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a b s t r a c t

The inverse tempered stable subordinator is a stochastic process that models power law
waiting times between particle movements, with an exponential tempering that allows
all moments to exist. This paper shows that the probability density function of an inverse
tempered stable subordinator solves a tempered time-fractional diffusion equation, and
its ‘‘folded’’ density solves a tempered time-fractional telegraph equation. Two explicit
formulae for the density function are developed, and applied to compute explicit solutions
to tempered fractional Cauchy problems, where a tempered fractional derivative replaces
the first derivative in time. Several examples are given, including tempered fractional
diffusion equations on bounded or unbounded domains, and the probability distribution of
a tempered fractional Poisson process. It is shown that solutions to the tempered fractional
diffusion equation have a cusp at the origin.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus is a very old field, dating back to a letter from Leibniz to L’Hôpital in 1695. In recent decades, the
subject has expanded rapidly, due to the discovery of interesting mathematical connections, and real world applications.
See for example [1–8]. The close connection between fractional calculus and probability is outlined in [9–11]. A famous
paper of Einstein [12] outlined the classical link between randomwalks, Brownianmotion, and the diffusion equation. In the
modern theory, the probability of a jump exceeding length x falls off like a power law x−α for some 0 < α < 2, the random
walk limit is an α-stable Lévy motion whose particle traces are fractals of dimension α, and whose particle density solves a
diffusion equation involving a fractional derivative of order α in the space variable. If particles wait a random time between
jumps, with a probability that falls off like t−β for some 0 < β < 1, the non-Markovian limit density solves a space–time
fractional diffusion equation that involves a fractional derivative of order β in the time variable. Particle traces follow a
random process obtained by replacing the time variable in the α-stable Lévy motion by an inverse β-stable subordinator.
The fractal dimension α of the particle paths remains the same, since the inverse stable subordinator is continuous and
nondecreasing [13].

The space–time fractional diffusion model implies that the mean waiting time, and the second moment of the particle
jump distribution, are both infinite. The tempered fractional diffusion model was developed as an alternative with finite
moments [14–19]. Thismodel has proven useful in applications to geophysics [20–23] and finance [24,25]. Fractional Cauchy
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problems govern the long time limiting behavior of particle motions [26–28], assuming a power law distributed waiting
time between movements, in a general framework that can accommodate complex boundary conditions and confining
potentials. Tempered fractional Cauchy problems modify this general model, tempering the power law waiting times, so
that themeanwaiting time remains finite [29]. A tempered fractional derivative in time replaces the usual first derivative in
the classical Cauchy problem. The Cauchy problem governs a Markov process, but the tempered fractional Cauchy problem
governs a non-Markovian process, since the resting times are not exponentially distributed. Particle motions follow a time-
changed Markov process, using an inverse tempered stable subordinator introduced in [30] as a subdiffusion model with
finite moments. The inverse tempered subordinator was applied to a tempered fractional Fokker–Planck equation in [31]
and applied to financial data [32,33].

The goal of this paper is to develop properties of the inverse tempered stable subordinator, to facilitate practical
applications of tempered fractional Cauchy problems. Section 2 reviews some basic facts about tempered fractional
calculus. In Section 3, we show that the probability density function of an inverse tempered stable subordinator solves a
tempered time-fractional diffusion equation, and its ‘‘folded’’ density solves a tempered time-fractional telegraph equation.
In Section 4, we develop two explicit formulae for the inverse tempered stable density. In Section 5, we prove scaling
and asymptotic properties for the tempered stable subordinator and its inverse. Section 6 applies the inverse tempered
stable density to solve several tempered fractional Cauchy problems, including tempered fractional diffusion equations on
bounded and unbounded domains. There we also prove that solutions to the tempered fractional diffusion equation are
non-differentiable at the center of mass. Section 7 discusses the tempered fractional Poisson process, and applies a formula
from Section 4 to compute its probability distribution.

2. Tempered fractional calculus

The standard β-stable subordinator Dx is a Lévy process (i.e., it has stationary and independent increments) whose
probability density function (pdf) g(t, x) has Laplace transform

g̃(s, x) =


∞

0
e−stg(t, x) dt = e−xsβ (2.1)

for some 0 < β < 1. It follows easily that

gλ(t, x) := e−λtg(t, x)exλ
β

(2.2)

is also a pdf. In fact, it is infinitely divisible [9, p. 208], and there is another Lévy process Dλx called a tempered stable
subordinator with pdf gλ(t, x) for each t > 0. Using (2.1) it follows that

g̃λ(s, x) = e−xψλ(s) (2.3)

where the Laplace symbol

ψλ(s) = (s + λ)β − λβ . (2.4)

Taking derivatives in (2.3) yields

∂x g̃λ(s, x) = −ψλ(s)g̃λ(s, x). (2.5)

Define the Riemann–Liouville tempered fractional derivative

Dβ,λt g(t) = e−λt Dβt

eλtg(t)


− λβg(t), (2.6)

where

Dβt g(t) =
1

Γ (1 − β)

dn

dtn

 t

0

g(s) ds
(t − s)β+1−n

is the usual Riemann–Liouville fractional derivative of orderβ > 0, andn = ⌈β⌉ is the ceiling function, so thatn−1 < β ≤ n.
A simple argument [9, p. 209] using the shift property of the Laplace transform shows that

L[Dβ,λt g](s) =


∞

0
e−st Dβ,λt g(t) dt = ψλ(s)g̃(s), (2.7)

and then inverting the Laplace transform in (2.5) shows that the tempered stable subordinator pdf solves the tempered
fractional diffusion equation

∂x gλ(t, x) = −Dβ,λt gλ(t, x).

Note that, while the argument in [9, p. 209] assumes 0 < β < 1, exactly the same argument goes through for any β > 0.
Hence the definition (2.6), and the Laplace transform formula (2.7), are valid for any β > 0.
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Next we define the Caputo tempered fractional derivative of order β > 0 by

∂
β,λ
t g(t) = Dβ,λt


g(t)−

n−1
j=0

t j

j!
g(j)(0)


(2.8)

where g(j)(t) is the derivative of order j, and again n = ⌈β⌉. When λ = 0, (2.8) reduces to the usual Caputo fractional
derivative [34, Eq. (2.4.1)]. One advantage of the Caputo form is that it allows initial conditions involving integer-ordered
derivatives to be included in the formulation of a fractional differential equation.

Proposition 2.1. The Laplace transform of the Caputo tempered fractional derivative of order β > 0 is given by

L[∂
β,λ
t g](s) = ψλ(s)g̃(s)−


n−1
j=0

s−j−1ψλ(s)g(j)(0)


(2.9)

for any λ > 0.

Proof. Using the well-known formula L[t j/j!](s) = s−j−1 (e.g., see [9, Example 2.7]), it follows that the

L


g(t)−

n−1
j=0

t j

j!
g(j)(0)


= g̃(s)−

n−1
j=0

s−j−1g(j)(0).

Then apply formula (2.7) to finish the proof. �

Proposition 2.2. When 0 < β < 1, the definition (2.8) of the Caputo tempered fractional derivative reduces to the definition
in [29, Eq. (3.9)]:

∂
β,λ
t g(t) = Dα,λt g(t)−

g(0)
Γ (1 − β)


∞

t
e−λrβr−β−1 dr for 0 < β < 1. (2.10)

Proof. Apply (2.9) with n = 1 to see that

L[∂
β,λ
t g](s) = ψλ(s)g̃(s)− s−1ψλ(s)g(0).

The Lévy measure of the infinitely divisible random variable Dλ1 is φλ(dy)where

φλ(y,∞) =
β

Γ (1 − β)


∞

y
e−λuu−β−1 du, (2.11)

see [9, Eq. (7.9)]. Apply [28, Eq. (3.12)] to see that the Laplace transform

L[φλ(t,∞)] :=


∞

0
e−stφλ(t,∞) dt = s−1ψλ(s). (2.12)

Hence the right-hand side of (2.10) has the same Laplace transform as that of (2.8), and since both are continuous, it follows
from the uniqueness of the Laplace transform that they are equal. �

Remark 2.3. Li et al. [35] investigate numerical solutions of tempered fractional differential equations, using a different
definition

Dβ,λt g(t) = e−λt Dβt

eλtg(t)


(2.13)

of the tempered Riemann–Liouville fractional derivative. Then Dβ,λt g(t) = Dβ,λt g(t)− λβg(t), and

L[Dβ,λt g](s) = (s + λ)β g̃(s).

The fractional derivative Dβ,λt g(t) was also applied in [36] to construct stochastic integrals with respect to tempered
fractional Brownian motion [37]. The advantage is that Dβ,λt Iβ,λt g(t) = g(t), where the tempered fractional integral

Iβ,λt g(t) =
1

Γ (β)

 t

0
g(u)(t − u)β−1e−λ(t−u)du.

When 1 < β < 2, another definition [9, Eq. (7.16)] has been proposed:

D
β,λ
t g(t) = Dβ,λt g(t)− βλβ−1g ′(t).

The advantage is that the solution to the tempered fractional diffusion equation ∂tp(x, t) = D
β,λ
x p(x, t) is a pdf with mean

zero.
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3. Governing equations

In this section, we define the inverse tempered stable subordinator, and discuss two fractional partial differential
equations for its probability density. Suppose 0 < β < 1 and define the inverse tempered stable subordinator [28,30,31]

Eλt = inf{x > 0 : Dλx > t}. (3.1)

Sample paths of the Lévy process Dλx are continuous from the right, with left hand limits, strictly increasing, with Dλ0 = 0
and Dλx → ∞ as x → ∞. Hence the inverse process (3.1) is well-defined, with almost surely continuous sample paths. It
follows from [28, Theorem 3.1] that the random variable Eλt has a probability density function hλ(x, t) on x > 0 for all t > 0.

Proposition 3.1. The probability density function hλ(x, t) of the inverse tempered stable subordinator solves the tempered time-
fractional equation

Dβ,λt hλ(x, t) = −∂xhλ(x, t)+ δ(x)φλ(t,∞), (3.2)

where φλ is the Lévy measure (2.11) and Dβ,λt is the Riemann–Liouville tempered fractional derivative (2.6). Therefore it also
solves

∂
β,λ
t hλ(x, t) = −∂xhλ(x, t), (3.3)

using the Caputo tempered fractional derivative (2.8).

Proof. Recall that the Riemann–Liouville tempered fractional derivative (2.6) is the inverse Laplace transform ofψλ(s)g̃(s),
where the Laplace symbol ψλ(s) = (s + λ)β − λβ . Recall from [9, p. 208] that the pdf gλ(u, t) of the tempered stable
subordinator Dλx has Laplace transform g̃λ(s, x) = e−xψλ(s) for all t > 0. The Lévy measure of this infinitely divisible
random variable is xφλ(dy) using (2.11), see [9, Eq. (7.9)]. Then [28, Theorem 4.1] shows that hλ(x, t) solves (3.2) using
the Riemann–Liouville tempered fractional derivative (2.6). Eq. (3.2) can then be written in the more compact form (3.3)
using the Caputo tempered fractional derivative (2.8), see [29, Proposition 3.2]. �

Define the ‘‘folded’’ pdf

v(x, t) =
1
2
hλ(|x|, t) x ∈ R (3.4)

so that hλ(x, t) = 2v(x, t) for x > 0. Next we develop a fractional differential equation that governs the folded pdf. When
λ = 0, this result is due to Beghin and Orsingher [38, Eq. (2.12)].

Theorem 3.2. The folded inverse tempered stable pdf v(x, t) in (3.4) solves the tempered fractional telegraph equation

∂
2β,λ
t v(x, t)− 2λβ∂β,λt v(x, t) = ∂2x v(x, t) (3.5)

for any 0 < β < 1, with initial condition v(x, 0) = δ(x). If β ≥ 1/2, we also require the initial condition ∂tv(x, 0) = 0.

Proof. Apply the Laplace transform in the t variable to the governing equation (3.2) using (2.7) and (2.12), and then apply
the Fourier transform in the x variable, to see that the Fourier–Laplace transform (FLT)

h̄λ(k, s) :=


∞

−∞


∞

0
e−ikxe−sthλ(x, t) dt dx

of the inverse tempered stable pdf satisfies

ψλ(s)h̄(k, s) = −ik h̄(k, s)+ s−1ψλ(s).

Rearrange to obtain the equivalent formula

h̄λ(k, s) =
s−1ψλ(s)
ik + ψλ(s)

. (3.6)

Since the inverse tempered stable pdf hλ(x, t) has FLT (3.6), it follows easily that the folded pdf (3.4) has FLT

v̄(k, s) =
1
2

s−1ψλ(s)
ψλ(s)+ ik

+
1
2

s−1ψλ(s)
ψλ(s)− ik

=
s−1ψλ(s)2

ψλ(s)2 + k2
. (3.7)

Rearrange to obtain the equivalent expression

ψλ(s)2v̄(k, s)− s−1ψλ(s)2 = (ik)2v̄(k, s),
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and recall that the Laplace symbol ψλ(s) = (s + λ)β − λβ . Then we have

ψλ(s)2 = [(s + λ)β − λβ ]2

= (s + λ)2β − 2λβ(s + λ)β + λ2β

=

(s + λ)2β − λ2β


− 2λβ


(s + λ)β − λβ


= ψ2β,λ(s)− 2λβψβ,λ(s)

where we add the superscript β to distinguish the two terms in the final line. Hence,

ψ2β,λ(s)v̄(k, s)− s−1ψ2β,λ(s)− 2λβ [ψλ(s)v̄(k, s)− s−1ψλ(s)] = (ik)2v̄(k, s).

Now apply (2.9) to the Fourier transform v̂(k, t), recalling that v̂(k, 0) = 1, and ∂tv(x, 0) = 0 if 2β ≥ 1, to see that

∂
2β,λ
t v̂(k, t)− 2λβ∂β,λt v̂(k, t) = (ik)2v̂(k, t).

Then invert the Fourier transform to arrive at (3.5). �

Remark 3.3. The tempered time-fractional telegraph equation (3.5) extends the time-fractional telegraph equation in
[39, Eq. (1.1)], replacing the Caputo time derivative there with a tempered Caputo derivative.

4. Computing the density

In this section,wedevelop two explicit formulae for the inverse tempered stable density. Recall that the upper incomplete
Gamma function is defined for x > 0 and a real by

Γ (a, x) =


∞

x
e−t ta−1 dt. (4.1)

Let g(t) = g(t, 1) be the pdf of the standard stable subordinator D1, so that

L[g](s) := g̃(t) =


∞

0
e−stg(t) dt = e−sβ (4.2)

for 0 < β < 1. Both of these functions can be computed using widely available computer codes [9,40].

Theorem 4.1. Let hλ(x, t) be the pdf of the inverse tempered stable subordinator (3.1) with 0 < β < 1. Then we can write

hλ(x, t) =

 t

0
φλ(u,∞)gλ(t − u, x) du (4.3)

where

φλ(t,∞) =
βλβΓ (−β, λt)
Γ (1 − β)

, (4.4)

using the upper incomplete gamma function (4.1), and

gλ(t, x) = exλ
β
e−λt


1

x1/β
g


t

x1/β


(4.5)

is the pdf of the tempered stable subordinator Dλx .

Proof. It follows from [28, Theorem 3.1] that hλ(x, t) is given by the formula (4.3), with gλ(t, x) the probability density
function of the random variable Dλx in (3.1), and φλ(t,∞) the Lévy measure of Dλx . A change of variable in (2.11) shows that
(4.4) holds for 0 < β < 1, using (4.1). The tempered stable pdf gλ(t, x) = e−λtg(t, x)exλ

β
where g(t, x) is the pdf of the

stable subordinator Dx with Laplace transform (2.1). A change of variable in (4.2) leads to (2.1), which implies that

g(t, x) =
1

x1/β
g


t

x1/β


,

reflecting the self-similarity of the stable subordinator as a stochastic process: Dx has the same pdf as x1/βD1. �

Although (4.3) can be used to numerically compute the density of the inverse tempered stable subordinator, the
convolution integral is numerically poorly conditioned; therefore, we seek an alternative form.
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Fig. 1. Tempered inverse stable pdf hλ(x, t) versus x for β = 0.6 and t = 1, for λ = 0 (solid), 0.01 (dashed), 0.1 (dot-dashed) and 1.0 (dotted). The pdf
was calculated using (4.6).

Proposition 4.2. Let hλ(x, t) be the pdf of the inverse tempered stable subordinator (3.1) with 0 < β < 1. Then

hλ(x, t) = exλ
β

e−λth(x, t)+ λ

 t

0
e−λτh(x, τ ) dτ − λβ

 t

0
e−λτ g(τ , x) dτ


(4.6)

where g(t, x) is the pdf of the stable subordinator with Laplace transform (2.1), and

h(x, t) =
t
xβ

g(t, x) (4.7)

is the density of the inverse stable subordinator.

Proof. For x > 0, Eq. (3.6) is equivalent to

h̃λ(x, s) = −s−1 ∂

∂x


e−xψλ(s)


. (4.8)

Since the Laplace transform of the tempered stable subordinator is given byL

gλ(t, x)


= e−xψλ(s) and sincemultiplication

by s−1 in the frequency domain is equivalent to integration in the time-domain, we have

hλ(x, t) = −

 t

0

∂

∂x


gλ(τ , x)


dτ

= −

 t

0

∂

∂x


exλ

β
e−λτ g(τ , x)


dτ

= −exλ
β


λβ

 t

0
e−λτ g(τ , x) dτ +

 t

0
e−λτ ∂g(τ , x)

∂x
dτ


.

Letting λ = 0 in the first line of the computation yields

h(x, t) = −

 t

0

∂

∂x
[g(τ , x)] dτ . (4.9)

Integrate the second term of hλ(x, t) by parts using Eq. (4.9). Since h(x, 0+) = 0 for all x > 0, this integration yields
Eq. (4.6). �

Fig. 1 plots the inverse tempered stable subordinator density hλ(x, t) as a function of x for β = 0.6 and t = 1, by
numerically evaluating the formula (4.6) for different values of the tempering parameter λ. The graph for λ = 0 was plotted
in [41, Fig. 2]. Proposition 4.4 gives additional information on the jump at x = 0.

Remark 4.3. An alternative to Eq. (4.6) was given in [30]:

hλ(x, t) = exλ
β  t

0


W


−β,−β; x/uβ


u−β−1

− λ2W

−β, 0; x/uβ


/u


e−λu du
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where

W (a, b; z) =
1

2π i


H
es+zs−a

s−b ds (4.10)

is the Fox–Wright function [7, Eq. (1.157)] and H is the Hankel contour. Another form was given in [42].

Proposition 4.4. The density hλ(x, t) is discontinuous at x = 0 for all λ ≥ 0. In fact, we have hλ(x, t) = 0 for x < 0 and

hλ(0+, t) = φλ(t,∞) =
βλβΓ (−β, λt)
Γ (1 − β)

(4.11)

where φλ(t,∞) is the Lévy measure (2.11) and Γ (a, x) is the incomplete gamma function (4.1).

Proof. Invert the Fourier transform in (3.6) to see that the inverse tempered stable pdf has Laplace transform

h̃λ(x, s) = s−1ψλ(s)H(x)e−xψλ(s) (4.12)

where H(x) is the Heaviside function. It follows that hλ(x, t) = 0 for all x < 0. Letting x → 0+ in (4.12), we have
h̃λ(0+, s) = s−1ψλ(s), and then it follows from (2.12) that hλ(0+, t) = φλ(t,∞) > 0 for all λ ≥ 0. �

Remark 4.5. It follows easily from (2.11) that

hλ(0+, t) → h0(0+, t) = φ0(t,∞) =
t−β

Γ (1 − β)
as λ → 0, (4.13)

see [41, Sec. 4] for the case λ = 0. To determine the behavior as λ → ∞, note that Γ (α, z) ∼ zα−1e−z as z → ∞ [43],
implying

φλ(t,∞) ∼
βt−β−1e−λt

λΓ (1 − β)
as λ → ∞.

Hence φλ(t,∞) → 0 as λ → ∞, implying that hλ(0+, t) → 0 as λ → ∞.

Lemma 4.6. For any t > 0 the inverse tempered stable density function hλ(x, t) is a bounded continuous function of x > 0, with
hλ(x, t) → 0 as x → ∞, and in fact for some C > 0, K > 0, and x0 > 0 we have

hλ(x, t) ≤ Cx1/(2−2β) exp

−Kx1/(1−β)


(4.14)

for all x > x0.

Proof. In order to show that hλ(x, t) is continuous at any x > 0, we use the representation (4.6). Note that g(τ , x) =

τ−1/βg(τ−1/βx) where g(x) is a smooth function of x real, and g(x) ≤ Kx−β−1 for all x > x0, for some x0, K depending on
β [44, p. 143]. Then the first term in (4.6) is continuous in view of (4.7). A straightforward dominated convergence argument
shows that the second and third terms are also continuous in x. Hence hλ(x, t) is continuous at any x > 0. To show that
hλ(x, t) → 0 as x → ∞, we use the representation (4.3). Note that φλ(du) = e−λuφ(du) where φ is the Lévy measure of
the stable subordinator prior to tempering [14, Theorem 2]. Then φλ(u,∞) ≤ φ(u,∞) = u−β/Γ (1−β) by [9, Proposition
3.10]. Also g(x) ≤ Kx(1−β/2)/(β−1) exp[−Cxβ/(β−1)

] for all 0 < x < 1 by [27, Eq. (2.4)], and after a little algebra we have that

gλ(y, x) ≤ exλ
β
x−1/βg(yx−1/β) ≤ Ky(1−β/2)/(β−1)x1/(2−2β) exp[−C2x1/(1−β)]

for all 0 < y < t and all x ≥ x0 > 1. Then

hλ(x, t) ≤ C3x1/(2−2β) exp

−C2x1/(1−β)

  t

0
(t − y)−βy(1−β/2)/(β−1)dy

≤ C4x1/(2−2β) exp

−C2x1/(1−β)


so that (4.14) holds. Hence hλ(x, t) → 0 as x → ∞. Since h(0+, t) is bounded for any t > 0 in view of Proposition 4.4, it
follows that hλ(x, t) is a bounded continuous function of x > 0 for any t > 0. �
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5. Scaling and asymptotic properties

Recall that a stochastic process Xt is called self-similar if Xct and cHXt have the same finite dimensional distributions.
Since the scaling property in Proposition 5.1 also involves the tempering parameter, it is weaker than self-similarity.

Proposition 5.1. Let Dλx denote the tempered stable subordinator given by (2.3), and let Eλt denote the inverse tempered stable
subordinator (3.1). Then for any c ≥ 0, the following scaling properties hold:

Dλcx
f .d.
= c1/βDc1/βλ

x (5.1a)

Eλct
f .d.
= cβEcλ

t (5.1b)

where
f .d.
= denotes equality in the sense of finite dimensional distributions. Hence the densities of Dλx and Eλt scale as

gλ(t, cx) = c−1/βgc1/βλ 
c−1/β t, x


(5.2a)

hλ(x, ct) = c−βhcλ 
c−βx, t


. (5.2b)

Proof. Recall from (2.3) and (2.4) that the tempered stable subordinator Dλx has Laplace transform E[e−sDλx ] = e−xψλ(s) for
all x > 0 and s > 0, where ψλ(s) = (s + λ)β − λβ . For any c > 0 we have

cψλ(s) =

c1/βs + c1/βλ

β
−


c1/βλ

β
= ψ c1/βλ 

c1/βs

,

and it follows that

E

e−sDλcx


= e−cxψλ(s)

= e−xψc1/βλ(c1/β s) = E

e−sc1/βDc1/βλ

x


.

Since the Laplace transform uniquely determines the distribution, it follows that Dλcx and c1/βDc1/βλ
x are identically

distributed. Now a standard argument yields equality in finite dimensional distribution: Given x0 = 0 < x1 < · · · < xm,
use the fact that Dλx has stationary and independent increments to conclude that {Dλcxi − Dλcxi−1

: 1 ≤ i ≤ m} and

{c1/βDc1/βλ
xi − c1/βDc1/βλ

xi−1
: 1 ≤ i ≤ m} are identically distributed. Then (5.1a) follows using the continuous mapping

f (y1, . . . , ym) = (y1, y1 + y2, . . . , y1 + · · · + ym).
If Dλx ≥ t then Dλy > t for all y > x so that Eλt ≤ x. On the other hand, if Dλx < t then Dλy < t for all y > x sufficiently close

to x, so that Eλt > x. Then it follows easily that for any 0 ≤ t1 < · · · < tm and x1, . . . , xm ≥ 0 we have

{Eλti ≤ xi : 1 ≤ i ≤ m} = {Dλxi ≥ ti : 1 ≤ i ≤ m}. (5.3)

From (5.1a) we have c−1/βDλcx
f .d.
= Dc1/βλ

x and hence

P{c−βEλcti ≤ xi : 1 ≤ i ≤ m} = P{Eλcti ≤ cβxi : 1 ≤ i ≤ m}

= P{Dλcβ xi ≥ cti : 1 ≤ i ≤ m}

= P{(cβ)−1/βDλcβ xi ≥ ti : 1 ≤ i ≤ m}

= P{Dcλ
xi ≥ ti : 1 ≤ i ≤ m}

= P{Ecλ
ti ≤ xi : 1 ≤ i ≤ m},

which is equivalent to (5.1b). Recall that if a random variable X has pdf f (x), then cX has pdf c−1f (c−1x). Then (5.2a) and
(5.2b) follow. �

We will write Xn
t

f .d.
=⇒ Xt to mean that the stochastic processes Xn

t converge to Xt in the sense of finite dimensional
distributions. Recall that Dx = D0

x is the standard stable subordinator defined by (2.1), and Et = E0
t is its inverse defined by

(3.1). The next result shows that, as the tempering parameter λ → 0, we recover the untempered case. Also, the tempered
(inverse) stable subordinator process approximates the untempered process at early time.

Proposition 5.2. Let Dλx denote the tempered stable subordinator given by (2.3), and let Eλt denote the inverse tempered stable
subordinator (3.1). Then

Dλx
f .d.
=⇒ Dx and Eλt

f .d.
=⇒ Et as λ → 0. (5.4)
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Furthermore

c−1/βDλcx
f .d.
=⇒ Dx and c−βEλct

f .d.
=⇒ Et as c → 0. (5.5)

Proof. Write X ≃ Y to mean that X, Y are identically distributed, and Xn ⇒ Y for convergence in distribution. Note that
ψλ(s) → ψ0(s) as λ → 0. Then it follows from the continuity theorem for the Laplace transform that Dλx ⇒ D0

x = Dx as
λ → 0. Now a standard argument yields convergence of finite dimensional distributions: Given x0 = 0 < x1 < · · · < xm,
use the fact that Dλx has stationary and independent increments to conclude that

{Dλxi − Dλxi−1
: 1 ≤ i ≤ m} ⇒ {Dxi − Dxi−1 : 1 ≤ i ≤ m}

asλ → 0. Then the first part of (5.4) follows using the ContinuousMapping Theorem [45, Theorem5.2]with f (y1, . . . , ym) =

(y1, y1 + y2, . . . , y1 + · · · + ym). Now it follows using (5.1a) that

c−1/βDλcx ≃ Dc1/βλ
x

f .d.
=⇒ D0

x = Dx

as c → 0.
Then for any 0 ≤ t1 < · · · < tm and x1, . . . , xm ≥ 0 we have

P{Eλti ≤ xi : 1 ≤ i ≤ m} = P{Dλxi ≥ ti : 1 ≤ i ≤ m}

→ P{D0
xi ≥ ti : 1 ≤ i ≤ m}

= P{E0
ti ≤ xi : 1 ≤ i ≤ m},

which proves the second part of (5.4). Then apply this fact along with (5.1b) to see that

c−βEλct ≃ Ecλ
t

f .d.
=⇒ E0

t = Et

as c → 0. �

Remark 5.3. Note that the sample paths of Eλt are nondecreasing, and that the process Et has continuous sample paths, so
that it is continuous in probability. Then Proposition 5.2 together with [46, Theorem 3] shows that we also get convergence
Eλt ⇒ Et as λ → 0 and c−βEλct ⇒ Et as c → 0 in the Skorokhod space D([0,∞), [0,∞))with the J1 topology.

Remark 5.4. The first part of (5.4) was originally proved in [19, Theorem 3.1], in the case of a more general tempering
function. Here the proof is simpler, because the exponential tempering leads to a nice scaling property.

Remark 5.5. We now consider the asymptotic behavior of gλ(t, x) and hλ(x, t) in terms of λ. As λ → 0, (2.2) reduces to
the pdf of the stable subordinator g(t, x). Likewise, the second and third terms in (4.6) vanish, yielding the density of the
inverse stable subordinator h(x, t). Hence, we recover the standard (untempered) densities as λ → 0.

For the case λ → ∞, note that for the Lévy measure (2.11) we have by the dominated convergence theorem that
φλ(y,∞) → 0 for all y > 0 as λ → ∞. This vague convergence φλ → 0 implies that Dλx ⇒ 0 as λ → ∞ [47, Theorem
3.1.16]. Hence we have gλ(t, x) → δ0(x), the Dirac delta function at x = 0, as λ → ∞. Since Eλt is the inverse function of
Dλx , this implies that Eλt → ∞ in probability as λ → ∞: To see this, write

P(Eλt ≤ x) = P(Dλx ≥ t) →


∞

t
δ0(x) dx = 0 as λ → ∞.

Hence we have hλ(x, t) → 0 as λ → ∞ for all t > 0 and x > 0.

6. Tempered fractional Cauchy problems

Let X be a Banach space (say C0(R)) with norm ∥ · ∥. A family of linear operators {Tt : t > 0} is called a semigroup if
T0f = f for all f ∈ X and Tt+s = TtTs for all t, s > 0. The semigroup is bounded if there exists a constant Mt > 0 such
that ∥Tt f ∥ ≤ Mt∥f ∥ for all f ∈ X . The semigroup is strongly continuous if ∥Tt f − f ∥ → 0 as t → 0. A bounded, strongly
continuous semigroup is called a C0 semigroup. The generator L of the semigroup Tt is a linear operator defined as

Lf (x) = lim
t→0

Tt f (x)− f (x)
t

(6.1)

for all f ∈ D(L), the domain of the generator L, which is the set of all f ∈ X for which the limit (in the Banach space norm)
exists. Then the tempered fractional Cauchy problem

∂
β,λ
t q(x, t) = Lq(x, t); q(x, 0) = f (x) (6.2)
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Fig. 2. Solutions (6.3) of the tempered fractional diffusion equation (6.4) with D = 0.1 and β = 0.6 at time t = 1, for λ = 0 (solid), 0.01 (dashed), 0.1
(dot-dashed) and 1.0 (dotted).

with 0 < β < 1 and λ > 0 has a unique solution

q(x, t) =


∞

0
p(x, u)hλ(u, t) du (6.3)

where p solves the traditional Cauchy problem ∂tp = Lpwith initial condition p(0) = f ∈ D(L), and hλ(u, t) is the pdf of the
inverse tempered stable subordinator (3.1). This follows from [28, Theorem 4.1] for a Lévy generator, and from [29, Theorem
4.1] for a uniformly elliptic generator L in divergence form on a bounded domain.

If X(t) is a Markov process with forward generator L, so that the point source solution to ∂tp = Lp is the pdf of X(t)
(e.g., see [9, p. 62]), then the pdf q(x, t) of the non-Markovian stochastic process Yt = X(Eλt ) solves the tempered fractional
Cauchy problem (6.2). Using the computational formula (4.6) for the inverse tempered stable subordinator pdf, we can
provide explicit solutions for a wide variety of tempered fractional Cauchy problems (6.2).

Fig. 2 shows the solutions to the tempered fractional diffusion equation

∂
β,λ
t q(x, t) = D∂2x q(x, t); q(x, 0) = δ(x) (6.4)

for several values of the tempering parameterλ. The solutionswere computed by substituting the exact point source solution

p(x, t) =
1

√
4πDt

e−x2/(4Dt) (6.5)

to the original Cauchy problem ∂tp(x, t) = D∂2x q(x, t) into the formula (6.3), using the explicit formula (4.6) for the inverse
tempered stable pdf. All solutions exhibit a cusp, or a non-differentiable point, at x = 0. This cusp has been noted previously
for the (untempered) time-fractional diffusion equation [5, Figure 6]. The next result provides more detail on the cusp in
Fig. 2.

Proposition 6.1. The solution to the tempered fractional diffusion equation (6.4) is the probability density function of a time-
changed Brownian motion B(Eλt ) with mean zero and variance 2Dt, where Eλt is the inverse tempered stable subordinator (3.1).
This density function q(x, t) is not differentiable at x = 0 for any t > 0, and in fact we have

∂xq(0+, t) = −2Dhλ(0+, t) and ∂xq(0−, t) = 2Dhλ(0+, t).

Proof. Substitute (6.5) into (6.3) to see that

q(x, t) =


∞

0

1
√
4πDu

e−x2/(4Du)hλ(u, t) du.

Now consider the difference quotient, and make a change of variable s = δ2/(4Du) to get

δ−1
[q(δ, t)− q(0, t)] =

1
√
4πD


∞

0
δ−1

[e−δ2/(4Du)
− 1]u−1/2hλ(u, t) du

=
1

4D
√
π


∞

0
[e−s

− 1]s−3/2hλ(δ2/(4Ds), t) ds

→
1

4D
√
π
hλ(0+, t)


∞

0
[e−s

− 1]s−3/2 ds
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as δ → 0+ by the dominated convergence theorem, using Lemma 4.6. Since
∞

0
[e−s

− 1]s−3/2 ds = −2
√
π

by [9, Proposition 3.10], it follows that ∂xq(0+, t) = −2Dhλ(0+, t). The proof for ∂xq(0−, t) = 2Dhλ(0+, t) is quite
similar. �

Remark 6.2. From Proposition 4.4 we know that hλ(0+, t) = φλ(t,∞) > 0 where φλ(t,∞) is given by (2.11) in terms
of the incomplete gamma function. Since φλ(t,∞) → 0 as λ → ∞, the slope at the cusp decreases as the tempering
parameter λ increases.

Next consider the tempered fractional Dirichlet problem

∂
β,λ
t q(x, t) = ∂2x q(x, t)

on the bounded domain (0, 1) with boundary conditions q(0, t) = q(1, t) = 0 and initial condition q(x, 0) = f (x). The
general solution to the Cauchy problem ∂tp(x, t) = ∂2x u(x, t); p(x, 0) = f (x) is given by

p(x, t) =

∞
n=1

fne−λntψn(x)

where fn = 2

ψn(x)f (x) dx. Here λn = (nπ)2 and ψn(x) = sin(nπx) are the eigenvalues and eigenfunctions of the

generator L = ∂2x with the zero boundary conditions, so thatψ ′′
n (x) = λnψn(x) for all 0 < x < 1 andψn(0) = ψn(1) = 0, see

for example [48, Eq. (8) with α = 1]. Then for example if the initial condition f (x) = sin(πx), the solution to the tempered
fractional Dirichlet problem is given by (6.3) with

p(x, t) = e−π2t sin(πx). (6.6)

Fig. 3 displays numerical solutions to this fractional Dirichlet problem for several different values of λ.

Remark 6.3. As noted in [30,49], the tempered fractional Cauchy problem Eq. (6.2) may be recast as an integral equation.
Take the LT of (6.2) using (2.9), yielding

ψλ(s)q̃(x, s)− s−1ψλ(s)f (x) = Lq̃(x, s). (6.7)

Divide (6.7) by ψλ(s) and define M̃λ(s) = 1/ψλ(s), yielding

q̃(x, s) = s−1f (x)+ M̃λ(s)Lq̃(x, s). (6.8)

Invert the LT in (6.8) using L−1
[s−1

] = H(t) and the convolution theorem to get

q(x, t) = f (x)H(t)+

 t

0
Mλ(t − τ)Lq(x, τ ) dτ (6.9)

where the kernel functionMλ(t) is given by

Mλ(t) = L−1

M̃λ(s)


= L−1


1

(s + λ)β − λβ


= e−λtL−1


1

sβ − λβ


= e−λt tβ−1Eβ,β


λβ tβ


and Eβ,β(z) is the two-parameterMittag-Leffler function [7, Eq. (1.56)]. Note that (6.9) corresponds to [30, Eq. (12)] for t > 0,
an integral form equivalent to the tempered fractional Cauchy problem, with solution given by (6.3).

7. The tempered fractional Poisson process

The fractional Poisson process Nβ(t) = max{n ≥ 0 : Tn ≤ t} was studied in [38,50–57]. Here Tn = J1 + · · · + Jn is the
time of the nth arrival, with independent interarrival times such that

P(Jn > t) = Eβ(−αtβ) =

∞
k=0

(−αtβ)k

Γ (1 + βk)
(7.1)

for 0 < β ≤ 1, using the one-parameter Mittag-Leffler function Eβ(z) = Eβ,1(z). The special case β = 1 is a traditional
Poisson process. Theorem 2.2 in [55] shows that one can also construct the fractional Poisson process by replacing the time
t in the traditional Poisson process N1(t)with an independent inverse stable subordinator.
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Fig. 3. Solutions to the tempered fractional Dirichlet problem at t = 1 and β = 0.6 using (6.3). The tempering parameter λ = is 0 (solid), 0.01 (dashed),
0.1 (dot-dashed) and 1.0 (dotted).

In this section, we discuss the tempered fractional Poisson process Nλ(t) = N1(Eλt ), where Eλt is the inverse tempered
stable subordinator (3.1). Theorem 4.1 in [55] shows that one can also write

Nλ(t) = max{n ≥ 0 : Tn ≤ t} (7.2)

where Tn = J1 + · · · + Jn is the sum of independent and identically distributed waiting times with

P(Jn > t) = E[e−αEλt ]. (7.3)

Example 5.7 in [55] shows that the pdfwλ(t) of the waiting times Jn has Laplace transform
∞

0
e−stwλ(t) dt =

α

α + (s + λ)β − λβ
.

Inverting this Laplace transform as in [55, Example 5.7] shows that

wλ(t) = w(t)e−λt(η + λβ)/η

when η = α − λβ > 0, wherew(t) is the Mittag-Leffler pdf of the fractional Poisson process waiting times (7.1).
It follows from [55, Theorem 5.2] along with (2.10) and (2.11) that the probability distribution q(m, t) = P[Nλ(t) = m]

of the tempered fractional Poisson process solves the tempered fractional Cauchy problem

∂
β,λ
t q(m, t) = α


q(m − 1, t)− q(m, t)


(7.4)

for all integers m, with initial condition q(0, 0) = 1 and q(m, 0) = 0 for m ≠ 0. The solution to this tempered fractional
Cauchy problem yields the probability distribution of the tempered fractional Poisson process Nλ(t) = N1(Eλt ): First recall
that the traditional Poisson process with rate α has pmf

p(m, t) = P[N1(t) = m] = e−αt (αt)
m

m!

for all m ≥ 0 and all t ≥ 0, with the convention that 00
= 1. This is the solution to the Cauchy problem ∂tp(m, t) =

α

p(m−1, t)−p(m, t)


with the same initial condition q(0, 0) = 1 and q(m, 0) = 0 form ≠ 0. Then apply (6.3) to see that

q(m, t) =


∞

0
e−αu (αu)

m

m!
hλ(u, t) du (7.5)

for allm ≥ 0 and all t ≥ 0, where the inverse tempered stable pdf hλ(u, t) can be computed using the explicit formula (4.6).
Eq. (7.5) is numerically evaluated using (4.6) in Fig. 4 using β = 0.6 for α = 1, t = 3 and λ = 0 (thick bars) and λ = 0.1

(thin bars).
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Fig. 4. Probability distribution (7.5) of the tempered fractional Poisson process with β = 0.6 for α = 1, t = 3, for λ = 0 (thick bars) and λ = 0.1 (thin
bars).

8. Summary

The inverse or hitting time of a tempered fractional subordinator is a useful stochastic process. It can be used as a
time change to construct stochastic solutions to tempered fractional Cauchy problems, and its probability density appears
in an integral formula (6.3) for explicit solutions. This paper develops two methods to compute the probability density:
(1) a convolution integral (4.3); and (2) a computational formula (4.6). Scaling and asymptotic properties of the density
are described, and the ‘‘folded’’ density is shown to solve a tempered fractional telegraph equation. Explicit solutions to a
few tempered fractional Cauchy problems are presented as an illustration. The existence of a cusp at x = 0 for solutions
to the tempered fractional diffusion equation is proven. A tempered fractional Poisson process is defined using the inverse
tempered stable subordinator, and its probability distribution is computed.
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