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The traditional Richards’ equation implies that the wetting front in unsaturated soil follows Boltzmann
scaling, with travel distance growing as the square root of time. This study proposes a fractal Richards’
equation (FRE), replacing the integer-order time derivative of water content by a fractal derivative, using
a power law ruler in time. FRE solutions exhibit anomalous non-Boltzmann scaling, attributed to the frac-
tal nature of heterogeneous media. Several applications are presented, fitting the FRE to water content
curves from previous literature.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Richards’ equation [14] is the fundamental model for describing
flow through unsaturated media. For water flow through one-
dimensional horizontal (or sorption) soils, Richards’ equation takes
the form

@h
@t
¼ @

@x
DðhÞ @h

@x

� �
; ð1Þ

where h ðL3L�3Þ is the volumetric water content, DðhÞ ðL2T�1Þ is the
water diffusivity, x ðLÞ is the distance from the inlet of the horizon-
tal medium column, and t ðTÞ denotes ordinary (clock) time. This
distinction is emphasized here for clarity, since the model devel-
oped later in this paper involves a different clock. Substitute
x ¼ k t1=2 into Eq. (1) and use the chain rule to obtain an ordinary
differential equation (ODE)
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2
@h
@k
¼ @

@k
DðhÞ @h

@k

� �
: ð2Þ

The Boltzmann scaling x ¼ k t1=2 makes travel distance grow as the
square root of time.
In many laboratory experiments and field measurements, the
evolution of a horizontal wetting front deviates significantly from
Boltzmann scaling, e.g., see [12]. These studies often reflect anom-
alous Boltzmann scaling

x ¼ kðhÞ ta=2; ð3Þ

where the dimensionless exponent 0 < a < 2. Fig. 1(a) illustrates
non-Boltzmann scaling in a laboratory experiment from Guerrini
and Swartzendruber [7]. Additional examples of anomalous non-
Boltzmann scaling are summarized in Table 1. The 95% confidence
bounds for a=2 listed for the data of El Abd and Milczarek [4] con-
clusively demonstrate non-Boltzmann scaling, since they exclude
0.5. The other data sources did not give confidence bands.

Several model extensions have been proposed to capture non-
Boltzmann scaling. Guerrini and Swartzendruber [7] and El Abd
and Milczarek [4] allow diffusivity D to vary as a function of both
water content and time, i.e., D ¼ Dðh; tÞ (see further discussion be-
low). Pachepsky et al. [12] propose a time-fractional Richards’
equation

Da
t h ¼

@ah
@ta
¼ @

@x
DaðhÞ

@h
@x

� �
; ð4Þ

where Da
t h denotes a Riemann–Liouville fractional derivative [11,

Eq. (2.17)] of order 0 < a 6 1. Gerolymatou et al. [6] note that the
fractional Richards’ Eq. (4) cannot be transformed into an ODE as
in (2), due to complications with the fractional product rule, and
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Fig. 1. (a) Relationship between the position of wetting front hc and the fractal time t0:46 in infiltration experiments through horizontal soil columns by Guerrini and
Swartzendruber [7]. (b) Isosaturation curves for volumetric water content h ¼ 0:2 for different fractal derivative orders in the FRE (7) with Da ¼ 10:0. The order a of the fractal
derivative corresponds to the slope in the double-log plot.

Table 1
Non-Boltzmann scaling observed in laboratory experiments and field measurements.

Data source Medium a/2

El Abd and Milczarek [4] White siliceous brick (sil #1) 0:430� 0:007
Ferguson and Gardner [5] Salkum silty clay loam 0.455
Küntz and Lavallée [9] A fired-clay brick 0.580
Küntz and Lavallée [9] A Lépine limestone 0.610
El Abd and Milczarek [4] Fired-clay brick (clay #1) 0:620� 0:010
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modify the model (4) as a fractional integral equation. Küntz and
Lavallée [9] and El Abd and Milczarek [4] use a modified Fick’s
law q ¼ �DðhÞðdh=dxÞn where n is a real number. This study pro-
poses a simpler modification of Richards’ equation to capture
non-Boltzmann scaling, using a fractal ruler in time. The new model
exhibits non-Boltzmann scaling, and includes the super-diffusive
case a > 1. The model leads to an ODE using the non-Boltzmann
scaling, and provides an improved fit to the experimental data of
El Abd and Milczarek [4].

2. Fractal Richards’ equation

Soil heterogeneity can have a profound effect on unsaturated
flow, disrupting Boltzmann scaling. Connectivity can accelerate
the wetting front along preferential flow paths, leading to anoma-
lous super-diffusion. In other soils, organized regions of low per-
meability can retard flow, causing anomalous sub-diffusion.
Fractal models are useful to describe soil heterogeneity (see the re-
view by Xu et al. [16]). Indicators of fractal-type soils include
power-law distributions of pore space, particle size, and mass dis-
tribution. Tyler and Wheatcraft (1990) explain how fractal porous
media can lead to anomalous diffusion. Cushman et al. [3] suggest
a fractal ruler in time (i.e., a fractal clock)

s ¼ ta; ð5Þ

to efficiently model this anomalous diffusion, without resorting to
fractional derivatives.

Applying a fractal ruler in time yields the fractal derivative
[2]

@h
@ta ¼ lim

Dt!0

hðtÞ � hðt � DtÞ
ta � ðt � DtÞa

: ð6Þ

Using this fractal derivative, consider the fractal Richards’ equation
(FRE)
@h
@ta
¼ @

@x
DaðhÞ
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� �
; ð7Þ

where DaðhÞ ðL2T�aÞ is a fractal water diffusivity. The FRE exhibits
non-Boltzmann scaling, illustrated in Fig. 1(b). Natural soils can ex-
hibit fractal properties [15], leading to the non-Boltzmann scaling in
flow dynamics. Model (7) applies a fractal time ruler to account for
the influence of soil heterogeneity on the motion of water. The frac-
tional time derivative in Eq. (4) can be related to a random time
change [10]. The FRE uses a simpler deterministic time change
hðsÞ, which relates to the fractal properties of the porous medium
[2,17].

Use definition (6) to verify the fractal chain rule

@h
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¼ @h
@k

@k
@ta : ð8Þ

Substitute k ¼ xt�a=2 into the FRE (7), and apply Eq. (8) to obtain the
ODE
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with non-Boltzmann scaling. So long as DaðhÞ does not depend on t,
the non-Boltzmann scaling in Eq. (9) pertains for any functional
form of the diffusivity DaðhÞ.

Parlange et al. [13] proposed two basic diffusivity forms: expo-
nential and power-law. Combining their solutions with the time
change in Eq. (5) yields explicit results for the FRE (7). The expo-
nential form assumes DaðhÞ ¼ C0enh ðn > 0Þ in a semi-infinite do-
main, with the initial condition hðt ¼ 0; xÞ ¼ 0 and the boundary
condition hðt; x ¼ 0Þ ¼ 1:0 at the inlet. The approximate solution
to Eq. (7) under these conditions is achieved by solving the follow-
ing equation

2C0½EiðnÞ � EiðnhÞ� ¼ Sxt�a=2 þ A
2
ðxt�a=2Þ2; ð10Þ

where EiðxÞ ¼ �
R1
�x t�1e�tdt; S2 ¼ C0½enð2n�1 � n�2Þ � n�1 þ n�2�, and

A ¼ ðenn�1 � 1� n�1Þ=ðen � 1Þ. The approximate solution of (7) with
a power-law diffusivity DaðhÞ ¼ C0h

n ðn > 0Þ is then given by

hn ¼ 1� n
2C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r
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where g ¼ 1� ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ=n

p
� 1Þ�1. The normalized water content

curves predicted by FRE (7) with exponential and power-law diffu-
sivities are presented in Fig. 2. Detailed comparison with numerical
solutions (see discussion) indicate that the approximate analytical
solutions are reasonably accurate for a wide range of n.
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Fig. 2. Normalized water content described by the FRE (7) at time t ¼ 100 with the exponential diffusivity DaðhÞ ¼ C0enh (a), and the power-law diffusivity DaðhÞ ¼ C0h
n (b)

with C0 ¼ 10�4 and n ¼ 2:0.
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3. Applications

Fig. 3 illustrates the results of fitting the FRE (7) with a power-
law diffusivity to water content data in both fired-clay brick and
siliceous brick, measured by El Abd and Milczarek [4]. The solid
lines show the FRE fit, and the dotted lines show best-fit solutions
using the classical Richards’ Eq. (1). Model parameters, including
the non-Boltzmann scaling exponent a, were fitted using the first
two groups of water content data (at time t ¼ 419s and 2219s,
respectively), and the remaining three curves at later times were
then predicted using the same model parameters. In Fig. 3(b), the
results from fractional Richards’ Eq. (4) are also included. The frac-
tional Richards’ equation is not applicable in the super-diffusive
case of Fig. 3(a), since it is limited to a=2 < 1=2.

Fig. 3 shows two data sets from experiments reported in El Abd
and Milczarek [4], and fitted wetting fronts from the relevant mod-
els. Solid lines represent the fractal Richards’ Eq. (7) developed in
this paper, dotted lines show the traditional Richards’ Eq. (1), and
the dashed lines in Fig. 3(b) indicate the fractional Richards’ Eq.
(4). Since the traditional Richards’ equation follows Boltzmann
scaling, it under-estimates the wetting fronts for super-diffusion
(Fig. 3(a)), and over-estimates the wetting fronts for sub-diffusion
(Fig. 3(b)). Fig. 3 indicates that the fractal model (7) fits the wetting
front more closely (the mean squared error, or MSE ¼ 0:005) than
the classical Richards’ Eq. (1) (MSE ¼ 0:114), especially at later
times. These mean squared error values were computed by pooling
data from all curves shown. The data resolution reported in El Abd
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Fig. 3. Application of classical, fractional and fractal Richards’ equations to experimen
solutions to the best-fitting classical, fractional and fractal Richards’ equations, respective
fractal Richards’ equation models, using a power-law diffusivity DaðhÞ ¼ C0h
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26099 s and 34559 s, respectively. Best-fit parameters for the classical model are C0 ¼ 0
Experimental data for a siliceous brick, and fitted classical, fractional and fractal Richard
5370 s, 24,210 s, 79,770 s and 17,0430 s, respectively. The solution curves for FRE (7) w
parameters C0 ¼ 0:98 and n ¼ 8:2. The water content curves for the classical and fractio
and Milczarek [4] was 0.2 mm, and taking this into account, the
MSE could vary by at most 0.01. Hence the fractal model provides
an improved fit. The fractional Richards’ Eq. (4) is not applicable to
this super-diffusive data set, since it is limited to the sub-diffusive
regime a=2 < 1=2.

The alternative fractional Richards’ Eq. (4) gives an improved fit
(dashed lines in Fig. 3(b)) as compared to the traditional Richards’
equation (dotted lines), since it captures the sub-diffusive effect.
The fractal model (solid lines) seems to provide some marginal
improvement at later times (t ¼ 79770 s and 170430 s). For
Fig. 3(b), we find MSE ¼ 0:1229 for the classical Richards’ equation,
MSE ¼ 0:0376 for the fractional Richards’ equation, and MSE ¼
0:0357 for the fractal Richards’ equation developed in this paper.

Even though the brick materials used in the experiments of El
Abd and Milczarek [4] are quite homogeneous, significant anoma-
lous diffusion is evident in the wetting fronts. This indicates that
even a small degree of heterogeneity can have a measurable effect
on diffusion, which should be accounted for in practical applications.

4. Discussion

The FRE model (7) with constant coefficients captures non-
Boltzmann scaling. It can be related to the traditional Richards’
equation with a time-dependent diffusivity. Guerrini and Swartz-
endruber [7] and Abd El-Ghany El-Abd and Milczarek [4] write
Dðh; tÞ ¼ EðhÞtm, where E is a function of water content. The param-
eter m ¼ a� 1 leads to non-Boltzmann scaling x ¼ kðhÞta=2. The
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tal data from [4]. The dotted, dashed (right panel only), and solid lines represent
ly. (a) Experimental wetting front data in a fired-clay brick, with fitted classical and
). The corresponding times for five groups of data are t ¼ 419 s, 2219 s, 14879 s,
:075 and n ¼ 1:75. In the FRE (7), best-fit parameters are C0 ¼ 0:02 and n ¼ 2:85. (b)
s’ equation solutions. The corresponding times for five groups of data are t ¼ 450 s,
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nal Richards’ equations are reproduced from Fig. 9 in [6].
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term tm ¼ ta�1 in the diffusivity function can be absorbed into the
time derivative, leading to a constant coefficient model with

t1�a @h
@t
¼ a

@h
@t

@t
@ta
¼ a

@h
@ta : ð12Þ

The FRE (7) can be solved using an implicit Adams–Bashforth-Moul-
ton scheme

hj
i � hj�1

i

taj � taj�1
Dx ¼ 1

2
ðDðhj

iþ1Þ þ Dðhj
iÞÞ

hj
iþ1 � hj
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Dx
� ðDðhj

iÞ þ Dðhj
i�1ÞÞ

hj
i � hj

i�1

Dx

" #
;

ð13Þ

where hj
i denotes the water content at location x ¼ iDx and time

t ¼ jDt. This numerical method was implemented, and used to val-
idate the analytical approximations in Eqs. (10) and (11). For exam-
ple, the relative error in Eq. (10) for the case a ¼ 0:8, C0 ¼ 0:02, and
n ¼ 2 at h ¼ 0:1 is less than 0:5%. For vertical water infiltration in an
unsaturated medium, the influence of gravity usually should be
considered. The corresponding fractal Richards’ equation can be
written as

@h
@ta ¼

@

@x
DaðhÞ

@h
@x
� Ka

� �
; ð14Þ

where Ka is the hydraulic conductivity. The same numerical method
can also be used to solve Eq. (14).

The fractal-time concept may be useful to extend other models
of unsaturated flow in heterogeneous porous media. For example,
the stochastic models for unsaturated flow developed by Harter
and Yeh [8] and Amir and Neuman [1] might be modified in this
way to capture observed anomalous behavior.

The wetting front in fired-clay brick (Fig. 3(a)) moves faster
than in siliceous brick (Fig. 3(b)). The firing process could evapo-
rate air bubbles, increasing the effective pore space. The FRE, with
a simple power-law diffusivity, captures both anomalous motions,
where the exponent a=2 in non-Boltzmann scaling can be either
larger than 0.5 (super-diffusion) or less than 0.5 (sub-diffusion).
Table 1 illustrates that the value of a=2 is higher in limestone than
in silty clay. The physical mechanisms that cause non-Boltzmann
scaling are not known. While the brick materials used in by El
Abd and Milczarek [4] are relatively homogeneous, it is not possi-
ble to manufacture a perfectly homogeneous material. Hence frac-
tal models of porous media might provide one explanation. Further
research is needed to explore the connection between the fractal
time index a and soil texture parameters, including the fractal
dimension.

5. Conclusion

A simple extension of Richards’ equation was proposed to mod-
el non-Boltzmann scaling of wetting front dynamics in unsaturated
porous media. The FRE (7) uses a power-law clock in time to cap-
ture anomalous non-Boltzmann scaling. By varying the fractal time
index 0 < a < 2, the full range of observed behavior can be repre-
sented. This includes the sub-diffusive regime, when regions of low
permeability can retard flow, and super-diffusion, where the wet-
ting front is accelerated along preferential flow paths. The fractal
clock may relate to a well-established fractal model for soils.
Numerical solutions and simple analytical approximations are
presented for the model. Two applications are presented, to show
that the fractal Richards’ equation can predict wetting front
dynamics for both sub-diffusive and super-diffusive examples in
a laboratory setting. The fractal clock employed by this study could
be applied in other settings, to capture anomalous diffusion in het-
erogeneous porous media.

Acknowledgment

The work was supported by the USA National Science Founda-
tion under DMS-0803360, DMS-1025417 and DMS-1025486. H.S.
was also supported by the Natural Science Foundation of China un-
der 11202066, National Basic Research Program of China (973 Pro-
ject No. 2010CB832702) and the R&D Special Fund for Public
Welfare Industry (Hydrodynamics, Project No. 201101014). J.Z.
was partially supported by the Maki chair program at Desert Re-
search Institute. M.M.M. was partially supported by the USA Na-
tional Institutes of Health, grant R01-EB012079. We also thank
Scott W. Tyler and three anonymous reviewers for suggestions that
significantly improved the presentation of this work.

References

[1] Amir O, Neuman SP. Gaussian closure of one-dimensional unsaturated flow in
randomly heterogeneous soils. Water Resour Res 2001;44(2):355. 83.

[2] Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton
Fract 2006;28. 923-9.

[3] Cushman JH, O’Malley D, Park M. Anomalous diffusion as modeled by a
nonstationary extension of Brownian motion. Phys Rev E 2009;79:032101.

[4] Abd El-Ghany El-Abd, Milczarek JJ. Neutron radiography study of water
absorption in porous building materials: anomalous diffusion analysis. J Phys
D: Appl Phys 2004;37:2305–13.

[5] Ferguson H, Gardner WH. Diffusion theory applied to water flow data obtained
using gamma ray absorption. Soil Sci Soc Am Proc 1963;27(3). 243-6.

[6] Gerolymatou E, Vardoulakis I, Hilfer R. Modelling infiltration by means of a
nonlinear fractional diffusion model. J Phys D: Appl Phys 2006;39. 4104-10.

[7] Guerrini IA, Swartzendruber D. Soil water diffusivity as explicitly dependent
on both time and water content. Soil Sci Soc Am J 1992;56:335. 40.

[8] Harter T, Yeh TCJ. Flow in unsaturated random porous media, nonlinear
numerical analysis and comparison to analytical stochastic models. Water
Resour Res 1998;22(3):257. 72.

[9] Küntz M, Lavallée P. Experimental evidence and theoretical analysis of
anomalous diffusion during water infiltration in porous building materials. J
Phys D: Appl Phys 2001;34:2547. 54.

[10] Meerschaert MM, Scheffler H-P. Limit theorems for continuous time random
walks with infinite mean waiting times. J Appl Prob 2004;41:623. 38.

[11] Meerschaert MM, Sikorskii A. Stochastic Models for Fractional
Calculus. Berlin: De Gruyter; 2012.

[12] Pachepsky Y, Timlin D, Rawls W. Generalized Richards’ equation to simulate
water transport in unsaturated soils. J Hydrol 2003;272:3–13.

[13] Parlange MB, Prasad SN, parlange JY, Romkens MJM. Extension of the Heaslet-
Alksne technique to arbitrary soil water diffusivities. Water Resour Res
1992;28(10):2793. 7.

[14] Richards LA. Capillary conduction of liquids through porous mediums. Physics
1931;1:318. 33.

[15] Tyler SW, Wheatcraft SW. Fractal processes in soil-water retention. Water
Resour Res 1990;26(5):1047. 54.

[16] Xu TB, Moore ID, Gallant JC. Fractals, fractal dimensions and landscapes-a
review. Geomorphology 1993;8:245. 62.

[17] Wheatcraft SW, Tyler SW. An explanation of scale-dependent dispersivity in
heterogeneous aquifers using concepts of fractal geometry. Water Resour Res
1988;24(4):566. 78.


	A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media
	1 Introduction
	2 Fractal Richards’ equation
	3 Applications
	4 Discussion
	5 Conclusion
	Acknowledgment
	References


