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[1] Chemical reactions may be simulated without regard to local concentrations by
applying simple probabilistic rules of particle interaction and combination. The forward
reaction A + B! C is coded by calculating the probability that any A and B particles will
occupy the same volume over some time interval. This becomes a convolution of the
location densities of the two particles. The backward reaction is a simple exponential decay
of C particles into A and B particles. When the mixing of reactants is not a limiting process,
the classical thermodynamic reaction rates are reproduced. When low mixing (as by
diffusion) limits the reaction probabilities, the reaction rates drop significantly, including the
rate of approach to global equilibrium. At long enough times, the law of mass action is
reproduced exactly in the mean, with some irreducible deviation in the local equilibrium
saturations (the equilibrium constant divided by the mass action expression) away from
unity. The saturation variability is not sensitive to numerical parameters but depends
strongly on how far from equilibrium the system is initiated. This is simply due to a relative
paucity of particles of some species as the reaction moves far to one side or the other.
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1. Introduction

[2] Chemical reactions are commonly idealized as an
interaction between fluids with certain concentrations of
reactants and products. However, on a molecular level,
the reactions are the result of collisions, combinations,
and/or decay into different species. Each of these actions
occur with some probability that is independent of the
numbers of molecules some distance away. Only upon
space and time averaging do the concepts of concentra-
tion, reaction rate, and equilibrium appear. Similarly,
solute advection and dispersion were initially envisioned
as operations that acted upon concentration. Only later
were the operations specified as acting on ‘‘particles’’ that
represent packets of molecules. The formal connection is
made by relating the probability density of particle
location and concentration [e.g., Tompson and Dougherty,
1992]. In this paper, a similar distinction is made between
abstract solute particles that interact according to simple
probabilistic rules, and the changes in apparent reactive
solute concentrations.
[3] The motivation to simulate solute reaction via

Lagrangian particles and probabilities is twofold: First,
the Lagrangian approach is a simple and efficient method
to simulate complex nonlocal advection, dispersion, and

mobile/immobile phase partitioning [Zhang et al., 2006;
Valocchi and Quinidoz, 1989; D. A. Benson and M. M.
Meerschaert, A simple and efficient random walk solu-
tion of multi-rate mobile/immobile mass transport equa-
tions, submitted to Advances in Water Resources, 2008].
Because each particle is independent of all others, the
transport simulations can be solved with nearly linear
speedup with the number of parallel processors. We seek
to add chemical reaction without the burden of converting
particle numbers to concentrations at every time step.
Second, within any single Eulerian ‘‘block’’ of material,
the concentrations of reactants are everywhere equal, and a
well-mixed formula applies at the level of discretization. In
reality, very small pockets of unmixed reactants may occur
in close proximity [Kapoor and Kitanidis, 1998; Kitanidis,
1994], and an Eulerian approach must use small enough
blocks to capture the chemical heterogeneity. In a Lagrang-
ian approach, the particles can occur in ‘‘clumps’’ anywhere
in the domain. We take advantage of this to more faithfully
simulate unmixed reactants at all scales while employing a
coarse velocity grid.
[4] Recent work has focused on the rate of the forward

bimolecular reaction in the deceptively simple systemA +B]
C. The forward rate discerned from batch tests is found to
be too high for column and field tests, which is attributed to
the incomplete mixing of the reactants in porous media
[Raje and Kapoor, 2002; Gramling et al., 2002]. Jose and
Cirpka [2004] show that mixing is responsible by allowing
a 1-D test in homogeneous sand to progress long enough that
mixing and hydrodynamic dispersion parameters approach
each other. In natural heterogeneous media, however, Molz
and Widdowson [1988] and Cirpka and Kitanidis [2000]
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demonstrate that mixing lags far behind hydrodynamic
dispersion. Approaches to account for this include classical
perturbative and numerical approaches [Kapoor et al., 1997;
Kapoor and Kitanidis, 1998; Dentz et al., 2000; Luo et al.,
2008].

2. Background

[5] There is a long history of reductionism associated
with connecting an observed ‘‘continuum’’ behavior, mod-
eled by some PDE, to an underlying particle- or molecular-
based rule of action. Shortly after Einstein [1906] explained
the diffusion equation via particle collisions and the central
limit theorem, von Smoluchowski [1917] explained macro-
scopic chemical reaction rates by a model of microscopic
particle collision and transformation. The mathematical
connection between chemical reaction PDEs and the under-
lying process of molecular motion (either ballistic or diffu-
sive), collision, and transformation becomes exceedingly
complex because of the interactions of multiple potential
reaction ‘‘partners’’ that can appear and disappear. von
Smoluchowski [1917] treated this in a continuum manner
with concentration gradients around a target particle, effec-
tively ruling out a purely Lagrangian implementation.
Further studies treated the joint probabilities of colocation
with multiple particle pairs. To be tractable, many assump-
tions must be made, such as uniform distributions of
reactants or independence of individual interaction distribu-
tions [Waite, 1957; Collins and Kimball, 1949; van
Kampen, 1992; Gardiner, 2004]. The assumptions make it
unclear exactly how to implement a tractable stochastic
numerical model. The most popular methods include
(1) placing the reactants on a lattice and allowing particles
to hop only to adjacent sites and react if the site is already
occupied by the appropriate reactant and (2) allowing
particles to react when they are found within some arbitrary
distance apart [Toussaint and Wilczek, 1983; Kang and
Redner, 1985; Dawkins and ben-Avraham, 2001]. These
have been proven equivalent to von Smoluchowski’s method
when the lattice spacing goes to zero, which essentially
rules out an implementation in a field-scale hydrologic
model. But the studies by Toussaint and Wilczek [1983]
and Kang and Redner [1985] point out the importance of
diffusion-limited interaction that might arise from poor
reactant mixing. In this regime, the rate of forward reaction
(for a bimolecular reaction) slows significantly relative to
the well-mixed regime, and the approach to equilibrium
slows from an exponential to a power law rate.
[6] Gillespie’s relatively recent [1977] method is easily

implemented and mimics the rate-limited (not diffusion or
mixing limited) kinetics dictated by the PDEs of reaction.
However, the method assumes that (1) reactants are ran-
domly and uniformly dispersed around any given particle
and (2) the ‘‘volume’’ of space probed by a moving particle
is linear in time. The assumptions are inherited from the
underlying model of dilute gas particles that move at
constant velocity between collisions and are quickly and
completely mixed. However, it cannot handle a heteroge-
neous environment. In a hydrologic setting, the Gillespie
method was modified [Srinivasan et al., 2007] by adding an
empirical random factor that changes the reaction rate at any
place and time. This number has no basis in the local
physics or local mixing, and the physical shortcomings of

such a factor in a similar form are discussed by Collins
and Kimball [1949]. More recently, the smoothed particle
hydrodynamics (SPH) method was implemented for advec-
tion, diffusion, and reaction with incomplete mixing by
Tartakovsky et al. [2008]. The qualitative effects of poor
mixing are striking; however, at its core, SPH uses a kernel
to average over particles to simulate the continuum varia-
bles, so the reaction rates should directly depend on an
empirical choice of kernel shape and size. We suspect that a
correct choice of kernel might replicate the physics of
diffusion-limited reaction.
[7] In the present work, we take a new look at the

problem by formulating the probability that two particles,
under any general conditions of diffusive or dispersive
motion, will occupy the same differential volume. This
probability may, but does not have to, be linked to macro-
dispersive spreading in heterogeneous material. The proba-
bility is multiplied by the classical thermodynamic rate that
dictates the probability that, upon ‘‘collision,’’ the particles
will react. Particles are allowed to react (or not) sequen-
tially, in a physically realistic, and computationally simple
manner. The algorithm is implemented and shown to
correspond, in a well-mixed setting, to the upscaled PDEs
of reaction (i.e., the law of mass action). The algorithm
makes no assumptions about the distribution or availability
of reactants, or that Fick’s law is the correct model of
diffusion. Therefore, the algorithm may treat anomalous
diffusions and will (by construction) automatically account
for the relative abundance or paucity of reactants at all
locations and times. To our knowledge, this is the first
discussion of this model of particle interaction. Under
conditions that mimic undermixed reactants, the random
walk algorithm has significantly reduced rates of reaction,
a condition often observed at the lab and field scale [Molz
and Widdowson, 1988].

3. Reaction A + B ] C

[8] The backward reaction is simplest to simulate. A
particle of C spontaneously degenerates into A and B
particles. Each particle of C does so independently of any
other particles. The probability statement that makes this
equivalent to a rate of reaction Kb is P(backward react) =
KbDt for some simulation time step Dt. For N independent
particles of C, this results in an approximation of the
differential equation dNC/dt = �Kb and an exponential
conversion of the concentration of C, denoted [C], into
[A] and [B]. This approximation is O(Dt), so in practice
KbDt < 0.1. The implementation of this reaction is easy to
code and test; verification is not shown for brevity.
[9] For the forward (second-order) reaction to occur, a

molecule of A must be close enough to B that they may
interact. The whereabouts of any particle in some time
interval in a natural (unstirred) system is dictated by the
distance that each molecule might diffuse or hydrodynam-
ically disperse, particularly in the transverse direction to
flow [Dentz et al., 2000; Jose and Cirpka, 2004]. Given two
independent particles A and B with initial locations a,b
respectively, let XA, XB denote the particle locations after
some time step Dt. These are given by the d-dimensional
densities of motion on a small timescale (Figure 1a). Write
XA = a + DXA and XB = b + DXB. The probability that the
two particles will occupy the same position is P(XA = XB) =
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P(a +DXA = b +DXB) = P(DXA �DXB = b � a) = P(D = s)
where D = DXA � DXB is the relative displacement of the
two particles, and s = b � a is the initial separation distance
(Figure 1a). The two particles will be in contact if the
relative displacement equals the initial separation, bringing
the final displacement to zero. If v(s) is the density of D,
then we can write P(XA = XB) = v(s)ds. If either of the
particle movements is symmetric (call it B) then DXB is
identically distributed with �DXB and since DXA and DXB

are independent, D is identically distributed with DXA +
DXB. Then v(s) is the density of the sum of two independent
random variables, which is known to be the convolution of
the two densities: v(s) =

R
fA(x) fB(s � x)dx, where fA(x) and

fB(x) denote the densities of the motions away from the
current positions. If neither particle motion density is
symmetric, then v(s) =

R
fA(x) fB(x � s)dx. Note that v(s)

has dimensions of inverse volume in d dimensions since
v(s)ds is dimensionless.

[10] A few simple 1-D examples illustrate the construc-
tion. If A is immobile at position x = a, and the location of B
has a density function fB(x � b) starting at location b after
some fixed time interval, the probability that A and B
occupy the same position is d(x � a) ? fB(x � b)dx =
fB(a�b)ds = fB(s)ds, merely the probability of B finding
itself at A’s location when initially separated by s. If A and B
diffuse under Brownian motion, but with different diffusion
coefficients DA and DB, the density function v(s) associated
with colocation after an interval Dt is the convolution of the
two Gaussian densities, i.e., another Gaussian with variance
2(DA + DB)Dt. An example of practical importance is a
location density for each of A and B described by a uniform
density in (�

ffiffiffiffiffiffiffiffiffiffiffiffi
6DDt

p
;

ffiffiffiffiffiffiffiffiffiffiffiffi
6DDt

p
), which has the same variance

(2DDt) as a Brownian diffusing particle over the time
interval Dt. The convolution of the two location densities
is a tent function with peak value 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24DDt

p
when the initial

separation is zero (Figure 1b). This convolution approxi-
mates the ‘‘actual’’ convolution of two mean zero, variance
2DDt, Gaussian densities, which is itself a mean zero
Gaussian with variance 4DDt (Figure 1b). The tent function
is slightly more computationally efficient and is adopted for
this study. The location densities of each particle can be
given any shape in several dimensions to simulate aniso-
tropic dispersion and mixing. In this way, two particles in the
same dip direction may react more favorably than two
separated by layers of different material. A convolution of
any number of 3-D multi-Gaussians is also multi-Gaussian
and straightforward to calculate. The dispersion ‘‘halos’’
may also be velocity-dependent. If one assumes that particles
move under the influence of Brownian motion, then the
volume ‘‘probed’’ by a particle grows at the rate of

ffiffiffiffiffiffi
Dt

p
.

This is in contrast to Gillespie’s [1977] derivation based on
ballistic motion that results in encounter probability growing
linearly with time and eventually an exponential reaction
probability.
[11] The probability of forward reaction combines the

probability of close proximity just described, multiplied by
the reaction rate times the time interval, and the total mass
(or moles) represented by a single particle. For simplicity,
imagine a 1-D domain of size W that initially contains N0

particles representing concentrations [A]0 = [B]0. Then the
probability that an A and B particle pair with initial
separation s react to form a C particle is

P forwardð Þ ¼ KDt
W A½ �0
N0

v sð ÞDV ð1Þ

This probability is compared to a uniform [0,1] random
number (U(0,1)) for particle pairs. An A particle is
evaluated against B particles until either reaction occurs
(if P(forward) > U(0,1)) or pairs are exhausted. Using the
tent function instead of the Gaussian for v(s) limits the
number of possible pairs, greatly speeding calculations.
[12] The probability (1) contains an intrinsic space/time

relationship that can be used to define the scale at which
sufficient mixing occurs: A rate coefficient K is specified
along with the volume associated with that rate DV. The
product KDV 	 Kf has units of L

dT�1M�1 and is therefore
equivalent to the classical bimolecular rate coefficient
(compare to Kf in the next section). The volume is theoret-
ically defined as a differential separation distance, and

Figure 1. Illustration of the probability that two indepen-
dent particles may be coincident during some time interval
Dt. (a) Brownian diffusion gives two overlapping Gaussian
densities. The integral of the product of the density
functions in the shaded region gives the probability density
for the event that the A and B particles come into contact.
(b) Density v(s) associated with two particles occupying the
same space when initially separated by a distance s = a � b.
Gaussian diffusion and the equivalent uniform densities
give similar results.
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represents the volume of a particle. In practice, this repre-
sents the volume of water in which the rate coefficient K is
applicable. At the pore scale, for example, Jose and Cirpka
[2004] show that mixing occurs very rapidly. At this scale
the well-mixed thermodynamic rate coefficient is used for
Kf. One may also choose to measure reaction rates
directly in a 1-D column experiment. This rate would
associate DV with the cross-sectional area of the column
times the porosity. In any well-mixed system, Kf will be
equivalent to the classical thermodynamic rate coefficient
measured in a beaker. Any segregation of the reactants on
a large enough scale so that the diffusion (mixing) times
are greater than the inverse of the reaction rates will lead
to potentially lower observed reaction rates [Toussaint
and Wilczek, 1983; Kang and Redner, 1985]. A recent
accessible discussion of rate- versus diffusion-limited
reaction regimes was given by Dawkins and ben-Avraham
[2001].

[13] On the face of expression (1), it appears that choos-
ing to double the number of particles (e.g., for better spatial
resolution) will not change the reaction rate; furthermore, a
change in the time discretization is accounted for in the
same manner as the backward reaction. Either doubling N0

or halving Dt doubles the potential number of encounters in
any given t 
 Dt, so the probability of each encounter
must be halved. This preserves the same rate of reaction.
We will see that this does indeed hold when the reactions
are rate limited. Care should be taken not to choose
modeling parameters (such as Dt) that allow a calculated
probability greater than unity, since this violates the under-
lying approximation of the probability.
[14] For equal and uniform initial concentrations [A]0 =

[B]0 in the continuum model, the classical thermodynamic
rate law d[A]/dt = �Kf [A][B] has a concentration
solution [A](t)/[A]0 = ([A]0Kf t + 1)�1 [e.g., Kang and
Redner, 1985]. This decay is characteristic of rate-limited
reaction: there are sufficient numbers of collisions be-
tween A and B that the probability of reaction is
controlled by the thermodynamic probability held in Kf.
A particle tracking and reaction simulation was run with
uniform initial concentrations [A]0 = [B]0 = 1/200 in a
periodic domain of size W = 64, with transport and
reaction dictated by pure diffusion wth a diffusion coef-
ficient D = 0.01 and rate coefficient Kf = 50. The
domain-averaged simulated ½A�(t) evolution matches the
analytic solution of the classical thermodynamic rate law
(and the finite difference solution described in the next
section) at early time (Figure 2a), then slows because of
segregation of the remaining particles. The time at which
the reactions change from rate- to diffusion-limited
depends on the number of initial particles and the
diffusion coefficient. A simulation with N0 = 4000 initial
particles and a small diffusion coefficient (all else held
the same) reveals the characteristic t�1/4 decay in 1-D
(Figure 2a). All simulations tend toward this solution at
late time, and all behave identically with any acceptable
choice of Dt. Toussaint and Wilczek [1983] and Kang
and Redner [1985] show analytically that this initial value
problem for A + B ! 0 (inert) will decay asymptotically
by t�d/4, and that the domain will self-organize into
‘‘islands’’ of segregated A and B species (Figure 2a
inset). Fewer initial particles, or a lower diffusion coef-
ficient, spawn unmixed regions more quickly.
[15] The data in Figure 2a suggest that the curves may

overlap when plotted using dimensionless axes. A series of
runs were performed that confirm similar behavior when the
average initial distance between particles is compared to the
diffusion coefficient (Figure 2b), resulting in a characteristic
‘‘diffusion time’’ W2

N2
0

1
D
. A finite difference solution of the

problem overlaps the analytic solution of the classic ther-
modynamic rate exactly, even as the discretization is made
finer and finer. This identifies the classical rate law as
identical to either D ! 1 or average distance between
reacting particles ! 0 in our formulation. It also predicts an
even distribution of reactants (no islands). We think that a
realistic model of reaction must be able to recreate both the
rate-limited and diffusion-limited regimes shown by the
particle model (Figure 2). This implies that the number of
particles used to represent a reactive plume may directly
affect the results. Indeed, the global particle density dictates

Figure 2. (a) Concentration change simulated by particle
models (symbols) and analytic solution to continuum, rate-
limited equations (solid curve). Changes of a single
numerical parameter are denoted on the plot. Deviations
from the rate-limited solution are due to diffusion-limited
reaction. (inset) Spatial concentration segregation of [A] and
[B] in 4000 particle, D = 0.01 simulation at t = 1000. The
asymptotic�1/4 slope and reactant segregation are predicted
by Toussaint and Wilczek [1983] and Kang and Redner
[1985]. (b) Dimensionless concentration versus dimension-
less time curves, labeled by various values of a characteristic
‘‘diffusion time’’ W2/(N0

2D).

4 of 7

W12201 BENSON AND MEERSCHAERT: RAPID COMMUNICATION W12201



the magnitude of local fluctuations in particle density, hence
concentration fluctuations. The global particle density
should be chosen to reflect the actual variance of concen-
tration observed in a field plume. This places a restriction on
the number of particles that may be used to represent an
actual plume: arbitrarily increasing the number of particles
may impart more smoothness to a plume than is actually
present.
[16] Note that our particle simulations progress without

regard to local ‘‘concentration;’’ the concentration data are
output at the end based on particle numbers for comparison
to other methods. This reaction was combined with standard
advection-dispersion routines and the backward reaction for
the following analyses.

4. Approach to Global Equilibrium and Local
Disequilibrium

[17] The random walks and reactions (RWARS) simula-
tions are compared to an Eulerian finite difference (FD)
solution of the advection-dispersion-reaction equations:

@ A½ �
@t

¼ �v
@ A½ �
@x

þ D
@2 A½ �
@x2

� Kf A½ � B½ � þ Kb C½ �

@ B½ �
@t

¼ �v
@ B½ �
@x

þ D
@2 B½ �
@x2

� Kf A½ � B½ � þ Kb C½ �

@ C½ �
@t

¼ Kf A½ � B½ � � Kb C½ �

ð2Þ

For simplicity in all simulations, the domain is 1-D and
periodic and initial concentrations are uniform in the
domain. A and B are mobile with the same transport
parameters; C is immobile. The FD solution was used to
check that the idealized continuum reactions would evolve
to within a few thousandths of a percent of equilibrium
concentrations. Checking the RWARS simulations for rate-
limited reactions, the solutions matched (2) closest when the
backward reaction was split into two parts per time step, one
before and one after the forward reaction, making an
effective predictor-corrector.
[18] In a rate-limited scenario where the probability of

reaction is dominated by the thermodynamics of reaction,
rather than the ability to commingle, the approach to
equilibrium is exponentially fast. This is shown by the FD
solution (Figure 3a). When diffusive motion restricts the
forward reaction rate, the approach to equilibrium is vastly
slower, following a power law. In this case, however, the
reactants are not organized into islands, since the backward
reaction was chosen at a high enough rate to replenishes the
reactants. In these simulations, W = [0,64], the initial
number of A and B particles is 4000, D = 0.001, Kf = 50,
Kb = 5, [A]0 = [B]0 = 0.05, [C]0 = 0.001.
[19] The spatial data (Figures 2 (inset) and 3b) suggest

that significant variability may be found within any single
transport-and-reaction realization because of the random
motion and mixing-limited reaction rates. Furthermore,
variability may exist in the global reaction from realization
to realization. A number of simulations were run to exam-
ine the effects of numerical parameters on the equilibrium
concentrations [A], [B], and [C]. The law of mass action
states that when the forward rate of reaction =Kf [A][B] and

Figure 3. (a) Approach to equilibrium (S = 1) for the
continuum model (2) versus the RWARS solution (para-
meters listed in text). After about t = 6, the RWARS solution
always varies around S = 1 ± 0.05. The missing connecting
line shows where S < 1. (b) Local concentrations and
(c) saturation within the globally equilibrated RWARS
simulation shown in Figure 3a at t = 100. Solid diamonds
represent [C], and open squares and circles are [A] and [B],
respectively. Horizontal lines in Figure 3b are the finite
difference solutions to the same initial value problem. To
output concentration at the end of a simulation, 50 bins in
the W = [0, 64] periodic domain were used.
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backward rate of reaction = Kb[C] are equal, then
C½ �

A½ � B½ � ¼
Kf

Kb
,

where the constant Kf /Kb is the equilibrium constant. We
can define a generalized degree of saturation (S), which is a
measure of disequilibrium and is the ratio of the two sides:

S ¼ A½ � B½ �Kf

C½ �Kb

ð3Þ

Here S = S(x, t) refers to a local measurement in a single
system or realization, and S refers to the global domain-
average value. For S > 1 an overabundance of reactants
exists relative to equilibrium.
[20] Given enough time in a periodic 1-D domain, S

should reach an expected value of unity regardless of the
local diffusion coefficient, magnitudes of the rate coeffi-
cients, or the various numerical constants such as time step
size and number of particles. On the other hand, the choices
of all of the parameters have potential effects on the
variability of local saturations at late time. This will be
reflected in the variance of S(x) in a single run and S from
run to run. A series of simulations were run with different
D, Dt, N0, and initial concentrations. The simulations were
run long enough to ensure that S  1 except for these
random fluctuations. Because the saturation is bounded
below by zero, we analyzed ln(S) and found empirically
that changes in D, Dt, and initial N had no significant
effect on the normalized value of saturation variance
N0Dx
W VAR(ln S). It is significant that increasing N0 while

decreasing Dx maintains the same variance of ln(S): a point
measurement in a plume of initial fixed mass (with ratio N0/
Dx constant) will have some irreducible deviation from
equilibrium, and changing the support scale Dx alone
changes the interpretation of equilibrium in addition to the
speed of reaction [see also Binning and Celia, 2008]. The
only ‘‘parameters’’ that were observed to significantly
change the variance of ln(S) were the initial concentrations.
When the domain is started in global equilibrium, then
particles behave similarly to independent wandering par-
ticles. However, the farther the initial conditions are from
equilibrium, the more variance is found in the local satu-
rations because of the sometimes drastic change in the
number of particles at equilibrium. We expect that the same
thing happens in real systems as reactants are exhausted in
some locations.

5. Remarks and Conclusions

[21] The equilibrium coefficient Kf /Kb is directly related
to the free energies of the products and reactants. Therefore,
in principle, any particle interaction can be coded on the
basis of the thermodynamics of the reactions. Any number
of reactants is possible, although the numerical advantages
or disadvantages are not known. The potential dimension-
less numbers that represent the bounds of stable numerical
solutions have not been investigated here.
[22] These results reinforce the conclusions of Molz and

Widdowson [1988], Kapoor et al. [1997], and Luo et al.
[2008], among many others, who show that the variability
of macroscale concentrations and velocities should lead to
variability of local saturation and/or reaction rates. This
effect is built in to the random walk solution and may
obviate the need to account for the variability by other

means. It does imply, however, that the number of particles
used to simulate a plume is not a free modeling choice at the
discretion of the user. The number of particles should reflect
the measured variability of the plume concentrations. Using
more particles will make the simulated plume smoother than
the real plume, and potentially change the reaction rates.
[23] The most computationally difficult portion of the

RWARS algorithm is searching for nearby B particles for
every A particle. At worst, a naive search would take N2

operations, but effective ordering of the particle location
arrays means that only nearby ‘‘candidates’’ are searched, at
best closer to N operations. Also, when probabilities of
reaction are high, the inner ‘‘B’’ loop is terminated more
quickly. For equilibrium reactions, it pays to set Kf and Kb

high while maintaining a constant ratio. This logic implies
that forward reactions like A + B + D ! E should be
handled as a sequence of A + B ! C and C + D ! E. A
future paper will investigate higher-order reactions.
[24] On the basis of the relatively simple numerical

experiments described herein, the following conclusions
may be reached: (1) It is possible to simulate chemical
reactions via discrete particles not on a lattice using the
probabilities of encounter and combination. (2) The reac-
tion rates reflect the true physics of particle encounters.
(3) The reactions can be added easily to particle-tracking
codes. (4) Only in the well-mixed scenario do these prob-
abilistic interactions result in chemical reactions that dupli-
cate, in the average sense, continuum descriptions of
chemical reaction. (5) Specifically, for the forward reaction
A + B ! 0 (inert), the reaction rate strongly depends on the
density of particles. A rate-limited (well-mixed) regime
decays asymptotically with t�1; the diffusion-limited regime
follows t�d/4. Because of self-organized islands of reac-
tants, the reaction rate may be expected to transition from
the former to the latter. (6) The rate of approach to
equilibrium is also much slower (power law versus expo-
nential) for the diffusion-limited regime. (7) The apparent
chemical saturations remain inherently variable when nor-
malized by particle number and discretization, indicating
that chemical reactions in real aquifer systems are not a
homogeneous process at any scale. Reactants and products
can remain in disequilibrium in arbitrarily small volumes.
In other words, in a globally equilibrated system, any
sample may be far from equilibrium. (8) Bimolecular
reaction rates governed by values of local diffusion will
be less than or equal to those measured in well-mixed
reactors. The reduced rates can be simulated directly with
the random particle model.
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