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a b s t r a c t

In a continuous time random walk (CTRW), a random waiting time precedes each random
jump. The CTRW is coupled if the waiting time and the subsequent jump are dependent
random variables. The CTRW is used in physics tomodel diffusing particles. Its scaling limit
is governed by an anomalous diffusion equation. Some applications require an overshoot
continuous time randomwalk (OCTRW), where thewaiting time is coupled to the previous
jump. This paper develops stochastic limit theory and governing equations for CTRW and
OCTRW. The governing equations involve coupled space–time fractional derivatives. In the
case of infinite mean waiting times, the solutions to the CTRW and OCTRW governing
equations can be quite different.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The continuous time random walk (CTRW) model was developed in physics to represent diffusing particles. A random
waiting time Jn > 0 precedes the nth random jump Yn of the particle. Typically we assume that (Yn, Jn) are i.i.d. random
vectors in space–time with possible dependence between the waiting time Jn and the jump Yn. This coupling can be used
to enforce certain physical constraints, e.g., particle velocity Yn/Jn should not exceed the speed of light [1]. The jumps can
represent movements of tracer particles in underground aquifers [2–4], downstream movements of gravel particles along
river beds [5], biological cell movements [6], motion of DNA-binding proteins along a chromosome [7], or movements of
animals in search of a food source [8]. In finance, the jumps represent changes in price (or log-returns) [9].

In certain applications, it is useful to consider the overshoot continuous time randomwalk (OCTRW), where the waiting
time Jn follows the jump Yn. The OCTRW can be used to model dielectric relaxation phenomena in complex systems.
The OCTRW scenario, with the jump coupled to the subsequent waiting time through random clustering, provides a
physical explanation for the empirical Havriliak–Negami dielectric response,widely observed in relaxing dielectricmaterials
[10,11]. In applications of the OCTRW to finance, the jump Yn is the nth price change (log-return), Jn is the waiting time
between the nth and the (n + 1)st trades, and the OCTRW represents the logarithm of the current price [12]. Coupling
between log returns and waiting times is rather common in finance [12,13]. In this paper, we develop limit theory and
governing equations for CTRW and OCTRW with infinite mean waiting times. We emphasize the general setting, where
(Yn, Jn) are i.i.d., but we allow dependence between the waiting time Jn and the subsequent jump Yn.
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2. Preliminaries

Let (Yn, Jn) be i.i.d. with (Y , J) on R × R+ and set

T (n) = J1 + · · · + Jn and S(n) = Y1 + · · · + Yn (2.1)

so that (S(n), T (n)) is a random walk on R × R+. For t ≥ 0 we define the continuous time random walk (CTRW)

S(N(t)) = Y1 + · · · + YN(t) (2.2)

where

N(t) = max{n ≥ 0 : T (n) ≤ t} (2.3)

is the number of jumps by time t . The OCTRW

S(N(t)+ 1) = Y1 + · · · + YN(t) + YN(t)+1 (2.4)

involves one additional jump.
Assume (Y , J) belongs to the strict generalized domain of attraction of some operator stable law [14] with exponent

E = diag(1/α, 1/β), so that for some bn > 0 and Bn > 0 we have

(BnS(n), bnT (n)) ⇒ (A,D) (2.5)

where D > 0 almost surely. Here ⇒ denotes convergence in distribution. The distribution µ of (A,D) is strictly operator
stable with index E, meaning that µt

= tEµ for all t > 0, where µt is the convolution power of the infinitely divisible
law µ, tE = exp(E log t) using the usual matrix exponential, and (tEµ)(dx) = µ(t−Edx) is the probability distribution of
tE(A,D) = (t1/αA, t1/βD) for t > 0. Then a standard result [15, Theorem 4.1] shows that

{(B(c)S(ct), b(c)T (ct))}t≥0 ⇒ {(A(t),D(t))}t≥0 as c → ∞ (2.6)

in the Skorohod space D([0,∞),R × R+) with the J1 topology, where b(t) = b[t], B(t) = B[t], and (A(t),D(t)) is a Lévy
process with (A(1),D(1)) = (A,D). In view of [14, Theorem 8.3.24] wemay assumewithout loss of generality that B(t), b(t)
vary regularlywith index−1/α,−1/β respectively. Then 1/b(t) is regularly varyingwith index 1/β > 0 so by [16, Property
1.5.5] there exists a regularly varying function b̃ with index β such that 1/b(b̃(c)) ∼ c as c → ∞. Here f ∼ g means that
f (c)/g(c) → 1 as c → ∞. Define B̃(c) = B(b̃(c)), a regularly varying function with index −β/α.

For suitable functions g on R × R+ we define the Fourier–Laplace transform (FLT)

ḡ(k, s) =


R


∞

0
eikxe−stg(x, t)dt dx (2.7)

where (k, s) ∈ R × R+. Similarly, if µ is a bounded Borel measure on R × R+,

µ̄(k, s) =


R


∞

0
eikxe−stµ(dx, dt)

is the FLT of µ. If ρ is a probability measure on R, the Fourier transform (FT)

ρ̂(k) =


R
eikx ρ(dx).

If ρt is a probability measure on R for each t > 0 such that t → ρ̂t(k) is Borel measurable, then

ρ̄(k, s) =


∞

0


R
e−steikxρt(dx) dt

is the FLT of (ρt)t>0.
Any infinitely divisible distribution is characterized by the Lévy–Khintchine formula. This concept carries over to the FLT

setting [17, Lemma 2.1] so that

E[e−sD(u)+ikA(u)
] = exp(−uψ(k, s)) (2.8)

for all (k, s) ∈ R × R+. We call ψ the Fourier–Laplace symbol of (A,D). Moreover, there exist uniquely determined
(a, b) ∈ R × R+, a positive constant σ 2 and a measure φ on R × R+ \ {(0, 0)} such that

ψ(k, s) = iak + bs +
1
2
σ 2k2 +


R×R+\{(0,0)}


1 − eikxe−st

+
ikx

1 + x2


φ(dx, dt). (2.9)

The Lévy measure φ is finite outside every neighborhood of the origin and
0<x2+t≤1

(x2 + t)φ(dx, dt) < ∞.
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We denote by φA(dx) = φ(dx,R+) the Lévy measure of the Lévy process {A(u)}u≥0. By setting s = 0 in the representation
(2.8) we see that

R
eikx PA(u)(dx) = e−uψA(k) (2.10)

so that

ψA(k) = iak +
1
2
σ 2k2 +


R\{0}


1 − e−ikx

+
ikx

1 + x2


φA(dx) (2.11)

is the Fourier symbol of the Lévy process {A(u)}. Similarly, we let φD(dt) = φ(R, dt) denote the Lévy measure of {D(u)}. By
setting k = 0 in the representation (2.8) we see that

∞

0
e−st PD(u)(dt) = e−uψD(s) (2.12)

where

ψD(s) =


∞

0


1 − e−svφD(dv) (2.13)

is the Laplace symbol of the Lévy process {D(u)}. Note that {D(u)} is a stable subordinator with drift term b = 0 in (2.9).
Since the sample paths of D(t) are càdlàg and strictly increasing with D(0) = 0 and D(t) → ∞ as t → ∞, the first passage
time process

E(t) = inf{x : D(x) > t} (2.14)

is well-defined.
Given any λ > 0 let L1λ(R × R+) denote the collection of real-valued measurable functions on R × R+ for which the

integral and hence the norm

∥f ∥λ =


∞

0


R
e−λt

|f (x, t)| dx dt

exists. With this norm, L1λ(R × R+) is a Banach space that contains L1(R × R+). The symbol ψ(k, s) defines a pseudo-
differential operatorψ(i∂x, ∂t) on this space, and the negative generator of the corresponding Feller semigroup, see [18] for
more details. Theorem 3.2 in [19] shows that the domain of this operator contains any f ∈ L1λ(R × R+) whose weak first
and second order spatial derivatives as well as weak first order time derivatives are in L1λ(R × R+), and that in this case we
have

ψ(i∂x, ∂t)f (x, t) = −a∂xf (x, t)−
1
2
σ 2∂2x f (x, t)

−


R×R+\{(0,0)}


H(t − u)f (x − y, t − u)− f (x, t)+

y∂xf (x, t)
1 + y2


φ(dy, du) (2.15)

where H(t) = I(t ≥ 0) is the Heaviside step function.

3. Limit theorems

This section derives the long-time scaling limit of the coupled CTRW and OCTRW processes. Recall from Section 2 that
B̃(c) = B(b̃(c)) where B(c) is the norming sequence for the random walk of jumps, and b̃(c) is the asymptotic inverse of
1/b(c), the norming sequence for the random walk of waiting times, in the joint random walk convergence (2.5).

Theorem 3.1. Suppose (Yn, Jn) are i.i.d. random vectors on R × R+ such that (2.5) holds. Then

{B̃(c)S(N(ct)+ 1)}t≥0 ⇒ {A(E(t))}t≥0 (3.1)

as c → ∞ in the J1 topology on D([0,∞),R); Also

{B̃(c)S(N(ct))}t≥0 ⇒ {A(E(t)−)}t≥0 (3.2)

as c → ∞ in the J1 topology on D([0,∞),R).
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Proof. Note that the CTRWscaling limit in (3.2) has to be interpreted as the right-continuous version of {A(E(t)−)}t≥0 so that
its sample paths are proper elements of D([0,∞),R). The triangular array (κε,k, ξε,k)with ε = c−1, nε = b̃(c), κε,k = c−1Jk
and ξε,k = B̃(c)Yk has i.i.d. rows for any ε > 0. Hence condition T4 on [20, p. 287] holds. Next define

ξε(t) =

[nε t]
k=1

ξε,k = B̃(c)S(b̃(c)t)

and

κε(t) =

[nε t]
k=1

κε,k = c−1T (b̃(c)t).

Since (2.6) holds, condition A66 on [20, p. 288] also holds with (κ0(t), ξ0(t)) = (D(t), A(t)). Finally, note that condition J20
on [20, p. 285] holds with π1(0+) = φD(0,∞) = ∞, by the standard convergence criteria for triangular arrays (e.g., see
[14, Theorem 3.2.2]). Define the renewal process

νε(t) = sup(s : κε(s) ≤ t) = b̃(c)
−1

min


n ≥ 0 :

n
k=1

κε,k > t



= b̃(c)
−1

min


n ≥ 0 :

n
k=1

Jk > ct


= b̃(c)

−1
N(ct)+ 1


and the corresponding limit process

ν0(t) = sup{s ≥ 0 : κ0(s) ≤ t} = sup{s ≥ 0 : D(s) ≤ t} = inf{s ≥ 0 : D(s) > t} = E(t).

The random walk process subordinated to the renewal process is

ζε(t) = ξε(νε(t)) = B̃(c)S(b̃(c)νε(t))

= B̃(c)S

b̃(c)


b̃(c)

−1
(N(ct)+ 1)


= B̃(c)S(N(ct)+ 1)

which is the left-hand side of (3.1). Then [20, Theorem 4.5.6] yields

B̃(c)S(N(ct)+ 1) = ζε(t) → ζ0(t) = ξ0(ν0(t)) = A(E(t)) (3.3)

as c → ∞ in the J1 topology on D([0,∞),R).
Next we consider the CTRW limit (3.2). Following [20, page 282], we consider the so-called modified renewal process

ν ′

ε(t) = b̃(c)
−1

max


n ≥ 0 :

n
k=1

κε,k ≤ t


= b̃(c)

−1
N(ct)

and

ζ ′

ε(t) = ξε(ν
′

ε(t)) = B̃(c)S(N(ct))

which is the left-hand side of (3.2). Since [20, Theorem 4.5.6] is an application of [20, Theorem 4.5.1], the remarks on
[20, page 282] show that, under the same conditions we have already checked, we also get process convergence

B̃(c)S(N(ct)) = ζ ′

ε(t) → ζ ′

0(t) = ξ0(ν0(t)−) = A(E(t)−)

as c → ∞ in the J1 topology on D([0,∞),R). �

Remark 3.2. The CTRW and OCTRW convergence results in Theorem 3.1 can also be obtained from Straka and Henry
[21, Theorem 3.6], which yields

{B̃(c)S(N(ct)+ 1), b(b̃(c))T (N(ct)+ 1)}t≥0 ⇒ {A(E(t)),D(E(t))}t≥0 (3.4)

and

{B̃(c)S(N(ct)), b(b̃(c))T (N(ct))}t≥0 ⇒ {A(E(t)−),D(E(t)−)}t≥0 (3.5)

as c → ∞ in the J1 topology on D([0,∞),R). The proof of [21, Theorem 3.6] uses a continuous mapping approach. The
convergence (3.4) was also proven by Silvestrov and Teugels [22, Theorem 3.2] by arguments similar to Theorem 3.1.

A stochastic process {X(t)}t≥0 is self-similar with index H if, for any r > 0, {X(rt)} = {rHX(t)} in the sense of finite-
dimensional distributions, e.g., see [23].
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Corollary 3.3. The limit processes A(E(t)) and A(E(t)−) in Theorem 3.1 are both self-similar with index β/α.

Proof. Recall that B̃(c) varies regularly with index −β/α, i.e., B̃(rc)B̃(c)−1
→ r−β/α as c → ∞ for every r > 0. From (3.1)

we get

{B̃(c)S(N(c · rt)+ 1)}t≥0 ⇒ {A(E(rt))}t≥0

while a continuous mapping argument along with (3.1) yields

{B̃(c)S(N(crt)+ 1)} = {B̃(c)B̃(cr)−1
· B̃(cr)S(N(crt)+ 1)} ⇒ {rβ/αA(E(t))}

so that {A(E(rt))} and {rβ/αA(E(t))} are identically distributed as elements of D([0,∞),R). A similar argument using (3.2)
shows that {A(E(rt)−)} and {rβ/αA(E(t)−)} are identically distributed as elements of D([0,∞),R). Then we also have
equality in the sense of finite dimensional distributions. �

Remark 3.4. Eq. (3.1) corrects the result in [17, Theorem 3.4]. Examples 5.2–5.6 in [17] provide valid governing equations
for the CTRW limit process A(E(t)−).

Remark 3.5. It is not hard to extend Theorem 3.1 to the more general case of triangular array convergence. Let (J (c)n , Y (c)n )
be i.i.d. on R × R+ for each c > 0 and set

T (c)(n) =

n
j=1

J (c)j and S(c)(n) =

n
i=1

Y (c)i (3.6)

and let N (c)(t) = max{n ≥ 0 : T (c)(n) ≤ t}. Assume that

{(S(c)(cu), T (c)(cu))}u≥0 ⇒ {(A(u),D(u))}u≥0 as c → ∞ (3.7)

in the J1 topology on D([0,∞),R × R+), where {(A(u),D(u))}u≥0 is a Lévy process on R × R+ such that φD(0,∞) = ∞

and b = 0 in (2.9). Triangular array convergence is useful in applications to finance, because the limit is more flexible. For
example,A(t) can be a Brownianmotionwith drift, or a CGMY (tempered stable) processwith finitemoments but probability
tails that follow a power law at some scale. An explicit triangular array scheme for the CGMY process was developed in [24].
Let ε = c−1, nε = c, κε,k = J (c)k and ξε,k = Y (c)k . Then it follows exactly as in the proof of Theorem 3.1 that

{S(c)(N (c)(t)+ 1)}t≥0 ⇒ {A(E(t))}t≥0

{S(c)(N (c)(t))}t≥0 ⇒ {A(E(t)−)}t≥0
(3.8)

as c → ∞ in the J1 topology on D([0,∞),R). This corrects certain results in [18]: Theorem 3.6, Corollary 3.8, and the
governing equation (4.5) in [18] pertain to the CTRW limit process A(E(t)−).

4. Governing equations

This section develops the governing pseudo-differential equations of the OCTRW limit process A(E(t)), and the CTRW
limit process A(E(t)−), from Theorem 3.1. Theorem 4.1 shows that the governing equations of the CTRW and OCTRW limits
differ only in their initial/boundary conditions. While this may seem like a minor difference, the examples in Section 5 will
demonstrate that the effect can be quite dramatic. Recall that the pseudo-differential operator ψ(i∂x, ∂t) was defined in
(2.15). Also note that, since the set R × (t,∞) is bounded away from (0, 0), φ(dx, (t,∞)) is a finite measure on R for
any t > 0. Given a weakly measurable family h(dx, t) of bounded measures on R, we will say that a function f (x, t) is a
mild solution to the pseudo-differential equation ψ(i∂x, ∂t)f (x, t) = h(dx, t) if its FLT solves the corresponding algebraic
equation.

Theorem 4.1. If the OCTRW limit A(E(t)) in (3.1) has a Lebesgue density a(x, t), then this density is a mild solution to the
governing equation

ψ(i∂x, ∂t)a(x, t) = φ(dx, (t,∞)). (4.1)

If the CTRW limit A(E(t)−) in (3.2) has a Lebesgue density c(x, t), then this density is a mild solution to the governing equation

ψ(i∂x, ∂t)c(x, t) = δ(x)φD(t,∞). (4.2)

The proof of Theorem 4.1 is based on the following result, which computes the Fourier–Laplace transforms of the CTRW
andOCTRW limit processes. Recall that the Fourier symbolψA(k), the Laplace symbolψD(s), and the Fourier–Laplace symbol
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ψ(k, s)were defined in Section 2. For any fixed x ∈ R define the translation Tx(y) = y + x. Define the image measure

Tx(φ)(B, (t,∞)) = φ(T−1
x (B), (t,∞)) = φ(B − x, (t,∞))

for any Borel set B ⊂ R. We will also use the notation

P̂Y (k) = E

eikY


k ∈ R

for the Fourier transform of the distribution of a random variable Y on R,

P̃J(s) = E

e−sJ s ≥ 0

for the Laplace transform of a nonnegative random variable J , and

P̄(Y ,J)(k, s) = E

e−sJ+ikY  (k, s) ∈ R × R+

for the FLT of a random vector (Y , J) on R × R+.

Proposition 4.2. Assume that (Yn, Jn) are i.i.d. random vectors on R × R+ such that (2.5) holds. Then

ρt(dy) =


∞

0


R

 t

0
Tx(φ)(dy, (t − τ ,∞))P(A(u),D(u))(dx, dτ) du (4.3)

is the distribution of the OCTRW limit A(E(t)) in (3.1), and its FLT is given by
∞

0
e−st P̂A(E(t))(k) dt =

1
s
ψ(k, s)− ψA(k)

ψ(k, s)
. (4.4)

Furthermore,

ηt(dy) =


∞

0

 t

0
φD((t − τ ,∞))P(A(s),D(s))(dy, dτ) ds (4.5)

is the distribution of the CTRW limit A(E(t)−) in (3.2), and its FLT is given by
∞

0
e−st P̂A(E(t)−)(k) dt =

1
s
ψD(s)
ψ(k, s)

. (4.6)

The proof of Proposition 4.2 requires some preliminary lemmas. Recall that (Yn, Jn) are i.i.d. with (Y , J).

Lemma 4.3.
(a) For the OCTRW process S(N(t)+ 1) we have for s > 0, k ∈ R that

∞

0
e−st P̂S(N(t)+1)(k) dt =

1
s
P̂Y (k)− P̄(Y ,J)(k, s)
1 − P̄(Y ,J)(k, s)

. (4.7)

(b) For the CTRW process S(N(t)) we have for s > 0, k ∈ R that
∞

0
e−st P̂S(N(t))(k) dt =

1
s

1 − P̃J(s)
1 − P̄(Y ,J)(k, s)

. (4.8)

Proof. Observe first that
∞

0
e−st


1{T (n)≤t}eikS(n) dP dt =

 
∞

T (n)
e−st dt


eikS(n) dP

=
1
s


e−sT (n)+ikS(n) dP =

1
s


P̄(Y ,J)(k, s)

n
. (4.9)

Note that 1{N(t)=n} = 1{T (n)≤t} − 1{T (n+1)≤t} and hence

P̂S(N(t)+1)(k) =


eikS(N(t)+1) dP

=

∞
n=0


1{N(t)=n}eikS(n+1) dP

=

∞
n=0


1{T (n)≤t}eikS(n+1) dP −


1{T (n+1)≤t}eikS(n+1) dP


.
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Therefore we have in view of (4.9) and independence that
∞

0
e−st P̂S(N(t)+1)(k) dt =

∞
n=0


∞

0
e−st


1{T (n)≤t}eikS(n+1) dP dt −


∞

0
e−st


1{T (n+1)≤t}eikS(n+1) dP dt



=

∞
n=0


∞

0
e−st


1{T (n)≤t}eikS(n)eikYn+1 dP dt −

1
s


P̄(Y ,J)(k, s)

n+1



=

∞
n=0


1
s


P̄(Y ,J)(k, s)

n
P̂Y (k)−

1
s


P̄(Y ,J)(k, s)

n+1



=
1
s


P̂Y (k)− P̄(Y ,J)(k, s)

 ∞
n=0


P̄(Y ,J)(k, s)

n
=

1
s
P̂Y (k)− P̄(Y ,J)(k, s)
1 − P̄(Y ,J)(k, s)

which proves (4.7).
For the proof of (4.8) note first that

1{T (n+1)≤t}eikS(n) dP =


1{T (n)+Jn+1≤t}eikS(n) dP

=

 t

0
1{T (n)≤t−τ }eikS(n) dPJ(τ ) dP.

Then we have
∞

0
e−st


1{T (n+1)≤t}eikS(n) dP dt =


∞

0
e−st

 t

0
1{T (n)≤t−τ }eikS(n) dPJ(τ ) dP dt

=


eikS(n)


∞

0
e−st

 t

0
1{T (n)≤t−τ } dPJ(τ ) dt dP

=


eikS(n)


∞

0


∞

τ

e−st1{T (n)≤t−τ } dt dPJ(τ ) dP

=


eikS(n)


∞

0


∞

T (n)+τ
e−st dt dPJ(τ ) dP

=
1
s


e−sT (n)+ikS(n) dP


∞

0
e−sτ dPJ(τ )

=
1
s
P̃J(s)


P̄(Y ,J)(k, s)

n
.

In view of (4.9) we obtain
∞

0
e−st P̂S(N(t))(k) dt =

∞
n=0


∞

0
e−st


1{T (n)≤t}eikS(n) dP dt −


∞

0
e−st


1{T (n+1)≤t}eikS(n) dP dt



=
1
s

∞
n=0


P̄(Y ,J)(k, s)

n
− P̃J(s)


P̄(Y ,J)(k, s)

n
=

1
s

1 − P̃J(s)
1 − P̄(Y ,J)(k, s)

and the proof is complete. �

Lemma 4.4.

(a) For the OCTRW process S(N(t)+ 1) we have for all k ∈ R and s > 0
∞

0
e−st P̂B̃(c)S(N(ct)+1)(k) dt →

1
s
ψ(k, s)− ψA(k)

ψ(k, s)
as c → ∞. (4.10)

(b) For the CTRW process S(N(t)) we have for all k ∈ R and s > 0
∞

0
e−st P̂B̃(c)S(N(ct))(k) dt →

1
s
ψD(s)
ψ(k, s)

as c → ∞. (4.11)
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Proof. Recall from Section 2 that B̃(c) = B(b̃(c)) is a regularly varying function with index −β/α. From (2.6) we get
B̃(c)S(b̃(c)), c−1T (b̃(c))


⇒ (A,D) as c → ∞.

By the continuity theorem for the FLT for probability distributions, this is equivalent to
P̄(Y ,J)(B̃(c)k, c−1s)

b̃(c)
→ P̄(A,D)(k, s) = e−ψ(k,s) as c → ∞ (4.12)

for all k ∈ R and s ≥ 0. Take logs and apply a Taylor expansion to see that (4.12) is equivalent to

b̃(c)

1 − P̄(Y ,J)(B̃(c)k, c−1s)


→ ψ(k, s) as c → ∞. (4.13)

Using P̄(Y ,J)(0, s) = P̃J(s) and P̄(Y ,J)(k, 0) = P̂Y (k) as well as ψ(k, 0) = ψA(k) in (2.11) and ψ(0, s) = ψD(s) in (2.13), we get
from (4.13)

b̃(c)

1 − P̂Y (B̃(c)k)


→ ψA(k)

b̃(c)

1 − P̃J(c−1s)


→ ψD(s)

(4.14)

as c → ∞.

Proof of (a). In view of Lemma 4.3(a) we get by a simple change of variables for all k ∈ R and s > 0
∞

0
e−st P̂B̃(c)S(N(ct)+1)(k) dt = c−1


∞

0
e−(sc−1)t P̂S(N(t)+1)(B̃(c)k) dt

=
1
s
P̂Y (B̃(c)k)− P̄(Y ,J)(B̃(c)k, c−1s)

1 − P̄(Y ,J)(B̃(c)k, c−1s)

=
1
s
b̃(c)


P̂Y (B̃(c)k)− 1


+ b̃(c)


1 − P̄(Y ,J)(B̃(c)k, c−1s)


b̃(c)


1 − P̄(Y ,J)(B̃(c)k, c−1s)


→

1
s

−ψA(k)+ ψ(k, s)
ψ(k, s)

as c → ∞, using (4.13) and (4.14). �

Proof of (b). Similarly, we get from Lemma 4.3(b) that for all k ∈ R and s > 0
∞

0
e−st P̂B̃(c)S(N(ct))(k) dt = c−1


∞

0
e−(sc−1)t P̂S(N(t))(B̃(c)k) dt

=
1
s

1 − P̃J(c−1s)

1 − P̄(Y ,J)(B̃(c)k, c−1s)

=
1
s

b̃(c)

1 − P̃J(c−1s)


b̃(c)


1 − P̄(Y ,J)(B̃(c)k, c−1s)

 →
1
s
ψD(s)
ψ(k, s)

as c → ∞, using (4.13) and (4.14) again. The proof is complete. �

Remark 4.5. In the uncoupled case where A,D are independent, we have ψ(k, s) = ψA(k)+ ψD(s) and hence the limits in
(4.10) and (4.11) are equal. Hence it follows from Lemma 4.4 that the FLT limits of B̃(c)S(N(ct) + 1) and B̃(c)S(N(ct)) are
equal if and only if A and D are independent.

Lemma 4.6. Let (ρt)t>0 and (ηt)t>0 be two families of probability measures on R such that t → ρt and t → ηt are weakly
right-continuous. If

∞

0
e−st ρ̂t(k) dt =


∞

0
e−st η̂t(k) dt

for all s > 0 and k ∈ R, then ρt = ηt for all t > 0.

Proof. For any fixed k ∈ R, the uniqueness theorem for Laplace transforms implies that ρ̂t(k) = η̂t(k) for Lebesgue-almost
all t > 0. By the continuity theorem for the Fourier transform, both t → ρ̂t(k) and t → η̂t(k) are right-continuous. It
follows that ρ̂t(k) = η̂t(k) for all t > 0. Since k ∈ R is arbitrary, the uniqueness theorem of the Fourier transform implies
ρt = ηt for all t > 0, and the proof is complete. �
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Lemma 4.7. For any t > 0, k ∈ R and s > 0 we have
∞

0
e−st


R
eikxφ(dx, (t,∞)) dt =

1
s


ψ(k, s)− ψA(k)


(4.15)

where ψ(k, s) is the log-FLT of (A,D) as in (2.8).

Proof. Since φ(dx, (t,∞)) is a finite measure on R, the Fourier-transform of φ(dx, (t,∞)) is well defined for any t > 0.
Moreover

R
eikxφ(dx, (t,∞))

 ≤ φ(R, (t,∞)) = φD(t,∞)

and by [18, Eq. (3.12)] we know that
∞

0
e−stφD(t,∞) dt =

1
s
ψD(s)

for s > 0. Therefore, we can apply Fubini’s theorem to get
∞

0
e−st


R
eikxφ(dx, (t,∞)) dt =


R


∞

0
eikx


∞

0
1(t,∞)(u)e−st dt


φ(dx, du)

=
1
s


R


∞

0


1 − e−sueikx φ(dx, du)

=
1
s


R


∞

0


eikx − 1 −

ikx
1 + x2


+


1 − eikxe−su

+
ikx

1 + x2


φ(dx, du)

=
1
s


−ψA(k)+ ψ(k, s)


and the proof is complete. �

Lemma 4.8. Eq. (4.3) defines a probability measure ρt(dy) on R such that
∞

0
e−st ρ̂t(k) dt =

1
s
ψ(k, s)− ψA(k)

ψ(k, s)

for any s > 0 and x ∈ R. Moreover, the mapping t → ρt is right continuous with respect to weak convergence.

Proof. Observe first that Tx(φ)(R, (t − τ ,∞)) = φD(t − τ ,∞) and hence

ρt(R) =


∞

0

 t

0
φD(t − τ ,∞) P(A(u),D(u))(R, dτ) du

=


∞

0

 t

0
φD(t − τ ,∞) PD(u)(dτ) du = 1

by [18, Theorem 3.1], so that ρt is a probability measure on R for any t > 0. Observe that for k ∈ R we have using Fubini
that

ρ̂t(k) =


∞

u=0


x∈R

 t

τ=0


y∈R

eik(x+y)φ(dy, (t − τ ,∞)) P(A(u),D(u))(dx, dτ) du. (4.16)

Then, by Fubini’s theorem we get for any s > 0 and k ∈ R, using (4.15) that
∞

0
e−st ρ̂t(k) dt =


∞

u=0


x∈R


∞

τ=0


∞

t=τ


y∈R

e−steik(x+y)φ(dy, (t − τ ,∞)) dt P(A(u),D(u))(dx, dτ) du

=


∞

u=0


x∈R


∞

τ=0


∞

v=0


y∈R

e−s(v+τ)eik(x+y)φ(dy, (v,∞)) dv


P(A(u),D(u))(dx, dτ) du

=
1
s


ψ(k, s)− ψA(k)

  ∞

u=0


x∈R


∞

τ=0
e−sτ eikx P(A(u),D(u))(dx, dτ)


du

=
1
s


ψ(k, s)− ψA(k)

  ∞

0
e−uψ(k,s) du =

1
s
ψ(k, s)− ψA(k)

ψ(k, s)
.

Note that the last equality is justified since Reψ(k, s) ≥ ψD(s) > 0, as in [18, p. 1619].
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In order to show that t → ρt is weakly right-continuous, in view of the continuity theorem for the Fourier transform, it
is enough to show that for any fixed k ∈ R the function t → ρ̂t(k) is right-continuous. Using (4.16) we get for any t > 0
and h > 0 that

ρ̂t(k)− ρ̂t+h(k) =


∞

u=0


x∈R

 t

τ=0


y∈R

eik(x+y)φ(dy, (t − τ ,∞)) P(A(u),D(u))(dx, dτ) du

−


∞

u=0


x∈R

 t+h

τ=0


y∈R

eik(x+y)φ(dy, (t + h − τ ,∞)) P(A(u),D(u))(dx, dτ) du

=


∞

u=0


x∈R

 t

τ=0


y∈R

eik(x+y)φ(dy, (t − τ ,∞))

−


y∈R

eik(x+y)φ(dy, (t + h − τ ,∞))


P(A(u),D(u))(dx, dτ) du

−


∞

u=0


x∈R

 t+h

τ=t


y∈R

eik(x+y)φ(dy, (t + h − τ ,∞)) P(A(u),D(u))(dx, dτ) du

= Ih − Jh.

Then we get

|Ih| ≤


∞

u=0

 t

τ=0


φ(R, (t − τ ,∞))− φ(R, (t + h − τ ,∞))


P(A(u),D(u))(R, dτ) du

=


∞

0

 t

0


φD(t − τ ,∞)− φD(t + h − τ ,∞)


PD(u)(dτ) du

→ 0

as h ↓ 0 by a dominated convergence argument along with [18, Eq. (3.1)], as in [18, p. 1625]. Moreover

|Jh| ≤


∞

0

 t+h

t
φ(R, (t + h − τ ,∞)) P(A(u),D(u))(R, dτ) du

=


∞

0

 t+h

t
φD(t + h − τ ,∞) PD(u)(dτ) du

→ 0

as h ↓ 0 using some results in [25], as in [18, pp. 1615–1616]. This concludes the proof. �

Remark 4.9. Although it is not required for the proof of Proposition 4.2, it is also true that the distribution ρt of the OCTRW
limit process A(E(t)) is weakly left-continuous, thus it is weakly continuous. The proof is similar to Lemma 4.8.

Proof of Proposition 4.2. Lemma 4.8 shows that ρt(dy) is right-continuous with FLT

1
s
ψ(k, s)− ψA(k)

ψ(k, s)
. (4.17)

Theorem 3.1 shows that B̃(c)S(N(ct)+ 1) converges in J1 to A(E(t)), and Lemma 4.4 shows that the FLT of B̃(c)S(N(ct)+ 1)
converges to the same limit (4.17). Note that J1 convergence implies convergence in distribution on the set of all points of
stochastic continuity of the limit process, e.g. see [20, p. 44]. Moreover, all but countably many points of a càdlàg process
are points of stochastic continuity, e.g. see [20, Lemma 1.6.2]. Then

PB̃(c)S(N(ct)+1)(dx) ⇒ PA(E(t))(dx)

as c → ∞ for all but countably many t > 0. Then the continuity theorem for the Fourier transform yields

P̂B̃(c)S(N(ct)+1)(k) → P̂A(E(t))(k)

as c → ∞ for all k ∈ R, for dt-almost every t > 0. Then we have for each k ∈ R that
∞

0
e−st P̂B̃(c)S(N(ct)+1)(k) dt →


∞

0
e−st P̂A(E(t))(k) dt

as c → ∞, and this together with (4.10) shows that the FLT of A(E(t)) equals (4.17). Since A(t) is càdlàg and E(t) is
continuous and nondecreasing, A(E(t)) is a càdlàg process. Then it is right-continuous almost surely, and hence it is also
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right-continuous in distribution. Then Lemma 4.6 implies that ρt(dy) equals the distribution of A(E(t)), which finishes the
proof of (a). Part (b) follows from [18, Theorem 3.6] and Remark 3.5. The arguments are similar. �

Proof of Theorem 4.1. If the OCTRW limit A(E(t)) in (3.1) has a density a(x, t), then it follows from Proposition 4.2 and
Lemma 4.7 that

ā(k, s) =
1
s
ψ(k, s)− ψA(k)

ψ(k, s)
.

Rewrite in the form

ψ(k, s)ā(k, s) =
ψ(k, s)− ψA(k)

s
and invert the FLT using Lemma 4.7 to see that (4.1) holds. If the CTRW limit A(E(t)−) in (3.2) has a density c(x, t), then it
follows from [18, Eq. (4.5)] and Remark 3.5 that (4.2) holds, with a different initial/boundary condition on the right-hand
side. �

Remark 4.10. In order to avoid distributions in the OCTRW limit governing equation (4.1), one can impose a smooth initial
condition as in [26]. Suppose that X0 is a random variable with C∞ density p(x), independent of the process (A(t),D(t)).
Physically, the random variable X0 represents the particle position at time t = 0. Then the OCTRW limit A(E(t))+ X0 has a
density a(x, t) =


p(x − y)ρt(dy)with Fourier transform â(k, t) = ρ̂t(k)p̂(k) and FLT

ā(k, s) =
s−1

[ψ(k, s)− ψA(k)]p̂(k)
ψ(k, s)

. (4.18)

Lemma 4.7 shows that the Fourier transform q̂(k, t) =

eikxφ(dx, (t,∞)) exists for all t > 0, and that the Laplace transform

of q̂(k, t) is given by (4.15). It follows easily that the FLT of

p(x − y)φ(dy, (t,∞)) is given by the numerator in (4.18).

Inverting the FLT in (4.18) reveals the governing equation

ψ(i∂x, ∂t)a(x, t) =


p(x − y)φ(dy, (t,∞)). (4.19)

Using the same smooth initial condition for the CTRW limit is equivalent to replacing δ(x) by p(x) in the governing
equation (4.2).

5. Examples

This section provides several concrete examples of coupled CTRW and OCTRW convergence, and computes and solves
the corresponding governing equations.

Example 5.1. If Yn and Jn are independent, then so are A(t) and D(t). The FL-symbol is ψ(k, s) = ψA(k) + ψD(s), and
φ(dx, (t,∞)) = ε0(dx)φD(t,∞), where ε0 is the point mass at zero. Suppose that the stable Lévy motion A(t) is totally
positively skewed with Fourier symbol ψA(k) = −b(−ik)α for some 0 < α ≤ 2, α ≠ 1. Suppose that Jn belongs to the
domain of attraction of a standard β-stable subordinator D with Laplace symbol

ψD(s) = sβ =


∞

0


1 − e−suφD(du). (5.1)

A calculation similar to [14, Lemma 7.3.7] shows that

φD(t,∞) =
t−β

Γ (1 − β)
. (5.2)

Since δ(x) = ε0(dx), the OCTRW limit governing equation (4.1) reduces to

∂
β
t a1(x, t) = b∂αx a1(x, t)+ δ(x)

t−β

Γ (1 − β)
(5.3)

where b < 0 if 0 < α < 1 and b > 0 for 1 < α ≤ 2. In this case, the CTRW limit Eq. (4.2) reduces to the same form. In
fact, the limit processes A(E(t)) and A(E(t)−) in Theorem 3.1 are the same in this case, since A(t) and D(t) have (almost
surely) no simultaneous jumps. The stable subordinator D has a smooth density gβ(u) supported on u > 0, and the stable
Lévy motion A(t) has a smooth density p(x, t) for all t > 0. Using the self-similarity of D, a simple conditioning argument
shows that A(E(t)) has density

a1(x, t) =


∞

0
p(x, (t/s)β)gβ(s)ds =

t
β


∞

0
p(x, u)gβ(tu−1/β)u−1/β−1du, (5.4)
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Fig. 1. Solution a1(x, t) to the uncoupled OCTRW limit Eq. (5.3) with t = 1.0, α = 2, and b = 1 in the case β = 0.6 (solid line), compared with the
solution to (5.3) with t = 1.0, α = 2, and b = 1 in the traditional diffusion case β = 1 (dashed line). In the uncoupled case, the CTRW and OCTRW are
governed by the same equation.

which solves the uncoupled governing equation (5.3). See [26,15] for further details. Eq. (5.3) is called the space–time
fractional diffusion equation. It has been used frequently in physics, finance, and hydrology to model anomalous diffusion
[2,3,27,28,9,29]. Fig. 1 plots the solution (5.3) at time t = 1.0 in the case α = 2 and β = 0.6 with b = 1.0, together with the
corresponding normal density that solves the same equation with β = 1. When α = 2 and β = 1, (5.3) is the traditional
diffusion equation, and the boundary term δ(x)t−β/Γ (1 − β) reduces to the point source initial condition δ(x)δ(t). The
solution to the time-fractional diffusion equation has a sharper peak, and broader tails.

The remaining examples are coupled. Suppose that Jn are i.i.d.withD, a standardβ-stable subordinatorwith Lévymeasure
(5.2). For any probability measure ω on R and any p > β/2, suppose that the conditional distribution of Yn given Jn = t is
tpω. Then [17, Theorem 2.2] shows that (2.5) holds, the Lévy measure of (A,D) is

φ(dy, dt) = tpω(dy)φD(dt), (5.5)

and furthermore, every possible non-normal coupled limit in (2.5) has a Lévy measure of this form. In this case, A is stable
with index α = β/p.

Example 5.2. Suppose Yn = Jn, as in [30]. Take Jn i.i.d. with D, a standard β-stable subordinator. From (5.5) with p = 1 and
ω = ε1, we see that the Lévy measure (jump intensity)

φ(dy, dt) = εt(dy)φD(dt) (5.6)

of (A,D) is concentrated on the line y = t . Zolotarev [31, Lemma 2.2.1] shows that E[eikD] has a unique analytic extension
to the complex plane with a branch cut along the ray arg(k) = −3π/4, henceψA(k) = ψD(−ik). Then an easy computation
using (5.1) shows that ψ(k, s) = (s − ik)β where b = 0, σ 2

= 0, and a = −

t(1 + t2)−1φD(dt) in (2.9). Since A = D, the

joint distribution of (A(s),D(s)) is given by

P(A(s),D(s))(dx, du) = εu(dx)PD(s)(du). (5.7)

Proposition 4.2(b) shows that the CTRW limit A(E(t)−) = D(E(t)−) in (3.2) has FLT
∞

0
e−st η̂t(k) dt =

1
s
ψD(s)
ψ(k, s)

=
sβ−1

(s − ik)β
. (5.8)

Following [17, Example 5.4] we can invert the FLT in (5.8) to see that the CTRW limit distribution ηt(dx) has a Lebesgue
density

c2(x, t) =
xβ−1(t − x)−β

Γ (β)Γ (1 − β)
, 0 < x < t. (5.9)

Formula (5.9) is the density of tB, where B has a beta distribution with parameters β and 1 − β . It solves the coupled
governing equation (4.2), which can be written in this case as
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Fig. 2. Solution a2(x, t) to the coupled OCTRW limit Eq. (5.13) at t = 1.0 in the case β = 0.45 (solid line), compared with the solution c2(x, t) to the
coupled CTRW limit Eq. (5.10) with t = 1.0 and β = 0.45 (dashed line).


∂t + ∂x

β
c2(x, t) = δ(x)

t−β

Γ (1 − β)
(5.10)

with a coupled space–time fractional derivative operator on the left-hand side. It is also possible to derive (5.9) from the
general formula (4.5) for the CTRW limit distribution ηt(dx).

It follows from (4.4) that the OCTRW limit A(E(t)) = D(E(t)) in (3.1) has FLT
∞

0
e−st ρ̂t(k) dt =

1
s
ψ(k, s)− ψA(k)

ψ(k, s)
=

1
s
(s − ik)β − (−ik)β

(s − ik)β
. (5.11)

A straightforward but lengthy computation using (4.3) shows that the OCTRW limit density is

a2(x, t) =
x−1

Γ (β)Γ (1 − β)


t

x − t

β
, x > t. (5.12)

Formula (5.12) is the density of t/B, whereB has a beta distributionwith parameters β and 1−β . The OCTRW limit density
(5.12) solves the governing equation

∂t + ∂x
β

a2(x, t) =
1

Γ (1 − β)


∞

t
δ(x − u)βu−β−1 du (5.13)

using generalized function notation. It follows from (5.12) that

a2(x, t) ∼
tβ

Γ (β)Γ (1 − β)
x−1−β as x → ∞.

Fig. 2 compares solutions to the coupled OCTRW limit Eq. (5.13) and coupled CTRW limit Eq. (5.10). Note the striking
difference between the CTRW and OCTRW limits in this case: The CTRW limit density (5.9) is supported on 0 < x < t ,
so it has moments of all orders. The OCTRW limit density (5.12) is supported on x > t , and its moments of order >β all
diverge.

Example 5.3. Suppose D is a stable subordinator with E(e−sD) = e−sβ , and the conditional distribution of Y given D = t is
normal with mean zero and variance 2t , as in [1]. Then

E(eikY ) = E(E(eikY |D)) = E(e−k2D) = e−|k|2β

so that Y is symmetric stable with index α = 2β . If we take (Yn, Jn) i.i.d. with (Y ,D), then (2.5) holds, and it follows from
(5.5) that the operator stable limit (A,D) has Lévy measure

φ(dx, dt) = t1/2ω(dx) φD(dt) (5.14)
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where ω is a normal distribution with mean zero and variance 2. Take a = b = σ 2
= 0 in (2.9) to see that

ψ(k, s) =


∞

0


∞

−∞


1 − eikxe−st

+
ikx

1 + x2


1

√
4π t

exp


−
x2

4t


dxφD(dt)

=


∞

0


1 − e−t(s+k2)


φD(dt) = (s + k2)β

using (5.1). The CTRW limit has FLT
∞

0
e−st P̂A(E(t)−)(k) dt =

sβ−1

(s + k2)β
. (5.15)

Inverting the FLT as in [17, Example 5.2] shows that the CTRW limit A(E(t)−) has Lebesgue density

c3(x, t) =

 t

0

1
√
4πu

exp


−
x2

4u


c2(u, t) du. (5.16)

This density solves the governing equation
∂t − ∂2x

β
c3(x, t) = δ(x)

t−β

Γ (1 − β)
. (5.17)

The OCTRW limit A(E(t)) in (3.1) has FLT
∞

0
e−st ρ̂t(k) dt =

1
s
(s + k2)β − |k|2β

(s + k2)β
.

The density of (A,D) is given by p(z, u) = (4πu)−1/2 exp(−z2/(4u))gβ(u), where gβ is the density ofD. A computation using
the self-similarity of D(s) shows that the OCTRW limit density is

a3(x, t) =


∞

t

1
√
4πu

exp


−
x2

4u


a2(u, t) du, (5.18)

which solves the governing equation
∂t − ∂2x

β
a3(x, t) =

1
Γ (1 − β)


∞

t

1
√
4πu

exp


−
x2

4u


βu−β−1 du. (5.19)

Fig. 3 compares solutions to the coupled OCTRW limit Eq. (5.19) and the coupled CTRW limit Eq. (5.17). It follows easily
from (5.16) that the CTRW limit density c3(x, t) has a finite second moment. A computation using (5.18) shows that
P{|A(E(t))| > r} varies regularly with index −2β , so that the second moment of a3(x, t) is infinite. This is reflected in
the heavier tails of a3(x, t) in Fig. 3. Corollary 3.3 shows that both A(E(t)) and A(E(t)−) are self-similar with scaling index
β/α = 1/2. Hence, this example provides two very different models for anomalous diffusion that spread at the same rate
as a Brownian motion.

Example 5.4. Suppose X(t) is any Lévy process, and that X(1) has distribution ω. Suppose D(t) is a β-stable subordinator
with E[e−sD(1)

] = e−sβ , independent of X(t). Define a triangular array with i.i.d. rows such that

Y (c)i
d
= X(D(c−1)) and J (c)i

d
= D(c−1).

It is easy to see that

(S(c)(ct), T (c)(ct)) ⇒ (A(t),D(t))

where A(t) = X(D(t)). Since X(t) and D(t) are independent, a simple conditioning argument yields

PA(E(t)−)(dx) =


∞

0
ωu(dx) PD(E(t)−)(du) =


∞

0
ωu(dx)c2(u, t) du

as well as

PA(E(t))(dx) =


∞

0
ωu(dx) PD(E(t))(du) =


∞

0
ωu(dx)a2(u, t) du.

Let D = D(1), A = A(1), and write E(eikX(t)) = e−tψ0(k). Then

E(e−sDeikA) = E(E(e−sDeikX(D)|D = t)) = E(e−sDe−Dψ0(k)) = e−(s+ψ0(k))β
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Fig. 3. Solution a3(x, t) to the coupled OCTRW limit Eq. (5.19) with t = 1.0 and β = 0.8 (solid line), and solution c3(x, t) to the corresponding CTRW limit
Eq. (5.17) with t = 1.0 and β = 0.8 (dashed line).

so that ψ(k, s) = (s + ψ0(k))β in this case. If X(t) has a density fu(t), then the CTRW limit density

c4(x, t) =

 t

0
fu(x)c2(u, t) du (5.20)

solves the coupled pseudo-differential equation


∂t + ψ0(i∂x)

β
c4(x, t) = δ(x)

t−β

Γ (1 − β)
, (5.21)

while the OCTRW limit density

a4(x, t) =

 t

0
fu(x)a2(u, t) du (5.22)

solves
∂t + ψ0(i∂x)

β
a4(x, t) =

1
Γ (1 − β)


∞

t
fu(x) βu−β−1 du. (5.23)

Remark 5.5. In practical applications, it is useful to consider a CTRW with drift. Extending Example 5.3, suppose that
the conditional distribution of Y given D = t is normal with mean a0t and variance 2b0t . Example 5.4 with ψ(k, s) =

(s + b0k2 − ika0)β implies that the Lebesgue density

c5(x, t) =

 t

0

1
√
4πb0u

exp


−
(x − a0u)2

4b0u


c2(u, t) du

of the CTRW limit A(E(t)−) solves the governing equation
∂t + a0∂x − b0∂2x

β
c5(x, t) = δ(x)

t−β

Γ (1 − β)
.

The OCTRW limit density

a5(x, t) =


∞

t

1
√
4πb0u

exp


−
(x − a0u)2

4b0u


a2(u, t) du

solves the governing equation
∂t + a0∂x − b0∂2x

β
a5(x, t) =

1
Γ (1 − β)


∞

t

1
√
4πb0u

exp


−
(x − a0u)2

4b0u


βu−β−1 du.
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