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TRANSIENT ANOMALOUS SUB-DIFFUSION

ON BOUNDED DOMAINS

MARK M. MEERSCHAERT, ERKAN NANE, AND P. VELLAISAMY

(Communicated by Edward C. Waymire)

Abstract. This paper develops strong solutions and stochastic solutions for
the tempered fractional diffusion equation on bounded domains. First the
eigenvalue problem for tempered fractional derivatives is solved. Then a sep-
aration of variables and eigenfunction expansions in time and space are used
to write strong solutions. Finally, stochastic solutions are written in terms of
an inverse subordinator.

1. Introduction

Transient anomalous sub-diffusion equations replace the first time derivative by
a tempered fractional derivative of order 0 < β < 1 to model delays between
movements [1, 7]. These governing equations have proven useful in finance [2, 6]
and geophysics [18] to model sub-diffusive phenomena that eventually transition to
diffusive behavior. The idea of tempering was introduced by Mantegna and Stanley
[13, 14] and developed further by Rosiński [20]. A stochastic model for transient
anomalous sub-diffusion replaces the time variable in a diffusion by an independent
inverse tempered stable subordinator. This inverse subordinator grows like tβ at
early time, and like t1 at late time [23]. Since 0 < β < 1, the time-changed
process transitions from sub-diffusive to diffusive behavior; i.e., the diffusion is
slowed by the time change at early time, and then later it proceeds as if there were
no significant time change. The stochastic model is useful for particle tracking, a
superior numerical method in the presence of irregular boundaries [24, 25].

Section 2 provides some background on diffusion and fractional calculus, to es-
tablish notation, and to make the paper relatively self-contained. Section 3 uses
Laplace transforms and complex analysis to prove strong solutions to the eigenvalue
problem for the tempered fractional derivative operator. Then Section 4 solves the
tempered fractional diffusion equation on bounded domains. Separation of vari-
ables and eigenvalue expansions in space and time lead to explicit strong solutions
in series form. Stochastic solutions are then developed, using an inverse tempered
stable time change in the underlying diffusion process.
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700 MARK M. MEERSCHAERT, ERKAN NANE, AND P. VELLAISAMY

2. Traditional and fractional diffusion

Suppose that D is a bounded domain in Rd. A uniformly elliptic operator in
divergence form is defined for u ∈ C2(D) by

(2.1) LDu =

d∑
i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)

with aij(x) = aji(x) such that for some λ > 0 we have

(2.2) λ
n∑

i=1

y2i ≤
n∑

i,j=1

aij(x)yiyj ≤ λ−1
n∑

i=1

y2i , for all y ∈ R
d.

Assume also that there exists a Λ > 0 satisfying

(2.3)

n∑
i,j=1

|aij(x)| ≤ Λ, for all x ∈ D.

Take a = σσT , and B(t) a Brownian motion. Let X(t) solve the stochastic differ-
ential equation dX(t) = b(X(t))dt + σ(X(t))dB(t), and define the first exit time
τD(X) = inf{t ≥ 0 : X(t) /∈ D}. An application of the Itô formula shows that the
semigroup

(2.4) TD(t)f(x) = Ex[f(X(t))I(τD(X) > t)]

has generator (2.1); see Bass [4, Chapters 1 and 5]. Since TD(t) is intrinsically ul-
tracontractive (see [8, Corollary 3.2.8, Theorems 2.1.4, 2.3.6, 4.2.4 and Note 4.6.10]
and [10, Theorems 8.37 and 8.38]), there exist eigenvalues 0 < η1 < η2 ≤ η3 ≤ · · · ,
with ηn → ∞ and a complete orthonormal basis of eigenfunctions ψn in L2(D)
satisfying

(2.5) LDψn(x) = −ηnψn(x), x ∈ D : ψn|∂D = 0.

Then pD(t, x, y) =
∑∞

n=1 e
−ηntψn(x)ψn(y) is the heat kernel of the killed semigroup

TD. This series converges absolutely and uniformly on [t0,∞)×D×D for all t0 > 0.
Denote the Laplace transform (LT) t → s of u(t, x) by

ũ(s, x) = Lt[u(t, x)] =

∫ ∞

0

e−stu(t, x)dt.

The ψn-transform is defined by ū(t, n) =
∫
D
ψn(x)u(t, x)dx and the ψn-Laplace

transform is defined by

û(s, n) =

∫
D

ψn(x)ũ(s, x)dx.(2.6)

Since {ψn} is a complete orthonormal basis for L2(D), we can invert the ψn-
transform to obtain u(t, x) =

∑
n ū(t, n)ψn(x) for any t > 0, where the series

converges in the L2 sense [21, Proposition 10.8.27].
Suppose that D satisfies a uniform exterior cone condition, so that then each

x ∈ ∂D is regular for D� [3, Proposition 1, p. 89]. If f is continuous on D̄, then

u(t, x) = TD(t)f(x) = Ex[f(X(t))I(τD(X) > t)]

=

∫
D

pD(t, x, y)f(y)dy =

∞∑
n=1

e−ηntψn(x)f̄(n)
(2.7)
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TRANSIENT ANOMALOUS SUB-DIFFUSION ON BOUNDED DOMAINS 701

solves the Dirichlet initial-boundary value problem [8, Theorem 2.1.4]:

∂u(t, x)

∂t
= LDu(t, x), x ∈ D, t > 0,

u(t, x) = 0, x ∈ ∂D,

u(0, x) = f(x), x ∈ D.

(2.8)

This shows that the diffusion X(t) killed at the boundary ∂D is the stochastic
solution to the diffusion equation (2.8) on the bounded domain D.

Let 0 < β < 1. The Riemann-Liouville fractional derivative [19, 22] is defined by

(2.9)
∂β

∂tβ
g(t) =

1

Γ(1− β)

d

dt

∫ t

0

g(s)ds

(t− s)β
·

Also, the Caputo fractional derivative [5] is defined by

(2.10)

(
∂

∂t

)β

g(t) =
1

Γ(1− β)

∫ t

0

g′(s) ds

(t− s)β
·

It is easy to check using L[t−β] = sβ−1Γ(1− β) that

(2.11) Lt

[
dβ

dtβ
g(t)

]
= sβ g̃(s),

while the Caputo fractional derivative (2.10) has LT sβ g̃(s)− sβ−1g(0). It follows
that

(2.12)
∂β

∂tβ
g(t) =

(
∂

∂t

)β

g(t) +
g(0)t−β

Γ(1− β)
.

Substituting a Caputo fractional derivative of order 0 < β < 1 for the first-order
time derivative in (2.8) yields a fractional Cauchy problem. This fractional diffusion
equation was solved in [16, Theorem 3.1] in the special case where LD is the killed
Laplacian, and extended to uniformly elliptic operators in [16, Theorem 3.6]. Those
solutions exhibit anomalous sub-diffusion at all times, with a plume spreading rate
that is significantly slower than (2.7). Many practical problems exhibit transient
sub-diffusion, resembling the fractional problem at early time, and transitioning to
(2.7) at late time [2, 6, 18]. Hence, the goal of this paper is to extend the results
of [16] to transient sub-diffusions.

3. Eigenvalues for tempered fractional derivatives

Let D(x) be a stable subordinator with Lévy measure φ(y,∞) = y−β/Γ(1− β)
for y > 0 and 0 < β < 1. Then E[e−sD(x)] = e−xψ(s), where the Laplace symbol
is given by ψ(s) = sβ =

∫ ∞
0

(1− e−sy)φ(dy). If fx(t) is the density of D(x), then

qλ(t, x) = fx(t)e
−λt/e−xλβ

is a density on x > 0 with LT

(3.1) q̃λ(s, x) =

∫ ∞

0

e−stqλ(t, x) dt = exλ
β

∫ ∞

0

e−(s+λ)tfx(t) dt = e−xψλ(s),

where ψλ(s) = (s+ λ)β − λβ . Rosiński [20] notes that the tempered stable subor-
dinator Dλ(x) with this Laplace symbol has Lévy measure φλ(dy) = e−λyφ(dy).

Define the Riemann-Liouville tempered fractional derivative of order 0 < β < 1
by

(3.2)
∂β,λ

∂tβ,λ
g(t) = e−λt 1

Γ(1− β)

d

dt

∫ t

0

eλsg(s) ds

(t− s)β
− λβg(t)
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702 MARK M. MEERSCHAERT, ERKAN NANE, AND P. VELLAISAMY

as in [1]. We say that a function is a mild solution to a pseudo-differential equation
if its LT with respect to time solves the corresponding equation in transform space.

Proposition 3.1. The density qλ(t, x) of the tempered stable subordinator Dλ(x)
is a mild solution to

(3.3)
∂

∂x
qλ(t, x) = − ∂β,λ

∂tβ,λ
qλ(t, x).

Proof. Clearly q̃λ(s, x) = e−xψλ(s) solves

(3.4)
∂

∂x
q̃λ(s, x) = −ψλ(s) q̃λ(s, x)

with initial condition q̃λ(s, 0) = 1. The right-hand side of (3.4) involves a pseudo-
differential operator ψλ(∂t) with Laplace symbol ψλ(s); see Jacob [11]. To complete
the proof, it suffices to show that ψλ(s)g̃(s) is the LT of (3.2). Since L[eλtg(t)] =
g̃(s− λ), we get

(3.5) L
[
dβ

dtβ
(
eλtg(t)

)]
= sβ g̃(s− λ),

which leads to

(3.6) L
[
e−λt d

β

dtβ
(
eλtg(t)

)]
= (s+ λ)β g̃(s).

Then (3.3) follows easily. This also shows that ψλ(∂t) is the negative generator of
the C0 semigroup associated with the tempered stable process. �

Define the inverse tempered stable subordinator

(3.7) Eλ(t) = inf{x > 0 : Dλ(x) > t}.

A general result on hitting times [17, Theorem 3.1] shows that, for all t > 0, the
random variable Eλ(t) has Lebesgue density

(3.8) gλ(t, x) =

∫ t

0

φλ(t− y,∞)qλ(y, x) dy

and (t, x) �→ gλ(t, x) is measurable. Following [17, Remark 4.8], we define the
Caputo tempered fractional derivative of order 0 < β < 1 by

(3.9)

(
∂

∂t

)β,λ

g(t) =
∂β,λ

∂tβ,λ
g(t)− g(0)

Γ(1− β)

∫ ∞

t

e−λrβr−β−1 dr.

Proposition 3.2. The density (3.8) of the inverse tempered stable subordinator
(3.7) is a mild solution to

(3.10)
∂

∂x
gλ(t, x) = −

(
∂

∂t

)β,λ

gλ(t, x).

Proof. Theorem 4.1 in [17] shows that (3.8) is a mild solution to the pseudo-
differential equation

(3.11)
∂

∂x
gλ(t, x) = −ψλ(∂t)gλ(t, x) + δ(x)φλ(t,∞),
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TRANSIENT ANOMALOUS SUB-DIFFUSION ON BOUNDED DOMAINS 703

where ψλ(∂t) is the pseudo-differential operator with Laplace symbol ψλ(s), i.e.,
the Riemann-Liouville tempered fractional derivative (3.2). Use

(3.12) φλ(t,∞) =
1

Γ(1− β)

∫ ∞

t

e−λrβr−β−1 dr

to rewrite (3.11) in the form

(3.13)
∂

∂x
gλ(t, x) = − ∂β,λ

∂tβ,λ
gλ(t, x) +

δ(x)

Γ(1− β)

∫ ∞

t

e−λrβr−β−1 dr,

and then apply (3.9) with gλ(0, x) = δ(x) to get (3.10). �

The next two results establish eigenvalues for Caputo tempered fractional deriva-
tives, which will then be used in Section 4 to solve tempered fractional diffusion
equations by an eigenvalue expansion.

Lemma 3.3. For any μ > 0, the Laplace transform

(3.14) ǧλ(t, μ) = Lx[gλ(t, x)] =

∫ ∞

0

e−μxgλ(t, x) dx = E[e−μEλ(t)]

is a mild solution to the eigenvalue problem

(3.15)

(
∂

∂t

)β,λ

ǧλ(t, μ) = −μǧλ(t, μ)

with ǧλ(0, μ) = 1, for the Caputo tempered fractional derivative (3.9).

Proof. Equation (3.12) in [17] shows that

(3.16) Lt[φλ(t,∞)] = s−1ψλ(s).

Then (3.8) together with the LT convolution property shows that

(3.17) g̃λ(s, x) = Lt[gλ(t, x)] = Lt[φλ(t,∞)]Lt[qλ(t, x)] =
1

s
ψλ(s)e

−xψλ(s)

for any x > 0, and then a Fubini argument shows that the double LT

Gλ(s, μ) = LtLx[gλ(t, x)] =
ψλ(s)

s

∫ ∞

0

e−(μ+ψλ(s))xdx =
ψλ(s)

s(μ+ ψλ(s))
.(3.18)

Rearrange (3.18) to get

(3.19) −μGλ(s, μ) = ψλ(s)Gλ(s, μ)− s−1ψλ(s).

Use (3.16) along with (3.9) and (3.12) to see that

(3.20) Lt

[(
∂

∂t

)β,λ

ǧλ(s, μ)

]
= ψλ(s)Gλ(s, μ)− s−1ψλ(s)

and then substitute into (3.19) to get

Lt

[(
∂

∂t

)β,λ

ǧλ(t, μ)

]
= Lt [−μǧλ(t, μ)] .

This proves that (3.14) is the mild solution to (3.15). �

The next theorem is the main technical result of this paper. It shows that the
LTs (3.14) of inverse tempered stable densities are the eigenvalues of the Caputo
tempered fractional derivative, in the strong sense.
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Theorem 3.4. For 0 < β < 1, let

(3.21) k(t) =
e−tλ

π sin(βπ)
tβ−1Γ(1− β).

For any μ, λ > 0, μ �= λβ, the function ǧλ(t, μ) in (3.14) can be written in the form

(3.22) ǧλ(t, μ) =
μ

π

∫ ∞

0

(r + λ)−1e−t(r+λ)Φ(r, 1)dr,

where

Φ(r, 1) =
rβ sin(βπ)

r2β sin2(βπ) + (μ− λβ + rβ cos(βπ))2

and satisfies

(3.23) |∂tǧλ(t, μ)| ≤ μk(t).

Then ǧλ(t, μ) is a strong (classical) solution of the eigenvalue problem (3.15).

Proof. The proof extends Theorem 2.3 in Kochubei [12] using some probabilistic
arguments. Since Eλ(t) has continuous sample paths, a dominated convergence
argument shows that ǧλ(t, μ) = E[e−μEλ(t)] is a continuous function of t > 0. Use
(3.18) to write

(3.24) Gλ(s, μ) = Lt[ǧλ(t, μ)] =
ψλ(s)

s(μ+ ψλ(s))
=

[(s+ λ)β − λβ ]

s[(s+ λ)β − λβ + μ]

and note that Gλ(s, μ) is analytic off the branch cut arg(s) = π, |s| ≥ 0. The
Laplace inversion formula [9, p. 25] shows that for γ > 0 and for almost all t > 0,

(3.25) ǧλ(t, μ) =
d

dt

1

2πi

∫ γ+i∞

γ−i∞

est

s

[(s+ λ)β − λβ ]/s

[(s+ λ)β − λβ + μ]
ds.

Let 1
2 < ω < 1 and consider the closed curve Cγ,ω in C, formed by a circle of

radius Rn with a counterclockwise orientation, cut off on the right side by the line
Re (z) = γ, and by the curve Sγ,ω on the left side, consisting of the arc

Tγ,ω = {γeiθ : −ωπ ≤ θ ≤ ωπ}
and the two rays Γ+

γ,ω = {reiωπ : r ≥ γ} and Γ−
γ,ω = {re−iωπ : r ≥ γ}.

By Cauchy’s Theorem, the integral∫
Cγ,ω

est

s

[(s+ λ)β − λβ ]/s

[(s+ λ)β − λβ + μ]
ds = 0

and then Jordan’s Lemma [9, p. 27] implies that we can let Rn → ∞ to get

(3.26) ǧλ(t, μ) = − d

dt

1

2πi

∫
Sγ,ω

est

s

[(s+ λ)β − λβ]/s

[(s+ λ)β − λβ + μ]
ds.

Now pass the derivative inside the integral to get

(3.27) ǧλ(t, μ) =
−1

2πi

∫
Sγ,ω

est
[(s+ λ)β − λβ ]/s

[(s+ λ)β − λβ + μ]
ds,

which also implies the smoothness of the function t → ǧλ(t, μ).
It is not hard to show that

lim
γ→0

∣∣∣∣
∫
Tγ,ω

est
[(s+ λ)β − λβ ]/s

(s+ λ)β − λβ + μ
ds

∣∣∣∣ = 0.
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TRANSIENT ANOMALOUS SUB-DIFFUSION ON BOUNDED DOMAINS 705

The remaining path integral is ǧλ(t, μ) = ǧλ
+(t, μ) + ǧλ

−(t, μ), where

ǧλ
±(t, μ) =

−1

2πi

∫
Γ±
γ,ω

est
[(s+ λ)β − λβ ]/s

[(s+ λ)β − λβ + μ]
ds.

Since the point s = reiωθ in Γ+
γ,ω is the complex conjugate of the point s = re−iωθ

in Γ−
γ,ω, the real parts of the integrals ǧλ

±(t, μ) cancel out. Using the fact that

z(z + μ)−1 = 1− μ(z + μ)−1, we then get

ǧλ
+(t, μ) + ǧλ

−(t, μ) =
1

π
Im

{∫ ∞

γ

etre
iωπ [(reiωπ + λ)β − λβ]/(reiωπ)

(reiωπ + λ)β − λβ + μ
eiωπdr

}

=
1

π
Im

∫ ∞

γ

r−1etre
iωπ

dr − μ

π
Im

∫ ∞

γ

etre
iωπ

/r

(reiωπ + λ)β − λβ + μ
dr.

(3.28)

The first term

1

π
Im

∫ ∞

γ

r−1etre
iωπ

dr → − 1

π

∫ ∞

0

l−1e−l sin(l tanωπ)dl := I(ω)

as γ → 0, and a dominated convergence argument shows that I(ω) → 0 as ω → 1.
The second term in (3.28) is I1(ω, γ) + I2(ω, γ), where

I1(ω, γ) = −μ

π

∫ ∞

γ

Im

(
etre

iωπ

r

)
Re

(
1

(reiωπ + λ)β − λβ + μ

)
dr,

I2(ω, γ) = −μ

π

∫ ∞

γ

Re

(
etre

iωπ

r

)
Im

(
1

(reiωπ + λ)β − λβ + μ

)
dr.

(3.29)

Some elementary estimates lead to limω→1 limγ→0 I1(ω, γ) = 0 and

I2(ω, 0) := lim
γ→0

I2(ω, γ) =
μ

π

∫ ∞

0

r−1etr cosωπ cos(tr sinωπ)U(r, ω)dr,

where

U(r, ω) = Im

(
−1

(reiωπ + λ)β − λβ + μ

)

=
|reiωπ + λ|β sin(βθ)

[|reiωπ + λ|β cos(βθ)− λβ + μ]
2
+ |reiωπ + λ|2β sin2(βθ)

(3.30)

and θ = arg(reiωπ + λ). Since U(r, 1) = 0 when 0 ≤ r ≤ λ, we have

ǧλ(t, μ) = lim
ω→1

I2(ω, 0) =
μ

π

∫ ∞

λ

r−1e−trU(r, 1)dr

=
μ

π

∫ ∞

0

(r + λ)−1e−t(r+λ)U(r + λ, 1)dr,

which reduces to (3.22).
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Differentiate (3.22) with respect to t and use rβ sin(βπ)Φ(r, 1) ≤ 1 to obtain

|∂tǧλ(t, μ)| =
∣∣∣∣μπ

∫ ∞

0

(r + λ)−1[∂te
−t(r+λ)]Φ(r, 1)dr

∣∣∣∣
≤ μ

π sin(βπ)

∫ ∞

0

e−t(r+λ)r−βdr

=
μe−tλ

π sin(βπ)
tβ−1Γ(1− β) = μk(t),

(3.31)

so that (3.23) holds. Note that |ǧλ(t, μ)| ≤ 1, and write

∣∣∣∣
(

∂

∂t

)β (
eλtǧλ(t, μ)

) ∣∣∣∣ =
∣∣∣∣ 1

Γ(1− β)

∫ t

0

(
λeλsǧλ(s, μ) + eλs

∂[ǧλ(s, μ)]

∂s

)
ds

(t− s)β

∣∣∣∣
≤ 1

Γ(1− β)

∫ t

0

(
λeλs|ǧλ(s, μ)|+ eλs

∣∣∣∣∂[ǧλ(s, μ)]∂s

∣∣∣∣
)

ds

(t− s)β

=
1

Γ(1− β)

∫ t

0

(
λeλs +

μ

π sin(βπ)
sβ−1Γ(1− β)

)
ds

(t− s)β
.

Then a simple dominated convergence argument shows that the Riemann-Liouville
fractional derivative of eλtǧλ(t, μ) is a continuous function of t > 0. Now it follows
from (3.2) and (3.9) that the Caputo tempered fractional derivative of ǧλ(t, μ) is
continuous in t > 0. Since both sides of (3.15) are continuous in t > 0, it follows
from Lemma 3.3 and the uniqueness theorem for the Laplace transform that (3.15)
holds pointwise in t > 0 for all μ > 0. �

4. Tempered fractional diffusion

Replacing the time variable in a diffusion by an independent inverse tempered
stable subordinator Eλ(t) of index 0 < β < 1 yields a useful stochastic model for
transient anomalous sub-diffusion. For example, if X(t) is a standard Brownian
motion on R1, independent of Eλ(t), Stanislavsky et al. [23] show that X(Eλ(t))
satisfies

E[X(Eλ(t))
2] ∼ tβ/Γ(1 + β), as t → 0;

E[X(Eλ(t))
2] ∼ t/β, as t → ∞.

Hence, the process X(Eλ(t)) occupies an intermediate place between sub-diffusion,
in which the second moment grows like tβ , and traditional diffusion, where the
second moment is proportional to t. Let D∞ = (0,∞)×D, and define HLD

(D∞) =
{u : D∞ → R : LDu(t, x) ∈ C(D∞)}, and let Hb

LD
(D∞) = HLD

(D∞) ∩ {u :
|∂tu(t, x)| ≤ k(t)g(x), for some g ∈ L∞(D), and for all t > 0}, where k(t) is
defined in (3.21).

Theorem 4.1. Let D be a bounded domain with ∂D ∈ C1,α for some 0 < α < 1.
Let X(t) be a continuous Markov process with generator given in (2.1), where the
aij are elements of Cα(D̄) and satisfy (2.2) and (2.3). Then, for any f ∈ D(LD)∩
C1(D̄) ∩ C2(D) such that the eigenfunction expansion of LDf with respect to the
complete orthonormal basis {ψn} from (2.5) converges uniformly and absolutely,
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the (classical) solution of(
∂

∂t

)β,λ

u(t, x) = LDu(t, x), x ∈ D, t ≥ 0;(4.1)

u(t, x) = 0, x ∈ ∂D, t ≥ 0;

u(0, x) = f(x), x ∈ D,

for u ∈ Hb
LD

(D∞) ∩ Cb(D̄∞) ∩ C1(D̄), is given by

u(t, x) = Ex[f(X(Eλ(t)))I(τD(X) > Eλ(t))] = Ex[f(X(Eλ(t)))I(τD(X(Eλ)) > t)]

=

∫ ∞

0

TD(l)f(x)gλ(t, l)dl =
∞∑

n=1

f̄(n)ψn(x)ǧλ(t, ηn),(4.2)

where Eλ(t) is defined by (3.7), independent of X(t), ǧλ(t, η) = E(e−ηEλ(t)) is its
Laplace transform, and TD(t) is the killed semigroup (2.4).

Proof. The proof is based on the method of separation of variables. Let u(t, x) =
G(t)F (x) be a solution of (4.1). Then substituting into (4.1), we get

F (x)

(
d

dt

)β,λ

G(t) = G(t)LDF (x).

Divide both sides by G(t)F (x) to obtain(
d
dt

)β,λ
G(t)

G(t)
=

LDF (x)

F (x)
= −η.

Then we have

(4.3)

(
d

dt

)β,λ

G(t) = −ηG(t), t > 0

and

(4.4) LDF (x) = −ηF (x), x ∈ D, F |∂D = 0.

The eigenvalue problem (4.4) is solved by an infinite sequence of pairs {(ηn, ψn)},
where 0 < η1 < η2 ≤ η3 ≤ · · · , ηn → ∞, as n → ∞, and ψn forms a complete
orthonormal set in L2(D). In particular, the initial function f regarded as an
element of L2(D) can be represented as

(4.5) f(x) =
∞∑

n=1

f̄(n)ψn(x).

Use Lemma 3.3 to see that Gn(t) = f̄(n)ǧλ(t, ηn) solves (4.3). Sum these solutions
ψn(x)Gn(t) to (4.1) to get

(4.6) u(t, x) =

∞∑
n=1

f̄(n)ǧλ(t, ηn)ψn(x).

It remains to show that (4.6) solves (4.1) and satisfies the conditions of Theorem 4.1.
The remainder of the proof is similar to [16, Theorem 3.1], so we only sketch the

argument.
First note that (4.6) converges uniformly in t ∈ [0,∞) in the L2 sense.
Next argue that ||u(t, ·)− f ||2,D → 0 as t → 0 using the fact that, since ǧλ(t, λ)

is the Laplace transform of the density of Eλ(t), it is completely monotone and
nonincreasing in λ ≥ 0.
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Use the Parseval identity, the fact that μn is increasing in n, and the fact that
ǧλ(t, μn) is nonincreasing in n ≥ 1, to get ||u(t, ·)||2,D ≤ ǧλ(t, μ1)||f ||2,D.

A Fubini argument, which can be rigorously justified using the bound |∂tu(t, x)|
≤ k(t)g(x) from Theorem 3.4, shows that the ψn transform commutes with the
Caputo tempered fractional derivative. For this, it suffices to show that the ψn-
transform commutes with the Caputo fractional derivative of eλtu(t, x). To check
this, write ∫

D

ψn(x)

(
∂

∂t

)β (
eλtu(t, x)

)
dx

=

∫
D

ψn(x)
1

Γ(1− β)

∫ t

0

∂
(
eλsu(s, x)

)
∂s

ds

(t− s)β
dx

=
1

Γ(1− β)

∫ t

0

(∫
D

ψn(x)
∂

∂s

(
eλsu(s, x)

)
dx

)
ds

(t− s)β

=
1

Γ(1− β)

∫ t

0

∂

∂s

(
eλs

∫
D

ψn(x)u(s, x)dx

)
ds

(t− s)β

=
1

Γ(1− β)

∫ t

0

∂

∂s
(eλsū(s, n))

ds

(t− s)β
=

(
∂

∂t

)β (
eλtū(t, n)

)
.

Then the Caputo tempered fractional time derivative and the generator LD can be
applied term by term in (4.6).

Next show that the series (4.6) is the classical solution to (4.1) by checking uni-
form and absolute convergence. Argue that u ∈ C1(D̄) using [10, Theorem 8.33],
and the absolute and uniform convergence of the series defining f . Using Theo-
rem 3.4 and the assumption about the convergence of the eigenfunction expansion
of f , it follows easily that u ∈ Hb

LD
.

Finally, obtain the stochastic solution by inverting the ψn-Laplace transform.
Since {ψn} forms a complete orthonormal basis for L2(D), the ψn-transform of the
killed semigroup TD(t)f(x) =

∑∞
m=1 e

−μmtψm(x)f̄(m) from (2.7) is given by

[TD(t)f ](n) = e−tμn f̄(n).(4.7)

Use Fubini together with (4.6) and (4.7) to get

u(t, x) =

∞∑
n=1

f̄(n)ψn(x)ǧλ(t, μn) =

∞∑
n=1

ψn(x)

∫ ∞

0

f̄(n)e−λygλ(t, y)dy

=
∞∑

n=1

ψn(x)

∫ ∞

0

[TD(y)f ](n)gλ(t, y)dy

=

∫ ∞

0

[ ∞∑
n=1

ψn(x)f̄(n)e
−yμn

]
gλ(t, y)dy

=

∫ ∞

0

TD(y)f(x)gλ(t, y)dy

= Ex[f(X(Eλ(t)))I(τD(X) > Eλ(t))].

The argument that

Ex[f(X(Eλ(t)))I(τD(X) > Eλ(t))] = Ex[f(X(Eλ(t)))I(τD(X(Eλ)) > t)]

is similar to [16, Corollary 3.2].
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Uniqueness follows by considering two solutions u1, u2 with the same initial data
and showing that u1 − u2 ≡ 0. �
Remark 4.2. In the special case where LD = Δ, the Laplacian operator, suffi-
cient conditions for existence of strong solutions to (4.1) can be obtained from [16,
Corollary 3.4]. Let f ∈ C2k

c (D) be a 2k-times continuously differentiable function
of compact support in D. If k > 1+3d/4, then (4.1) has a classical (strong) solution.
In particular, if f ∈ C∞

c (D), then the solution of (4.1) is in C∞(D).

Remark 4.3. In the special case where LD = Δ on an interval (0,M) ⊂ R, eigen-
functions and eigenvalues are explicitly known, and solutions to the tempered frac-
tional Cauchy problem can be made explicit. Eigenvalues of the Laplacian on
(0,M) are (nπ/M)2 for n = 1, 2, . . . , and the corresponding eigenfunctions are
2
M sin(nπx/M). Using this eigenfunction expansion, the solution reads

u(t, x) =

∞∑
n=1

f̄(n)ψn(x)ǧλ(t, μn) =

∞∑
n=1

f̄(n) sin(nπx/M)ǧλ(t, (nπ/M)2).
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Gaussian: The truncated Lévy flight, Phys. Rev. Lett. 73 (1994), 2946–2949. MR1303317
(95g:82062)

[14] R. N. Mantegna and H. E. Stanley, Scaling behavior in the dynamics of an economic index,
Nature 376 (1995), 46–49.

[15] M. M. Meerschaert and H.-P. Scheffler, Limit theorems for continuous time random walks with
infinite mean waiting times, J. Appl. Probab. 41 (2004), 623–638. MR2074812 (2005f:60105)

Licensed to Michigan State University. Prepared on Thu Nov 29 17:15:08 EST 2012 for download from IP 35.8.11.3.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2577834
http://www.ams.org/mathscinet-getitem?mr=2577834
http://www.ams.org/mathscinet-getitem?mr=1841412
http://www.ams.org/mathscinet-getitem?mr=1841412
http://www.ams.org/mathscinet-getitem?mr=1329542
http://www.ams.org/mathscinet-getitem?mr=1329542
http://www.ams.org/mathscinet-getitem?mr=1483890
http://www.ams.org/mathscinet-getitem?mr=1483890
http://www.ams.org/mathscinet-getitem?mr=1995283
http://www.ams.org/mathscinet-getitem?mr=1995283
http://www.ams.org/mathscinet-getitem?mr=990239
http://www.ams.org/mathscinet-getitem?mr=990239
http://www.ams.org/mathscinet-getitem?mr=0196422
http://www.ams.org/mathscinet-getitem?mr=0196422
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=1409607
http://www.ams.org/mathscinet-getitem?mr=1409607
http://www.ams.org/mathscinet-getitem?mr=2376152
http://www.ams.org/mathscinet-getitem?mr=2376152
http://www.ams.org/mathscinet-getitem?mr=1303317
http://www.ams.org/mathscinet-getitem?mr=1303317
http://www.ams.org/mathscinet-getitem?mr=2074812
http://www.ams.org/mathscinet-getitem?mr=2074812


710 MARK M. MEERSCHAERT, ERKAN NANE, AND P. VELLAISAMY

[16] M. M. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy problems on bounded
domains, Ann. Probab. 37 (2009), 979–1007. MR2537547 (2010h:60121)

[17] M. M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time random
walks, Stochastic Process Appl. 118 (2008), 1606–1633. MR2442372 (2010b:60135)

[18] M. M. Meerschaert, Y. Zhang and B. Baeumer, Tempered anomalous diffusion in heteroge-
neous systems, Geophys. Res. Lett. 35 (2008), L17403.

[19] K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential

Equations, Wiley and Sons, New York, 1993. MR1219954 (94e:26013)
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