial condition p1(x, 0; y) = δ(x − y). Define the fractional Pearson di�usion
process

Xβ(t) = X1(Et), t ≥ 0. (7.99)

Since Et rests for periods of time whose distribution is not exponential, Xβ(t) is not a
Markov process.

Given a C0 semigroup Tt on someBanach spaceB, Theorem 3.16 shows that q(t) =
Tt f solves the Cauchy problem

d

dt
q = Lq; q(0) = f (7.100)

for any f ∈ Dom(L). If we replace the first derivative d/dt in (7.100) by a Caputo frac-
tional derivative of order 0 < β < 1, we obtain the fractional Cauchy problem

∂
β
t p = Lp; p(0) = f. (7.101)

Then a general result on semigroups, Baeumer and Meerschaert [18, Theorem 3.1],
shows that

p(t) = St f =
∞∫
0

T(t/r)β f gβ(r) dr (7.102)

solves the fractional Cauchy problem (7.101) for any f ∈ Dom(L). Here gβ(r) is the prob-
ability density function of a standard stable subordinator D1 with Laplace transform
(7.97). A simple change of variable u = (t/r)β in (7.102) leads to an equivalent form

St f =
∞∫
0

Tu f
t

β
u−1−1/βgβ(tu−1/β) du. (7.103)

Themain ideas behind the proof of [18, Theorem 3.1] were illustrated in the derivation
of (4.48). In particular, using equation (4.47) we can see that

St f =
∞∫
0

Tu f h(u, t) du (7.104)

where h(u, t) is the pdf of the inverse stable subordinator (7.98).

Remark 7.23. Themathematical study of fractional Cauchyproblemswas initiated by
Kochubei [105, 106] and Schneider and Wyss [192]. Fractional Cauchy problems were
also invented independently by Zaslavsky [222] as amodel for Hamiltonian chaos, see
also Saichev and Zaslavsky [183].

Now we apply (7.104) to the time-fractional backward equation (7.96) of a Pearson dif-
fusion. Proposition 7.27, in the details at the end of this section, shows that

T∗t g(y) = E[g(X1(t))|X1(0) = y]
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is a C0 semigroup, and then it follows from Theorem 3.16 that

q(y, t) = T∗t g(y) = E[g(X1(t))|X1(0) = y] = ∫p1(x, t; y)g(x)dx
solves the Cauchy problem

∂q

∂t
= Gq, q(y, 0) = g(y) (7.105)

for any g ∈ Dom(G), where the transition density p1(x, t; y) is given by (7.80). Then
(7.104) implies that

p(y, t) = Stg(y) =
∞∫
0

Tug(y) h(u, t) du (7.106)

solves the fractional Cauchy problem (7.96) for any g ∈ Dom(G). Now write

Stg(y) =
∞∫
0

Tug(y) h(u, t) du

=
∞∫
0

E[g(X1(u))|X1(0) = y] h(u, t) du

= E[g(X1(Et))|X1(0) = y]
= E[g(Xβ(t))|Xβ(0) = y] (7.107)

since E0 = 0 almost surely. This shows that the fractional Pearson di�usion Xβ(t) =
X1(Et) is governed by the time-fractional backward equation (7.96).

We will say that the non-Markovian Pearson di�usion process Xβ(t) has a transi-
tion density pβ(x, t; y) if

ℙ[Xβ(t) ∈ B|Xβ(0) = y] = ∫
B

pβ(x, t; y) dx

for any Borel subset B of the state space E. That is, the transition density is the condi-
tional probability density of Xβ(t), given Xβ(0) = y. Since p1(x, t; y) is the transition
density of the Pearson di�usion X1(t), a simple conditioning argument shows that the
transition density of the fractional Pearson di�usion X1(Et) is

pβ(x, t; y) =
∞∫
0

p1(x, u; y)h(u, t) du (7.108)

where h(u, t) is the pdf (4.47) of the inverse stable subordinator (7.98). Then we can
write (7.107) in the form

Stg(y) = E[g(Xα(t))|X0 = y] = ∫pβ(x, t; y)g(x) dx. (7.109)
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The transitiondensitypβ(x, t; y), alongwith the initial distributionof the randomvari-
able Xβ(0) = X1(0), determine the distribution of Xβ(t) for any single t > 0.

An explicit formula for the transition density (7.108) can be obtained by separa-
tion of variables. Here we sketch the argument. For complete details, see Leonenko,
Meerschaert and Sikorskii [122, Theorem 3.2]. Suppose that p(y, t) = S(t)φ(y) solves
the fractional backward equation (7.96), where the functions S and φ may depend on
x and β. Write

∂
β
t S(t)φ(y) = S(t)Gφ(y) or

1

S(t) ∂
β
t S(t) =

Gφ(y)
φ(y) .

Set both sides equal to a constant to obtain the Sturm-Liouville equation Gφ = −λφ
and the fractional time equation

∂
β
t S(t) = −λS(t). (7.110)

Recall from Section 2.3 that solutions to equation (7.110) have the form

S(t) = Eβ (−λtβ) = ∞∑
j=0

(−λtβ)j
Γ(1 + βj) (7.111)

for any λ > 0, where S(0) = 1, and Eβ(⋅) is the Mittag-Le�er function (2.29). For Pear-
son di�usions of type (1–3), the Sturm-Liouville equation has polynomial solutions
GQn(x) = −λnQn(x) for all n, where 0 = λ0 < λ1 < λ2 < ⋅ ⋅ ⋅ and λn → ∞. For each n,
we also have that

∂
β
t Sn(t) = −λnSn(t)

where the Mittag-Le�er eigenfunctions Sn(t) = Eβ(−λn tβ) solve the fractional time
equation. Then p(y, t) = Eβ(−λn tβ)Qn(y) solves the time-fractional backward equa-
tion (7.96) with initial condition p(y, 0) = Qn(y). Since any finite linear combination of
functions of this form will also solve the backward equation, is it reasonable to con-
sider the infinite sum

p(y, t) =
∞∑
n=0

bnEβ(−λn tβ)Qn(y). (7.112)

If g(y) is a function such that (7.78) holds, where the series converges uniformly on
compact intervals y ∈ [c, d], then the Caputo fractional derivative and the generator
G can be applied to the series (7.77) term-by-term, so that the function p(y, t) in (7.112)
solves (7.96). If the polynomials Qn are normalized so that c2n = 1 for all n in (7.76),
then (7.112) solves the backwardequation (7.70) with the initial condition p(y, 0) = g(y)
given by (7.78).
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Equating (7.109) to (7.112) we see that

p(y, t) = Stg(y) =
∞∑
n=0

bne
−λn tQn(y)

=
∞∑
n=0
(∫ g(x)Qn(x)m(x) dx) Eβ(−λn tβ)Qn(y)

= ∫(m(x) ∞∑
n=0

Eβ(−λn tβ)Qn(x)Qn(y)) g(x) dx.
It follows that the transition density of the fractional Pearson di�usion is

pβ(x, t; y) =m(x)
∞∑
n=0

Eβ (−λn tβ)Qn(x)Qn(y). (7.113)

Since we always have Q0(x) ≡ 1, and since λn > 0 for all n > 0, it follows from (7.113)
that pβ(x, t; y) → m(x) as t →∞ for any y, i.e., the fractional Pearson di�usion Xβ(t)
tends to the same steady state distributionm(x) regardless of the initial state Xβ(0) =
y. See [122] for complete details.

A very similar separation of variables argument shows that

Tt f(x) = ∫(m(x) ∞∑
n=0

Eβ(−λn tβ)Qn(x)Qn(y)) f(y) dy
solves the time-fractional forward equation (7.60) with initial condition p(x, 0) = f(x),
for any initial function such that (7.81)holdsuniformlyoncompact intervals x ∈ [c, d].
See [122, Theorem 3.3] for details.

Remark 7.24. If β = 1, then (7.113) becomes

p1(x, t; y) =m(x)
∞∑
n=0

e−λn tQn(x)Qn(y),

which agrees with (7.89).

Remark 7.25. The transition density (7.108) for a fractional Pearson di�usion Xβ(t) of
type (1–3) can also be obtained by a di�erent argument. Use (7.80) to write

p1(x, t; y) =m(x)
∞∑
n=0

e−λn tQn(x)Qn(y) (7.114)

Bingham [38] and Bondesson, Kristiansen, and Steutel [40] show that the inverse sta-
ble subordinator Et has a Mittag-Le�er distribution with

E[e−sEt] = ∞∫
0

e−suh(u, t) du = Eβ(−stβ). (7.115)
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Write

Stg(y) =
∞∫
0

Tug(y) h(u, t) du

=
∞∫
0

(∫p1(x, u; y)g(x) dx) h(u, t) du
=
∞∫
0

(∫m(x) ∞∑
n=0

e−λnuQn(x)Qn(y)g(x) dx) h(u, t) du
= ∫m(x) ∞∑

n=0
(∞∫

0

e−λnu h(u, t) du) Qn(x)Qn(y)g(x) dx
=∫(m(x) ∞∑

n=0
Eβ(−stβ)Qn(x)Qn(y)) g(x) dx. (7.116)

It follows that (7.108) is the transition density of Xβ(t). See [122, Lemma 4.1] for com-
plete details.

Remark 7.26. For more on the connection between Lévy-type Markov processes,
semigroups, and generators, see for example Schilling [191]. When the Lévy char-
acteristics [a, Q, ϕ] in (6.21) vary with x, the resulting generator is called a pseudo-
di�erential operator, see Jacob [96].

Details

The backward semigroup (7.65) can be defined on the Banach space C0(E) of bounded
continuous real-valued functions on E, such that the limits

A = lim
x↓a

f(x) and B = lim
x↑b

f(x)

exist, with A = 0 if a = −∞, and B = 0 if b = +∞, with the supremum norm. The
semigroup property T∗t T

∗
s = T∗t+s follows from the Chapman-Kolmogorov equation

(7.83). The backward semigroup is bounded, and in fact ‖T∗t f‖ ≤ ‖f‖ for all f ∈ C0(E)
and all t ≥ 0: We say that {T∗t } is a contraction semigroup. In the terminology of Rogers
andWilliams [176, Definition 6.5, p. 241], this is also called a Feller-Dynkin semigroup.

Proposition 7.27. The backward semigroup defined in (7.65), where p(x, t; y) is the
transition density (7.80) of the Pearson di�usion process with di�usion coe�cients v(x)
and D(x) defined in (7.61), is strongly continuous on C0(E). That is, ‖T∗t g − g‖→ 0 in the

supremum norm as t → 0 for any g ∈ C0(E).
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Proof. In view of Friedman [73, Theorem 3.4, p. 112], the operators {T∗t : t ≥ 0} form a
uniformly bounded semigroup on C0(E). In addition, for any fixed y ∈ E we have

T∗t g(y) − g(y) = ∫p(x, t; y)(g(x) − g(y))dx
= ∫
|x−y|≤ε

p(x, t; y)(g(x) − g(y))dx

+ ∫
|x−y|>ε

p(x, t; y)(g(x) − g(y))dx

≤ sup
|x−y|≤ε
|g(x) − g(y)| ∫

|x−y|≤ε

p(x, t; y)dx

+ C ∫
|x−y|>ε

p(x, t; y)dx,

where C = supx, y |g(x) − g(y)| is finite since function g is bounded. It follows from the
form of the generator of the semigroup {T∗t } that∫

|x−y|>ε

p(x, t; y)dx → 0

as t → 0 for any ε > 0 (see Feller [70]), therefore the second term in the above expres-
sion tends to zero as t → 0. The first term is bounded by

sup
|x−y|≤ε
|g(x) − g(y)|,

which tends to zero as ε → 0. This proves point-wise continuity of the semigroup: For
every fixed y, T∗t g(y) → g(y) as t → 0. Then Rogers and Williams [176, Lemma 6.7, p.
241] yields strong continuity of the semigroup: ‖T∗t g − g‖→ 0 as t → 0 in the Banach
space (supremum) norm.

Toprove that (7.113) is the transitiondensity of a type (1–3) fractional Pearsondi�usion,
use [122, Remark 3.4] to see that any smooth function g(y) with compact support in E
can be written in the form (7.78), where the series converges uniformly on compact
sets. Since the indicator function of any compact interval B ∈ E can be approximated
arbitrarily closely by such functions, it follows that

ℙ[g(Xt)|x0 = y] = ∫
x∈B

p(x, t; y)g(x) dx

for all such intervals. Then it follows that p(x, t; y) is the conditional density of Xt,
given X0 = y. The Fubini argument in (7.79) can be justified using Lemma 7.28.
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Lemma 7.28. For the three classes of fractional Pearson di�usions with discrete spec-

trum (OU, CIR, Jacobi) and 0 < β ≤ 1, The series

pβ(x, t; y) =m(x)
∞∑
n=0

Eβ (−λn tβ)Qn(y)Qn(x) (7.117)

converges for fixed t > 0, x, y ∈ E.

Proof. For a Mittag-Le�er function with 0 < β < 1 (see Mainardi and Gorenflo [129,
Eq. (5.26)])

Eβ(−λn tβ) ∼
1

Γ(1 − β)λn tβ

as the argument λn tβ →∞. The eigenvalues are λn = θn in the Hermite and Laguerre
cases, and λn = n(n + a + b + 1) in the Jacobi case. In the rest of the proof, we will
assume without loss of generality that μ = 0 and σ = 1 in the OU case, and a = 1 in
the CIR case. For orthonormal Hermite polynomials (Sansone [186], p. 369)

H̄n(x) ≤ Kex
2/4n−1/4(1 + |x/√2|5/2),

where K is a constant that does not depend on x.
For orthonormal Laguerre polynomials ([186], p. 348)

L̄
(b−1)
n (x) = O( ex/2

x(2b−1)/4
n−1/4) ,

uniformly for x in finite intervals [x1, x2].
For orthonormal Jacobi polynomials

P̄
(a,b)
n (x) = C(x, a, b) cos(Nθ + γ) + O(n−1),

where x = cos θ, N = n + 1/2(a + b + 1), and γ = −(a + 1/2)π/2.
Convergence of the series (7.117) for fixed x, y, t follows from the above relations.

Specifically, in the Hermite case,

|Eβ (−λn tβ)Qn(y)Qn(x)| ≤ C(x, y, t, β)
n1+1/2

.

In the Laguerre case,

|Eβ (−λn tβ)Qn(y)Qn(x)| ≤ C(x, y, t, β)
n1+1/2

.

In the Jacobi case

|Eβ (−λn tβ)Qn(y)Qn(x)| ≤ C(x, y, t, β) cos(Nθ + γ)
n2

.

When β = 1, we have Eβ(−λn tβ) = e−λn t, and the proof is similar.
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7.8 Correlation structure of fractional processes

In many applications [49, 204, 97], it is useful to compute second order properties of
the process used to model a particular phenomenon. In this section we develop ex-
plicit computational formulae for the correlation function of fractional Pearson di�u-
sions discussed in Section 7.7 and time changed Lévy processes such as the fractional
Poisson process discussed in Section 7.1. A time changed Lévy process can also arise
as the limit of CTRWconsidered in Chapter 4.We show that the random time change in
Pearson di�usions and in Lèvy process, using the inverse of the standard stable sub-
ordinator, introduces a long-range dependence in the corresponding fractional pro-
cesses.

The consideration of the correlation function is premised on the existence of the
second moment, and only processes with finite second moment are considered in
this section. For three Pearson di�usions with purely discrete spectrum (Ornstein-
Uhlenbeck, Cox-Ingersol-Ross, and Jacobi) all moments exist. The conditions for the
existence of moments for three heavy-tailed Pearson di�usions are in Remark 7.20.

If the time-homogeneous Markov process X1(t) is in steady state, then its proba-
bility densitym(x) stays the same over all time. The stationary Pearson di�usion has
correlation function

corr[X1(t), X1(t + s)] = exp(−θs), t ≥ 0, s ≥ 0, (7.118)

where the correlation parameter θ = λ1 is the smallest positive eigenvalue of the back-
ward generator [122, 117]. Thus the Pearsondi�usion exhibits short range dependence,
meaning that the correlation function falls o� rapidly (exponentially in this case), so
that it is integrable at infinity.

Recall that the fractional Pearson di�usion was defined in Section 7.7 as Xβ(t) =
X1(Et), where Et is the inverse or first passage time

Et = inf{u > 0 : D(u) > t}

of the standard β-stable stable subordinator D(u) with

E[e−sD(u)] = e−usβ .
We will say that a fractional Pearson di�usion is in steady state if it starts with

the distribution m(x). The fractional Pearson di�usion in steady state is first order
stationary, i.e., Xβ(t) has the same probability density m(x) for all t > 0. Indeed, in
view of [18, Theorem 3.1]

∞∫
0

m(x)ft(u) du = m(x),

where ft is the density of Et. Thus the fractional Pearson di�usion in steady state has
mean E[Xβ](t) = E[X1(t)] = m1 and variance Var[Xβ(t)] = Var[X1(t)] = m2

2 which do
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not vary over time. Thenext result gives anexplicit formula for the correlation function
of a fractional Pearson di�usion in steady state.

Theorem 7.29. Suppose that X1(t) is a Pearson di�usion in steady state, so that its

correlation function is givenby (7.118). Then the correlation functionof the corresponding
fractional Pearson di�usion Xβ(t) is given by

corr[Xβ(t), Xβ(s)] = Eβ(−θtβ) +
θβtβ

Γ(1 + β)

s/t∫
0

Eβ(−θtβ(1 − z)β)
z1−β

dz (7.119)

for t ≥ s > 0, where Eβ(z) is the Mittag-Le�er function.

See details at the end of this section for proof.

Remark 7.30. When t = s, it must be true that corr[Xβ(t), Xβ(s)] = 1. To see that this
follows from (7.119), recall the formula for the beta density

x∫
0

ya−1(x − y)b−1 dy = B(a, b)xa+b−1 where B(a, b) := Γ(a)Γ(b)
Γ(a + b)

for a > 0 and b > 0, and write

θβtβ

Γ(1 + β)

1∫
0

Eβ(−θtβ(1 − z)β)
z1−β

dz

= θβtβ

Γ(1 + β)

1∫
0

∞∑
j=0

(−θtβ(1 − z)β)j
Γ(1 + βj) z1−βdz

= θβtβ

Γ(1 + β)
∞∑
j=0

(−θtβ)j
Γ(1 + βj)

1∫
0

(1 − z)βjzβ−1dz

= θβtβ

Γ(1 + β)
∞∑
j=0

(−θtβ)j
Γ(1 + βj)B(βj + 1, β)

= θtβ

Γ(1 + β)
∞∑
j=0

βΓ(β)(−θtβ)j
Γ(1 + β(j + 1))

= −
∞∑
j=0

(−θtβ)j+1
Γ(1 + β(j + 1)) = 1 − Eβ(−θt

β).

Then it follows from (7.119) that corr[Xβ(t), Xβ(s)] = 1.

Remark 7.31. Stationary Pearson di�usions exhibit short range dependence, since
their correlation function (7.118) falls o� exponentially fast. However, the correlation
function of a fractional Pearson di�usion falls o� like a power law with exponent β ∈



7.8 Correlation structure of fractional processes | 259

(0, 1). When s is fixed and t → ∞, the correlation function is not integrable, so this
process exhibits long range dependence. To see this, fix s > 0 and recall [129, Eq. (5.26)]
that

Eβ(−θtβ) ∼
1

Γ(1 − β)θtβ
as t →∞.

Then
Eβ(−θtβ(1 − sy/t)β) ∼

1

Γ(1 − β)θtβ(1 − sy/t)−β

as t →∞ for any y ∈ [0, 1]. In addition from [114]

|Eβ(−θtβ(1 − sy/t)β)| ≤
c

1 + θtβ(1 − sy/t)β

for all t > 0, and using the dominated convergence theorem we get

θβtβ

Γ(1 + β)

s/t∫
0

Eβ(−θtβ(1 − z)β)
z1−β

dz

= ( s
t
)β θβtβ

Γ(1 + β)

1∫
0

yβ−1Eβ (−θtβ(1 − sy/t)β) dy
∼ ( s

t
)β β

Γ(1 + β)Γ(1 − β)

1∫
0

yβ−1dy = ( s
t
)β 1

Γ(1 + β)Γ(1 − β)

as t →∞. It follows from (7.119) that for any fixed s > 0 we have

corr(Xβ(t), Xβ(s)) ∼
1

tβΓ(1 − β)
(1
θ
+ sβ

Γ(β + 1)) as t →∞. (7.120)

We now consider a general time change in a Lévy process Z(t) = X(Y(t)) where X is a
Lèvy process, X, Y are independent, and in general Y(t) may be non-Markovian with
non-stationary and non-independent increments. For example, it might be an inverse
subordinator considered earlier in this section to time-change Pearson di�usions.
Then Z(t)may also be also non-Markovianwith non-stationary and non-independent
increments. The next result gives an explicit expression for the correlation function
of this time-changed process.

Theorem 7.32. Suppose that X(t), t ≥ 0 is a homogeneous Lévy process with X(0) = 0
andfinite variance, and Y(t) is a non-decreasingprocess independent ofX, withℙ[Y(t) >
0] = 1 for t > 0, finite mean U(t) = EY(t) and finite variance. Then the mean of the

process Z = X(Y(t)) is
E[Z(t)] = U(t)E[X(1)], (7.121)

the variance is

Var[Z(t)] = [EX(1)]2 Var[Y(t)] + U(t)Var[X(1)], (7.122)
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and the covariance function of the process Z = X(Y(t)) is given by

Cov[Z(t), Z(s)] = Var[X(1)]U(min(t, s)) + [EX(1)]2 Cov[Y(t), Y(s)]. (7.123)

Proof is included in the details at the end of this section.

Remark 7.33. When EX(1) = 0, then

Var[Z(t)] = U(t)Var[X(1)],

the covariance function is

Cov[Z(t), Z(s)] = Var[X(1)]U(min(t, s)),

and the correlation function is

corr[Z(t), Z(s)] = U(min(t, s))√U(t)U(s) = √ U(min(t, s))
U(max(t, s)) .

When the random time change is to the inverse or hitting time of a Lévy subordinator
L with the Laplace exponent ϕ so that

E [e−sL(t)] = e−tϕ(s), s ≥ 0,
the inverse process

Y(t) = inf {u ≥ 0 : L(u) > t} , t ≥ 0 (7.124)

is non-decreasing, and its sample paths are almost surely continuous if L is strictly in-
creasing. For any Lévy subordinator L, Veillette and Taqqu [213] show that the renewal
function U(t) = E[Y(t)] of its inverse (7.124) has Laplace transform Ũ given by:

Ũ(s) =
∞∫
0

U(t)e−stdt = 1

sϕ(s) , (7.125)

where ϕ is Laplace exponent of L. Thus, U characterizes the inverse process Y, since
ϕ characterizes L. For example, from [213, Theorem 4.2] the second moment of Y is

EY2(t) =
t∫
0

2U(t − τ)dU(τ) (7.126)

and the covariance function of Y is given by [213, Eq. (18)]:

Cov[Y(t1), Y(t2)] =
t1∧t2∫
0

(U(t1 − τ) + U(t2 − τ))dU(τ) − U(t1)U(t2). (7.127)

Formany inverse subordinators, the Laplace exponent ϕ can bewritten explicitly, but
then the Laplace transform (7.125) has to be inverted to obtain the renewal function.
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Numericalmethods for the inversionwere proposed in [213].We consider one example
where the Laplace transform can be inverted analytically and its asymptotic behavior
can be found in order to describe the behavior of the correlation function of the time
changed process. For more examples, see [118].

When L is standard β-stable subordinator with index 0 < β < 1, and the Laplace
exponent ϕ(s) = sβ for all s > 0, the inverse stable subordinator has the Laplace
transform

E [e−sY(t)] = ∞∑
n=0

(−stβ)n
Γ(βn + 1) = Eβ(−st

β),

using theMittag-Le�er function (2.29).When the outer process X(t) is a homogeneous
Poisson process, the time changed process X(Y(t)) is fractional Poisson process [141]
discussed in Section 7.1. More generally, for any Lévy process X(t), the time changed
processX(Y(t)) is a CTRWlimitwhere thewaiting times betweenparticle jumpsbelong
to the domain of attraction of the stable subordinator L(t), see [153].

Since
Ũ(s) = 1

sβ+1
(7.128)

the renewal function

U(t) = E[Y(t)] = tβ

Γ(1 + β) . (7.129)

The renewal function (7.129) can also be obtained from a result of Bingham [38], who
showed that for all 0 < t1 < ⋅ ⋅ ⋅ < tk

∂E[Y(t1) ⋅ ⋅ ⋅ Y(tk)]
∂t1 ⋅ ⋅ ⋅ ∂tk

= 1

Γ(β)k
1

[t1(t2 − t1) ⋅ ⋅ ⋅ (tk − tk−1)]1−β
. (7.130)

Apply (7.130) with k = 1 to see that

d

dt
U(t) = t

β−1

Γ(β) ,

integrate once, and use Γ(β + 1) = βΓ(β).
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For 0 < s ≤ t, substitute (7.128) into (7.127) to see that the covariance function of
the inverse stable subordinator is

Cov[Y(t), Y(s)] = β

Γ(1 + β)2

s∫
0

((t − τ)β + (s − τ)β) τβ−1dτ
− (ts)

β

Γ(1 + β)2

= βt2β

Γ(1 + β)2

s/t∫
0

(1 − u)βuβ−1du

+ βs2β

Γ(1 + β)2 B(β, β + 1) −
(ts)β

Γ(1 + β)2

= 1

Γ(1 + β)2 [βt2βB(β, β + 1; s/t)
+ βs2βB(β, β + 1) − (ts)β], (7.131)

using a substitution u = τ/t, where

B(a, b; x) :=
x∫
0

ua−1(1 − u)b−1du

is the incompletebeta function. Anequivalent formof the covariance function in terms
of the hypergeometric function was obtained in [213, Eq. (74)]. Apply the Taylor series
expansion (1 − u)b−1 = 1 + (1 − b)u + O(u2) as u → 0 to see that

B(a, b; x) = x
a

a
+ (1 − b) x

a+1

a + 1 + O(x
a+2) as x → 0.

Then it follows that for s > 0 fixed and t →∞ we have

F(β; s, t) := βt2βB(β, β + 1; s/t) − (ts)β

= βt2β (s/t)
β

β
− β (s/t)

β+1

β + 1 + O((s/t)
β+2) − (ts)β

= −β (s/t)
β+1

β + 1 + O((s/t)
β+2),

so that

Cov[Y(t), Y(s)] = 1

Γ(1 + β)2 [βs2βB(β, β + 1) + F(β; s, t)] (7.132)

as t →∞, where F(β; s, t) → 0 as t →∞. Hence

Cov[Y(t), Y(s)] → βs2βB(β, β + 1)
Γ(1 + β)2 = s2β

Γ(2β + 1) as t →∞. (7.133)
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Letting s = t it follows from (7.131) that

Var[Y(t)] = 1

Γ(1 + β)2 [2t2β βΓ(β)Γ(β + 1)Γ(2β + 1) − t
2β]

= t2β [ 2

Γ(2β + 1) −
1

Γ(1 + β)2 ] , (7.134)

whichagreeswith the computation in [15, Section 5.1]. From (7.132)and (7.134) it follows
that for 0 < s ≤ t the inverse stable subordinator has correlation function

corr[Y(s), Y(t)] =
[βs2βB(β, β + 1) + F(β; s, t)]
(st)β [ 2Γ(1+β)2

Γ(2β+1) − 1]
where F(β; s, t) → 0 as t →∞, and hence

corr[Y(s), Y(t)] ∼ ( s
t
)β [2 − Γ(2β + 1)

Γ(1 + β)2 ]−1 as t →∞.

This power law decay of the correlation function is a kind of long range dependence
for the inverse stable subordinator Y(t).

From (7.121) and (7.129) we can see that the time-changed process Z(t) = X(Y(t))
has mean

E[Z(t)] = t
βE[X(1)]
Γ(1 + β) .

Substituting (7.134) into (7.122) yields the variance of the time-changed process:

Var[Z(t)] = t
β Var[X(1)]
Γ(1 + β) +

t2β[EX(1)]2
β
( 1

Γ(2β) −
1

βΓ(β)2 ) . (7.135)

It follows from (7.123), (7.129), and (7.132) that for 0 < s ≤ t the covariance function of
Z(t) = X(Y(t)) is

Cov[Z(t), Z(s)] = s
β Var[X(1)]
Γ(1 + β)

+ [EX(1)]
2

Γ(1 + β)2 [βs2βB(β, β + 1) + F(β; s, t)] (7.136)

where F(β; s, t) → 0 as t →∞, hence

Cov[Z(t), Z(s)] → sβ Var[X(1)]
Γ(1 + β) +

s2β[EX(1)]2
Γ(1 + 2β) as t →∞. (7.137)

For 0 < s ≤ t, the time changed process Z(t) = X(Y(t)) has correlation

corr[Z(t), Z(s)] = Cov[Z(s), Z(t)]√Var[Z(s)] Var[Z(t)]
whereCov[Z(s), Z(t)] is givenby (7.136) and the remaining termsare specified in (7.135).
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The asymptotic behavior of the correlation depends on whether the outer process
has zero mean. If E[X(1)] ̸= 0, then for any s > 0 fixed we have

Var[Z(t)] ∼ t
2β[EX(1)]2

β
( 1

Γ(2β) −
1

βΓ(β)2 ) as t →∞,

and so we have

corr[Z(t), Z(s)] ∼ t−βC(β, s) as t →∞,

where

C(β, s) = ( sβ Var[X(1)]
Γ(1 + β) +

s2β[EX(1)]2
Γ(1 + 2β) )×(√ β

Γ(2β) −
1

Γ(β)2 |E[X(1)]|√Var[Z(s)])−1 ,
where Var[Z(s)] is given by (7.135).

On the other hand, if E[X(1)] = 0, then the covariance function of the time-
changed process for 0 < s ≤ t simplifies to

Cov[Z(t), Z(s)] = Var[X(1)] sβ

Γ(1 + β) . (7.138)

and the correlation function is

corr[Z(t), Z(s)] = ( s
t
)β/2 ,

a formula obtained by Janczura and Wyłomańska [97] for the special case when the
outer process X(t) is a Brownian motion.

In summary, the correlation function of Z(t) falls o� like a power law t−β when
E[X(1)] ̸= 0, and even more slowly, like the power law t−β/2 when E[X(1)] = 0. In
either case, the non-stationary time-changed process Z(t) exhibits long range depen-
dence. If E[X(1)] = 0, the time-changed process Z(t) = X(Y(t)) also has uncorre-
lated increments: Since Cov[Z(t), Z(s)] does not depend on t, we have Var[Z(s)] =
Cov[Z(s), Z(s)] = Cov[Z(s), Z(t)] and hence, since the covariance is additive, we have
Cov[Z(s), Z(t) − Z(s)] = 0 for 0 < s < t. Uncorrelated increments together with long
range dependence is a hallmark of financial data [188], and hence this process can be
useful to model such data. Since the outer process X(t) can be any Lévy process, the
distribution of the time-changed process Z(t) = X(Y(t)) can take many forms.

Details

The proof of Theorem 7.29 is presented below.
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Proof. Write

corr[Xβ(t), Xβ(s)] = corr[X1(Et), X1(Es)]

=
∞∫
0

∞∫
0

e−θ|u−v|H(du, dv), (7.139)

a Lebesgue-Stieltjes integral with respect to H(u, v) := ℙ[Et ≤ u, Es ≤ v], the bivariate
distribution function of the process Et.

To compute the integral in (7.139), we use the bivariate integration by parts for-
mula [77, Lemma 2.2]

a∫
0

b∫
0

F(u, v)H(du, dv) =
a∫
0

b∫
0

H([u, a] × [v, b])F(du, dv)+

+
a∫
0

H([u, a] × (0, b])F(du, 0)

+
b∫
0

H((0, a] × [v, b])F(0, dv)

+ F(0, 0)H((0, a] × (0, b]). (7.140)

with F(u, v) = e−θ|u−v|, and the limits of integration a and b are infinite:

∞∫
0

∞∫
0

F(u, v)H(du, dv) =
∞∫
0

∞∫
0

H([u,∞] × [v,∞])F(du, dv)

+
∞∫
0

H([u,∞] × (0,∞])F(du, 0)

+
∞∫
0

H((0,∞] × [v,∞])F(0, dv)

+ F(0, 0)H((0,∞] × (0,∞])

=
∞∫
0

∞∫
0

ℙ[Et ≥ u, Es ≥ v]F(du, dv)

+
∞∫
0

ℙ[Et ≥ u]F(du, 0)

+
∞∫
0

ℙ[Es ≥ v]F(0, dv) + 1, (7.141)
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since Et > 0 with probability 1 for all t > 0. Note that F(du, v) = fv(u)du for all v ≥ 0,
where

fv(u) = −θe−θ(u−v)I{u > v} + θe−θ(v−u)I{u ≤ v}. (7.142)

Integrate by parts to get

∞∫
0

ℙ[Et ≥ u]F(du, 0) =
∞∫
0

(1 − ℙ[Et < u]) (−θe−θu) du
= [e−θuℙ[Et ≥ u]]∞

0
+
∞∫
0

e−θuft(u)du

= Eβ(−θtβ) − 1. (7.143)

Similarly
∞∫
0

ℙ[Es ≥ v]F(0, dv) = Eβ(−θsβ) − 1,

and hence (7.141) reduces to

∞∫
0

∞∫
0

F(u, v)H(du, dv) = I + Eβ(−θtβ) + Eβ(−θsβ) − 1 (7.144)

where

I =
∞∫
0

∞∫
0

ℙ[Et ≥ u, Es ≥ v]F(du, dv).

Assume (without loss of generality) that t ≥ s. Then Et ≥ Es, so that ℙ[Et ≥ u, Es ≥
v] = P[Es ≥ v] for u ≤ v. Write I = I1 + I2 + I3 where

I1 := ∫
u<v
ℙ[Et ≥ u, Es ≥ v]F(du, dv) = ∫

u<v
ℙ[Es ≥ v]F(du, dv)

I2 := ∫
u=v
ℙ[Et ≥ u, Es ≥ v]F(du, dv) = ∫

u=v
ℙ[Es ≥ v]F(du, dv)

I3 := ∫
u>v
ℙ[Et ≥ u, Es ≥ v]F(du, dv).



7.8 Correlation structure of fractional processes | 267

Since F(du, dv) = −θ2e−θ(v−u)du dv for u < v, we may write

I1 = −θ2
∞∫
v=0

v∫
u=0

ℙ[Es ≥ v]eθ(u−v)dudv

= −θ
∞∫
v=0

ℙ[Es ≥ v](1 − e−θv)dv

= −θE[Es] − θ
∞∫
v=0

ℙ[Es ≥ v]e−θvdv

= − θsβ

Γ(1 − β) − (Eβ(−θs
β) − 1) (7.145)

using the well known formula E[X] = ∫∞
0
ℙ[X ≥ x]dx for any positive random vari-

able, the relation (7.143), and the formula E[Et] = tβ/Γ(1 + β) for the mean of the
standard inverse β-stable subordinator [15, Eq. (9)].

Since F(du, v) = fv(u)du, where the function (7.142) has a jump of size 2θ at the
point u = v, we also have

I2 = 2θ
∞∫
0

ℙ[Es ≥ v]dv = 2θE[Es] = 2θsβ

Γ(1 + β) .

Since F(du, dv) = −θ2e−θ(u−v)du dv for u > v as well, we have

I3 = −θ2
∞∫
v=0

ℙ[Et ≥ u, Es ≥ v]
∞∫
u=v

e−θ(u−v)du dv.

(7.146)

Next, we obtain an expression for ℙ[Et ≥ u, Es ≥ v]. Since the process Et is inverse to
the stable subordinator Du, we have {Et > u} = {Du < t} and since Et has a density,
it follows that ℙ[Et ≥ u, Es ≥ v] = ℙ[Du < t, Dv < s]. Since D(u) has the same
distribution as u1/βD(1), the randomvariable D(u) has the density function gβ(x, u) =
u−1/βgβ(xu−1/β), and

x

β
gβ(x, u) = ufx(u),

where ft(u) is the probability density of u = Et. Since Du has stationary independent
increments, it follows that

ℙ[Et ≥ u, Es ≥ v] = ℙ[Du < t, Dv < s]
= ℙ[(Du − Dv) + Dv < t, Dv < s]

=
s∫

y=0

gβ(y, v)
t−y∫
x=0

gβ(x, u − v)dxdy

=
s∫

y=0

β

y
vfy(v)

t−y∫
x=0

β

x
(u − v)fx(u − v)dxdy.
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Substituting and using Fubini Theorem, it follows that

I3 = −θ2
s∫

y=0

β

y

t−y∫
x=0

β

x

∞∫
v=0

vfy(v)
∞∫
u=v
(u − v)fx(u − v)e−θ(u−v)du dv dx dy

= −θ2
s∫

y=0

β

y

t−y∫
x=0

β

x

∞∫
v=0

vfy(v)dv
∞∫
z=0

zfx(z)e−θzdz dx dy

where
∞∫
v=0

vfy(v)dv = E[Ey] = yβ

Γ(1 + β) . (7.147)

Next we claim that

∞∫
0

zfx(z)e−θzdz = −
x

βθ

d

dx
Eβ(−θxβ). (7.148)

To see that (7.148) holds, first di�erentiate the power series expansion for the Mittag-
Le�er function to obtain

d

dx
Eβ(−θxβ) =

∞∑
j=1

(−θxβ)j−1j
Γ(1 + βj) (−θβx

β−1)

= β
x

∞∑
j=1

(−θxβ)j j
Γ(1 + βj) . (7.149)

Then expand e−θz in a Taylor series expansion, and integrate term by term:

∞∫
0

zfx(z)e−θzdz =
∞∑
k=0

(−θ)k
k!

∞∫
0

zk+1fx(z)dz

=
∞∑
k=0

(−θ)k
k!

E[Ek+1x ] =
∞∑
k=0

(−θ)k
k!

xβ(k+1)
(k + 1)!

Γ(1 + β(k + 1))

= −1
θ

∞∑
k=0

(−θxβ)k+1(k + 1)
Γ(1 + β(k + 1)) = −

1

θ

∞∑
j=0

(−θxβ)j j
Γ(1 + βj)

and apply (7.149) to see that (7.148) holds.
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Now it follows using (7.147) and (7.148) and then a substitution z = y/t that

I3 = −θ2
s∫

y=0

β

y

t−y∫
x=0

β

x
[ yβ

Γ(1 + β)] [− xβθ d

dx
Eβ(−θxβ)] dx dy

= θβ

Γ(1 + β)

s∫
y=0

1

y1−β

t−y∫
x=0

d

dx
Eβ(−θxβ)dx dy

= θβ

Γ(1 + β)

s∫
y=0

1

y1−β
(Eβ(−θ(t − y)β) − 1)dy

= θβtβ

Γ(1 + β)

s/t∫
0

Eβ(−θtβ(1 − z)β)
z1−β

dz − θsβ

Γ(1 + β) .

Then it follows from (7.139) and (7.144) that

corr[Xβ(t), Xβ(s)] =
∞∫
0

∞∫
0

F(u, v)H(du, dv)

= I1 + I2 + I3 + Eβ(−θtβ) + Eβ(−θsβ) − 1

= [− θsβ

Γ(1 − β) − Eβ(−θs
β) + 1] + 2θsβ

Γ(1 + β)

+ θβtβ

Γ(1 + β)

s/t∫
0

Eβ(−θtβ(1 − z)β)
z1−β

dz − θsβ

Γ(1 + β)

+ Eβ(−θtβ) + Eβ(−θsβ) − 1

= θβtβ

Γ(1 + β)

s/t∫
0

Eβ(−θtβ(1 − z)β)
z1−β

dz + Eβ(−θtβ)

which agrees with (7.119).

The proof of the formula for the correlation function of time-changed Lèvy process
(Theorem 7.32) can also be obatined using the bivariate integration by parts formula
used for theproof of Theorem7.29.However,when the outer process is Lèvy as opposed
to di�usion, the proof simplifies. We now present the proof of Theorem 7.32.

Proof. Since X(t) is a Lévy process, E[X(t)] = tE[X(1)] and Var[X(t)] = tVar[X(1)]. If
Gt(u) = ℙ[Y(y) ≤ u], then a simple conditioning argument shows that the mean of
Z(t) is

E[Z(t)] =
∞∫
0

uE[X(1)]Gt (du) = U(t)E[X(1)].



270 | 7 Applications and Extensions

The variance

Var[Z(t)] = E[X(Y(t))2] − [EX(Y(t))]2

=
∞∫
0

E[X2(u)]Gt(du) − U2(t)[EX(1)]2

=
∞∫
0

{u2[EX(1)]2 + uVar[X(1)]}Gt(du) − U2(t)[EX(1)]2

= [EX(1)]2E[Y2(t)] + Var[X(1)]U(t) − U2(t)[EX(1)]2
= [EX(1)]2 Var[Y(t)] + U(t)Var[X(1)].

For 0 < s < t, since the outer process X(t) has independent increments, we have

EX(t)X(s) = E(X(t) − X(s))X(s) + EX2(s)
= E(X(t) − X(s))EX(s) + EX2(s)
= ts[EX(1)]2 − s2[EX(1)]2 + VarX(s) + s2[EX(1)]2
= ts[EX(1)]2 + sVar X(1).

Since processes X and Y are independent,

EX(Y(t))X(Y(s)) = EY(t)Y(s)[EX(1)]2 + EY(s)Var X(1),
and the covariance function of the time-changed process is

Cov[Z(t), Z(s)] = EY(t)Y(s)[EX(1)]2 + EY(s)Var X(1) − EZ(t)EZ(s)
= EY(t)Y(s)[EX(1)]2 + EY(s)Var X(1) − U(t)U(s)[EX(1)]2
= U(s)Var X(1) + [EX(1)]2 Cov[Y(t), Y(s)].

7.9 Fractional Brownian motion

Fractional Brownian motion is the fractional derivative (or fractional integral) of a
Brownianmotion. Suppose that B(t) is a standard Brownian motion with characteris-
tic functionE[eikB(t)] = e−tk2/2 for all t ≥ 0. Extend B(t) to the entire real line by taking
another independent Brownian motion B1(t) with the same distribution, and setting
B(t) = B1(−t) when t < 0. Then we have E[eikB(t)] = e−|t|k2/2 for all t ∈ ℝ. Recall from
(2.23) that the Caputo fractional derivative of order 0 < α < 1 can be written in the
form

dα f(x)
dxα
= 1

Γ(1 − α)

x∫
−∞

f �(u)(x − u)−αdu.
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Heuristically, we would like to define the fractional Brownian motion

1

Γ(1 − α)

t∫
−∞
(t − s)−αB�(s)ds

but there are some technical issues. We review the basic ideas here. For complete de-
tails, see Pipiras and Taqqu [167].

First of all, the derivative B�(s) does not exist (the paths of a Brownian motion
are almost surely nowhere di�erentiable). This is similar to a problem we often face
in probability. If X is a random variable with cdf F(x) and pdf f(x) = F�(x), then we
define E[g(X)] = ∫ g(x)f(x) dx = ∫ g(x)F�(x) dx. If the cdf is not di�erentiable, we use
the Lebesgue-Stieltjes integral E[g(X)] = ∫ g(x)F(dx) instead (see details). A similar
approach works for stochastic integrals, and thus for continuous functions g(s) we
can define

b∫
a

g(s)B(ds) ≈
n∑
i=1
g(si)B(∆si) (7.150)

where ∆s = (b − a)/n, si = a + i∆s for i = 0, 1, . . . , n, B(∆si) = B(si) − B(si−1), and
the approximating sum on the right converges in probability to the stochastic integral
on the left as n →∞ (see details at the end of this section). Note that B(∆si) is normal
withmean zero and variance (si−si−1), and that B(∆s1), . . . , B(∆sn) are independent,
since B(t) has independent increments. Then∑i g(si)B(∆si) is normal with mean zero
and variance∑i g(si)2∆s, and it follows by taking limits that

b∫
a

g(s)B(ds) ≃ N(0, b∫
a

|g(s)|2ds) . (7.151)

assuming that |g(s)|2 is integrable over a < s ≤ b. The improper integral is defined, as
usual, as a limit of proper integrals

b∫
−∞

g(s)B(ds) = lim
a→−∞

b∫
a

g(s)B(ds) in probability,

and then
b∫
−∞

g(s)B(ds) ≃ N(0, b∫
−∞
|g(s)|2ds) (7.152)

assuming that |g(s)|2 is integrable over −∞ < s ≤ b.
Now we may try to define a fractional derivative of Brownian motion by the for-

mula

I(t) = 1

Γ(1 − α)

t∫
−∞
(t − s)−αB(ds)
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but this does not work either, because for g(s) = (t − s)−α we have
t∫
−∞
|g(s)|2ds =∞.

To work around this, we first define

Ia(t) =
1

Γ(1 − α)

t∫
a

(t − s)−αB(ds)

and we consider the di�erence

BH(t) = lim
a→−∞

Ia(t) − Ia(0)

= lim
a→−∞

1

Γ(1 − α)

t∫
a

(t − s)−αB(ds) − 1

Γ(1 − α)

0∫
a

(0 − s)−αB(ds)

= 1

Γ(1 − α)

∞∫
−∞
[(t − s)−α+ − (0 − s)−α+ ] B(ds) (7.153)

where

(x)+ =
{{{x if x > 0
0 if x ≤ 0

(7.154)

andwe adopt the convention 00 = 0. This stochastic integral is defined for any−1/2 <
α < 1/2, since the function g(s) = (t − s)−α+ − (0 − s)−α+ satisfies ∫ g(s)2ds < ∞ in that
case (see details). Hence we have to restrict to −1/2 < α < 1/2 in this approach. Then
we can define the fractional derivative of Brownian motion of order 0 < α < 1/2, and
also the fractional integral of the same order. See the details at the end of this section
for a brief introduction to fractional integrals.

The Hurst index H = (1/2) − α for 0 < H < 1 governs the self-similarity of the
fractional Brownian motion (7.153). First note that the random measure B(ds) has a
scaling property B(c ds) ≃ c1/2B(ds), since for an interval V = [a, b] we have B(V) ≃
N(0, |V|) and B(cV) ≃ N(0, |cV|) ≃ c1/2B(V). Then a change of variables s = cs� yields

BH(ct) =
1

Γ(1 − α)

∞∫
−∞
[(ct − s)H−1/2+ − (0 − s)H−1/2+ ] B(ds)

= 1

Γ(1 − α)

∞∫
−∞
[(ct − cs�)H−1/2+ − (c 0 − cs�)H−1/2+ ] B(c ds�)

≃ 1

Γ(1 − α)

∞∫
−∞

cH−1/2 [(t − s�)H−1/2+ − (0 − s�)H−1/2+ ] c1/2B(ds�)
= cHBH(t). (7.155)
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To justify the change of variables in (7.155), use (7.150) and note that B(c∆si) ≃
c1/2B(∆si) (see details). Then we certainly have BH(ct) ≃ cHBH(t) for all c > 0

and t ∈ ℝ. It is also possible to extend this argument to show that BH(ct) ≃ cHBH(t) in
the sense of finite dimensional distribution (e.g., see Samorodnitsky and Taqqu [185,
Corollary 7.2.3]).

In the special case H = 1/2, we have α = 0, and then for t ≥ 0 we get

BH(t) =
1

Γ(1 − α)

∞∫
−∞
[I(t − s > 0) − I(0 − s > 0)] B(ds)

=
∞∫
−∞
[I(0 ≤ s < t)] B(ds) = B(t) − B(0) = B(t),

while for t < 0 we get

BH(t) =
∞∫
−∞
[I(t ≤ s < 0)] B(ds) = B(0) − B(t) = −B1(t) ≃ B(t).

Hence BH(t) is a Brownian motion on t ∈ ℝwhen H = 1/2.
It follows from self-similarity BH(ct) ≃ cHBH(t) that a fractional Brownianmotion

satisfies BH(t) ≃ tHBH(1) for all t ∈ ℝ, where the stochastic integral BH(1) is normal
with mean zero. Hence BH(t) has a pdf p(x, t) with FT

p̂(k, t) = E[e−ikBH(t)] = e−Dt2Hk2

for any t > 0, for some constant D > 0. Then clearly

d

dt
p̂(k, t) = 2HDt2H−1(ik)2 p̂(k, t)

and hence the pdf p(x, t) of a fractional Brownian motion BH(t) solves a di�usion
equation with variable coe�cients

∂

∂t
p(x, t) = 2HDt2H−1 ∂

2

∂x2
p(x, t) (7.156)

for t > 0. The case 1/2 < H < 1 is a kind of super-di�usion, and 0 < H < 1/2 is a
sub-di�usion.

Because fractional Brownian motion BH(t) is a fractional integral or derivative of
Brownian motion, it averages B(t) over the entire interval (−∞, t], and so the incre-
ments

BH(t2) − BH(t1) =
1

Γ(1 − α)

∞∫
−∞
[(t2 − s)H−1/2+ − (t1 − s)H−1/2+ ] B(ds)

are not independent. However, a straightforward change of variables shows that the
increments are stationary: BH(t2) − BH(t1) ≃ BH(t2 − t1). The fractional Brownian
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motion BH(t) with H ̸= 1/2 is not a Lévy process, since it does not have independent
increments. There are many Gaussian stochastic processes whose pdf p(x, t) solves
(7.156) (e.g., the process t Ü→ tHZ where Z ≃ N(0, 2D) is one). However, fractional
Brownianmotion is the only self-similar Gaussian process with stationary increments
(e.g., see [185, Lemma 7.2.1]), and so it is the only self-similar Gaussian process with
stationary increments that is governed by (7.156).
Remark 7.34. The graph of a fractional Brownian motion BH(t) is a random fractal
with dimension d = 2 − H, see for example Falconer [65, Theorem 16.7]. As the Hurst
index H increases from 1/2 to 1, we are applying a fractional integral of increasing
order, so the graph becomes smoother.

Remark 7.35. It is a simple matter to compute the covariance structure of a frac-
tional Brownian motion BH(t), using the self-similarity and stationary increments.
First consider 0 < s < t. Since BH(t) ≃ tHBH(1) we have E[BH(t)2] = t2HC where
C = E[BH(1)2]. Now write

(BH(t) − BH(s))2 = BH(t)2 + BH(s)2 − 2BH(t)BH (s)

and take expectations to get

C(t − s)2H = Ct2H + Cs2H − 2E[BH(t)BH (s)].
Now solve to get

E[BH(t)BH (s)] = C
2
[t2H + s2H − (t − s)2H] .

The case 0 < t < s is similar, and we can combine these two cases to write

E[BH(t)BH(s)] = C
2
[|t|2H + |s|2H − |t − s|2H] . (7.157)

The case where t < 0 or s < 0 is again similar, and leads to the same result (7.157). For
those cases, note that BH(1) ≃ BH(−1). This follows easily from the fact that BH(t) has
stationary increments.

The fractional Brownianmotion (7.153) is the positive fractional derivative (or integral)
of a Brownian motion. Applying the same construction using the negative fractional
derivative leads to the process

1

Γ(1 − α)

∞∫
−∞
[(s − t)H−1/2+ − (s − 0)H−1/2+ ] B(ds)

where x+ = xI(x > 0), and again we adopt the convention 00 = 0. This form averages
B(ds) over the interval extending to +∞. A mixture of positive and negative fractional
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derivatives leads to the general form

BH(t) =
p

Γ(1 − α)

∞∫
−∞
[(t − s)H−1/2+ − (0 − s)H−1/2+ ] B(ds)

+ q

Γ(1 − α)

∞∫
−∞
[(s − t)H−1/2+ − (s − 0)H−1/2+ ] B(ds) (7.158)

for p, q ≥ 0. Taking p = q = 1 leads to the form

BH(t) =
1

Γ(1 − α)

∞∫
−∞
[|t − s|H−1/2 − |0 − s|H−1/2] B(ds), (7.159)

based on the Riesz fractional derivative or integral (see details).

Remark 7.36. The definition (7.158) of a fractional Brownian motion is based on the
Caputo fractional derivative (2.23) of a function defined on the entire real line. Another
kind of fractional Brownian motion uses the Caputo fractional derivative (2.33) of a
function defined on the positive half-line. The Lévy fractional Brownian motion (also
called type two fractional Brownian motion) is defined for t ≥ 0 by

B
(2)
H (t) =

1

Γ(1 − α)

t∫
0

(t − s)H−1/2B(ds). (7.160)

where 0 < H < 1. Since the function g(s) = (t − s)H−1/2 is square integrable over
the interval s ∈ [0, t], this construction is simpler. However, the definition (7.158) is
preferred in many applications, because it has stationary increments.

A discrete analogue of fractional Brownianmotion canbe constructed using fractional
di�erences. Take (Zn) iid normal with mean zero, and let

Yn = ∆αZn = (I − B)αZn =
∞∑
j=0
(α
j
) (−1)jZn−j (7.161)

using the backward shift operator BZn = Zn−1. In time series, Yn is called a fractional
ARIMA(0, d, 0) processwhere d = −α = H − (1/2) is the order of fractional integration
(e.g., see Brockwell andDavis [42, Section 13.2]). If 0 < d < 1/2 (i.e., 1/2 < H < 1) then
this mean zero process has long range dependence since its autocovariance function
decays very slowly:

E[YnYn+j] ∼ Cj2H−2 as j →∞.

Hurst [94] noted this kind of long range dependence in flood levels of the Nile river.
The time series (Yn) is stationary. It can be considered as a discrete analogue of the
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increments of a fractional Brownianmotion. In fact, if we let Sn = Y1 + ⋅ ⋅ ⋅ + Yn then it
follows fromWhitt [219, Theorem 4.6.1] that

σ−1n S[nt] ⇒ BH(t)

in the Skorokhod space D[0,∞), where Cσ2n = Var(Sn) and C = E[BH(1)2]. Hence
it is reasonable to approximate fractional Brownian motion by a random walk whose
jumps come from a fractional ARIMA(0, d, 0) process.
Remark 7.37. Another popular method for simulating fractional Brownian motion
uses FT methods. Use (7.153) to write

BH(ti) ≈ Ja(ti) − Ja(0)

on a finite discrete grid sj = a + j∆t, where

Ja(ti) =
1

Γ(1 − α)
n∑
j=1
(ti − sj)−α+ B(∆sj) ≈ Ia(ti).

Since Ja(ti) is a discrete convolution, it can be e�ciently computed using a numeri-
cal method called the fast Fourier transform, a streamlined algorithm for computing
the discrete FT (e.g., see Press, et al. [170]). Simply multiply the discrete FT ĝ(kj) =∑j e−is jkjg(sj) of the filter g(sj) = (sj)−α+ /Γ(1 − α) by the discrete FT B̂(∆kj) of the noise
sequence B(∆sj), invert the product of these two discrete Fourier transforms ̂Ja(kj) =
ĝ(kj)B̂(∆kj) to get the convolution Ja(ti), and then subtract Ja(0) (e.g., see Dieker and
Mandjes [61]). Some additional e�ciency can be obtained by simulating the discrete
FT of the noise sequence B̂(∆kj) directly (e.g., see Voss [216]). Since ĝ(kj) ≈ (ikj)α−1
with α = (1/2) − H, taking limits after Fourier inversion leads to

̂Ja(x) − ̂Ja(0) ≈ ∫(eikx − 1)(ik)−H−1/2 B̂(dk).
This stochastic integral with respect to the complex-valued Gaussian randommeasure
B̂(dk) is called the spectral representation of a fractional Brownian motion (e.g., see
Samorodnitsky and Taqqu [185, Section 7.2]). Roughly speaking, Ja(t) represents the
H + 1/2 order fractional integral of the white noise B(dt), i.e., the H − 1/2 fractional
integral of B(t).

Remark 7.38. Starting with a stable Lévy motion A(t) on t ≥ 0 with index 0 < γ < 2,
extend to t ∈ ℝ as before, by setting A(t) = A1(−t) for t < 0, where A1(t) is another
independent Lévy motion identically distributed with A(t). The stochastic integral

AH(t) =
1

Γ(1 − α)

∞∫
−∞
[(t − s)−α+ − (0 − s)−α+ ] A(ds) (7.162)

can be defined in the sameway as for Brownianmotion, using the stable randommea-
sure A(a, b] = A(b) − A(a). The stochastic process (7.162) is called a linear fractional
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stable motion. The stable stochastic integral ∫ g(s)A(ds) ≈ ∑i g(si)A(∆si ) is defined
when ∫ |g(s)|γds < ∞. The self-similarity A(ct) ≃ c1/γA(t) of the stable process im-
plies that A(c ds) ≃ c1/γA(ds), and then it follows that AH(ct) ≃ cHAH(t), by the same
argument as in the Gaussian case, where the Hurst index H = (1/γ) − α. A linear frac-
tional stable motion has stationary increments, which are not independent (unless
α = 0). For more details, see [185, Section 7.4].

A discrete analogue of linear fractional stable motion with 1 < γ < 2 comes from
taking (Zn) iid γ-stable with mean zero in (7.161). Since the covariance does not exist
in this case, the long range dependence of the fractionally integrated time series (Yn)
in the case H > 1/γ is defined in terms of the moving average coe�cients: We say that
Yn = ∑j cjZn−j has long range dependence if ∑j |cj| = ∞. In view of (2.5) we can see
that (7.161) is long range dependent if α < 0 (fractional integration).

If we let Sn = Y1 + ⋅ ⋅ ⋅ + Yn then it follows fromWhitt [219, Theorem 4.7.2] that

n−HS[nt] ⇒ AH(t)

in the Skorokhod space D[0,∞). Hence the fractional ARIMA(0, d, 0) process with
stable innovations (Zn) approximates the increments of a linear fractional stable mo-
tion. The FFTmethod outlined in Remark 7.37 can also be used to simulate linear frac-
tional stable motion, see Stoev and Taqqu [209] and Biermé and Sche�er [34].

Remark 7.39. If we take (Zn) iid normal with mean zero, then the sequence (Yn) in
(7.161) models a correlated sequence of mean zero finite variance particle jumps. In
a CTRW framework with iid power law waiting times ℙ[Jn > t] = Ct−β for some
0 < β < 1, independent of the particle jumps, the CTRW scaling limit is BH(E(t))
where E(t) is the inverse stable subordinator (4.27). If we take (Zn) iid stablewithmean
zero, then the CTRW scaling limit is AH(E(t)), a linear fractional stable motion time-
changed via the inverse stable subordinator. If themean zero sequence (Zn)belongs to
some normal or stable domain of attraction, the same scaling limit applies. For more
details, see Meerschaert, Nane and Xiao [142]. The governing equation of these CTRW
limits is currently unknown.

Details

In order to clearly understand stochastic integrals, we begin with a review of deter-
ministic integrals. If X is a random variable with cdf F(x) = ℙ[X ≤ x], and g(x) is
a Borel measurable function, we define the expectation of g(X) through a Lebesgue-
Stieltjes integral E[g(X)] = ∫ g(x)F(dx) = ∫ g(x)μ(dx), a Legesgue integral with re-
spect to the probability measure μ defined by μ(a, b] = F(b) − F(a). Recall that the
Lebesgue integral is defined as follows: If g(s) = I(s ∈ V) for some Borel set V, then∫ g(s)μ(ds) = μ(V). For a simple function g(s) = ∑ni=1 ai I(s ∈ Vi) where V1, . . . , Vn
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are mutually disjoint Borel sets, ∫ g(s)μ(ds) = ∑ni=1 aiμ(Vi). Then for g ≥ 0, we define∫ g(s)μ(ds) = lim
n→∞∫ gn(s)μ(ds) (7.163)

where

gn(s) =
{{{(k − 1)/n if (k − 1)/n < g(s) ≤ k/n for some 1 ≤ k ≤ n
0 otherwise.

(7.164)

Since ∫ gn(s)μ(ds) is an increasing sequence, the limit ∫ g(s)μ(ds) in (7.163) always
exists (although it may equal infinity). If g(s) takes both positive and negative values,
we can write g = g+ − g− the di�erence of two non-negative Borel measurable func-
tions, and then we define ∫ g(s)μ(ds) = ∫ g+(s)μ(ds) − ∫ g−(s)μ(ds), provided that
both integrals exist and are finite. The integral

b∫
a

g(s)F(ds) = ∫ g(s)I(a ≤ s ≤ b)μ(ds) (7.165)

is defined since g(s)I(a ≤ s ≤ b) is a Borel measurable function.
The Riemann-Stieltjes integral is defined by

b∫
a

g(s)F(ds) = lim
∆s→0

n∑
i=1
g(si)∆F(si ) (7.166)

where ∆s = (b − a)/n, si = a + i∆s for i = 0, 1, . . . , n, and ∆F(si) = F(si) − F(si−1). If
g(s) is continuous, then g(s) is also bounded anduniformly continuous on the interval
[a, b]. Given any positive integer n, choose δ > 0 such that |g(s)−g(t)| < 1/nwhenever
|s − t| < δ. If ∆s < δ, then since 0 ≤ g(s) − gn(s) ≤ 1/n for each s, for n su�ciently
large, eventually |gn(s)− g(si )| ≤ |gn(s)− g(s)|+ |g(s)− g(si )| ≤ 2/n for all si−1 < s ≤ si
and all i = 1, 2, . . . , n, and then!!!!!!!!!!∫ gn(s)F(ds) − n∑

i=1
g(si)∆F(si)

!!!!!!!!!!
=
!!!!!!!!!!∫ gn(s)F(ds) − ∫( n∑

i=1
g(si)I(si−1 < s ≤ si)) F(ds)!!!!!!!!!!

≤
n∑
i=1

si∫
si−1

|gn(s) − g(si)| F(ds) ≤ (2/n)[F(b) − F(a)]

for all n. Then it follows from (7.165) and (7.166) that the Riemann-Stieltjes integral ex-
ists and equals the Lebesgue-Stieltjes integral for continuous functions on bounded
intervals. Equality on unbounded intervals follows. For example, for g(s) ≥ 0 the
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Riemann-Stieltjes integral of g(s) with respect to F(ds) on −∞ < s ≤ b is defined
by

b∫
−∞

g(s)F(ds) = lim
a→−∞

b∫
a

g(s)F(ds). (7.167)

Suppose that this limit is finite. Since the Riemann-Stieltjes integral on the right-hand
side of (7.167) equals the Lebesgue-Stieltjes integral over that same interval, it follows
from the dominated convergence theorem that (7.167) also holds for the Lebesgue-
Stieltjes integral, and hence these two integrals are equal over the unbounded inter-
val.

Given a Brownian motion B(t) with E[eikB(t)] = e−|t|k2/2 for all t ∈ ℝ, we now
define the stochastic integral ∫ g(s)B(ds). Here we outline the basic ideas. For more
details on stochastic integration, see Samorodnitsky and Taqqu [185, Chapter 3]. First
we define a random measure B(ds) on the real line by setting B(a, b] = B(b) − B(a).
Then B(a, b] ≃ N(0, (b − a)), since B(t) has stationary increments. Extend to Borel
sets V to see that B(V) ≃ N(0, |V|) where |V| = ∫ I(s ∈ V) ds is the Lebesgue measure
of the set V. This construction uses the Kolmogorov consistency theorem, see [185,
Chapter 3] for complete details. If U and V are disjoint intervals, then B(U) and B(V)
are independent, since B(t) has independent increments. Extend to Borel sets to see
that B(ds) is independently scattered, i.e., B(U) and B(V) are independent when U
and V are disjoint Borel sets. Given a simple function g(s) = ∑ni=1 ci I(s ∈ Vi) where
V1, . . . , Vn are mutually disjoint bounded Borel sets, we define∫ g(s)B(ds) = n∑

i=1
ciB(Vi). (7.168)

For example, if g(s) = I(a < s ≤ b) then

∫ g(s)B(ds) = b∫
a

1 B(ds) = B(b) − B(a).

The stochastic integral (7.168) is normal with mean zero and variance

n∑
i=1
c2i |Vi | = ∫ |g(s)|2ds.

Now for g ≥ 0 Borel measurable, we define∫ g(s)B(ds) = lim
n→∞∫ gn(s)B(ds) in probability (7.169)

where the simple function gn is given by (7.164), and ∫ |g(s)|2ds < ∞. To show that
this limit exists, it is simplest to work with L2 convergence: Let I(gn) = ∫ gn(s)B(ds), a
sequence of Gaussian random variables. Use the dominated convergence theorem to
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see that

‖I(gn) − I(gm)‖2 := E[|I(gn) − I(gm)|2]
= E[|I(gn − gm)|2]
= ∫ |gn(s) − gm(s)|2ds → 0

as m, n →∞, i.e., the sequence {I(gn)} is Cauchy. Since the Banach space L2 of finite
variance random variables with the norm ‖X‖2 = √E[X2] is Cauchy complete, there
exists a limit I(g) in this space. Since L2 convergence (convergence in mean square)
implies convergence in probability, (7.169) holds, and since convergence in probability
also implies convergence in distribution,∫ g(s)B(ds) ≃ N (0,∫ |g(s)|2ds) . (7.170)

(Note: This L2 convergence argument does not extend to stable stochastic integrals,
since a stable law does not have a finite second moment. One can still prove conver-
gence in probability, but the argument is harder, see [185, Chapter 3].) The reason for
taking limits in probability in the definition (7.169), rather than a point-wise limit, is
that the sample paths of B(t) are almost surely of unbounded variation, so that the
point-wise limit might not exist.

If g(s) is continuous on the interval [a, b], then we can also write
b∫
a

g(s)B(ds) = lim
∆s→0

n∑
i=1
g(si)B(∆si ) in probability (7.171)

where ∆s = (b − a)/n, si = a + i∆s for i = 0, 1, . . . , n, and B(∆si) = B(si) − B(si−1).
To see this, note that for all large n we have |gn(s) − g(si)| ≤ 2/n for all si−1 < s ≤ si
and all i = 1, 2, . . . , n, where gn is the simple function approximation of g defined by
(7.164). Then

b∫
a

gn(s)B(ds) −
n∑
i=1
g(si)∆B(si ) ≃ N(0, n∑

i=1

si∫
si−1

|gn(s) − g(si)|2 ds)
for all n. Since the variance is bounded above by (2/n)2|b − a|, the di�erence between
these two stochastic integrals converges in probability to zero, and then (7.171) follows.

Define g(s) = (t − s)−α+ − (0 − s)−α+ using the notation (7.154). We want to show that∫ g(s)2ds < ∞ when −1/2 < α < 1/2. Suppose that t > 0. Then g(s) = 0 for s > t.
For s < 0 we have g(s) = (t − s)−α − (0 − s)−α . Write g(s) = f(t − s) − f(0 − s) where
f(u) = u−α. The mean value theorem implies that g(s) = tf �(w) = −tαw−1−α for some
0 − s ≤ w ≤ t − s. Then |g(s)| ≤ t|α||s|−α−1 for all s < 0. It follows that

−1∫
−∞

g(s)2ds ≤
−1∫
−∞
(tα)2|s|−2α−2ds =

∞∫
1

(tα)2s−2α−2ds <∞
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provided that −2α − 2 < −1, i.e., α > −1/2. If α ≤ 0, then g(s) is bounded on the
interval [−1, t], and so the function g(s)2 is integrable on the entire real line. If α > 0,
then the integrand g(s) blows up at s = t and s = 0. On the interval (−1, 0) we have
0 < (t − s)−α < (0 − s)−α so that g(s)2 = [(0 − s)−α − (t − s)−α]2 ≤ (0 − s)−2α and hence

0∫
−1

g(s)2ds ≤
0∫
−1

|s|−2αds =
1∫
0

s−2αds <∞

provided −2α + 1 > 0, i.e., α < 1/2. Finally, on the remaining interval 0 < s < t we
have g(s) = (t − s)−α and a change of variables u = t − s shows that

t∫
0

g(s)2ds =
t∫
0

(t − s)−2αds =
t∫
0

u−2αdu <∞

provided α < 1/2. Hence it follows that ∫ g(s)2ds < ∞ for −1/2 < α < 1/2 when
t > 0. The proof for t < 0 is similar. If α ∉ (−1/2, 1/2), it can be shown using similar
arguments that ∫ g(s)2ds =∞.

For suitable functions f(t), the (positive) Riemann-Liouville fractional integral of
order α > 0 is defined by

Iαt f(t) = 1

Γ(α)

∞∫
−∞

f(u)(t − u)α−1+ du.

Recall (2.27), and substitute p = α − 1 to see that s−α is the LT of tα−1/Γ(α). Then for
bounded continuous functions f(t) on t ≥ 0, extended to the entire real line by setting
f(t) = 0when t < 0, it follows from the convolution property of the LT that Iαt f(t)has LT
s−α ̃f (s). Some authors define the Riemann-Liouville and Caputo fractional derivatives
in terms of the Riemann-Liouville fractional integral: For example, when 0 < α < 1
we can write

Dαt f(t) = ddt [I1−αt f(t)] and ∂αt f(t) = I1−αt [ ddt f(t)] ,
which reduces to (2.23) and (2.24). The negative Riemann-Liouville fractional integral
of order α > 0 is defined by

Iα(−t)f(t) = 1

Γ(α)

∞∫
−∞

f(u)(u − t)α−1+ du.

The Riesz fractional integral of order α > 0 is Jαt f(t) = CpIαt f(t) + CqIα(−t)f(t) with p =
q = 1/2. Hence we can also write

Jαt f(t) = C

Γ(α)

∞∫
−∞

f(u)|t − u|α−1du.
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This integral exists for bounded continuous functions such that f(t) → 0 su�ciently
fast as |t| → ∞, since the function |t|α−1 is integrable at t = 0 for any α > 0. The
constant C > 0 is chosen so that Jαx f(x) has FT |k|−α ̂f (k) for suitable functions f(x). The
Riesz fractional integral is also called the Riesz potential. For more information, see
Samko, Kilbas and Marichev [184].

To justify the change of variables in (7.155), suppose first that g(s) ≥ 0 is continu-
ous on s ∈ [a, b]. Then (7.171) defines the stochastic integral ∫b

a
g(s)B(ds). Given c > 0,

define B(c∆si) = B(csi) − B(csi−1). Then
n∑
i=1
g(csi ) B(c∆si ) ≃

n∑
i=1
g(csi) c1/2B(∆si)

and taking limits in probability as n →∞ shows that

cb∫
ca

g(s�)B(ds�) =
b∫
a

g(cs) c1/2B(ds).

For a di�erent proof, use the fact that the integrand g(t, s) = (t − s)−α+ − (0 − s)−α+ in
(7.153) has the scaling property g(ct, cs) = c−αg(t, s) = cH−1/2g(t, s). Note that

BH(ct) = ∫ g(ct, s)B(ds) ≃ N (0,∫ |g(ct, s)|2ds) ,
and

cHBH(t) = ∫ cHg(t, s)B(ds) ≃ N (0, c2H ∫ |g(t, s)|2ds) .
Then use the scaling and a change of variables s = cs� to check that∫ |g(ct, s)|2 ds = ∫ |g(ct, cs�)|2c ds�

= c2H−1 ∫ |g(t, s�)|2c ds�
= c2H ∫ |g(t, s�)|2 ds�

so that both integrals have the same distribution.

7.10 Fractional random fields

In this section, we develop multiparameter extensions of the fractional Brownianmo-
tion introduced in Section 7.9. We begin with an independently scattered Gaussian
random measure B(dx) on ℝd such that, for any bounded Borel subset V ⊂ ℝd, B(V)
is a mean zero normal random variable with variance equal to |V|, where |V| = ∫ I(x ∈
V) dx is the Lebesgue measure of that set. Inℝ2, |V| is the area of the set V, and inℝ3,
|V| is the volume of the set V. Define the d-dimensional rectangle

(a, b] = {x ∈ ℝd : aj < xj ≤ bj for all j = 1, . . . , d}
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and the vector 1 = (1, . . . , 1) ∈ ℝd. Now we define the stochastic integral∫
(a,b]

f(x) B(dx) ≈∑
j

f(xj)B(∆xj) (7.172)

where ∆xj are rectangles (xj , xj + h1] in ℝd and xi = a + jh is a discrete lattice with
spacing h = ∆x > 0. Here j = (j1 , . . . , jd) is a vector of integers, and the sum is taken
over all j such that xj ∈ (a, b]. The approximating sum is mean zero normal with vari-
ance∑j f(xj)2(∆x)d since the random variables B(∆xj) are iidN(0, (∆x)d ). It converges
in probability to the stochastic integral for continuous functions f(x) (see details), and
the limit ∫

x∈(a,b]

f(x) B(dx) ≃ N(0, ∫
x∈(a,b]

|f(x)|2 dx) .

A randomfield is a stochastic processA(x) indexedby x ∈ ℝd. The (Lévy) fractional
Brownian field in ℝd is a scalar-valued random field defined by

BH(x) = ∫
y∈ℝd
[‖x − y‖H−d/2 − ‖0 − y‖H−d/2] B(dy), (7.173)

for 0 < H < 1, H ̸= 1/2. This form extends the fractional Brownian motion (7.159)
based on the Riesz fractional derivative (0 < H < 1/2) or the Riesz fractional integral
(1/2 < H < 1), see details. The stochastic integral (7.173) is well-defined because the
function f(y) = ‖x− y‖H−d/2 − ‖0− y‖H−d/2 satisfies the condition ∫ |f(y)|2dy <∞when
0 < H < 1, H ̸= 1/2. Since the volume (Lebesgue measure) of the set cV = {cx :
x ∈ V} in ℝd is cd|V|, the Gaussian random measure B(dx) has the scaling B(c dx) =
cd/2B(dx). For example, if V is a cube with sides of length h in ℝ3, then B(V) has
variance |V| = h3, and cV is a cubewith sides of length ch, so that B(cV) has variance
|cV| = c3h3. Then it follows that BH(cx) ≃ cHBH(x):

BH(cx) = ∫[‖cx − y‖H−d/2 − ‖0 − y‖H−d/2] B(dy)
= ∫[‖cx − cy�‖H−d/2 − ‖c0 − cy�‖H−d/2] B(c dy�)
≃ ∫ cH−d/2 [‖x − y�‖H−d/2 − ‖0 − y�‖H−d/2] cd/2B(dy�)
= cHBH(x). (7.174)

A straightforward extension of this argument shows that BH(cx) and cHBH(x) have
the same finite dimensional distributions.
Remark 7.40. A fractional stable field can be defined in a similar manner. Take
an independently scattered stable random measure A(dx) on ℝd such that A(V) ≃
Sγ(β, σ(V), 0) in the notation of Proposition 5.3, where σ(V)γ = |V|, and define

AH(x) = ∫[‖x − y‖H−d/γ − ‖0 − y‖H−d/γ] A(dy) (7.175)
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for 0 < H < 1 with H ̸= 1/γ. The stable stochastic integral∫
(a,b]

f(x)A(dx) ≈∑
i

f(xi)A(∆xi) (7.176)

exists if ∫ |f(x)|γdx < ∞, see Samorodnitsky and Taqqu [185, Chapter 3]. Since
A(c dx) = cd/γA(dx), it follows that the fractional stable field is self-similar with
Hurst index H: AH(cx) ≃ cHAH(x). Fractional stable fields have been used to param-
eterize flow and transport models in highly heterogeneous aquifers, see Herrick et al.
[83], Kohlbecker et al. [107], and additional discussion later in this section.

The randomfield (7.173) is isotropic: If R is an orthogonal matrix (see Remark 6.3) then
‖Rx‖ = ‖x‖ for all x ∈ ℝd, and a change of variables y = Ry� shows that

BH(Rx) = ∫[‖Rx − y‖H−d/2 − ‖0 − y‖H−d/2] B(dy)
= ∫[‖Rx − Ry�‖H−d/2 − ‖R0 − Ry�‖H−d/2] B(R dy�)
≃ ∫[‖x − y�‖H−d/2 − ‖0 − y�‖H−d/2] B(dy�)
= BH(x) (7.177)

since |RV| = |V| for any Borel set V. Increments of the fractional Brownian field (7.173)
are given by

BH(x) − BH(y) = ∫
z∈ℝd
[‖x − z‖H−d/2 − ‖y − z‖H−d/2] B(dz), (7.178)

and then an easy change of variables shows that BH(x) − BH(y) ≃ BH(x − y), i.e., the
random field has stationary increments.

A stationary isotropic random field can provide a reasonable model for a physical
parameter that varies in the same manner in all directions, and exhibits stationary
behavior (that is, the nature of the physical parameter is the same at every point in
space). Temperature or atmospheric pressure might be considered isotropic on a two
dimensional rectangle at a fixed altitude, in a small enough region so that the atmo-
spheric conditions remained the same. If you photograph ameadow, forest, desert, or
other homogeneous landscape from above, on a cloudy day, it would appear isotropic.
One cannot easily tell north from east.

For a more detailed example, consider the traditional vector advection dispersion
equation (ADE) for the movement of contaminants in ground water. Here p(x, t) de-
notes the relative concentration of the contaminant at location x and time t > 0, the
solution to the ADE

∂

∂t
p(x, t) = −v ⋅ ∇p(x, t) + ∇ ⋅ Q∇p(x, t). (7.179)
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The advective velocity v controls the plume center ofmass, and the dispersivitymatrix
Q governs the dispersion of individual particles away from their center of mass. In
practical applications, it is common to allow v and Q to vary with the spatial location
x. Darcy’s Law states that

v = −K∇h
η

(7.180)

where η is the porosity of the medium (percent of volume through which fluid can
flow), h is the hydraulic head (height of the water level relative to some fixed depth),
and K is the hydraulic conductivity. The scalar K field describes how easy it is for fluid
to flow through the porous medium at the point x, which reflects the structure of the
medium (e.g., K values in sand are larger than K values in clay). If the porous medium
is isotropic, then a fractional Brownian field or a fractional stable field (see Remark
7.40) is often used to generate a synthetic K field, consistent with the statistics of mea-
sured data. At a typical experimental site, K ismeasured at points in a vertical column
(in a well) and then the statistics of the K field are examined from several wells. This
gives an indication of the moments, pdf, and correlation structure. Typically the sam-
plingwells produce on the order of103 K values. Solving theADE (7.179) on a computer
usually requires values of the velocity field v at around 106 data points in two dimen-
sions, or 108 in three dimensions (since themodel domain in the vertical dimension is
usually thinner). In order to parameterize this computer model, a random field simu-
lator is used to generate a synthetic K field consistent with the statistical properties of
the measured K data. The Darcy equation (7.180) is then used to generate the velocity
field, and finally the ADE is solved on a computer (e.g., by particle tracking, or a finite
di�erence method). Often the dispersivity is assumed constant, or in some cases it is
assumed that Q = aI where a(x) = a0‖v(x)‖ for some a0 > 0.

Many studies of K field data have found evidence of long range dependence, lead-
ing to thewidespreaduse of fractionalBrownianfields to simulate the K field (actually
log K). Some authors have noted that log K data often has a heavier tail than a Gaus-
sian, and here a fractional stable field (see Remark 7.40) has also been used (e.g., see
Painter [164]). However, it is probably not reasonable to model the porousmedium for
groundwater flow as isotropic. A typical aquifer is laid out by a depositional process,
roughly in layers. If you think of an exposed hillside or cli� face (e.g. after a hillside
has been cut through for road construction) there are often prominent vertical lay-
ers. Rotating a picture of the hillside (or rotating the camera) changes the orientation.
Isotropic pictureshavenopreferredorientation. Toadequatelymodel situationswith a
preferred orientation requires anisotropic fields. Anisotropy is very common innature.
Temperature varies with altitude (or depth). Gravity provides a fundamental orienta-
tion to most physical systems. To develop anisotropic Brownian (and stable) fields,
we will employ anisotropic fractional derivatives (the Riesz fractional derivative with
Fourier symbol −‖k‖α is the only isotropic fractional derivative).

The basic construction in Biermé et al. [33, Theorem 4.1] replaces the filter φ(x) =
‖x‖H−d/2 in (7.173) by a di�erent filter with operator scaling. Define the scaling matrix
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E = diag(a1 , . . . , ad) where 1 = a1 ≤ ⋅ ⋅ ⋅ ≤ ad. Then it is easy to check that the filter

φ(x1, . . . , xd) = ( d∑
j=1
Dj|xj|2/aj)1/2 (7.181)

for some constants Dj > 0 has operator scaling: φ(cEx) = cφ(x) for all x ∈ ℝd and all
c > 0. Define the Gaussian random field

Bφ(x) = ∫
y∈ℝd
[φ(x − y)H−q/2 − φ(0 − y)H−q/2] B(dy), (7.182)

where q = a1 + ⋅ ⋅ ⋅+ ad = trace(E). The stochastic integral exists for any 0 < H < 1, see
[33, Theorem 4.1]. The random field (7.182) has stationary increments, and operator
scaling: Define AV = {Ax : x ∈ V} and note that |AV| = |det(A)||V| for any matrix
A and any Borel set V ⊂ ℝd. Here det(A) is the determinant of matrix A, and when
A = cE,det(A) = ca1 ⋅ ⋅ ⋅ cad = cq. ThenB(cE dy) ≃ cq/2B(dy), anda changeof variables
y = cEy� leads to

Bφ(cEx) = ∫[φ(cEx − y)H−q/2 − φ(0 − y)H−q/2] B(dy)
= ∫[φ(cEx − cEy�)H−q/2 − φ(cE0 − cEy�)H−q/2] B(cE dy�)
≃ ∫ cH−q/2 [‖x − y�‖H−d/2 − ‖0 − y�‖H−d/2] cq/2B(dy�)
= cHBφ(x). (7.183)

An extension of this argument shows that Bφ(cEx) ≃ cHBφ(x) in the sense of finite
dimensional distributions [33, Corollary 3.2]. If φ(x) = c‖x‖ then E = I the identity
matrix, q = d, and Bφ(x) is a fractional Brownian field. In general, each one dimen-
sional slice Bi(xi) = Bφ(x1, . . . , xd) is a well-balanced fractional Brownian motion
whose Hurst index Hi = H/ai varies with the coordinate. This model was invented to
simulate natural K fields in Benson et al. [27]. Typically the Hurst index Hi is the high-
est in the flow direction (say H1 ≈ 0.9), somewhat lower in the horizontal direction
transverse to the flow (say H2 ≈ 0.6), and in the negative dependence range for the
vertical direction (say H3 ≈ 0.3). An extension using more general operator scaling
filters allows the Hurst index to vary with an arbitrary set of coordinate axes, see [33].

Remark 7.41. An operator scaling fractional stable field can be defined in a similar
manner. Take an independently scattered stable random measure A(dx) on ℝd such
that A(V) ≃ Sγ(β, σ(V), 0) where σ(V)γ = |V|, and define

Aφ(x) = ∫
y∈ℝd
[φ(x − y)H−q/α − φ(0 − y)H−q/α] A(dy), (7.184)

for 0 < H < 1. Since A(cE dx) ≃ cq/αA(dx), it follows that the fractional stable field is
operator self-similar: AH(cEx) ≃ cHAH(x).
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Remark 7.42. Some researchers have proposedmodeling natural K fields using prob-
ability models that are neither Gaussian nor stable. For example, the Laplace distri-
bution has been proposed by Meerschaert, Kozubowski, Molz and Lu [138]. It is pos-
sible to construct stochastic integrals and random fields based on any infinitely di-
visible distribution, but they will not have the same nice scaling properties. Some
mathematical properties of one dimensional fractional Laplace motion are discussed
in Kozubowski, Meerschaert and Podgórski [113].

Remark 7.43. Similar to Remark 7.37, the spectral representation of a fractional Brow-
nian field is

BH(x) = ∫(eik⋅x − 1)‖k‖−H−d/2 B̂(dk).
Remark 7.44. Various studies of physical systems have collected data on the velocity
distribution in complex systems, which often exhibits a heavy tail, see for example
Solomon, Weeks and Swinney [206]. Roughly speaking, if the velocity distribution in
theADE (7.179) followsapower law, then it is reasonable to imagine that theplumemay
followa fractional di�usionat late time, due to theaccumulationof power-lawparticle
jumps. Mathematically, this leads to a conjecture that a highly variable velocity field
in a traditional di�usion equation with variable coe�cients could lead to a fractional
di�usion in the scaling limit. This conjecture remains open. One complication is that,
for a very rough velocity field like the ones simulated from fractal random fields, the
standard theory of di�usions does not apply, since the coe�cients are not Lipschitz
functions.

Details

Given an independently scattered Gaussian random measure B(dx) on ℝd such that
E[eikB(V)] = e−|V| k2/2 for Borel sets V ⊂ ℝd, we now define the stochastic integral∫ g(s)B(ds). Given a simple function g(s) = ∑ni=1 ciI(s ∈ Vi) where V1, . . . , Vn are
mutually disjoint bounded Borel subsets of ℝd, we define∫ g(s)B(ds) = n∑

i=1
ciB(Vi) (7.185)

in exactly the same way as the one dimensional stochastic integral (7.168). This
stochastic integral (7.185) is normal with mean zero and variance

n∑
i=1
c2i |Vi| = ∫ |g(x)|2dx.

Now for g ≥ 0 Borel measurable, we define∫ g(x)B(dx) = lim
n→∞∫ gn(x)B(dx) in probability (7.186)



288 | 7 Applications and Extensions

where the simple function gn is given by (7.164). Then∫ g(x)B(dx) ≃ N (0,∫ |g(x)|2dx) . (7.187)

and the stochastic integral exists if ∫ |g(x)|2dx < ∞. For more details, see Samorod-
nitsky and Taqqu [185, Chapter 3].

If g(x) is continuous on the d-dimensional rectangle [a, b], we can also write∫
x∈(a,b]

g(x)B(dx) = lim
∆x→0

n∑
i=1
g(xi)B(∆xi) in probability (7.188)

where ∆xi are rectangles (xi , xi + h1] inℝd, the vector 1 = (1, . . . , 1) ∈ ℝd, xi = a + ih
is a discrete lattice with spacing h = ∆x > 0, i = (i1 , . . . , id) is a vector of integers, and
the sum is taken over all i such that x + ih ∈ (a, b]. To verify (7.188), use the uniform
continuity of g on the compact set [a, b] to see that for any given h, for all large n we
have |gn(x) − g(xi)| ≤ 2/n for all x ∈ (xi , xi + h] and all i = 1, 2, . . . , n, where gn is the
simple function (7.164). Then

∫
x∈(a,b]

gn(x)B(dx) −∑
i

g(xi)∆B(xi) ≃ N(0,∑
i

∫
(xi ,xi+h]

|gn(x) − g(xi)|2 dx)
for all n. Since the variance is bounded above by (2/n)2∏j(bj − aj), the di�erence
between these two stochastic integrals converges inprobability to zero, and then (7.171)
follows.

The Riesz fractional integral is defined for suitable functions f : ℝd → ℝ by

Jαx f(x) = C

Γ(α) ∫ f(y)‖x − y‖α−ddy.
Similar to the one variable case, the integral exists for bounded continuous functions
such that f(x)→ 0 su�ciently fast as ‖x‖ →∞, since the function ‖x‖α−d is integrable
at x = 0 for any α > 0. To see this, change to spherical coordinates. The constant
C > 0 is chosen so that Jαx f(x) has FT ‖k‖−α ̂f (k) for suitable functions f(x). The Riesz
fractional integral is also called the Riesz potential. For more information, see Samko,
Kilbas and Marichev [184].

7.11 Applications of fractional di�usion

Fractional di�usion is an interesting theoretical construction that links probability,
di�erential equations, and physics. Its practical importance stems from the fact that
many real world situations fit the model. We begin our discussion of real world ap-
plications with the problem of contaminant transport in underground aquifers. Here
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fractional di�usion was found to be useful because it solved an important open prob-
lem.

The classical advection dispersion equation (ADE) for contaminant transport as-
sumes that the relative concentration of particles p(x, t) solves

∂p

∂t
= −v ∂p

∂x
+ D∂

2p

∂x2
(7.189)

where v is the average drift and D is the dispersivity. The underlying physical model is
a random walk, where individual particles take random jumps away from the center
of masswithmean zero and finite variance proportional to D. A Gaussian pdf provides
the analytical solution for a point source initial condition. According to this model, a
contaminant plume should spread away from its center of mass like t1/2, since the pdf
p(x, t) has standard deviation √2Dt. The one dimensional ADE has been applied at
many experimental sites in order to check the accuracy of the model (e.g., see Gelhar
et al. [75, 74]). One consistent observation is that the best fitting value of the parame-
ter D typically grows with time. Wheatcraft and Tyler [218] review this literature, and
propose a fractal model of heterogeneous porous media as an explanation for the em-
pirical observation that D ≈ Ctρ for some ρ > 0. Benson et al. [28, 30] developed the
fractional ADE

∂p

∂t
= −v ∂p

∂x
+ D∂

αp

∂xα
. (7.190)

to connect these fractal concepts with fractional derivatives. This research was suc-
cessful, in that it allowed hydrologists to use a fractional ADE with constant coe�-
cients instead of a traditional ADE with variable coe�cients. Since these coe�cients
are supposed to represent physical properties of the aquifer that do not vary over the
time scale of the experiment, this is an important scientific achievement.

Remark 7.45. The units of the FADE coe�cients can be determined using the Grün-
wald finite di�erence formula (2.1) for the fractional derivative: Write

∆p

∆t
= −v ∆p

∆x
+ D ∆αp

(∆x)α

where the relative concentration p(x, t) = C(x, t)/∫ C(x, t) dx is dimensionless, t is in
time units T, and x is in length units L. Then the left-hand side has units of 1/T so
each term on the right-hand side has the same units. This implies that v has units of
L/T, and D has units of Lα/T, since ∆x has units of L, and (∆x)α has units of Lα.

Point source solutions to the fractional ADE or FADE (7.190) with 1 < α < 2 are stable
densities that spread away from their center of mass at the rate t1/α, a super-di�usion.
They exhibit positive skewness and a heavy power-law leading tail, features often ob-
served in real data.

Figure 7.2 shows plume data collected at the Macro-dispersion Experimental Site
(MADE) in Columbus, Mississippi, USA, and the best-fit concentration curves from
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c) Snapshot 3 (day #224)
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d) Snapshot 4 (day #328)

Fig. 7.2: Tracer plume from the MADE site with fitted stable and Gaussian pdf, from Benson et al.

[29].

the FADE (7.190) with constant coe�cients: α = 1.1, v = 0.12 meters per day, and
D = 0.14 metersα per day. The data represent measured concentrations from sam-
pling wells distributed along the natural flow path of ground water at the site. A tri-
tium tracer was injected into the ground water at day t = 0 and monitored over the
course of the experiment. The best fitting ADE curves (normal pdf) from a variable co-
e�cientmodel are also shown (i.e., the best fittingGaussian pdf is shown for eachdata
set). These concentration snapshots clearly illustrate the skewness and non-Gaussian
shape typically seen in ground water plumes. It seems apparent that the ADE, even
with a dispersion coe�cient that varies with time, does not capture the plume shape.
A log-log plot of the same data at day t = 224 and day t = 328was shown in Figure 1.5.
That figure illustrates the power-law decay of the concentration p(x, t) ≈ x−α−1 for x
large, consistent with the stable pdf solution to the FADE. Additional analysis in that
paper verified that the peak concentration falls at a power law rate≈ t−1/α and that the
empirical plume variance (which can be estimated from a histogram of particle con-
centration, even though the theoretical variance does not exist) increases at a power
law rate ≈ t2/α . The parameter α was estimated a priori from the statistics of the hy-
draulic conductivity (K field, see additional discussion in Section 7.10). The empirical
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agreement between this α estimate and the fitted plume provides additional evidence
in favor of the FADE model.

The fractional advection dispersion equation (7.190) is based on a random walk
model with power law jumps. Real contaminant plumes may also experience retarda-
tion caused by particle sticking and trapping. The space-time fractional ADE

∂
β
t p(x, t) = −v

∂

∂x
p(x, t) + D ∂α

∂xα
p(x, t) (7.191)

introduced in Section 2.4 is based on a CTRW with power law waiting times between
jumps. Because the waiting time has infinite mean for 0 < β < 1, a segregation of
particles into two phases, mobile and immobile, leads to a more detailed model de-
scribed in Schumer et al. [193]. Thatmodel predicts mobile plumemasswill decay like
a power law. This power law decay of mobile mass was also observed in the MADE
tritium plume, supporting the use of a space-time fractional di�usion model at that
site.

Another kind of evidence for power law retention time comes from examination
of the breakthrough curve t Ü→ p(x, t) at a fixed location x. Solutions to (7.191) with
0 < β < 1 decay like ≈ t−β−1 at late time, see Schumer et al. [193]. Haggerty, Wondzell
and Johnson [78] observed a power law breakthrough curve during a tracer test in a
mountain stream. Those data were fit to a space-time fractional ADE with β = 0.3

in Schumer et al. [193]. The long waiting times in this setting are caused by tracer
particles that become trapped in sediment at the bottom of the stream.

Power lawwaiting times are very common in practical applications. Barabasi [21]
studied the waiting time between emails from a single user. The distribution follows
a Pareto model with β ≈ 1. Aoki, Sen and Paolucci [6] use fractional time derivatives
of order 0 < β < 1 to model heat transfer on a metal plate. Voller [215] uses a space-
time fractional di�usion equation for heat transfer, with a fractional time derivative
of order 0 < β < 1 and a fractional space derivative of order 1 < α < 2, to model a
melting front. Weiss and Everett [217] use a time-fractional di�usion equation with
0 < β < 1 to model the anomalous di�usion of electromagnetic eddy currents in
geological formations.

One of the modeling issues involving (7.191) is the range of the power law index.
If α > 2, then power law jumps have a finite variance, and the traditional second
derivative in space applies at late time. If β > 1 then the power lawwaiting times have
a finite mean, and the first order time derivative applies at late time. However, the
traditional di�usion equation may not be an appropriate model for such a system on
an intermediate time scale. Hence there is an ongoing e�ort to extend the fractional
di�usion model to a larger range of α and β. For example, applying a two scale limit
procedure to waiting times with 1 < β < 2 leads to a time-fractional ADE

∂
β
t p(x, t) − a∂tp(x, t) = −v

∂

∂x
p(x, t) + D ∂α

∂xα
p(x, t), (7.192)

with a > 0, see Baeumer, Benson and Meerschaert [14].
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Méndez Berhondo et al. [158] found that waiting times between solar flares follow
a power law model with 1 < β < 2. Then a time fractional equation such as (7.192)
could be applied. Smethurst and Williams [202] find that the waiting times between
doctor visits for an individual patient follow a power law model with β ≈ 1.4.

Another interesting application of heavy tails and fractional di�usion comes from
the theory of complex systems. An instructive review article of Shlesinger, Zaslavsky
and Klafter [200] describes how Lévy flights are used to model chaotic dynamical sys-
tems. Chaotic dynamical systems are deterministic systems of nonlinear di�erential
equations that can exhibit wild behavior, in which the later state is so sensitive to the
initial condition that its behavior is essentially random. This sensitive dependence on
initial conditions was noted by Lorenz [126], who observed chaotic behavior in com-
puter models from atmospheric science. The book of Strogatz [211] provides an ac-
cessible reference to this subject, see also [135, Section 6.4]. A particle tracing out a
chaotic trajectory follows a fractal set called a strange attractor. The velocity of such
particles can often follow power law statistics, i.e., the proportion of displacements
exceeding size ∆x falls o� like a power law (∆x)−α over a fixed time interval ∆t. Even
though the system is deterministic, the behavior is so unpredictable that a random
walk model is appropriate. The Lévy flight is the name used in this field to refer to a
random walk with power law jumps in some α-stable domain of attraction. The scal-
ing property (self-similarity) of the limiting stable Lévy motion that approximates the
random walk in the long-time limit has a strong appeal. Shlesinger et al. [200] also
consider Lévy walks, a coupled CTRW in which the waiting time between jumps also
follows a power law distribution. The coupled CTRW, an extension of the CTRWmodel
presented in Section 4.3, was developed to impose physical limits on heavy tailed ran-
dom walks. In the coupled CTRW model, the iid random vectors (Ji , Yi) describe the
jumps Yi of a particle, and the time Ji required to make this jump. The components of
this random vector are dependent, to enforce physical limits. For example, particles
cannot travel faster than the speed of light, so that the ratio Yi/Ji has an upper bound.
The mathematical theory of coupled CTRW limits considered in Becker-Kern, Meer-
schaert and Sche�er [24] leads to fractional di�usion equations that involve coupled
space-time fractional derivatives, see Example 7.52 for more details.

Remark 7.46. Applications of fractional di�usion require estimation of the probabil-
ity tail p = ℙ[X > x] ≈ Cx−α from experimental data. Taking logs on both sides yields
log p ≈ log C−α log x, which is the basis for some common tail estimation procedures.
Given a data set X1, . . . , Xn that is supposed to follow this model, at least approxi-
mately for x large, sort the data in decreasing order X(1) ≥ ⋅ ⋅ ⋅ ≥ X(n). if this model
is appropriate, then we should have log(i/n) ≈ log C − α log X(i) for the largest order
statistics. In some cases, if a large number of upper order statistics follow this model
reasonably closely, a simple linear regression on a log-log plot of the order statistics
versus the ranks i/n can be used to estimate the tail parameter. Since order statistics
are not independent, the estimation problem is not a standard regression. Aban and
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Fig. 7.3: Log-log plot of the exceedence probability for the 100 largest observations of positive daily

total precipitation in Tombstone, Arizona USA between July 1, 1893 to December 31, 2001, with best

fitting Pareto (dotted line), Pareto with truncated Pareto parameters (dashed line), and truncated

Pareto (solid line) tail distribution. From Aban, Meerschaert and Panorska [1].

Meerschaert [2] show that correcting for the mean and covariance structure under an
assumed Pareto model leads to a sharper estimation procedure known as the Hill es-
timator, originally developed by Hill [87] and Hall [87]. Since it is quite common to
encounter power law data in many fields of science and engineering, this estimation
problem has attracted much attention. There are dozens (at least) of di�erent tail es-
timators, many of which are reviewed in Baek and Pipiras [13]. There are also some
interesting variations that are useful in practice, including truncated Pareto laws, see
Aban, Meerschaert and Panorska [1].

Lavergnat and Gole [116] found that waiting times between large raindrops follow a
power law model with 0 < β < 1. Aban, Meerschaert and Panorska [1] fit a Pareto
with α = 3.8 to the largest observations of daily precipitation in city with a very dry
climate, see Figure 7.3. As noted in Remark 7.46, Hill’s estimator of α is commonly used
in practice. For the data in Figure 7.3, there is evidence that the largest observations
do not follow a pure power law. The curved line in Figure 7.3 represents the best fitting
truncated Pareto distribution. The dashed line represents the Pareto distribution with
α = 2.9 taken from the fitted truncated Pareto. This may be appropriate if there was
some truncation e�ect in measurement that reduced the largest observations. Mala-
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Fig. 7.4: Breakthrough data for a tracer test on the Grand River in Michigan, with fitted stable den-

sity, from Chakraborty, Meerschaert and Lim [47].

mud and Turcotte [130] find that the waiting time between large earthquakes in Cali-
fornia follows a power law model with β ≈ 1.0.

Sabatelli et al. [182] find that waiting times between trades follow a (truncated)
power law with β ≈ 0.4. Since log returns also follow a power law distribution, this
suggests that a space-time fractional di�usion model

∂
β
t p(x, t) = D

∂α

∂|x|α p(x, t) (7.193)

may be useful to model the symmetric log returns. A tempered fractional derivative
in time may also be considered, as developed in Section 7.4, to capture the deviation
from a power law for long waiting times, see Carr, Geman, Madan and Yor [44]. For a
survey of recent research that applies continuous time random walks and fractional
di�usion to finance, see Scalas [188].

Deng et al. [59, 60] applied the fractional advection dispersion equation (FADE)

∂p(x, t)
∂t
= −v ∂p(x, t)

∂x
+ pD ∂

αp(x, t)
∂xα
+ qD ∂

αp(x, t)
∂(−x)α (7.194)

to model contaminant transport in rivers. They use a negatively skewed stable with
α = 1.7 and β = −1 (i.e., p = 0 and q = 1) to capture the heavy trailing tail for a
tracer test in the Missouri River in Iowa USA, caused by particles that get trapped in
the sediment at the bottom of the river. A related fractional model was developed by
Shen and Phanikumar [199]. Figure 7.4 shows how themodel (7.194)with α = 1.38 and
β = −1 fits data from a tracer test on the Grand River in Michigan USA. In this type of
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Fig. 7.5: Breakthrough data for a tracer test in the Red Cedar River in Michigan, fit to a time-fractional

di�usion model, from Chakraborty, Meerschaert and Lim [47]. The lower panel shows the same data

on a log-log plot, to illustrate the power law decay of concentration at late time.

analysis, it is typical to plot the breakthrough curve t Ü→ p(x, t) at fixed locations x. A
heavy tail on the right-hand side of the breakthrough curve is therefore an indication
of negative skewness in the pdf x Ü→ p(x, t). In this application, the breakthrough
curve is measured by pouring buckets of tracer into the river over the side of a bridge,
and then measuring concentration over time at other bridges further downstream. As
wementioned in Chapter 1, this model has caused some controversy in hydrology. The
random walk model behind (7.194) with q = 1 has only negative jumps, so the model
in [59, 60] assumes that particles “jump” upstream (relative to the plume center of
mass). Chakraborty, Meerschaert and Lim [47] fit another tracer test on the Red Cedar
river in Michigan USA using the model (7.194) with α = 1.5 and β = −1 (not shown).
An alternative time-fractional di�usion model, equation (7.191) with α = 2 and β =
0.978, was also fit to the same data, with reasonably good results, see Figure 7.5. Since
the time-fractional model does not assume upstream jumps, it is preferred by some
hydrologists.
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Fig. 7.6:Monthly average flow in the Salt river near Roosevelt, Arizona from October 1912 to Septem-

ber 1983, from Anderson and Meerschaert [5].

Power law tails with 2 < α < 4 are also commonly seen in river flow time series.
Figure 7.6 shows a time series of monthly average flows from the Salt river, upstream of
Phoenix, Arizona in the USA. This river runs from the mountains through the desert,
and experiences a wide range of variability in flow. The occasional sharp spikes are
indicative of heavy tails, see discussion inBrockwell andDavis [42, Section 13.3]. A log-
log plot of the largest order statistics in Figure 7.7 shows a power law tail with α ≈ 3.0.
Sums of iid random variables having a power law tail with α > 2 are asymptotically
normal, since the variance is finite. The data are significantly correlated, and a statis-
tical estimate of the correlation is useful to model the process. A typical time series
model to represent the dependence between successive observations is a moving av-
erage Xt = μt +∑j cjZt−j where (Zj) are iid with mean zero andℙ[|Zj| > x] ≈ Cx−α. The
sample covariance

1

n
∑
t

(Xt − μt)(Xt+h − μt+h) =
1

n
(∑

i

ciZt−i)(∑
j

cjZt+h−j)
= n−1 (∑

i

ciZt−i)(∑
k

ck+hZt−k)
= n−1 (∑

i

cici+hZ
2
t−i +∑

i

∑
k ̸=i
cick+hZt−iZt−k) .

Since ℙ[Z2j > x] = ℙ[|Zj| > x1/2] ≈ Cx−α/2 where 2 < α < 4, the first term involves
squared noise variables with an infinite second moment. It turns out that this term
dominates as n → ∞, so that the asymptotic limit of the sample covariance involves
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a stable law, see Davis and Resnick [57, 58]. Hence, even though the time series has
finite variance, the Extended Central Limit Theorem 4.5 is important to understand
the covariance structure.
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Fig. 7.7: The river flow data from Figure 7.6 has a power law tail with α ≈ 3.0.

Fractional di�usion is also useful in biology. The famous paper of Viswanathan
et al. [214] proposed a Lévy flight model (no pun intended) for the wanderings of an
albatross foraging for food in the open ocean. This model is based on tracking data
from individual birds. The birds make many small flights, searching for food. Then
occasionally they make a very long flight, seeking a new fishing spot. The power law
statistics of the flight length suggest a random walk in the domain of attraction of a
stable law, and hence a stable Lévy process provides a convenient model for the long-
time behavior of these birds. The trajectory of a single bird over time is similar to the
sample path in Figure 5.32. Some biologists argue that animals follow a stable Lévy
motion because it represents a better search strategy than a Brownian motion, see
discussion in Shlesinger et al. [200]. Ramos-Fernández et al. [173] use a Lévy walk to
model the foraging of spider monkeys.

Baeumer, Kovács and Meerschaert [16, 17] use a fractional di�usion equation to
model the spread of invasive species. Data from biological studies often show that
o�spring migrate a distance from their parents that falls o� like a power law. The dis-
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persal kernel that models these movements represents the distance between parent
and o�spring, so that the repeated convolution of dispersal kernels gives the location
of subsequent generations. This is mathematically equivalent to a random walk over
the generations, where the dispersal kernel gives the pdf of the jump variable. A heavy
tailed dispersal kernel leads to a stable Lévy motion after a number of generations.
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Fig. 7.8: Solution to the reaction-di�usion equation (7.195) with α = 2 (top panel) and α = 1.7 (bot-
tom panel), illustrating the e�ect of anomalous dispersion. From Baeumer, Kovács and Meerschaert

[17].

Since the population can increase, a fractional reaction-di�usion equation is use-
ful to represent growth and dispersal:

∂

∂t
p(x, t) = λp(x, t)(1 − p(x, t)

K
) + Cp ∂α

∂xα
p(x, t) + Dq ∂α

∂(−x)α p(x, t). (7.195)

The first term λp(x, t) models exponential population growth at the rate λ, until
population reaches the environmental carrying capacity K. This model is not mass-
preserving, so the solution p(x, t) can no longer be interpreted as a pdf. Figure 7.8
illustrates the e�ect of fractional dispersion on an invasive species moving across a
slit barrier. In traditional dispersion, there is slow movement through the slit. Note
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that in this case, the population on the right-hand side of the barrier is centered at the
slit location. In anomalous dispersion, the population jumps directly over the barrier.
In a practical application, the slit might represent a long river with one crossing point.

A very interesting study in Brockmann et al. [41] analyzed human movements by
tracking bank notes, using the biological model of dispersal kernels. They found that
the distance traveled by bank notes (carried by humans) over a four day period fol-
lows a power lawmodel with α ≈ 0.6. The authors observe that fractional di�usion of
human populations has significant implications for modeling the spread of infectious
disease, which can be expected to spread faster than a traditional di�usion model
predicts.

Mandelbrot [131] and Fama [66] pioneered the use of heavy tail distributions in
finance. Data on cotton prices from the seminal paper of Mandelbrot [131] indicate
that a stable Lévy motion provides a more appropriate model for price fluctuations
than the usual Brownian motion. Let P(j) denote the price of cotton, or other specu-
lative commodity, on day j. The log return is defined by L(j) = log[P(j)/P(j − 1)]. Then
P(n) = P(0) exp[L(1) + ⋅ ⋅ ⋅ + L(n)]. Since log(1 + z) = z + O(z2), the log-return ap-
proximates the relative change in price. The log return is useful in finance, because
this nonlinear transformation typically produces a sequence of centered random vari-
ables with essentially no serial correlation: E[L(j)] ≈ 0 and E[L(j)L(j − 1)] ≈ 0.
For this reason, it is common in finance to represent prices by an exponential model
P(t) = P(0) exp[X(t)]where X(t) is some Lévy process. For example, the famous Black-
Scholes model for option pricing is based on a Brownianmotionmodel of log returns.
Alternative option pricing formulas based on stable Lévymotion have been developed
by Mittnik and Rachev [159] and Janicki et al. [98].

The application of stable models in finance remains controversial, and much of
the controversy revolves around the very delicate problem of tail estimation. Jansen
anddeVries [99] argue that daily returns formany stocks and stock indices have heavy
tails with 3 < α < 5, and discuss the possibility that the October 1987 stock market
crash could be explained as a natural heavy tailed random fluctuation. Loretan and
Phillips [127] use similar methods to estimate heavy tails with 2 < α < 4 for returns
from numerous stock market indices and exchange rates. This indicates that the vari-
ance is finite but the fourth moment is infinite. Both daily and monthly returns show
heavy tails with similar values of α in this study. Rachev and Mittnik [172] fit a stable
pdf with 1 < α < 2 to a variety of stocks, stock indices, and exchange rates. McCul-
loch [133] re-analyzed the data in [99, 127], and fit a stable pdf with 1.5 < α < 2. The
papers [99, 127] estimate α based on a Pareto distribution with α ∈ (0,∞) while the
authors in [133, 172] apply a stable distribution with α ∈ (0, 2]. A nice discussion of
this controversy appears in McCulloch [134].

Aban, Meerschaert and Panorska [1] examined absolute daily price changes in
U.S. dollars for Amazon, Inc. stock from January 1, 1998 to June 30, 2003. They fit a
Pareto with α = 2.3 to the largest observations, see Figure 7.9. A truncated Pareto with
α = 1.7 was also fit. The truncated Pareto estimate of α may be more appropriate, if



300 | 7 Applications and Extensions

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooo ooooooo oooooooooooooooooo o o o ooo o
o
o

o
o
o
o

o

o

o

o

1.5 2.0 2.5 3.0

-8
-7

-6
-5

-4
-3

-2

1.5 2.0 2.5 3.0

-8
-7

-6
-5

-4
-3

-2

ln(x)

ln
(P

(X
>

 x
))

1.5 2.0 2.5 3.0

-8
-7

-6
-5

-4
-3

-2

Fig. 7.9: Log-log plot of the largest absolute values of daily price changes in Amazon, Inc. stock,

with best fitting Pareto (straight line) and truncated Pareto (curved line) tail distribution. From Aban,

Meerschaert and Panorska [1].

there were significant truncation e�ects in the observations. For example, there are
automatic trading limits that can limit the largest price fluctuations. Figure 7.10 shows
trading volume (shares per day) for the same data set. There is a clear power law trend
with α = 2.7. Trading volume can be used to infer waiting times between trades for a
CTRWmodel of stock prices.

Remark 7.47. Power laws are quite prevalent in scientific data, see for example the
book of Sornette [207]. One possible explanation involves mixture distributions. Ex-
ponential and related distributions (e.g., gamma) can arise from random arrival pro-
cesses and relaxation phenomena (e.g., cooling). In a heterogeneous environment,
the exponential rate parameter may vary. Suppose ℙ[X > x] = e−λx where λ itself
follows an exponential distribution with ℙ[λ > y] = e−by for some b > 0. Then the
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Fig. 7.10: Trading volume for Amazon, Inc. stock from January 1, 1998 to June 30, 2003. The data fit a

power law with α = 2.7.

unconditional distribution of X is a power law:

ℙ[X > x] =
∞∫
0

ℙ[X > x|λ = y]be−bydy

=
∞∫
0

e−yxbe−bydy = b

b + x ≈
b

x
as x →∞.

If λ has a gamma pdf g(y) with Laplace transform g̃(s) = (1 + βs)−α for some α > 0,
then

ℙ[X > x] =
∞∫
0

e−yxg(y)dy = (1 + βx)−α ≈ Cx−α as x →∞

where C = β−α > 0. Karamata’s Tauberian Theorem (e.g., see Feller [68, Theorem 3, p.
445]) implies that any pdf that decays like a power law at zero has a Laplace transform
that decays like a power law at infinity (the formal statement involves regular varia-
tion). Since the mixture above is mathematically equivalent to the Laplace transform
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of the mixing density, any such pdf for λ (e.g., Weibull or beta) also produces ran-
dom variables with a power law tail. For more details, and an application to sediment
transport, see Hill et al. [88].

7.12 Applications of vector fractional di�usion

In this section, we summarize some recent applications of vector fractional di�usion,
to illustrate the practical application of the theory developed in Chapter 6.

Example 7.48. Schumer et al. [194] applied the generalized fractional di�usion equa-
tion (6.115) as a conceptualmodel for contaminant transport in groundwater. In Chap-
ter 1, we discussed an experiment at the MADE site, see Figure 1.5. Figure 7.11 shows
that the two-dimensional MADE plume spreads at a rate t1/α1 in the direction of flow,
where the tail index α1 = 1.2 is reasonably consistent with the one dimensional
model. The plume spreads like t1/α2 in the direction transverse to the flow, where
α2 = 1.5. The spreading rate was determined by plotting the measured plume vari-
ance against distance. Since the average plume velocity is constant, the mean travel
distance x = vt is proportional to time. Since the plume width grows like a power law
with distance, it also grows like a power law with time, with the same power law in-
dex. Then an operator stable Lévy motion with drift is an appropriate model for the
movement of individual particles, and the GADE (6.115) with B = diag(1/1.2, 1/1.5)
can be used to model relative concentration in two dimensions. A second study, at an
experimental site in CapeCod, found α1 = 1.6 and α2 ≈ 2. The plume spreading at this
site can be well approximated by the GADE (6.113). The underlying operator Lévy mo-
tion has one stable component in the direction of flow, and one normal component
in the direction transverse to flow. The plume shape is similar to Figure 6.10, which
represents the view from above, where flow is in the positive x2 direction.

Example 7.49. If a data set of randomvectors exhibits a heavy tail in each coordinate,
it is often the case that the tail index varies with the coordinate. Figure 7.12 displays
n = 2, 853 daily log returns, based on the exchange rates of the German Deutsche
Mark x1 and Japanese Yen x2 against the US dollar. (See Section 7.11 for a discussion
of Lévy process models in finance based on log returns.) A one dimensional analysis
similar to Figure 1.5 indicates that the exchange rate data in each coordinate x1 and x2
fits amean zero stable pdf with α ≈ 1.6. This was the basis for the multivariable stable
model proposed by Nolan, Panorska and McCulloch [162]. That paper also includes a
method for estimating the spectral measure (6.49). Then the pdf of the accumulated
log return X(t) solves a vector fractional di�usion equation (6.63).

A further analysis reveals that the tail behavior varieswith the coordinate, oncewe
adopt a suitable rotated coordinate system. For an X ∈ GDOA(Y) where the operator
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Fig. 7.11: Apparent plume variance in the direction of flow (circles) and transverse to flow (squares)

at the MADE site, from Meerschaert, Benson and Baeumer [136].

stable law Y has exponent B = diag(1/α1, 1/α2) with α2 < α1, it follows from the
spectral decomposition discussed near the end of Section 6.8 that each component
X ⋅ ej is in the domain of attraction of a stable random variable Yj = Y ⋅ ej with index
αj. Then Theorem 4.5 shows that V0(r) = ℙ[|X ⋅ ei | > r] is RV(−αj), and Proposition 4.9
implies that for any δ > 0 we have

r−δ−αj < ℙ[|X ⋅ ej| > r] < rδ−αj

for all r > 0 su�ciently large. Since any one dimensional projection X ⋅ θ is a linear
combination of the coordinates X ⋅ ej, it follows that

r−δ−α1 < ℙ[|X ⋅ θ| > r] < rδ−α1

for all θ ̸= ±e2, i.e., the heavier tail dominates. (For an extension of this property to
arbitrary exponents, see Meerschaert and Sche�er [146, Theorem 6.4.15].) Applying
this idea to the exchange rate data, the fact that the coordinates x1 and x2 show the
same tail behavior with α ≈ 1.6 does not rule out the possibility of another coordinate
system in which the tail behavior varies.

To investigate this possibility, we consider a rotated coordinate system z1 (line
with slope −1) and z2 (line with slope +1) as noted in Figure 7.12. Now we find that
the z1 coordinate has a lighter tail with α1 ≈ 2.0 and the z2 coordinate has a heavier
tail with α2 ≈ 1.6. The original coordinates mask the variation in tail behavior. Now
a reasonable model for X(t) is an operator stable Lévy process in the new coordinates
z1 and z2, where the z1 coordinate is a Brownian motion, and the z2 coordinate is a
stable Lévy motion with index α2. It follows from the Lévy representation (6.21) that
these two coordinate processes are independent. Then the pdf of the accumulated log
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Fig. 7.12: Exchange rates against the US dollar fromMeerschaert and Sche�er [150]. The new coor-

dinates z1, z2 uncover variations in the tail parameter α.

return process X(t) solves a fractional di�usion equation

∂

∂t
p(z, t) = D1

∂2

∂z21
p(z, t) + D1

∂1.6

∂|z2|1.6
p(z, t) (7.196)

using the symmetric fractional derivative as in (6.68). One interpretation of this model
is that both currencies are reacting to the same principal e�ect, the US dollar, and
variations due to other currencies are less extreme.

Thenewcoordinates in this example are the eigenvectors of the sample covariance
matrix of the exchange rate data in Figure 7.12. Theorem 10.4.8 in [146] implies that,
if B = diag(1/α1, 1/α2) with α2 < α1 in some coordinates, the eigenvalues of the
sample covariancematrix converge in probability to the coordinate system thatmakes
B diagonal. This result is a heavy tailed version of principal component analysis. Even
though the covariancematrix does not exist in this case, the sample covariancematrix
indicates a useful set of coordinates. For details, see Meerschaert and Sche�er [150,
Example 8.1].
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The exponential Lévy process model P(t) = P(0) exp[X(t)] fails to capture one
very interesting feature of financial data: Typically the log returns are uncorrelated,
but their absolute values (or squared values) are highly correlated. This is an interest-
ing and useful example of a real world situation in which variables are uncorrelated,
but not independent. The problem of constructing good models for vectors of log re-
turns in finance, that capture heavy tails as well as nonlinear correlations, is an ac-
tive research area. One promising approach is to subordinate the Lévy process X(t) to
some independent waiting time process, see for example Barndor�-Nielsen [23], Carr,
Geman, Madan and Yor [44], and Kotz, Kozubowski and Podgórski [111]. Some related
models were developed by Bender and Marquardt [26], Finlay and Seneta [71], Heyde
[84], and Leonenko, Petherick and Sikorskii [119]. The CTRW introduced in Section 2.4
can provide a strong motivation for considering such models.

Example 7.50. An application to geophysics in Meerschaert and Sche�er [149] con-
siders a data set of fracture aperture x1 and fluid velocity x2 in fractured rock, from
a site under consideration for a nuclear waste depository in Sweden. A one variable
tail estimation shows that the aperture data has a heavy tail with α1 = 1.4, and the
fluid velocity data has a heavy tailwith α2 = 1.05. Then an operator stablemodelwith
exponent B = diag(1/1.4, 1/1.05) could be appropriate. Since the components of the
operator stable law have infinite second moment, the covariance cannot be used to
model dependence. Instead, the spectral measure Λ(dθ) in (6.111) governs the depen-
dence between these two variables. The spectral measure in Figure 7.13 was approx-
imated using the nonparametric estimator of Sche�er [189]. The spectral measure
governs the direction of jumps that make up the operator stable limit. In the data,
the largest jumps are traced back to the unit sphere using the Jurek coordinates from
Remark 6.40, and this gives a nonparametric estimate of the spectral measure. See
[149] for more details.

Example 7.51. An application to fracture flow in Reeves et al. [174] models a contam-
inant plume moving through fractured rock as a random walk that converges in the
long-time scaling limit to an operator stable Lévy motion. The eigenvalues ai of the
scaling matrix B code the power law jumps, related to fracture lengths. The eigen-
vectors vi of B determine the coordinate system, related to fracture orientation. The
mixing measure is concentrated in the eigenvector directions, so that a contaminant
particle jumps in the vi direction with some probability M(vi), and the random jump
length L follows a power law distribution with ℙ[L > r] ≈ r−αi with ai = α−1i . The
eigenvector directions reflect the fracture geometry. Typically the fracture orientation
is determined by the crystalline structure of the rock, and there are just a few pre-
ferred fracture orientations. If the orientations are orthogonal, then the contaminant
plume follows the vector fractional di�usion equation (6.113), and the plume shape
is similar to Figure 6.5. More typically, the fracture orientations are separated by an
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Fig. 7.13: Estimated spectral measure for an operator stable model of fracture statistics, from Meer-

schaert and Sche�er [149].

angle less than 90 degrees. This can be related to the orthogonal case by a simple
(non-orthogonal) change of coordinates. In some cases, the number of fracture orien-
tations is larger than the number of dimensions. Then themixingmeasure determines
the relative number of jumps in each direction. Because there are a finite number of
possible orientations, the mixing measure is always discrete in these applications.

Example 7.52. Figure 7.14 shows tick-by-tick data onLIFFE bond futures fromSeptem-
ber 1997. The plotted data are Xn = (Yn , Jn)� where Yn is the log return after the nth
trade, and Jn is the waiting time between the n − 1st and nth trades. The log returns
are roughly symmetric, and exhibit a power law tail with α ≈ 1.8. The waiting times
also show a heavy tail, with index β ≈ 0.9. There appears to be some significant de-
pendence between the two coordinates, and it seems that large log returns are associ-
ated with long waiting times. This is consistent with a model where (Xn) are iid with
X ∈ GDOA(V) and V has dependent components. This leads to a coupled CTRWmodel
for the price at time t > 0, see Meerschaert and Scalas [144]. The coupled CTRW is
similar to the model introduced in Section 2.4 except that the space-time random vec-
tors Xn have dependent components. A convenient dependence model is Yn = Jβ/2n Zn
where Zn are iid normal, independent of Jn. Then the CTRW limit has a pdf that solves
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a coupled fractional di�usion equation( ∂
∂t
− ∂

2

∂x2
)β p(x, t) = δ(x) t−β

Γ(1 − β)

where β is the tail index of the waiting times. The coupled space-time fractional
derivative operator on the left-hand side is defined through its Fourier-Laplace sym-
bol ψ(k, s) = (s + k2)β, i.e., the FLT of the left-hand side is ψ(k, s)p̄(k, s). The theory
of coupled CTRW, their limit laws, and their governing equations is based on operator
stable laws, since the space-time vector Xn belongs the GDOA of some operator stable
law. For more details, see Becker-Kern et al. [24], Jurlewicz et al. [101], Meerschaert
and Sche�er [153], and Straka and Henry [210].
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Fig. 7.14:Waiting times in seconds and log returns for LIFFE bond futures, fromMeerschaert and

Scalas [144].

Example 7.53. For a general operator stable process, where the components are not
independent, solutions to the generalized fractional advection-dispersion equation
(6.115) can be obtained via particle tracking. Figure 7.15 shows a particle tracking solu-
tion to the GADEwith B = diag(1/1.5, 1/1.9). Themixingmeasure is concentrated on
seven discrete points: M(e1) = 0.3,M(±v1) = 0.2, M(±v2) = 0.1, andM(±v3) = 0.05,
where vi = Rθi e1 with θ1 = 6∘, θ2 = 12∘, and θ3 = 18∘. Here Rc is the rotation matrix
fromExample 6.35. This conceptualmodel represents the flow anddispersion of tracer
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particles in ground water. Many particle jumps follow the direction of flow (the posi-
tive x1 coordinate) but someparticles deviate to avoid obstacles in theporousmedium.
The particle tracking solution shows level sets from a histogram of particle location,
based on n = 10, 000, 000 particles. Eachparticle follows a simulated operator stable
process Zt + vt with v = (10, 0)� indicating a drift from left to right. The process Zt was
approximated using a random walk with jump vectors WBΘ (mean-corrected) where
ℙ[W > r] = 1/r and Θ has distribution M(dθ), as in Theorem 6.43. To validate the
accuracy of the particle tracking method, a numerical method was used to compute
the inverse FT of the operator stable. As compared to the vector di�usion in Figure
6.2, the plume in Figure 7.15 is skewed in the direction of flow, and the spreading rate
is greater in the direction of flow. The operator stable Lévy process Zt represents the
location of a randomly selected particle. In this case, the x1 component is stable with
index α1 = 1.5, the x2 component is symmetric stable with index α2 = 1.9, and the
two components are dependent. For more details, see Zhang et al. [225]. An interest-
ing experiment reported in Moroni, Cushman and Cenedese [161] performs particle
tracking on actual individual particles through a porous medium in a laboratory set-
ting. Particle tracking for time-fractional di�usion equations is treated in Germano,
Politi, Scalas and Schilling [76], Magdziarz and Weron [128] and Zhang, Meerschaert
and Baeumer [226].
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Fig. 7.15: Particle tracking solution of the generalized fractional advection-dispersion equation

(6.115) from Zhang, Benson, Meerschaert, LaBolle and Sche�er [225], with diagonal exponent

B = diag(α1 , α2), velocity v = (v1, v2)�, and mixing measure as indicated.
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isotropic di�usion, 144
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isotropic stable Lévy motion, 156

iterated Brownian motion, 114

Jurek coordinates, 186

Karamata Tauberian Theorem, 231

Lévy flight, 292

Lévy process, 59, 102, 238

Lévy walk, 292

Laplace transform, 35

LePage series representation, 210

Lindeberg Condition, 79

little o(x) notation, 2
log return, 299

long range dependence, 275

Markov process, 65, 233, 238

matrix exponential, 180

matrix power, 180

Mittag-Le�er distribution, 209

Mittag-Le�er function, 37

moments, 2

Monte Carlo simulation, 130

negative fractional derivative, 15, 23, 71, 74

nilpotent matrix, 182

operator scaling, 179

operator scaling fractional stable field, 286

operator self-similar, 180

operator stable, 178, 192, 195

operator stable Lévy motion, 153

orbits, 181

order statistics, 211

orthogonal, 150

orthogonal system, 235

orthonormal basis, 152, 240

outer product, 146

Pareto distribution, 68

particle tracking, 74

Pearson di�usion, 233, 238, 240

Pearson distribution, 233

Pearson equation, 234

Poisson process, 73

positive definite, 151

probability density function, 2

probability mass function, 205

process convergence, 105

pseudo-di�erential operator, 254

R-O variation, 189

random field, 283

random walk, 2

regular variation, 89, 188

Riemann-Liouville fractional derivative, 40

Riesz fractional derivative, 174, 275

Riesz fractional integral, 288

Riesz potential, 282, 288

Rodrigues formula, 241

scale function, 239

self-similar, 106

self-similarity, 11

semigroup, 62

separation of variables, 234

shift semigroup, 65

simultaneous jumps, 106, 107

Skorokhod Theorem, 212

Skorokhod topology, 105

spectral decomposition, 196

spectral measure, 168

spectrally simple, 197

spectrum, 240

stable density, 10

stable distribution, 11

stable index, 58

stable Lévy motion, 153

stable law, one-sided, 58

stable law, two-sided, 69

standard stable law, 123

standard stable subordinator, 123

stochastic di�erential equation, 238

stochastic integral, 279, 287

strongly continuous, 62

Sturm-Liouville equation, 235

subdi�usion, 225

subordinator, 102

super-di�usion, 11

symmetric, 151

symmetry, 150

tempered fractional Cauchy problem, 217

tempered fractional derivative, 217, 220, 225

tempered fractional di�usion, 217, 220

tempered stable, 215

tight, 80, 162
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time-fractional di�usion, 43

transition density, 233, 251

transpose, 145

triangular array, 75, 159

ultraslow di�usion, 226, 231

unbounded variation, 133

vague convergence, 76, 79, 160

vector di�usion equation, 148, 175

vector fractional di�usion equation, 171

weak convergence, 8

weak derivative, 41

weak solution, 48




