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Abstract Tempered fractional stable motion adds an exponential tempering to the
power-law kernel in a linear fractional stable motion, or a shift to the power-law filter
in a harmonizable fractional stable motion. Increments from a stationary time series
that can exhibit semi-long-range dependence. This paper develops the basic theory
of tempered fractional stable processes, including dependence structure, sample path
behavior, local times, and local nondeterminism.
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1 Introduction

Linear fractional stable motion and real harmonizable fractional stable motion are dis-
tinct stochastic processes with stationary increments, see for example Samorodnitsky
and Taqqu [16]. They can be constructed using the fractional integral of a symmetric
a-stable (SaS) noise [7, Remark 7.30]. These models are useful in practice, because
their increments can exhibit the heavy-tailed analog of long-range dependence, see
for example Watkins et al. [18]. This paper develops a model extension, based on tem-
pered fractional calculus [14]. The resulting stationary increment processes, termed
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linear tempered fractional stable motion (LTFSM) and real harmonizable tempered
fractional stable motion (HTFSM), are obtained by replacing the fractional integral
with a tempered fractional integral. The (Riemann-Liouville) tempered fractional
integral

+o0

= | fw w0,

witha > 0, A > 0, and (x)4+ = xI(x > 0), is a convolution with an exponentially
tempered power law [9]. It reduces to the traditional Riemann—Liouville fractional
integral when A = 0 [15, Definition2.1].

The remainder of this paper is organized as follows. Section 2 develops the LTFSM
model, proves a scaling property, and computes the dependence structure of the incre-
ment process, which can exhibit the heavy-tailed analog of semi-long-range depen-
dence. Section 3 computes the dependence structure of the TFSM increments and uses
this to prove that LTFSM and HTFSM are different processes. Section 4 establishes
sample path properties of LTFSM and HTFSM. Section 5 proves the existence of local
times and establishes the useful property of local nondeterminism.

2 Moving Average Process

We say that the real-valued random variable X has a symmetric a-stable (SaS) distri-
bution, denoted by S, (o, 0, 0), if its characteristic function has the form

E [exp {i(OX)}] = exp {—U“|0|°‘} ,

for some constants ¢ > 0 and 0 < o < 2. The parameters @ and o are called the
index of stability and the scale parameter, respectively [16, Chapter 1]. The formula

1/a

IXlle = (— logE[e'*]) (2.1)

defines a norm (quasinorm if 0 < & < 1) on the space of SaS random variables, see
Nolan [11,12] and Xiao [19] for more details.

Let L(2) be the set of all real-valued random variables on the probability space
(R, F,P). Let (E, £, m) be a measure space and define &y = {A € £ : m(A) < 00}.
An independently scattered set function M : &y — L(2) such that

M(A) ~ So((m(4)), 0,0)
for each A € & is called an SaS random measure on (E, £) with control measure m.
Independently scattered means that if Ay, As, ..., A belongs to & and are disjoint,
then the random variables M (A1), M(A3), ..., M(Ay) are independent.

Given an independently scattered SaS random measure Z,(dx) on the real line
with Lebesgue control measure dx, the stochastic integral

+00
I(f):=/ J(x) Zy(dx) 22
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is defined for all Borel measurable functions f € L¥(R). Then, [16, Proposition3.4.1]
shows that 7 (f) is an S¢S random variable with characteristic function

+00

E[eiel(f)] :exp{_|9|a/_ |f(x)|°‘dx},

and hence, we have

*dx (2.3)

Jronlt = [ oo

forany 0 < o < 2.
Definition 2.1 Given an independently scattered SaS random measure Z,(dx) on R

with control measure dx, the stochastic integral

+00 1 1
XH,a,A(t):Z/ [e—k(l—X)Jr(t _ x)i[_& _ e—)»(—X)Jr(_x)iI_&] Za(dx) (24)

—00

withO <o <2, 0< H <1, A >0, (x)+ =max{x, 0}, and 0° = 0 will be called a
linear tempered fractional stable motion (LTFSM).

Remark 2.2 When o = 2, the LTFSM reduces to a tempered fractional Brownian
motion, see [8,9]. When A = 0, it becomes a linear fractional stable motion [16,
Section 7.4]. The stable Yaglom noise

+o0 H_1
GHai(t):= / e MRt —x) [ Zy(dy)
—0o0

is also well defined, due to the exponential tempering, and clearly, Xz o2 (#) =
GHa1(t) — GH.q(0). Stable Yaglom noise is the tempered fractional integral of
the stable noise Zy (dx), up to a multiplicative constant.

It is easy to check that the function

A H-} A H—}
Qo t ()= —x) )@ — e (—x) @ (2.5)

belongs to L¥(R), so that LTFSM is well defined; furthermore,

-

for any 0 < o < 2. The next result shows that LTFSM has a nice scaling property,
involving both the time scale and the tempering.

ga,A,z(x))a dx (2.6)

Proposition 2.3 The LTFSM (2.4) is an SaS process with stationary increments, such
that

(Xnan @0}, 2 " Xnaa 0] @7

@ Springer



684 J Theor Probab (2016) 29:681-706

for any scale factor ¢ > 0, where £ indicates equality in the sense of finite dimensional
distributions.

Proof Since Z, (dx) has control measure dx, the random measure Z (¢ dx) has control
1
measure ce dx. Note that

1
Gacr(ex) = M a gy o 1 (%), (2.8)

forallz,x € Randallc > 0.Givent; <t < --- < t,, a change of variable x = cx’
then yields

(XHan(cti):i=1,...,n) = (/ Saict(X)Zg(dx) i = ln)

= (/ San.ct (cxNVZy(cdx)i=1,..., n)
1 1 .
~ (/ gy (Nca Zydxy i =1,..., n)
- (cHXH,a,CA(z,») =1, n)
where >~ denotes equality in distribution, so that (2.7) holds. For any s, € R, the
integrand (2.5) satisfies gy 5 s+ (S +X) — 8a.n.s (s +X) = gq.2.1 (x); hence, a change
of variable x = s + x’ yields

(Xt (s +1) — Xpan(s):i=1,...,n)

= (/ [ga,k,s+ti (x) — ga,k,s(x)] Zex):i=1,..., n)

(/ oty (XN Zg(dx") 1i =1, .. n)

= (Xtaart):i=1,....n)

/ [8arstn (5 + ) — g s(s +x)] Zo(dx) i =1, ... n)

which shows that LTFSM has stationary increments. O

Next, we consider the increments of LTFSM, which form a stationary stochastic
process in view of Proposition 2.3.

Definition 2.4 Given an LTFSM (2.4), we define the tempered fractional stable noise
(TFSN)

YHor(t)=XHaer(t +1) — Xp 4, (t) forintegers — oo <t < oo. 2.9)
Astrauskas et al. [1] studied the dependence structure of linear fractional stable

noise using the following nonparametric measure of dependence. Given a stationary
SasS process {Y (¢)}, we define
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r(t) = r(0y, 65, 1):=E [e"““ ”’”92”0))] —E [ei91 Y<f>] E [e"92Y<0>] 2.10)
fort > 0 and 61, 6, € R. If we also define
I1(t) = 1(61,62,1):=[01Y (1) + 02Y (0)[lg — 161 Y () lg, — 162Y (0I5, (2.11)

then we have
FO1.62,0) = K (81,6 (7 @20 — 1), 2.12)

where
K6y, 0,):=E [eielya)] E [ei92Y(O)] ) [eiGIY(O)] E [eiezyw)] (2.13)

since Y (¢) is stationary. If I(t) — 0 ast — oo, then r(t) ~ —K(01,602)1(t)
as t — oo. If {Y(¢)};cr is a stationary Gaussian process, then —7(1, —1,¢7) =
Cov[Y (?), Y(0)], so that r(t) ~ K (61, 02)Cov[01Y (¢), 02Y (0)] in this (typical) case;
hence, r(¢) is a natural extension of the usual autocovariance function.

Next, we compute the dependence structure of TESN. Given two real-valued func-
tions f (1), g(¢) on R, we will write f(¢) =< g(t) if C; < |f(t)/g(t)] < C; for all
t > 0 sufficiently large, for some 0 < C; < C> < o0.

Theorem 2.5 Let Yg o2 (t) be a tempered fractional stable noise (2.9) for some 0 <
o <1land0 < H < 1. Then,

r 0y, 02, 1) = e a1 (2.14)

ast — oo forall » > 0.

Proof 1t follows easily from (2.4) that TFSN has the moving average representation

+00 H_1 H—1
YH.an(t) = / [e_}‘(’+1_x)+(t +1—x)) @ —e M —x)] ] Zo(dx).
—00
(2.15)
_1
Define g,;(x) = (t — x)f M=%+ for t € R and write

+00 a
161,62, 1) = / 61 {11 (6) = ()] + 62 (1) — go()] | dx

+00 a —+00 o
[l =gl ar = [ falae - g0 ax
i=11(61,62,1) + 1 (61, 62, 1), (2.16)
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where
0 o
1101, 62, 1) =/ ‘91 [gi+1(x) — gi(X)] + 62 [g1(x) — go(x)]‘ dx

0 o 0 o
[ Jolene gl @ [ Jolerco - sooo]["ax

and
1 o
B 62,0 = [ [61 [ges100 = 0] + 02100
0

- /1 01fgr1 0 — 8] dx —/1 o210
0 0
Also,
K6, 6,) = E[eiOIY(t):IE[eiGZY(O)]
_ E[eielY(O)]El:eing(O):I
= exp{ — (1011 + |92|“)/_:° 10— g ax} @1

by stationarity. Therefore, 1 (61, 62,t) = K(01,602)(11(t) + I2(t)), where we write
1;(01,02,1) = I;(t) for j = 1, 2 for brevity. A change of variable in /;(¢) for ¢t > 1
gives

)
I (1) :/ )91 [e—k(t+l+x)(t +1 +x)H_$ _ e—)»(t+x)(t +x)1-1_$]
0

o

+92[e_)‘(1+x)(1 —i—)c)H_al — e_)“xxH_é] dx

_ /OOO ’91 [e—x(z+1+x)(t 1 +x)H_5 _ e M +x)H—$] “ e
_ /OOO ’GZ[E—A(H);)(] +X)H_g _ e—)»xxH_aL] o &
Let
ft+1,t(x):=)91 [ 0H10 (¢ 4 140y =3 — o0 4 T =3][" @218)

For every t > 1 and x > 0, we get

o

r+1 +x)H—al _e,m<t—|—x)H—é
t t

e —1

eakttfa(Hfé)fH_l’l(x) _ ‘el)a‘e,x(lﬂ)(

o

—hax ast — oo

o
— ‘91) e
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and

sup e““r‘“(”‘é)ﬁﬂ,t(x) <|ore™ — | et

t>1

which belongs to L' (0, oo). Now we can use the dominated convergence theorem to
see that

o o 1 o
/ Sre1,,(x) dx — ‘91 (e_)‘ — 1)) e_)‘a’t“(H_a’)/ oM qy
0 0

‘91 (e — l))ae‘”“‘t“(f’*al)

rx

(2.19)
as t — o0o. Now consider,

1 1
gt,t+l,0,l(x)::)91 [e7 20 41+ 070 — e ¢ 4 )4

o
+92[e—k(l+x)(l _}_X)H—é _ e—)uxxH—al]

o 1 1.]a
_‘92‘ ‘[e—k(l+x)(1+x)H—& _e—AxxH—a] _

(2.20)

Then,

1
e)nattfoz(Hfa)

1 1
t+1 H—3 ¢ 1
8t,14+1,0,1(x) = |0 [ef)“(”") (y) e M ( —:x ]

1 1
+92[6—A(1+x)e,\z(1 +X)H*E _ e—xxem(f)H*&]
t t

Gz[e—k(l+x)ekt(l "‘X)H_é _e—xxe/\z(f)H_é]
t t

o

o

a,+bt

H—1 H—1
a; =6, |:e—)\(1+X) (t +—1t+x) - e M (t_:x) ’ ]

b, =6, |:e)‘(1+x)e“(—l —:X)H_é — MM ()?C)H_;}

by

where

and

It is obvious that a; — Cy:=01e (e~ — 1) and by — —o0 as t — oo. Then,
la; + b |* — |bi|“ — 0ast — oo since 0 < a < 1. Therefore,

1
=g 100 — 0,
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o
ast — 00. Moreover, for any 0 < « < 1, using the inequality ‘|a|"‘— |b|¥| < ‘a—b‘
(see [16], Page 211), we get

gz,z+1,o,1’ < fi+1.15

where g;./+1.0,1 and g; ;+1,0,1 are defined in (2.18) and (2.20), respectively, if we let
a=01(gr+1— &)+ 62(g1 — go) and b = 62(g1 — go). Consequently,

. 1
hat j—a(H—) ea)‘tfa(Hfa)fH-l,t(x)

g;,:+1,o,1‘ < sup
t>1

< ‘el(e—k _ 1)’0‘ e—kotx

sup |e
t>1

which also belongs to L' (0, co). Applying the dominated convergence theorem yields

+o00
/ gr+1.0.1(x)dx — 0 as t — oo. (2.21)

—0o0

Therefore, from (2.19) and (2.21)
I1(1) ~ —Cre ol (2.22)

ast — oo, where C1:=(0; (e * — 1)|*/(Acx).
Next, write

1 o
1) = [ [tz = g0 + 625100

[ taa —seon] ax— [ oo ax
0 0

Define
0, (0):=01 [e I (¢ 41— x)f~a — M0 (¢ — xyHa], (2.23)
and .
v(x):=0re =9 (1 — )%, (2.24)
Rewrite X
h() = /0 EQur (x) + v() — E(ur () — () dx
where

E£(0):=|x|". (2.25)
Using [1, Eq.(3.9)], we have

| de.  (226)

1 1
b < /O 1 1ty (6) 0 ())& (1t (6)) —E (0(x)) | de <2 /0
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On the other hand, u; (x) = 61 (f(t+1)— f,(z)) where fy (1) = e—)\(u—x)(u_x)H—é.
Recall that H — é < 0, and apply the mean value theorem to see thatforany 0 < x < 1
and t > 2, we have for some u € (¢, t + 1) that

1
‘“t(x)‘ < |61 } — A MO — )7 (H - _) e = x)H_é_l‘
o
1 _1_
<o e_)‘(t_l)|:(— -~ H) o= 1)« e - 1|H—l}
o
1 H-1
<o, f“"”[- “H +/\] ’t - 1‘ . (2.27)
o

From (2.26) and (2.27), we get
1 o @ 1 1 o Ha—1
L) < 2/ ‘ut(x)‘ dx < 2‘91‘ e hatt= >[— ~H +A] }r - 1‘ .(2.28)
0 o

Hence, |I(1)| < Coe ' tH*=1 fort > 0large, where Co:=2|0; |*e**[a ™' — H+1]%.
Then, it follows from (2.22) and (2.28) that

I(Z) = e—)u(xltHDl—l

ast — oo. Since I(t) — 0 ast — oo, it follows from (2.12) that r(t) ~
—K (01, 0,)1(t); hence, (2.14) holds. O

Theorem 2.6 Let Y o2 (t) be a tempered fractional stable noise (2.9) for some 1 <
o <2, $<H< 1, and A > 0. Then,

1
r(t) < e Mf~a

ast — oQ.

Proof Recall that f;41(x) is given by (2.18). Then,

_(H-1 o —(H-1
M wftﬂ,,(x):\el\ )

1 1
X‘e—k(t+l+x)(t+1+x)H—E_e—)»(t+x)(t+x)H_E =a; .bt,

where

@ o (H=1)(@=1
at:=‘91‘ e M@ l)t( #)e

and

1 H—é H—1
bg:‘e—m“) (1 +-+ J—C) —e M (1 + f) ‘
t t t
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o
Note that ¢; — 0 (since | < & < 2)and b, — |e "0+ — =2 451 — 0.

Now, let h(t) = e_kt(o‘_l)t("‘_l)(H_é). Observe that A(f) attains its maximum at
t = %(H — é). Moreover, since H — é > (0 we have for any fixed x > Oandallz > 1
that

1 _1 H-1
d(r) = |e (1 4 —+ §)” e (14 )t—C) |

! |

X _1
+ ‘(1+;)H z
< e_“[e_x(%rx)ﬂ_é + +x)H_$]

3

)i

1 x
e_}‘(1+—+—
t t

e @A) 4 1),

IA

Then,

_ )Ql‘asup h(1)(d (1)

t>1

_(g—1
sup M “)fH-l,t(x)‘ = sup |a; - by

t>1 t>1
d ()"

sup |h(t)

t>1

sup
t>1

o
= o

H-— é](a—le—;)

e*)»otx(z_i_x)Hafl(efA_i_1)aef(H7$)(a71)|: -

o
=[o

and so f;y1,(x) is bounded by an L' (0, 00) function. Therefore, the dominated con-
vergence theorem implies that

/O 10 (x)dx — 0 (2.29)

. _(H-1 . .
as t — oo. Consider now, e ¢ H a)gt,t_H,o,l where g; ;+1,0,1 1s given by (2.20).
Then,

_ 1 o o
M~ ”‘)gt,t+1,0,1 = ‘at +b| — ‘bt‘
where
_1 _1
a4,:=0, [e_ml—be—xaﬂ)(t + 11+x)<H @) e_ml—g)e—m(t +IX)<H a)}
te te
and
TR 2l H-L1y _ —ax (H-1
by:=0r| et « [e A+ (] 4 x)H=a) — o2y ( a)]
Observe that lim;_, o by = —o0 and lim; . a; = 0. Since |a; + by |* — |b;|* ~

ala||b*~ !, as 1 — oo, we get,
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A, —(H—1
Mg 100 Na‘el‘

i t+14+x\H-D 1 4 x\H-1
X’e—kt(l—a)e—k(l+x)( : ) _e—kt(l—a)e—kx( : )

lo ta

a—1 1 1 1 1 1y |e—1
x‘@z M=) = (H=)(1=5) e—x(1+x)(1 +x)(H_&) _ oMy (H=3)
consequently,
_(H-1L _ _
M H “)gz,r+1,o,1 —>a’91H€ M14x) _ ,=hx
a—1 1 1 a—1
X‘Qz ‘e—x(1+x)(1 + ) e — e
Moreover,
a —(H—l) o o o a—1
sup |e™'t @ gt,t+1’0,1‘=sup a;+b,| — |b; <sup|a;| +asup |a;||b;s
t>1 t>1 t>1 t>1
(2.30)

where we have used the following inequalities (see for example Magdziarz [6,
o a—1
Lemma2]): |a — b|% < a® + b* and ||a + b|* — |b|“) <la|" +ala ‘b valid for

a>0andb > 0and @ € (1,2). In order to find an upper bound for sup,, |a|*,
write

o

ag

o

1 1
Xl =4y a4+ t+14+x\H-3) =Ly e t+x (H=3)
=101 ‘e 1(1=3) p=( x)( 1 ) e MU=5), x( : )

ta ta
& e | ot XNHE=D 4 x\H-) e
P 1)‘6 x( : ) _( : )
te te

o

<o, [“ e e 1 41+ x0)F 5 — (14 0)H s

S 91 ae—)u(xxl:e—},a(z_i_x)Ha—l +(1 +X)Ha—l]

o
< 2‘91‘ e~rax (g 4 yyHa=1, 2.31)

On the other hand,

o a—1

_1
ola,||b, =a’01H92

F4+14x\H-D 4+ x\(H-D)
e e T G

x K(x)

=S(1)
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where I
-
K(x) = )e—)t(l"‘x)(l +x)(H_$) — g_)‘x(x)(H_é) . (2.32)

Note that S(#) is a decreasing function and hence

o a—1

—1
= a‘@lHez

by

sup o
=1

az

[0 @ 4 )= — (1 40D X K ()

(2.33)
where K (x) is given by (2.32). From (2.30), (2.31) and (2.33)
o a—1
sup [~ =g, 11 04| = 20| e @+ 01 1 a6
>1
‘e_)‘(1+x)(2 + x)(H_é) —e M1+ x)(H_é) x K (x)
(2.34)

which belongs to L! (0, 00), since Ho > 1. Then, the dominated convergence theorem
implies that

0 Ot—l A H 1
/ 8r1+1,0,1(x) dx — 0691‘92‘ e MH=a)
0

o0
X/ ‘e—k(l+x) R
0

= Cola. 1. 0y, B)e M1 —3 (2.35)

a—1
e M+ (g —i—)c)H_al eyl dx

ast — 0o, where

a—1

Ca(at, 1, 01, 62) = aby (02

o0
/ ‘e—x(1+x)_e—xx
0

is a constant independent of 7. Therefore, from (2.29) and (2.35) we have

1 1 je—1
e—)u(1+x)(l+x)H—a_e—)uxxH—E d.x

(2.36)

L) ~ Cale, A, 01, B2)e Mt —a (2.37)
ast — oQ.
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Finally, recall that

1 o
B0 = [ [ilsa 0 @1+ )] ax
1 o 1 o
- [ tsnw—g@l = [ o] ax

and that u;(x) and v(x) are given by (2.23) and (2.24), respectively. Then,

1
L(t) = /0 E(u(x) +v(x)) — &, (x)) — E((x)) dx

where & (x) is given by (2.25).

To finish the proof, we need an upper bound for u,(x). Applying an argument
similar to (2.27), using the mean value theorem, and recalling that H — é > 0, for
any fixed 0 < x < 1l and any ¢ > 2, for some u € (¢, + 1), we have

1
Mt(x)‘ < ‘91H — Ae MU=y —JC)H_é +(H — —)e =9y — x)H_é_l‘
a

1

1 1
< ‘91 e_)‘(’_l)[(H—E)|t+1|H z 1+/\|t+1|H—$]

1 H—j
< ‘Gl‘e‘“"l)[H——Jrk] ‘t—i—l‘ :
o
Now, using [1, Eq.(3.9)] and the above upper bound for u,;(x) we have

1
[12(1)] S/O 18 (ur (x) + v(x)) — E(ur (x)) — E(v(x))[dx

1
<[«
0

o
u,(x)‘ dx

a—1 1
u,(x)Hv(x)‘ dx + (o + 1)/0

1 1
1 H— a—1
< a‘91’/ [H - +/\]‘t+1 e_)‘(’_l)‘v(x) dx
0 o
o 1 o Ha—1 5 |
+(a+1)‘01‘ [H——+k] t+ 1 erat=D
o
1 H-1
:a‘@ll[H——+)»]‘t+l‘ e =D
o
1 _
x / ‘eze*“‘*ﬂ(l — ol ax
0
o 1 o Ha—1
+(oz+1)‘91‘ [H——+A] t1| e hat=D
o
H-—1
=C3(a,,\,91)(z+1‘ “ gmHi=D)
o 1 o Hoa—1 5 1
+(a+1)‘91‘ [H———H»] t+1] T ere, (2.38)
o
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where

a—1

1 1
Ci(a, A, 91)::0{‘91’[[{ —— 4+ )\_]/ ‘926—)\(1—)()(1 _ x)]-]_al dx
o 0

is a constant. Note that the upper bound in (2.38) is of the same order as the upper
bound for 71 (¢), given by (2.37). Hence,

F(t) ~ —1(t) = e M H=2)

ast — 00. O

Remark 2.7 We say that a stationary SaS process {Y;} exhibits long-range dependence
if

oo

>

n=0

r(01,62,n)| = oo, (2.39)

where (01, 02, t) was defined in (2.10). LTFSM is not long-range dependent, but it
does exhibit semi-long-range dependence under the assumptions of Theorems 2.5 and
2.6. That is, for A > O sufficiently small, the sum in (2.39) is large, since it tends to
infinity as A — 0. TFSN therefore provides a useful alternative model for data that
exhibit strong dependence, which is in some sense more tractable. In applications to
turbulence with heavy tails, it can also provide a useful model extension that more
closely fits the observed dependence structure outside the inertial range [10, 14].

3 Harmonizable Process

Let X = X + i X, be a complex-valued random variable. We say X is isotropic SaS
if the vector (X1, X») is SaS and for any 6 = 61 + i6, we have

E [ei<01x1+ezxz)] — oclo”

for some constant ¢ > 0 [16, Section2.6]. A complex-valued stochagtic process {X )}
is called isotropic SaS if all complex linear combinations Z;’-:l 0; X (t;) are complex-

valued isotropic SaS random variables. We say that Z,(dk) is a complex-valued
isotropic SaS random measure with Lebesgue control measure dk if

E [eiRe@Z(B))] — o IBIIOI",
where |B| denotes the Lebesgue measure of the set B € B(R) [16, Section6.1] and
6 € C. For any f € L*(R), the stochastic integral

~ +OO ~

I(f):=Re S (k) Zq (dk)

—00
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is a complex-valued SoS random variable with characteristic function
. +00 o
E[e"”(~f>] :exp{|9|°‘/ ‘f(k)‘ dk} 3.1)
—00

hence, .
HT(f)HZ::—log]E[ei7<f>] =/_Oo ‘f(k)‘a dk (3.2)
forany 0 < o < 2.

Definition 3.1 Given a complex isotropic SaS random measure Z,, with Lebesgue
control measure, the stochastic integral

+00 —ikt __ 1

e

Kp1s (1) = Re / 7o (dh) (3.3)

oo (A — ikt

with0 < @ < 2, H > 0, and A > 0 will be called a real harmonizable tempered
fractional stable motion (HTFSM).

If we define )
e—zkt -1

L (3.4)
O — ik)H+a

ot (k)=
then |8y 2. (k)| is O(Jk|~H2=1y as |k| — oo, and tends to zero as |k| — 0. Hence,

8ant € L*(R), so that HTFSM is well defined. The term (A — ik)_H_é in (3.3) is
the Fourier symbol of tempered fractional integral [9, Lemma2.6]. Hence, HTFSM is
also constructed from the tempered fractional integral of a stable noise.

Proposition 3.2 The HTFSM (3.3) is an isotropic SaS process with stationary incre-
ments, such that

{Znanen},p 2 {"Xnaa®] (3.5)

for any scale factor ¢ > 0.

Proof The proof is similar to Proposition 2.3. Since Z4(dk) has control measure

dk, Za (cdx) has contrg] measure cédk.:l"hen, a simple change of variables in Defi-
nition (3.3) shows that X g o 2 (ct) =~ cHXH,D,‘CA(t). For any s, t € R, write

“+o00

XH,C(,)\,(I +5) — }?H,a,k(s) = Re/ e*iks—I
- (A —ik)H*a

e*ikt —1

Zo(dKk).

Since [e"%| = 1, it follows immediately from (3.1) that X 1 g (t +5) — X 1.,1.(5) =
X H..(t). The same arguments extend easily to finite dimensional distributions. O

Definition 3.3 Given an HTFSM (3.3), we define the tempered fractional harmoniz-
able stable noise (TFHSN)

YH,O,)A(t):sz,a,;L(t +1)— )?H,a,k(t) for integers — co < t < 00. (3.6)
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Theorem 3.4 The tempered fractional stable motion (LTFSM) defined in (2.4) and
tempered fractional harmonizable stable motion (HTFSM) defined in (3.3) are different
processes.

Proof Theorems 2.5 and 2.6 imply that

lim ry, ., (01,65, 1) =0, 3.7)
—0o0 T

for0 <a<1,0< H<land1l < o < 2,& < H < 1, respectively (in fact,
according to Theorem 2.1 in [4], lim;—.» rx = O for any «-stable moving average
representation). It follows easily from (3.3) that

- +oo
Y. (t) =Re / e KW (dk) (3.8)
—00
where
—ik _
W (dk) = Zo(dk)
O —ik)Hts

is a complex symmetric a-stable (S«S) random measure with control measure

|e—ik _ lla

m(dk) = |)¥ _ ik|Hoz+l

dk.

Then, it follows from Levy and Taqqu [4, Theorem 3.1] that

IS B
lim inf 7 [T Yo 01,02, 1) dt

T—o0

> K01, 62)c0 (m({0}>Fo + %m(R - {0}>F1) -0

where Fy € Rand F; > 0 are constants depending on «, m, 61 and 6,. Then, we have
lim rg, = (@1,62,1) >0, (39

and the theorem follows. O

Remark 3.5 A simpler proof of (3.7) follows from Kokoszka and Taqqu [13,
Lemma®6.1], but Theorem 2.5 gives more information on the dependence structure.

4 Sample Path Properties
In this section, we develop sample path properties of tempered fractional stable

motions. The path behavior of a linear tempered fractional stable motion X g o2
depends on the structure of the kernel (2.5). When H — é < 0, the function gy ;(x)
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o A
R -
o
o 0 7
—_~ B —_~ © A
< o =
X ¥ x uo? |
| o
o S
@ -
I T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
t t

Fig. 1 Left panel Sample paths of LTFSM with @ = 1.5 and H = 0.3 for A = 0.03 (thick line) and A = 0
(thin line). Both graphs use the same noise realization Zy(¢). The right panel shows the same plots for
H = 0.7, comparing 1 = 0.001 (thick line) and A = O (thin line)

has singularities at x = 0 and x = ¢. These singularities, together with the heavy tails
of the stable noise process Z, (dx), induce path irregularity, see Stoev and Taqqu [17]
for the case . = 0. The left panel in Fig. 1 compares a typical sample path of tem-
pered and untempered linear fractional stable motion, using the same noise realization
Zy(1), in the case H — é < 0. In the case H — é > 0 (since 0 < H < 1, it follows
that « > 1), the paths of a linear (tempered) fractional stable motion can be made
continuous with probability one (see [16, Chapter 10] for the untempered case), since
its kernel is bounded and positive for all # > 0. The right panel in Figure 1 shows
a typical sample path in the case. These simulations use a simple discretized version
of the moving average representation (2.4). The remainder of this section develops
these i]deas in detail and provides smoothness (Holder continuity) estimates in the case
H> .

Regall that a stochastic process {X (f),t € T} on a probability space (2, F, P)
is called separable if there is a countable set 7* C T and an event 29 € F with
P(€29) = 0 such that for any closed set F C R we have

{0:X@t)e F.¥t e T*}\{w: X(1) € F,Vt € T} C Q.

See [16, Chapter 9] for more details.

Theorem 4.1 Suppose that0 < H < é for some 0 < o < 2. Then, for any separable
version of the LTFSM process defined in (2.4), for any A > 0, we have that

P({w D osup | Xpaa(t, o)) = OO}) =1,
te(a,b)

Hence, every separable version of the LTFSM process has unbounded paths in this
case.

Proof We apply Theorem 10.2.3 in [16]. Indeed, consider the countable set T*:=Q N

[a, b], where Q denotes the set of rational numbers. Since T* is dense in [a, b], there
exists a sequence {t,},en € T* such thatf, — x asn — oo, for any x € [a, b].
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Therefore,

F(T*; x):= sup

teT*

et )| 2 5D [gann, (0)|=: 5750 = o0,

theT*

as n — oo; hence, fab f*(T*; x) dx = oo, and this contradicts Condition (10.2.14)
of Theorem 10.2.3 in [16]. Therefore, the stochastic process {X i .1} does not have a
version with bounded paths on the interval (a, b), and this completes the proof. O

Lemma 4.2 Suppose thaté < H < 1 forsome 1 < a < 2. Then, there exist positive
constants C1 and Cy such that the LTFSM (2.4) satisfies

Ha Ha
<| |

o
Cl‘t - S‘ )XH,a,A(t) - XH,a,A(S)Ha < C2’t -

locally uniformly in s, t € [0, 1], for any A > 0.

Proof Assume s < t, and write

v

o ! 1
Xt = Xar [ = [0 xptteel g
« s

t
Z e—ka\t—sl/ |t _x|Hoz—1 d)C
s
—la|t—s|
e
— —|l‘ _S|Ha
Ha
-\
> lt — 5"
Ha

forany 0 < s < ¢ < 1, which establishes the lower bound.
It follows from (2.6) that || X g7,¢,5(t) — Xm0, () S = (I1 + I) where

s 1 1
Il — / e—)n(l—x)(t _x)H—a _ e—k(s—x)(s —X)H_a
—0o0

' o t
12=/ dxf/
s s

Using the inequality |x 4+ y| < 2*(|x|* + |y|*) for x, y € R and « > 0 we have
I} < 2%y + I1») where

o

dx,

1 1|
e M — x)H—a (t—x)f—%

dx = —|t — 5|
o

o

N
I :/ ‘ef)‘(tfx)(t —x)HW]T — e Mg —x)H*é dx,
—0Q

s o
fo = / ‘eik(lix)(s - )C)hhé — e Mg x)H*é dx.
—00
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Use the inequality |e™ — e Y| < |x — y| for x, y > 0, substitute u = s — x and then
w = Aou to see that

N o
I :/ (5 — x)Ho—1 ‘efk(tfx) _ o0 Y gy

e¢]

o o0
M=) _ 1‘ / uHe—1,—hau g
0

o
< A%t —s|‘¥(m)H“/ e Pwiel gy
0

= A(a) AT (Ha)|t — s|*
< A%(o) " HT (Ha) |t — 5|1

forO <s <t <1,sincea > Ha > 0. Here, '(x) = fooo *~le=! dt is the gamma
function. Let 7 =t — 5 > 0 and write

N
111 — / e—)\(t—x)
—00

s ol g1l
< ‘(s—l—h—x) a—(s—x)""«
—0oQ

- hHot—l/s ‘(1 48 ZX)H*$ B (s ;x)Hfé
—00

o0
- h”"‘/ |+ =s — @)% |" dx = Cpy |t — s|H®
0

o

(r— x)H_<yl — (s — x)H_<yl dx

dx

o

dx

which concludes the proof. O
Lemma 4.3 Suppose that % < H < 1 forsome 1 < a < 2. Then, there exist positive

constants C1 and Co such that the HTFSM (3.3) satisfies

Ho
<]

~ ~ o4 Ha
| Zitan®) = Xnan®)| = Cofp =] .0

locally uniformly in s, t € [0, 1], for any » > 0.

Proof To get the upper bound, note that

e
|)L—ik|H°‘+1

. . o +o00 |e—ikt _ —iks|ot
”XH,a,x(t) - XH,a,A(S)” = /
o

—00

IA

+o00
C/ (LA = s|%k|%) [x — ik| =7~ dk

—00

=C[|t—s|°‘/ kI3 — ik dk
|k|<

[t—s]

+/ A — ik|~Ho! dk]
|k|>

[1—s]
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< c[|z —sor + 12] 4.2)

for some constant C > 0, where

o —Ha—1 —Ha—1
11:=/ ‘k‘ )A—ik‘ dk and 12:—/ ‘A—zk‘ dk.
\k|<ﬁ k> i
Observe that
—Ha—1
I =/ ( ‘ ‘A2+k2‘ 2k
|k|<
o —Ha—1 —Ha—1+a
5/ (k k‘ dk:/ ‘k) dk
Ikl <y Ik|
Ha—o 2 43
<|tr— —_— .
= ‘ s a(l— H) (4.3)
and
—Ha—1
b =/ ‘A2+k2‘ Tk
|
—Ha—1 _H 1
5/ ‘kz : dk:/ ‘k‘ Tk
k1> 15 | i
Ha 2
< ‘t Y L (4.4)
Hao
Finally, from (4.2), (4.3) and (4.4) we get
—~ —~ o o
[ Ritan ) = Xnan )| = c[|r=s"n+1]
Ho

2 2
] PR
x(l—-H) Ha

Ho
= ‘t—s

which gives the upper bound in (4.1). In order to get the lower bound, we use the fact
that there exist positive constants ci, ¢z such that [e™Y — 1] > cq|y| for |y| < 2.
Therefore,

+0o . L —(Ha+1)
/ ‘e*l’“ _ ks ‘)\ - ik( dk
—00

+00 . o —(Ha+1)
:/ ‘e*”“‘*s)—l( ’A—ik‘ dk
—00

~ ~ o
| Xrtan®) = Ripan)|
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o
> cf ‘k’ ‘t —s
k| <2

[t=s]

o —(Ha+1)

A —ik dk

—(Ha+1)

o o ) 2
=c{|t —s| a2 k| O +k°)" 2 dk.
<Tr=sl

We now use the fact that
—(Ha+1) —(Ha+1) ‘H(H]

(A2+k2) . z(1+c§) ’ ‘t—s

for A < ﬁ and k| < ﬁ to continue the rest of the proof as follows:

a o _(H;H—l)
?lr —s / ‘k‘ (,\2 +k2) dk
2
k<=5
5 —(Ha+1) o Ha+1 ﬁ
=2 (1+3) e —s| e —s / K dk
0
Hoa+a+1 —a—1 Ha
=C1‘t—s‘ ‘t—s =C1‘t—s‘
and this gives the lower bound. O

5 Local Times and Local Nondeterminism

In this section, we prove the existence of local times for LTFSM and HTFSM for
1l <o <2and é < H < 1. In this case, we will also show that LTFSM and HTFSM
are locally nondeterministic on every compact interval. Suppose X = {X (¢)};>0 is a
real-valued separable random process with Borel sample functions. The random Borel
measure

MB(A):/ I{X(s) € A}ds
seB

defined for Borel sets A € B € R7 is called the occupation measure of X on B. If up
is absolutely continuous with respect to Lebesgue measure on R, then the Radon-
Nikodym derivative of ;p with respect to Lebesgue measure is called the local time
of X on B, denoted by L(B, x). See Boufoussi et al. [2] for more details. For brevity,
we will also write L(¢, x) for the local time L([O, 7], x).

Proposition 5.1 If é < H < 1 for some 1 < o < 2, then the LTFSM (2.4) has a
square integrable local time L(t, x) for any A > 0.

Proof 1Tt follows from Boufoussi et al. [2, Theorem 3.1] that a stochastic process X =

{X (¢)}+e10,77 has a local time L(t, x) that is continuous in  for a.e. x € R, and square
integrable with respect to x, if X satisfies:
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Condition (H): There exist positive numbers (oo, H) € (0,00) x (0, 1) and a
positive function ¥ € L!(R) such that forallx € R,z,5 € [0,T],0 < |t —s| < po
we have

. X)) —X(s)
'IE [exp (’Kn——sv‘l)] ’ < ¥ (K). (5.1)

Apply (2.6) and Lemma 4.2 to get

| ex (l.KXH,a,A(t) - XH,a,A(S)) ~ex (_ e I X H, a0 (1) — XH,a,A(S)Ilg)
P It —s|H P It — s|oH

< exp (= Ik["C)i=pr (k)

where the function ¥ (k) € LY(R, dk). Hence, LTFSM satisfies Condition H. O

Proposition 5.2 Ifé < H < 1 forsomel < a < 2, then the HTFSM (3.3) has a
square integrable local time L(t, x) for any A > 0.

Proof Apply (3.2) and Lemma 4.3 to obtain

gl (l.K)?H,a,ut) — )?H,a,xcs)) . (_ [ IX ,0,0.(1) — )?H,a,x(wng)
P |l—S|H p |t_s|otH

< exp ( - |K|°‘C)::1p(/<).

Since ¥ (k) € L'(R, dk), the HTESM satisfies Condition . O

We next show that HTFSM is locally nondeterministic on every compact interval
[e, T, forany 0 < € < T < oo. Recall that a stochastic process {X (t)};er is locally
nondeterministic (LND) if:

D) | X(@)||¢ >O0forallt €T
2) IX(#) — X(s)|l > Oforall¢,s e T sufficiently close; and
(3) forany m > 2,

| X () — span{X (11), ..., X(tm—1D}la

lim inf > 0,
€l0 1 X (@) — X Gn—1) e

where span{xy, ..., x,} is the linear span of x, ..., x,, the liminf is taken over
distinct, ordered t; < tp < -+ <ty, € T with |ty —t,y| <€, T CR, 1 <a < 2 and
| X (¢)|lo is the norm given by (2.1).

Remark 5.3 According to Nolan [12], the ratio in Condition (3) is a relative linear
prediction error and is always between 0 and 1. If the ratio is bounded away from zero
as |t —t,,| — 0, then we can approximate X (#,,) in the | - ||, norm by the most recent
value X (#,,—1) with the same order of error as by the set of values X (¢1), ..., X (t;—1).

Proposition 5.4 The LTFSM (2.4) with 1 < a < 2 and é < H < 1is LND on every
interval [€, k] for € < k < o0.
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Proof To prove LND for the LTFSM {X g 4., (¢)}, we need to verify Conditions (1),
(2) and (3) as described above (for 1 < «a < 2). The first and second conditions follow
from Lemma 4.2. That is,

| XHai® = Xpas ]2 = Ci|r —s|™

where C is a positive constant. It remains to show that the LTFSM {X g 5 (¢)} satisfies
Condition (3):

o

“XH,a,A(tm) - SPaH{XH,a,A(fl), cee XH,ot,)L(tm—l)}

lim inf , © S0 (52
0 | Xttt = Xt anttn-) |
Observe that
. o
| Xt tn) = span(Xman )i = 1,com = 1)

o
> H XHo)(tm) —span(X g o2 (m), u < ty_1) .

tm L
— / |tm _ u|a(H_a)e_}\a|tm_u‘ dl/t
1

m—1

Im
> e*)\a|tm7tm_||/ |tm _ulHotfl du
Im—1

Ha
e_)\a|tm_tm—l| ‘tm — t—1
— 5.3
Ha (5.3)
Now, apply Lemma 4.2 to see that
o Ha
HXH,a,)L(tm) - XH,a,)»(tm—l)H =< C2 tm — tm—1 (54)
o

for |t,, —t;u—1| < €. Combining (5.3) and (5.4), we get that the ratio in (5.2) is bounded
below by

H
e—}»a|lnz—lm—l| tm — tm—l‘ *
aH
CQHO(’tm — tm—1
Since |, — ty—1| < €,
Ha
e_)ha“m_tm—” ‘tm — -1 1
limionf o7 — o H =C >0 (5.5)
< CzHot‘tm S 2 Ha

hence, (5.2) holds which means {X# 4,5} is LND. O
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Proposition 5.5 If é < H < 1 for some 1 < o < 2, then the HTFSM (3.3) is LND
on every interval €, k] for any € < k < oo and any A > Q.

Proof We follow the proof of Dozzi and Shevchenko [3, Theorem 3.3], who show
that a harmonizable multifractional stable motion is LND on every interval [e, k] for
€ < k < o0o. Conditions (1) and (2) follow from the lower bound in Lemma 4.3. Next,
observe that the kernel

e—ikt -1
gap (k) =———+ (5.6)
O — ik)H+a
in Definition (3.3) of HTFSM is the Fourier transform of the function
F(HWLé)[ A(t—x) H-eZl A H-2l
] [ () W e G0 I MR N
V2r * *

which is a constant multiple of the kernel in (2.4). Here, I"(x) is the gamma function.
In order to verify Condition (3), we shall establish a lower bound for

m m—1
X Im) — X t H S F k) — Boi; (k ‘
H H,a,k(m) Zu'/ H,cc,k( /) o ga,k,tm( ) Z‘;u/gd,k,t}( )

J= J=

L*(R)

where fp 0..(t, k) is defined in (5.6). Let B = _%;. Apply the Hausdorff—Young
inequality [5, Theorem5.7] to get

m—1
Bty K) = D ujgais; (k)
j=1

LY(R)

m—1
> €| F g, () 2t F s ) |,
]:

FR)
tm—1 m—1 ‘3
= C(/ ‘f‘lga,x,t,,, () =D i F gy (k)(
o =
1
tm 1~ /3 B
[ ) dk) , (5:8)
tm—1

where F~1 denotes the inverse Fourier transform. From (5.7), we have

(H+ 1
V2r

—1~ _ =1 r NHST ey AH
F ga,)»,tm(k)— e (tm )C)+ e ( )C)+

a—1

H— . .
and the second term, e (~)+(—x) . ,vanishes on the interval [#,,1, ,,]. Hence,
we can continue (5.8) as the following:
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>

>

1

T | B
C[/ (tm — )P 75 4B n=2) dx}
tm—1

H
C e—k(tm—tm_l)‘tm _ tm—l‘ )

X .05 (tm) — ??H,a,x(fm—l)Ha (5.9)

for t,, and 1,1 close enough (and C is a constant). In the last line in (5.9), we used the

fact

that |t,,, —t,,—1| < k — € and we also applied Lemma 4.3 to get the last inequality.

Therefore,

HiH,a,)L(tm) - SPan{fH,a,x, ceey gH,cc,)n(tm—l)}”a

Hiﬂ,a‘k(fm) - mil ujiH’“’A(tj) Ha
=1

v

Rt~ Fivaatn ),

and consequently
HXH,(X,)»(tm) - SPan{iH,a,x, cees iH,oz,)»(l‘m—l)}H
lim inf — — > C,
3o XH,a,A(tm) - XH,a,A(tm—l)
o
where C is a positive constant. O
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