

Tempered Fractional Stable Motion

Mark M. Meerschaert · Farzad Sabzikar

Received: 20 August 2014 / Revised: 21 October 2014 / Published online: 6 December 2014 © Springer Science+Business Media New York 2014

Abstract Tempered fractional stable motion adds an exponential tempering to the power-law kernel in a linear fractional stable motion, or a shift to the power-law filter in a harmonizable fractional stable motion. Increments from a stationary time series that can exhibit semi-long-range dependence. This paper develops the basic theory of tempered fractional stable processes, including dependence structure, sample path behavior, local times, and local nondeterminism.

Keywords Stable process \cdot Fractional calculus \cdot Long-range dependence \cdot Local times \cdot Sample paths \cdot Local nondeterminism

Mathematics Subject Classification 60G52 · 60G17 · 60E07

1 Introduction

Linear fractional stable motion and real harmonizable fractional stable motion are distinct stochastic processes with stationary increments, see for example Samorodnitsky and Taqqu [16]. They can be constructed using the fractional integral of a symmetric α -stable (S α S) noise [7, Remark 7.30]. These models are useful in practice, because their increments can exhibit the heavy-tailed analog of long-range dependence, see for example Watkins et al. [18]. This paper develops a model extension, based on tempered fractional calculus [14]. The resulting stationary increment processes, termed

M. M. Meerschaert (⋈) · F. Sabzikar

Department of Statistics and Probability, Michigan State University, East Lansing,

MI 48823, USA

e-mail: mcubed@stt.msu.edu

URL: http://www.stt.msu.edu/users/mcubed/

F. Sabzikar

e-mail: sabzika2@stt.msu.edu

linear tempered fractional stable motion (LTFSM) and real harmonizable tempered fractional stable motion (HTFSM), are obtained by replacing the fractional integral with a tempered fractional integral. The (Riemann–Liouville) tempered fractional integral

$$\mathbb{I}^{\alpha,\lambda} f(t) := \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{+\infty} f(u)(t-u)_+^{\alpha-1} e^{-\lambda(t-u)_+} du,$$

with $\alpha > 0$, $\lambda > 0$, and $(x)_+ = xI(x > 0)$, is a convolution with an exponentially tempered power law [9]. It reduces to the traditional Riemann–Liouville fractional integral when $\lambda = 0$ [15, Definition 2.1].

The remainder of this paper is organized as follows. Section 2 develops the LTFSM model, proves a scaling property, and computes the dependence structure of the increment process, which can exhibit the heavy-tailed analog of semi-long-range dependence. Section 3 computes the dependence structure of the TFSM increments and uses this to prove that LTFSM and HTFSM are different processes. Section 4 establishes sample path properties of LTFSM and HTFSM. Section 5 proves the existence of local times and establishes the useful property of local nondeterminism.

2 Moving Average Process

We say that the real-valued random variable X has a symmetric α -stable (S α S) distribution, denoted by $S_{\alpha}(\sigma, 0, 0)$, if its characteristic function has the form

$$\mathbb{E}\left[\exp\left\{i(\theta X)\right\}\right] = \exp\left\{-\sigma^{\alpha}|\theta|^{\alpha}\right\},\,$$

for some constants $\sigma > 0$ and $0 < \alpha \le 2$. The parameters α and σ are called the index of stability and the scale parameter, respectively [16, Chapter 1]. The formula

$$||X||_{\alpha} = \left(-\log \mathbb{E}[e^{iX}]\right)^{1/\alpha} \tag{2.1}$$

defines a norm (quasinorm if $0 < \alpha < 1$) on the space of S α S random variables, see Nolan [11,12] and Xiao [19] for more details.

Let $L^0(\Omega)$ be the set of all real-valued random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let (E, \mathcal{E}, m) be a measure space and define $\mathcal{E}_0 = \{A \in \mathcal{E} : m(A) < \infty\}$. An independently scattered set function $M : \mathcal{E}_0 \to L^0(\Omega)$ such that

$$M(A) \sim S_{\alpha}\left((m(A)^{\frac{1}{\alpha}}), 0, 0\right)$$

for each $A \in \mathcal{E}_0$ is called an S α S random measure on (E, \mathcal{E}) with control measure m. Independently scattered means that if A_1, A_2, \ldots, A_k belongs to \mathcal{E}_0 and are disjoint, then the random variables $M(A_1), M(A_2), \ldots, M(A_k)$ are independent.

Given an independently scattered S α S random measure $Z_{\alpha}(dx)$ on the real line with Lebesgue control measure dx, the stochastic integral

$$I(f) := \int_{-\infty}^{+\infty} f(x) Z_{\alpha}(\mathrm{d}x)$$
 (2.2)

is defined for all Borel measurable functions $f \in L^{\alpha}(\mathbb{R})$. Then, [16, Proposition 3.4.1] shows that I(f) is an S α S random variable with characteristic function

$$\mathbb{E}\left[e^{i\theta I(f)}\right] = \exp\left\{-|\theta|^{\alpha} \int_{-\infty}^{+\infty} |f(x)|^{\alpha} \, \mathrm{d}x\right\},\,$$

and hence, we have

$$\left\| I(f) \right\|_{\alpha}^{\alpha} = \int_{-\infty}^{+\infty} \left| f(x) \right|^{\alpha} \mathrm{d}x \tag{2.3}$$

for any $0 < \alpha < 2$.

Definition 2.1 Given an independently scattered S α S random measure $Z_{\alpha}(dx)$ on \mathbb{R} with control measure dx, the stochastic integral

$$X_{H,\alpha,\lambda}(t) := \int_{-\infty}^{+\infty} \left[e^{-\lambda(t-x)_{+}} (t-x)_{+}^{H-\frac{1}{\alpha}} - e^{-\lambda(-x)_{+}} (-x)_{+}^{H-\frac{1}{\alpha}} \right] Z_{\alpha}(\mathrm{d}x) \quad (2.4)$$

with $0 < \alpha < 2$, 0 < H < 1, $\lambda > 0$, $(x)_+ = \max\{x, 0\}$, and $0^0 = 0$ will be called a *linear tempered fractional stable motion* (LTFSM).

Remark 2.2 When $\alpha=2$, the LTFSM reduces to a tempered fractional Brownian motion, see [8,9]. When $\lambda=0$, it becomes a linear fractional stable motion [16, Section 7.4]. The stable *Yaglom noise*

$$G_{H,\alpha,\lambda}(t) := \int_{-\infty}^{+\infty} e^{-\lambda(t-x)_+} (t-x)_+^{H-\frac{1}{\alpha}} Z_{\alpha}(\mathrm{d}x)$$

is also well defined, due to the exponential tempering, and clearly, $X_{H,\alpha,\lambda}(t) = G_{H,\alpha,\lambda}(t) - G_{H,\alpha,\lambda}(0)$. Stable Yaglom noise is the tempered fractional integral of the stable noise $Z_{\alpha}(dx)$, up to a multiplicative constant.

It is easy to check that the function

$$g_{\alpha,\lambda,t}(x) := e^{-\lambda(t-x)_{+}} (t-x)_{+}^{H-\frac{1}{\alpha}} - e^{-\lambda(-x)_{+}} (-x)_{+}^{H-\frac{1}{\alpha}}$$
(2.5)

belongs to $L^{\alpha}(\mathbb{R})$, so that LTFSM is well defined; furthermore,

$$\left\| X_{H,\alpha,\lambda}(t) \right\|_{\alpha}^{\alpha} = \int_{\mathbb{R}} \left| g_{\alpha,\lambda,t}(x) \right|^{\alpha} dx \tag{2.6}$$

for any $0 < \alpha < 2$. The next result shows that LTFSM has a nice scaling property, involving both the time scale and the tempering.

Proposition 2.3 The LTFSM (2.4) is an $S\alpha S$ process with stationary increments, such that

$$\left\{X_{H,\alpha,\lambda}(ct)\right\}_{t\in\mathbb{R}} \triangleq \left\{c^H X_{H,\alpha,c\lambda}(t)\right\}_{t\in\mathbb{R}} \tag{2.7}$$

for any scale factor c > 0, where \triangleq indicates equality in the sense of finite dimensional distributions.

Proof Since $Z_{\alpha}(dx)$ has control measure dx, the random measure $Z_{\alpha}(c dx)$ has control measure $c^{\frac{1}{\alpha}}dx$. Note that

$$g_{\alpha,\lambda,ct}(cx) = c^{H-\frac{1}{\alpha}}g_{\alpha,c\lambda,t}(x),$$
 (2.8)

for all $t, x \in \mathbb{R}$ and all c > 0. Given $t_1 < t_2 < \cdots < t_n$, a change of variable x = cx' then yields

$$(X_{H,\alpha,\lambda}(ct_i): i = 1, \dots, n) = \left(\int g_{\alpha,\lambda,ct_i}(x)Z_{\alpha}(dx): i = 1, \dots, n\right)$$

$$= \left(\int g_{\alpha,\lambda,ct_i}(cx')Z_{\alpha}(c\,dx'): i = 1, \dots, n\right)$$

$$\simeq \left(\int c^{H-\frac{1}{\alpha}}g_{\alpha,c\lambda,t_i}(x')c^{\frac{1}{\alpha}}Z_{\alpha}(dx'): i = 1, \dots, n\right)$$

$$= \left(c^H X_{H,\alpha,c\lambda}(t_i): i = 1, \dots, n\right)$$

where \simeq denotes equality in distribution, so that (2.7) holds. For any $s, t \in \mathbb{R}$, the integrand (2.5) satisfies $g_{\alpha,\lambda,s+t}(s+x) - g_{\alpha,\lambda,s}(s+x) = g_{\alpha,\lambda,t}(x)$; hence, a change of variable x = s + x' yields

$$(X_{H,\alpha,\lambda}(s+t_i) - X_{H,\alpha,\lambda}(s) : i = 1, ..., n)$$

$$= \left(\int \left[g_{\alpha,\lambda,s+t_i}(x) - g_{\alpha,\lambda,s}(x) \right] Z_{\alpha}(\mathrm{d}x) : i = 1, ..., n \right)$$

$$\simeq \left(\int \left[g_{\alpha,\lambda,s+t_i}(s+x') - g_{\alpha,\lambda,s}(s+x') \right] Z_{\alpha}(\mathrm{d}x') : i = 1, ..., n \right)$$

$$= \left(\int g_{\alpha,\lambda,t_i}(x') Z_{\alpha}(\mathrm{d}x') : i = 1, ..., n \right)$$

$$= (X_{H,\alpha,\lambda}(t_i) : i = 1, ..., n)$$

which shows that LTFSM has stationary increments.

Next, we consider the increments of LTFSM, which form a stationary stochastic process in view of Proposition 2.3.

Definition 2.4 Given an LTFSM (2.4), we define the tempered fractional stable noise (TFSN)

$$Y_{H,\alpha,\lambda}(t) := X_{H,\alpha,\lambda}(t+1) - X_{H,\alpha,\lambda}(t)$$
 for integers $-\infty < t < \infty$. (2.9)

Astrauskas et al. [1] studied the dependence structure of linear fractional stable noise using the following nonparametric measure of dependence. Given a stationary $S\alpha S$ process $\{Y(t)\}$, we define

$$r(t) = r(\theta_1, \theta_2, t) := \mathbb{E}\left[e^{i(\theta_1 Y(t) + \theta_2 Y(0))}\right] - \mathbb{E}\left[e^{i\theta_1 Y(t)}\right] \mathbb{E}\left[e^{i\theta_2 Y(0)}\right]$$
(2.10)

for t > 0 and $\theta_1, \theta_2 \in \mathbb{R}$. If we also define

$$I(t) = I(\theta_1, \theta_2, t) := \|\theta_1 Y(t) + \theta_2 Y(0)\|_{\alpha}^{\alpha} - \|\theta_1 Y(t)\|_{\alpha}^{\alpha} - \|\theta_2 Y(0)\|_{\alpha}^{\alpha}$$
 (2.11)

then we have

$$r(\theta_1, \theta_2, t) = K(\theta_1, \theta_2) \left(e^{-I(\theta_1, \theta_2, t)} - 1 \right),$$
 (2.12)

where

$$K(\theta_1, \theta_2) := \mathbb{E}\left[e^{i\theta_1 Y(t)}\right] \mathbb{E}\left[e^{i\theta_2 Y(0)}\right] = \mathbb{E}\left[e^{i\theta_1 Y(0)}\right] \mathbb{E}\left[e^{i\theta_2 Y(0)}\right]$$
(2.13)

since Y(t) is stationary. If $I(t) \to 0$ as $t \to \infty$, then $r(t) \sim -K(\theta_1, \theta_2)I(t)$ as $t \to \infty$. If $\{Y(t)\}_{t \in \mathbb{R}}$ is a stationary Gaussian process, then -I(1, -1, t) = Cov[Y(t), Y(0)], so that $r(t) \sim K(\theta_1, \theta_2)\text{Cov}[\theta_1 Y(t), \theta_2 Y(0)]$ in this (typical) case; hence, r(t) is a natural extension of the usual autocovariance function.

Next, we compute the dependence structure of TFSN. Given two real-valued functions f(t), g(t) on \mathbb{R} , we will write $f(t) \approx g(t)$ if $C_1 \leq |f(t)/g(t)| \leq C_2$ for all t > 0 sufficiently large, for some $0 < C_1 < C_2 < \infty$.

Theorem 2.5 Let $Y_{H,\alpha,\lambda}(t)$ be a tempered fractional stable noise (2.9) for some $0 < \alpha \le 1$ and 0 < H < 1. Then,

$$r(\theta_1, \theta_2, t) \approx e^{-\lambda \alpha t} t^{H\alpha - 1}$$
 (2.14)

as $t \to \infty$ for all $\lambda > 0$.

Proof It follows easily from (2.4) that TFSN has the moving average representation

$$Y_{H,\alpha,\lambda}(t) = \int_{-\infty}^{+\infty} \left[e^{-\lambda(t+1-x)_{+}} (t+1-x)_{+}^{H-\frac{1}{\alpha}} - e^{-\lambda(t-x)_{+}} (t-x)_{+}^{H-\frac{1}{\alpha}} \right] Z_{\alpha}(\mathrm{d}x).$$
(2.15)

Define $g_t(x) = (t - x)_+^{H - \frac{1}{\alpha}} e^{-\lambda(t - x)_+}$ for $t \in \mathbb{R}$ and write

$$I(\theta_{1}, \theta_{2}, t) = \int_{-\infty}^{+\infty} \left| \theta_{1} \left[g_{t+1}(x) - g_{t}(x) \right] + \theta_{2} \left[g_{1}(x) - g_{0}(x) \right] \right|^{\alpha} dx$$
$$- \int_{-\infty}^{+\infty} \left| \theta_{1} \left[g_{t+1}(x) - g_{t}(x) \right] \right|^{\alpha} dx - \int_{-\infty}^{+\infty} \left| \theta_{2} \left[g_{1}(x) - g_{0}(x) \right] \right|^{\alpha} dx$$
$$:= I_{1}(\theta_{1}, \theta_{2}, t) + I_{2}(\theta_{1}, \theta_{2}, t), \tag{2.16}$$

where

$$I_{1}(\theta_{1}, \theta_{2}, t) = \int_{-\infty}^{0} \left| \theta_{1} \left[g_{t+1}(x) - g_{t}(x) \right] + \theta_{2} \left[g_{1}(x) - g_{0}(x) \right] \right|^{\alpha} dx$$
$$- \int_{-\infty}^{0} \left| \theta_{1} \left[g_{t+1}(x) - g_{t}(x) \right] \right|^{\alpha} dx - \int_{-\infty}^{0} \left| \theta_{2} \left[g_{1}(x) - g_{0}(x) \right] \right|^{\alpha} dx$$

and

$$I_{2}(\theta_{1}, \theta_{2}, t) = \int_{0}^{1} \left| \theta_{1} \left[g_{t+1}(x) - g_{t}(x) \right] + \theta_{2} g_{1}(x) \right|^{\alpha} dx - \int_{0}^{1} \left| \theta_{1} \left[g_{t+1}(x) - g_{t}(x) \right] \right|^{\alpha} dx - \int_{0}^{1} \left| \theta_{2} g_{1}(x) \right|^{\alpha} dx.$$

Also,

$$K(\theta_{1}, \theta_{2}) = \mathbb{E}\left[e^{i\theta_{1}Y(t)}\right] \mathbb{E}\left[e^{i\theta_{2}Y(0)}\right]$$

$$= \mathbb{E}\left[e^{i\theta_{1}Y(0)}\right] \mathbb{E}\left[e^{i\theta_{2}Y(0)}\right]$$

$$= \exp\left\{-\left(\left|\theta_{1}\right|^{\alpha} + \left|\theta_{2}\right|^{\alpha}\right) \int_{-\infty}^{+\infty} \left|g_{1}(x) - g_{0}(x)\right|^{\alpha} dx\right\} \quad (2.17)$$

by stationarity. Therefore, $I(\theta_1, \theta_2, t) = K(\theta_1, \theta_2)(I_1(t) + I_2(t))$, where we write $I_j(\theta_1, \theta_2, t) = I_j(t)$ for j = 1, 2 for brevity. A change of variable in $I_1(t)$ for t > 1 gives

$$I_{1}(t) = \int_{0}^{\infty} \left| \theta_{1} \left[e^{-\lambda(t+1+x)} (t+1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda(t+x)} (t+x)^{H-\frac{1}{\alpha}} \right] \right|^{\alpha} dx$$

$$+ \theta_{2} \left[e^{-\lambda(1+x)} (1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda x} x^{H-\frac{1}{\alpha}} \right] \right|^{\alpha} dx$$

$$- \int_{0}^{\infty} \left| \theta_{1} \left[e^{-\lambda(t+1+x)} (t+1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda(t+x)} (t+x)^{H-\frac{1}{\alpha}} \right] \right|^{\alpha} dx$$

$$- \int_{0}^{\infty} \left| \theta_{2} \left[e^{-\lambda(1+x)} (1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda x} x^{H-\frac{1}{\alpha}} \right] \right|^{\alpha} dx$$

Let

$$f_{t+1,t}(x) := \left| \theta_1 \left[e^{-\lambda(t+1+x)} (t+1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda(t+x)} (t+x)^{H-\frac{1}{\alpha}} \right] \right|^{\alpha}.$$
 (2.18)

For every t > 1 and x > 0, we get

$$e^{\alpha\lambda t}t^{-\alpha(H-\frac{1}{\alpha})}f_{t+1,t}(x) = \left|\theta_1\right|^{\alpha} \left|e^{-\lambda(1+x)}\left(\frac{t+1+x}{t}\right)^{H-\frac{1}{\alpha}} - e^{-\lambda x}\left(\frac{t+x}{t}\right)^{H-\frac{1}{\alpha}}\right|^{\alpha}$$

$$\to \left|\theta_1\right|^{\alpha} e^{-\lambda\alpha x} \left|e^{-\lambda} - 1\right|^{\alpha} \text{ as } t \to \infty$$

and

$$\sup_{t>1} \left| e^{\alpha \lambda t} t^{-\alpha \left(H - \frac{1}{\alpha}\right)} f_{t+1,t}(x) \right| \le \left| \theta_1(e^{-\lambda} - 1) \right|^{\alpha} e^{-\lambda \alpha x}$$

which belongs to $L^1(0, \infty)$. Now we can use the dominated convergence theorem to see that

$$\int_{0}^{\infty} f_{t+1,t}(x) \, \mathrm{d}x \to \left| \theta_{1}(e^{-\lambda} - 1) \right|^{\alpha} e^{-\lambda \alpha t} t^{\alpha(H - \frac{1}{\alpha})} \int_{0}^{\infty} e^{-\lambda \alpha x} \, \mathrm{d}x$$

$$= \frac{\left| \theta_{1}(e^{-\lambda} - 1) \right|^{\alpha} e^{-\lambda \alpha t} t^{\alpha(H - \frac{1}{\alpha})}}{\lambda \alpha}$$
(2.19)

as $t \to \infty$. Now consider.

$$g_{t,t+1,0,1}(x) := \left| \theta_1 \left[e^{-\lambda(t+1+x)} (t+1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda(t+x)} (t+x)^{H-\frac{1}{\alpha}} \right] \right| + \theta_2 \left[e^{-\lambda(1+x)} (1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda x} x^{H-\frac{1}{\alpha}} \right] \right|^{\alpha} - \left| \theta_2 \right|^{\alpha} \left| \left[e^{-\lambda(1+x)} (1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda x} x^{H-\frac{1}{\alpha}} \right] \right|^{\alpha}.$$
 (2.20)

Then,

$$e^{\lambda \alpha t} t^{-\alpha(H-\frac{1}{\alpha})} g_{t,t+1,0,1}(x) = \left| \theta_1 \left[e^{-\lambda(1+x)} \left(\frac{t+1+x}{t} \right)^{H-\frac{1}{\alpha}} - e^{-\lambda x} \left(\frac{t+x}{t} \right)^{H-\frac{1}{\alpha}} \right] \right|$$

$$+ \theta_2 \left[e^{-\lambda(1+x)} e^{\lambda t} \left(\frac{1+x}{t} \right)^{H-\frac{1}{\alpha}} - e^{-\lambda x} e^{\lambda t} \left(\frac{x}{t} \right)^{H-\frac{1}{\alpha}} \right] \right|^{\alpha}$$

$$- \left| \theta_2 \left[e^{-\lambda(1+x)} e^{\lambda t} \left(\frac{1+x}{t} \right)^{H-\frac{1}{\alpha}} - e^{-\lambda x} e^{\lambda t} \left(\frac{x}{t} \right)^{H-\frac{1}{\alpha}} \right] \right|^{\alpha}$$

$$=: \left| a_t + b_t \right|^{\alpha} - \left| b_t \right|^{\alpha}$$

where

$$a_t = \theta_1 \left[e^{-\lambda(1+x)} \left(\frac{t+1+x}{t} \right)^{H-\frac{1}{\alpha}} - e^{-\lambda x} \left(\frac{t+x}{t} \right)^{H-\frac{1}{\alpha}} \right]$$

and

$$b_t = \theta_2 \left[e^{-\lambda(1+x)} e^{\lambda t} \left(\frac{1+x}{t} \right)^{H-\frac{1}{\alpha}} - e^{-\lambda x} e^{\lambda t} \left(\frac{x}{t} \right)^{H-\frac{1}{\alpha}} \right].$$

It is obvious that $a_t \to C_x := \theta_1 e^{-\lambda x} (e^{-\lambda} - 1)$ and $b_t \to -\infty$ as $t \to \infty$. Then, $|a_t + b_t|^{\alpha} - |b_t|^{\alpha} \to 0$ as $t \to \infty$ since $0 < \alpha \le 1$. Therefore,

$$e^{\lambda \alpha t} t^{-\alpha (H-\frac{1}{\alpha})} g_{t,t+1,0,1} \rightarrow 0,$$

as $t \to \infty$. Moreover, for any $0 < \alpha \le 1$, using the inequality $\left| |a|^{\alpha} - |b|^{\alpha} \right| \le \left| a - b \right|^{\alpha}$ (see [16], Page 211), we get

 $\left|g_{t,t+1,0,1}\right| \leq f_{t+1,t},$

where $g_{t,t+1,0,1}$ and $g_{t,t+1,0,1}$ are defined in (2.18) and (2.20), respectively, if we let $a = \theta_1(g_{t+1} - g_t) + \theta_2(g_1 - g_0)$ and $b = \theta_2(g_1 - g_0)$. Consequently,

$$\sup_{t>1} \left| e^{\lambda \alpha t} t^{-\alpha (H-\frac{1}{\alpha})} g_{t,t+1,0,1} \right| \le \sup_{t>1} \left| e^{\alpha \lambda t} t^{-\alpha (H-\frac{1}{\alpha})} f_{t+1,t}(x) \right|$$
$$\le \left| \theta_1 (e^{-\lambda} - 1) \right|^{\alpha} e^{-\lambda \alpha x}$$

which also belongs to $L^1(0,\infty)$. Applying the dominated convergence theorem yields

$$\int_{-\infty}^{+\infty} g_{t,t+1,0,1}(x) \mathrm{d}x \to 0 \quad \text{as } t \to \infty.$$
 (2.21)

Therefore, from (2.19) and (2.21)

$$I_1(t) \sim -C_1 e^{-\lambda \alpha t} t^{H\alpha - 1} \tag{2.22}$$

as $t \to \infty$, where $C_1 := |\theta_1(e^{-\lambda} - 1)|^{\alpha}/(\lambda \alpha)$.

Next, write

$$I_2(t) = \int_0^1 \left| \theta_1[g_{t+1}(x) - g_t(x)] + \theta_2 g_1(x) \right|^{\alpha} dx - \int_0^1 \left| \theta_1[g_{t+1}(x) - g_t(x)] \right|^{\alpha} dx - \int_0^1 \left| \theta_2 g_1(x) \right|^{\alpha} dx,$$

Define

$$u_t(x) := \theta_1 \left[e^{-\lambda(t+1-x)} (t+1-x)^{H-\frac{1}{\alpha}} - e^{-\lambda(t-x)} (t-x)^{H-\frac{1}{\alpha}} \right], \tag{2.23}$$

and

$$v(x) := \theta_2 e^{-\lambda(1-x)} (1-x)^{H-\frac{1}{\alpha}}.$$
 (2.24)

Rewrite

$$I_2(t) = \int_0^1 \xi(u_t(x) + v(x)) - \xi(u_t(x)) - \xi(v(x)) \, \mathrm{d}x$$

where

$$\xi(x) := |x|^{\alpha}. \tag{2.25}$$

Using [1, Eq. (3.9)], we have

$$|I_2(t)| \le \int_0^1 |\xi(u_t(x) + v(x)) - \xi(u_t(x)) - \xi(v(x))| \, \mathrm{d}x \le 2 \int_0^1 \left| u_t(x) \right|^{\alpha} \, \mathrm{d}x. \quad (2.26)$$

On the other hand, $u_t(x) = \theta_1(f_x(t+1) - f_x(t))$ where $f_x(u) = e^{-\lambda(u-x)}(u-x)^{H-\frac{1}{\alpha}}$. Recall that $H - \frac{1}{\alpha} < 0$, and apply the mean value theorem to see that for any 0 < x < 1 and t > 2, we have for some $u \in (t, t+1)$ that

$$\left| u_{t}(x) \right| \leq \left| \theta_{1} \right| \left| -\lambda e^{-\lambda(u-x)} (u-x)^{H-\frac{1}{\alpha}} + \left(H - \frac{1}{\alpha} \right) e^{-\lambda(u-x)} (u-x)^{H-\frac{1}{\alpha}-1} \right|$$

$$\leq \left| \theta_{1} \right| e^{-\lambda(t-1)} \left[\left(\frac{1}{\alpha} - H \right) \left| t - 1 \right|^{H-\frac{1}{\alpha}-1} + \lambda \left| t - 1 \right|^{H-\frac{1}{\alpha}} \right]$$

$$\leq \left| \theta_{1} \right| e^{-\lambda(t-1)} \left[\frac{1}{\alpha} - H + \lambda \right] \left| t - 1 \right|^{H-\frac{1}{\alpha}}. \tag{2.27}$$

From (2.26) and (2.27), we get

$$I_2(t) \le 2 \int_0^1 \left| u_t(x) \right|^{\alpha} dx \le 2 \left| \theta_1 \right|^{\alpha} e^{-\lambda \alpha (t-1)} \left[\frac{1}{\alpha} - H + \lambda \right]^{\alpha} \left| t - 1 \right|^{H\alpha - 1} . (2.28)$$

Hence, $|I_2(t)| \le C_2 e^{-\lambda \alpha t} t^{H\alpha-1}$ for t > 0 large, where $C_2 := 2|\theta_1|^{\alpha} e^{\lambda \alpha} [\alpha^{-1} - H + \lambda]^{\alpha}$. Then, it follows from (2.22) and (2.28) that

$$I(t) \approx e^{-\lambda \alpha t} t^{H\alpha - 1}$$

as $t \to \infty$. Since $I(t) \to 0$ as $t \to \infty$, it follows from (2.12) that $r(t) \sim -K(\theta_1, \theta_2)I(t)$; hence, (2.14) holds.

Theorem 2.6 Let $Y_{H,\alpha,\lambda}(t)$ be a tempered fractional stable noise (2.9) for some $1 < \alpha < 2$, $\frac{1}{\alpha} < H < 1$, and $\lambda > 0$. Then,

$$r(t) \approx e^{-\lambda t} t^{H - \frac{1}{\alpha}}$$

as $t \to \infty$.

Proof Recall that $f_{t+1,t}(x)$ is given by (2.18). Then,

$$e^{\lambda t} t^{-(H-\frac{1}{\alpha})} f_{t+1,t}(x) = \left| \theta_1 \right|^{\alpha} e^{\lambda t} t^{-\left(H-\frac{1}{\alpha}\right)}$$

$$\times \left| e^{-\lambda(t+1+x)} (t+1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda(t+x)} (t+x)^{H-\frac{1}{\alpha}} \right|^{\alpha} = a_t \cdot b_t,$$

where

$$a_t := \left| \theta_1 \right|^{\alpha} e^{-\lambda t(\alpha - 1)} t^{\left(H - \frac{1}{\alpha}\right)(\alpha - 1)}$$

and

$$b_t := \left| e^{-\lambda(1+x)} \left(1 + \frac{1}{t} + \frac{x}{t} \right)^{H - \frac{1}{\alpha}} - e^{-\lambda x} \left(1 + \frac{x}{t} \right)^{H - \frac{1}{\alpha}} \right|^{\alpha}.$$

Note that $a_t \to 0$ (since $1 < \alpha < 2$) and $b_t \to \left| e^{-\lambda(1+x)} - e^{-\lambda x} \right|^{\alpha}$ as $t \to \infty$. Now, let $h(t) = e^{-\lambda t(\alpha-1)} t^{(\alpha-1)(H-\frac{1}{\alpha})}$. Observe that h(t) attains its maximum at $t = \frac{1}{\lambda}(H-\frac{1}{\alpha})$. Moreover, since $H-\frac{1}{\alpha}>0$ we have for any fixed x>0 and all $t \ge 1$ that

$$d(t) := \left| e^{-\lambda(1+x)} \left(1 + \frac{1}{t} + \frac{x}{t} \right)^{H - \frac{1}{\alpha}} - e^{-\lambda x} \left(1 + \frac{x}{t} \right)^{H - \frac{1}{\alpha}} \right|$$

$$\leq e^{-\lambda x} \left[\left| e^{-\lambda} \left(1 + \frac{1}{t} + \frac{x}{t} \right)^{H - \frac{1}{\alpha}} \right| + \left| \left(1 + \frac{x}{t} \right)^{H - \frac{1}{\alpha}} \right| \right]$$

$$\leq e^{-\lambda x} \left[e^{-\lambda} (2+x)^{H - \frac{1}{\alpha}} + (1+x)^{H - \frac{1}{\alpha}} \right]$$

$$\leq e^{-\lambda x} (2+x)^{H - \frac{1}{\alpha}} (e^{-\lambda} + 1).$$

Then,

$$\begin{split} \sup_{t>1} \left| e^{\lambda t} \ t^{-(H-\frac{1}{\alpha})} f_{t+1,t}(x) \right| &= \sup_{t>1} \left| a_t \cdot b_t \right| = \left| \theta_1 \right|^{\alpha} \sup_{t>1} \left| h(t) (d(t))^{\alpha} \right| \\ &\leq \left| \theta_1 \right|^{\alpha} \sup_{t>1} \left| h(t) \right| \sup_{t>1} \left| (d(t))^{\alpha} \right| \\ &\leq \left| \theta_1 \right|^{\alpha} e^{-\lambda \alpha x} (2+x)^{H\alpha-1} (e^{-\lambda} + 1)^{\alpha} e^{-(H-\frac{1}{\alpha})(\alpha-1)} \left[\frac{H-\frac{1}{\alpha}}{\lambda} \right]^{(\alpha-1)(H-\frac{1}{\alpha})}, \end{split}$$

and so $f_{t+1,t}(x)$ is bounded by an $L^1(0,\infty)$ function. Therefore, the dominated convergence theorem implies that

$$\int_0^\infty f_{t+1,t}(x) \, \mathrm{d}x \to 0 \tag{2.29}$$

as $t \to \infty$. Consider now, $e^{\lambda t} t^{-(H-\frac{1}{\alpha})} g_{t,t+1,0,1}$ where $g_{t,t+1,0,1}$ is given by (2.20). Then,

$$e^{\lambda t}t^{-(H-\frac{1}{\alpha})}g_{t,t+1,0,1} = \left|a_t + b_t\right|^{\alpha} - \left|b_t\right|^{\alpha}$$

where

$$a_{t} := \theta_{1} \left[e^{-\lambda t (1 - \frac{1}{\alpha})} e^{-\lambda (1 + x)} \left(\frac{t + 1 + x}{t^{\frac{1}{\alpha}}} \right)^{(H - \frac{1}{\alpha})} - e^{-\lambda t (1 - \frac{1}{\alpha})} e^{-\lambda x} \left(\frac{t + x}{t^{\frac{1}{\alpha}}} \right)^{(H - \frac{1}{\alpha})} \right]$$

and

$$b_{t} := \theta_{2} \left[e^{\frac{\lambda t}{\alpha}} t^{\frac{-(H - \frac{1}{\alpha})}{\alpha}} \left[e^{-\lambda(1+x)} (1+x)^{(H - \frac{1}{\alpha})} - e^{-\lambda x} x^{(H - \frac{1}{\alpha})} \right] \right]$$

Observe that $\lim_{t\to\infty} b_t = -\infty$ and $\lim_{t\to\infty} a_t = 0$. Since $|a_t + b_t|^{\alpha} - |b_t|^{\alpha} \sim \alpha |a_t| |b_t|^{\alpha-1}$, as $t\to\infty$, we get,

$$\begin{split} & e^{\lambda t} t^{-(H-\frac{1}{\alpha})} g_{t,t+1,0,1} \sim \alpha \left| \theta_1 \right| \\ & \times \left| e^{-\lambda t (1-\frac{1}{\alpha})} e^{-\lambda (1+x)} \left(\frac{t+1+x}{t^{\frac{1}{\alpha}}} \right)^{(H-\frac{1}{\alpha})} - e^{-\lambda t (1-\frac{1}{\alpha})} e^{-\lambda x} \left(\frac{t+x}{t^{\frac{1}{\alpha}}} \right)^{(H-\frac{1}{\alpha})} \right| \\ & \times \left| \theta_2 \right|^{\alpha-1} e^{\lambda t (1-\frac{1}{\alpha})} t^{-(H-\frac{1}{\alpha})(1-\frac{1}{\alpha})} \left| e^{-\lambda (1+x)} (1+x)^{(H-\frac{1}{\alpha})} - e^{-\lambda x} x^{(H-\frac{1}{\alpha})} \right|^{\alpha-1} \end{split}$$

consequently,

$$e^{\lambda t} t^{-(H-\frac{1}{\alpha})} g_{t,t+1,0,1} \to \alpha \left| \theta_1 \right| \left| e^{-\lambda(1+x)} - e^{-\lambda x} \right|$$
$$\times \left| \theta_2 \right|^{\alpha-1} \left| e^{-\lambda(1+x)} (1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda x} x^{H-\frac{1}{\alpha}} \right|^{\alpha-1}.$$

Moreover,

$$\sup_{t \ge 1} \left| e^{\lambda t} t^{-(H - \frac{1}{\alpha})} g_{t, t+1, 0, 1} \right| = \sup_{t \ge 1} \left| \left| a_t + b_t \right|^{\alpha} - \left| b_t \right|^{\alpha} \right| \le \sup_{t \ge 1} \left| a_t \right|^{\alpha} + \alpha \sup_{t \ge 1} \left| a_t \right| \left| b_t \right|^{\alpha - 1}$$
(2.30)

where we have used the following inequalities (see for example Magdziarz [6, Lemma 2]): $|a-b|^{\alpha} \le a^{\alpha} + b^{\alpha}$ and $|a+b|^{\alpha} - |b|^{\alpha}| \le |a|^{\alpha} + \alpha |a| |b|^{\alpha-1}$ valid for $a \ge 0$ and $b \ge 0$ and $a \in (1, 2)$. In order to find an upper bound for $\sup_{t \ge 1} |a_t|^{\alpha}$, write

$$\begin{aligned} \left| a_{t} \right|^{\alpha} \\ &= \left| \theta_{1} \right|^{\alpha} \left| e^{-\lambda t (1 - \frac{1}{\alpha})} e^{-\lambda (1 + x)} \left(\frac{t + 1 + x}{t^{\frac{1}{\alpha}}} \right)^{(H - \frac{1}{\alpha})} - e^{-\lambda t (1 - \frac{1}{\alpha})} e^{-\lambda x} \left(\frac{t + x}{t^{\frac{1}{\alpha}}} \right)^{(H - \frac{1}{\alpha})} \right|^{\alpha} \\ &= \left| \theta_{1} \right|^{\alpha} e^{-\lambda \alpha x} e^{-\lambda t (\alpha - 1)} \left| e^{-\lambda} \left(\frac{t + 1 + x}{t^{\frac{1}{\alpha}}} \right)^{(H - \frac{1}{\alpha})} - \left(\frac{t + x}{t^{\frac{1}{\alpha}}} \right)^{(H - \frac{1}{\alpha})} \right|^{\alpha} \\ &\leq \left| \theta_{1} \right|^{\alpha} e^{-\lambda \alpha x} \left| e^{-\lambda} (1 + 1 + x)^{H - \frac{1}{\alpha}} - (1 + x)^{H - \frac{1}{\alpha}} \right|^{\alpha} \\ &\leq \left| \theta_{1} \right|^{\alpha} e^{-\lambda \alpha x} \left[e^{-\lambda \alpha} (2 + x)^{H - 1} + (1 + x)^{H - 1} \right] \\ &\leq 2 \left| \theta_{1} \right|^{\alpha} e^{-\lambda \alpha x} (2 + x)^{H - 1}. \end{aligned} \tag{2.31}$$

On the other hand,

$$\alpha \left| a_t \right| \left| b_t \right|^{\alpha - 1} = \alpha \left| \theta_1 \right| \left| \theta_2 \right|^{\alpha - 1}$$

$$\times \left| \underbrace{e^{-\lambda(1 + x)} \left(\frac{t + 1 + x}{t} \right)^{(H - \frac{1}{\alpha})} - e^{-\lambda x} \left(\frac{t + x}{t} \right)^{(H - \frac{1}{\alpha})}}_{:=S(t)} \right| \times K(x)$$

where

$$K(x) = \left| e^{-\lambda(1+x)} (1+x)^{(H-\frac{1}{\alpha})} - e^{-\lambda x} (x)^{(H-\frac{1}{\alpha})} \right|^{\alpha-1}.$$
 (2.32)

Note that S(t) is a decreasing function and hence

$$\sup_{t \ge 1} \alpha \left| a_t \right| \left| b_t \right|^{\alpha - 1} = \alpha \left| \theta_1 \right| \left| \theta_2 \right|^{\alpha - 1}$$

$$\left| e^{-\lambda (1 + x)} (2 + x)^{(H - \frac{1}{\alpha})} - e^{-\lambda x} (1 + x)^{(H - \frac{1}{\alpha})} \right| \times K(x)$$
(2.33)

where K(x) is given by (2.32). From (2.30), (2.31) and (2.33)

$$\sup_{t\geq 1} \left| e^{\lambda t} t^{-(H-\frac{1}{\alpha})} g_{t,t+1,0,1} \right| \leq 2 \left| \theta_1 \right|^{\alpha} e^{-\lambda \alpha x} (2+x)^{H\alpha-1} + \alpha \left| \theta_1 \right| \left| \theta_2 \right|^{\alpha-1}$$

$$\left| e^{-\lambda (1+x)} (2+x)^{(H-\frac{1}{\alpha})} - e^{-\lambda x} (1+x)^{(H-\frac{1}{\alpha})} \right| \times K(x)$$
(2.34)

which belongs to $L^1(0, \infty)$, since $H\alpha > 1$. Then, the dominated convergence theorem implies that

$$\int_{0}^{\infty} g_{t,t+1,0,1}(x) dx \to \alpha \theta_{1} \left| \theta_{2} \right|^{\alpha-1} e^{-\lambda t} t^{(H-\frac{1}{\alpha})}$$

$$\times \int_{0}^{\infty} \left| e^{-\lambda(1+x)} - e^{-\lambda x} \right| \left| e^{-\lambda(1+x)} (1+x)^{H-\frac{1}{\alpha}} - e^{-\lambda x} x^{H-\frac{1}{\alpha}} \right|^{\alpha-1} dx$$

$$= C_{2}(\alpha, \lambda, \theta_{1}, \theta_{2}) e^{-\lambda t} t^{H-\frac{1}{\alpha}}$$
(2.35)

as $t \to \infty$, where

$$C_{2}(\alpha, \lambda, \theta_{1}, \theta_{2}) = \alpha \theta_{1} \left| \theta_{2} \right|^{\alpha - 1}$$

$$\int_{0}^{\infty} \left| e^{-\lambda(1+x)} - e^{-\lambda x} \right| \left| e^{-\lambda(1+x)} (1+x)^{H - \frac{1}{\alpha}} - e^{-\lambda x} x^{H - \frac{1}{\alpha}} \right|^{\alpha - 1} dx$$
(2.36)

is a constant independent of t. Therefore, from (2.29) and (2.35) we have

$$I_1(t) \sim C_2(\alpha, \lambda, \theta_1, \theta_2) e^{-\lambda t} t^{H - \frac{1}{\alpha}}$$
(2.37)

as $t \to \infty$.

Finally, recall that

$$I_{2}(t) = \int_{0}^{1} \left| \theta_{1}[g_{t+1}(x) - g_{t}(x)] + \theta_{2}g_{1}(x) \right|^{\alpha} dx$$
$$- \int_{0}^{1} \left| \theta_{1}[g_{t+1}(x) - g_{t}(x)] \right|^{\alpha} dx - \int_{0}^{1} \left| \theta_{2} g_{1}(x) \right|^{\alpha} dx,$$

and that $u_t(x)$ and v(x) are given by (2.23) and (2.24), respectively. Then,

$$I_2(t) = \int_0^1 \xi(u_t(x) + v(x)) - \xi(u_t(x)) - \xi(v(x)) dx$$

where $\xi(x)$ is given by (2.25).

To finish the proof, we need an upper bound for $u_t(x)$. Applying an argument similar to (2.27), using the mean value theorem, and recalling that $H - \frac{1}{\alpha} > 0$, for any fixed 0 < x < 1 and any $t \ge 2$, for some $u \in (t, t+1)$, we have

$$\begin{aligned} \left| u_{t}(x) \right| &\leq \left| \theta_{1} \right| \left| -\lambda e^{-\lambda(u-x)} (u-x)^{H-\frac{1}{\alpha}} + (H-\frac{1}{\alpha}) e^{-\lambda(u-x)} (u-x)^{H-\frac{1}{\alpha}-1} \right| \\ &\leq \left| \theta_{1} \left| e^{-\lambda(t-1)} \left[(H-\frac{1}{\alpha}) \left| t+1 \right|^{H-\frac{1}{\alpha}-1} + \lambda \left| t+1 \right|^{H-\frac{1}{\alpha}} \right] \\ &\leq \left| \theta_{1} \left| e^{-\lambda(t-1)} \left[H-\frac{1}{\alpha} + \lambda \right] \left| t+1 \right|^{H-\frac{1}{\alpha}} . \end{aligned}$$

Now, using [1, Eq. (3.9)] and the above upper bound for $u_t(x)$ we have

$$|I_{2}(t)| \leq \int_{0}^{1} |\xi(u_{t}(x) + v(x)) - \xi(u_{t}(x)) - \xi(v(x))| dx$$

$$\leq \int_{0}^{1} \alpha |u_{t}(x)| |v(x)|^{\alpha - 1} dx + (\alpha + 1) \int_{0}^{1} |u_{t}(x)|^{\alpha} dx$$

$$\leq \alpha |\theta_{1}| \int_{0}^{1} \left[H - \frac{1}{\alpha} + \lambda \right] |t + 1|^{H - \frac{1}{\alpha}} e^{-\lambda(t - 1)} |v(x)|^{\alpha - 1} dx$$

$$+ (\alpha + 1) |\theta_{1}|^{\alpha} \left[H - \frac{1}{\alpha} + \lambda \right]^{\alpha} |t + 1|^{H \alpha - 1} e^{-\lambda\alpha(t - 1)}$$

$$= \alpha |\theta_{1}| \left[H - \frac{1}{\alpha} + \lambda \right] |t + 1|^{H - \frac{1}{\alpha}} e^{-\lambda(t - 1)}$$

$$\times \int_{0}^{1} |\theta_{2}e^{-\lambda(1 - x)} (1 - x)^{H - \frac{1}{\alpha}} |^{\alpha - 1} dx$$

$$+ (\alpha + 1) |\theta_{1}|^{\alpha} \left[H - \frac{1}{\alpha} + \lambda \right]^{\alpha} |t + 1|^{H \alpha - 1} e^{-\lambda\alpha(t - 1)}$$

$$= C_{3}(\alpha, \lambda, \theta_{1}) |t + 1|^{H - \frac{1}{\alpha}} e^{-\lambda(t - 1)}$$

$$+ (\alpha + 1) |\theta_{1}|^{\alpha} \left[H - \frac{1}{\alpha} + \lambda \right]^{\alpha} |t + 1|^{H \alpha - 1} e^{-\lambda\alpha(t - 1)}, \qquad (2.38)$$

where

$$C_3(\alpha, \lambda, \theta_1) := \alpha \left| \theta_1 \right| \left[H - \frac{1}{\alpha} + \lambda \right] \int_0^1 \left| \theta_2 e^{-\lambda(1-x)} (1-x)^{H - \frac{1}{\alpha}} \right|^{\alpha - 1} dx$$

is a constant. Note that the upper bound in (2.38) is of the same order as the upper bound for $I_1(t)$, given by (2.37). Hence,

$$r(t) \sim -I(t) \approx e^{-\lambda t} t^{(H-\frac{1}{\alpha})}$$

as
$$t \to \infty$$
.

Remark 2.7 We say that a stationary $S\alpha S$ process $\{Y_t\}$ exhibits long-range dependence if

$$\sum_{n=0}^{\infty} \left| r(\theta_1, \theta_2, n) \right| = \infty, \tag{2.39}$$

where $r(\theta_1, \theta_2, t)$ was defined in (2.10). LTFSM is not long-range dependent, but it does exhibit *semi-long-range dependence* under the assumptions of Theorems 2.5 and 2.6. That is, for $\lambda > 0$ sufficiently small, the sum in (2.39) is large, since it tends to infinity as $\lambda \to 0$. TFSN therefore provides a useful alternative model for data that exhibit strong dependence, which is in some sense more tractable. In applications to turbulence with heavy tails, it can also provide a useful model extension that more closely fits the observed dependence structure outside the inertial range [10,14].

3 Harmonizable Process

Let $X = X_1 + iX_2$ be a complex-valued random variable. We say X is isotropic $S\alpha S$ if the vector (X_1, X_2) is $S\alpha S$ and for any $\theta = \theta_1 + i\theta_2$ we have

$$\mathbb{E}\left[e^{i(\theta_1 X_1 + \theta_2 X_2)}\right] = e^{-c|\theta|^{\alpha}}$$

for some constant c>0 [16, Section 2.6]. A complex-valued stochastic process $\{\widetilde{X}(t)\}$ is called isotropic $S\alpha S$ if all complex linear combinations $\sum_{j=1}^n \theta_j \widetilde{X}(t_j)$ are complex-valued isotropic $S\alpha S$ random variables. We say that $\widetilde{Z}_{\alpha}(\mathrm{d}k)$ is a complex-valued isotropic $S\alpha S$ random measure with Lebesgue control measure $\mathrm{d}k$ if

$$\mathbb{E}\left[e^{i\operatorname{Re}(\overline{\theta}\widetilde{Z_{\alpha}}(B))}\right] = e^{-|B||\theta|^{\alpha}},$$

where |B| denotes the Lebesgue measure of the set $B \in \mathcal{B}(\mathbb{R})$ [16, Section 6.1] and $\theta \in \mathbb{C}$. For any $f \in L^{\alpha}(\mathbb{R})$, the stochastic integral

$$\tilde{I}(f) := \text{Re} \int_{-\infty}^{+\infty} f(k) \tilde{Z}_{\alpha}(dk)$$

is a complex-valued $S\alpha S$ random variable with characteristic function

$$\mathbb{E}\left[e^{i\theta\widetilde{I}(f)}\right] = \exp\left\{|\theta|^{\alpha} \int_{-\infty}^{+\infty} \left|f(k)\right|^{\alpha} dk\right\}$$
 (3.1)

hence,

$$\left\| \widetilde{I}(f) \right\|_{\alpha}^{\alpha} := -\log \mathbb{E} \left[e^{i\widetilde{I}(f)} \right] = \int_{-\infty}^{+\infty} \left| f(k) \right|^{\alpha} dk \tag{3.2}$$

for any $0 < \alpha < 2$.

Definition 3.1 Given a complex isotropic $S\alpha S$ random measure \tilde{Z}_{α} with Lebesgue control measure, the stochastic integral

$$\widetilde{X}_{H,\alpha,\lambda}(t) = \operatorname{Re} \int_{-\infty}^{+\infty} \frac{e^{-ikt} - 1}{(\lambda - ik)^{H + \frac{1}{\alpha}}} \widetilde{Z}_{\alpha}(\mathrm{d}k)$$
(3.3)

with $0 < \alpha < 2$, H > 0, and $\lambda > 0$ will be called a *real harmonizable tempered* fractional stable motion (HTFSM).

If we define

$$\tilde{g}_{\alpha,\lambda,t}(k) := \frac{e^{-ikt} - 1}{(\lambda - ik)^{H + \frac{1}{\alpha}}}$$
(3.4)

then $|\tilde{g}_{\alpha,\lambda,t}(k)|^{\alpha}$ is $O(|k|^{-H\alpha-1})$ as $|k| \to \infty$, and tends to zero as $|k| \to 0$. Hence, $\tilde{g}_{\alpha,\lambda,t} \in L^{\alpha}(\mathbb{R})$, so that HTFSM is well defined. The term $(\lambda - ik)^{-H-\frac{1}{\alpha}}$ in (3.3) is the Fourier symbol of tempered fractional integral [9, Lemma 2.6]. Hence, HTFSM is also constructed from the tempered fractional integral of a stable noise.

Proposition 3.2 The HTFSM (3.3) is an isotropic $S\alpha S$ process with stationary increments, such that

$$\left\{ \widetilde{X}_{H,\alpha,\lambda}(ct) \right\}_{t \in \mathbb{R}} \triangleq \left\{ c^H \widetilde{X}_{H,\alpha,c\lambda}(t) \right\}_{t \in \mathbb{R}} \tag{3.5}$$

for any scale factor c > 0.

Proof The proof is similar to Proposition 2.3. Since $\widetilde{Z}_{\alpha}(dk)$ has control measure dk, $\widetilde{Z}_{\alpha}(c dx)$ has control measure $c^{\frac{1}{\alpha}}dk$. Then, a simple change of variables in Definition (3.3) shows that $\widetilde{X}_{H,\alpha,\lambda}(ct) \simeq c^H \widetilde{X}_{H,\alpha,c\lambda}(t)$. For any $s,t \in \mathbb{R}$, write

$$\widetilde{X}_{H,\alpha,\lambda}(t+s) - \widetilde{X}_{H,\alpha,\lambda}(s) = \operatorname{Re} \int_{-\infty}^{+\infty} e^{-iks} \frac{e^{-ikt} - 1}{(\lambda - ik)^{H + \frac{1}{\alpha}}} \widetilde{Z}_{\alpha}(dk).$$

Since $|e^{-iks}| = 1$, it follows immediately from (3.1) that $\widetilde{X}_{H,\alpha,\lambda}(t+s) - \widetilde{X}_{H,\alpha,\lambda}(s) \simeq \widetilde{X}_{H,\alpha,\lambda}(t)$. The same arguments extend easily to finite dimensional distributions. \square

Definition 3.3 Given an HTFSM (3.3), we define the *tempered fractional harmonizable stable noise* (TFHSN)

$$\widetilde{Y}_{H,\alpha,\lambda}(t) := \widetilde{X}_{H,\alpha,\lambda}(t+1) - \widetilde{X}_{H,\alpha,\lambda}(t)$$
 for integers $-\infty < t < \infty$. (3.6)

Theorem 3.4 The tempered fractional stable motion (LTFSM) defined in (2.4) and tempered fractional harmonizable stable motion (HTFSM) defined in (3.3) are different processes.

Proof Theorems 2.5 and 2.6 imply that

$$\lim_{t \to \infty} r_{Y_{H,\alpha,\lambda}}(\theta_1, \theta_2, t) = 0, \tag{3.7}$$

for $0 < \alpha \le 1, 0 < H < 1$ and $1 < \alpha < 2, \frac{1}{\alpha} < H < 1$, respectively (in fact, according to Theorem 2.1 in [4], $\lim_{t\to\infty} r_X = 0$ for any α -stable moving average representation). It follows easily from (3.3) that

$$\widetilde{Y}_{H,\alpha,\lambda}(t) = \operatorname{Re} \int_{-\infty}^{+\infty} e^{-ikt} \, \Psi(\mathrm{d}k)$$
 (3.8)

where

$$\Psi(\mathrm{d}k) = \frac{e^{-ik} - 1}{(\lambda - ik)^{H + \frac{1}{\alpha}}} \widetilde{Z}_{\alpha}(\mathrm{d}k)$$

is a complex symmetric α -stable ($S\alpha S$) random measure with control measure

$$m(\mathrm{d}k) = \frac{|e^{-ik} - 1|^{\alpha}}{|\lambda - ik|^{H\alpha + 1}} \, \mathrm{d}k.$$

Then, it follows from Levy and Taggu [4, Theorem 3.1] that

$$\liminf_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} r_{\widetilde{Y}_{H,\alpha,\lambda}}(\theta_{1}, \theta_{2}, t) dt \\
\geq K(\theta_{1}, \theta_{2}) c_{0} \left(m(\{0\}) F_{0} + \frac{1}{2\pi} m(\mathbb{R} - \{0\}) F_{1} \right) > 0$$

where $F_0 \in \mathbb{R}$ and $F_1 > 0$ are constants depending on α , m, θ_1 and θ_2 . Then, we have

$$\lim_{t \to \infty} r_{\widetilde{Y}_{H,\alpha,\lambda}}(\theta_1, \theta_2, t) > 0, \tag{3.9}$$

and the theorem follows.

Remark 3.5 A simpler proof of (3.7) follows from Kokoszka and Taqqu [13, Lemma 6.1], but Theorem 2.5 gives more information on the dependence structure.

4 Sample Path Properties

In this section, we develop sample path properties of tempered fractional stable motions. The path behavior of a linear tempered fractional stable motion $X_{H,\alpha,\lambda}$ depends on the structure of the kernel (2.5). When $H - \frac{1}{\alpha} < 0$, the function $g_{\alpha,\lambda,t}(x)$

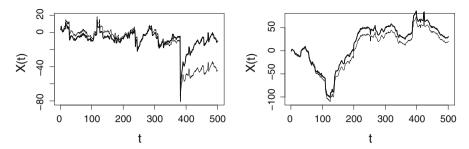


Fig. 1 Left panel Sample paths of LTFSM with $\alpha=1.5$ and H=0.3 for $\lambda=0.03$ (thick line) and $\lambda=0$ (thin line). Both graphs use the same noise realization $Z_{\alpha}(t)$. The right panel shows the same plots for H=0.7, comparing $\lambda=0.001$ (thick line) and $\lambda=0$ (thin line)

has singularities at x=0 and x=t. These singularities, together with the heavy tails of the stable noise process $Z_{\alpha}(\mathrm{d}x)$, induce path irregularity, see Stoev and Taqqu [17] for the case $\lambda=0$. The left panel in Fig. 1 compares a typical sample path of tempered and untempered linear fractional stable motion, using the same noise realization $Z_{\alpha}(t)$, in the case $H-\frac{1}{\alpha}<0$. In the case $H-\frac{1}{\alpha}>0$ (since 0< H<1, it follows that $\alpha>1$), the paths of a linear (tempered) fractional stable motion can be made continuous with probability one (see [16, Chapter 10] for the untempered case), since its kernel is bounded and positive for all t>0. The right panel in Figure 1 shows a typical sample path in the case. These simulations use a simple discretized version of the moving average representation (2.4). The remainder of this section develops these ideas in detail and provides smoothness (Hölder continuity) estimates in the case $H>\frac{1}{\alpha}$.

Recall that a stochastic process $\{X(t), t \in T\}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is called separable if there is a countable set $T^* \subset T$ and an event $\Omega_0 \in \mathcal{F}$ with $\mathbb{P}(\Omega_0) = 0$ such that for any closed set $F \subset \mathbb{R}$ we have

$$\left\{\omega:X(t)\in F,\forall t\in T^*\right\}\setminus\left\{\omega:X(t)\in F,\forall t\in T\right\}\subset\Omega_0.$$

See [16, Chapter 9] for more details.

Theorem 4.1 Suppose that $0 < H < \frac{1}{\alpha}$ for some $0 < \alpha < 2$. Then, for any separable version of the LTFSM process defined in (2.4), for any $\lambda > 0$, we have that

$$\mathbb{P}\Big(\{\omega: \sup_{t\in(a,b)} \big| X_{H,\alpha,\lambda}(t,\omega) \big| = \infty\}\Big) = 1,$$

Hence, every separable version of the LTFSM process has unbounded paths in this case.

Proof We apply Theorem 10.2.3 in [16]. Indeed, consider the countable set $T^*:=\mathbb{Q}\cap[a,b]$, where \mathbb{Q} denotes the set of rational numbers. Since T^* is dense in [a,b], there exists a sequence $\{t_n\}_{n\in\mathbb{N}}\in T^*$ such that $t_n\to x$ as $n\to\infty$, for any $x\in[a,b]$.

Therefore,

$$f^*(T^*; x) := \sup_{t \in T^*} \left| g_{\alpha, \lambda, t}(x) \right| \ge \sup_{t_n \in T^*} \left| g_{\alpha, \lambda, t_n}(x) \right| =: f_n^*(T^*; x) = \infty,$$

as $n \to \infty$; hence, $\int_a^b f^*(T^*; x) dx = \infty$, and this contradicts Condition (10.2.14) of Theorem 10.2.3 in [16]. Therefore, the stochastic process $\{X_{H,\alpha,\lambda}\}$ does not have a version with bounded paths on the interval (a, b), and this completes the proof.

Lemma 4.2 Suppose that $\frac{1}{\alpha} < H < 1$ for some $1 < \alpha < 2$. Then, there exist positive constants C_1 and C_2 such that the LTFSM (2.4) satisfies

$$C_1 \left| t - s \right|^{H\alpha} \le \left\| X_{H,\alpha,\lambda}(t) - X_{H,\alpha,\lambda}(s) \right\|_{\alpha}^{\alpha} \le C_2 \left| t - s \right|^{H\alpha}$$

locally uniformly in $s, t \in [0, 1]$, for any $\lambda > 0$.

Proof Assume s < t, and write

$$\begin{aligned} \left\| X_{H,\alpha,\lambda}(t) - X_{H,\alpha,\lambda}(s) \right\|_{\alpha}^{\alpha} &\geq \int_{s}^{t} |t - x|^{\alpha(H - \frac{1}{\alpha})} e^{-\lambda \alpha |t - x|} \, \mathrm{d}x \\ &\geq e^{-\lambda \alpha |t - s|} \int_{s}^{t} |t - x|^{H\alpha - 1} \, \mathrm{d}x \\ &= \frac{e^{-\lambda \alpha |t - s|}}{H\alpha} |t - s|^{H\alpha} \\ &\geq \frac{e^{-\lambda \alpha}}{H\alpha} |t - s|^{H\alpha} \end{aligned}$$

for any $0 \le s < t \le 1$, which establishes the lower bound. It follows from (2.6) that $||Y_{tt}|| \le (t) - |Y_{tt}|| \le (s)||\alpha| - (I_1 + I_2)$

It follows from (2.6) that $||X_{H,\alpha,\lambda}(t) - X_{H,\alpha,\lambda}(s)||_{\alpha}^{\alpha} = (I_1 + I_2)$ where

$$I_{1} = \int_{-\infty}^{s} \left| e^{-\lambda(t-x)} (t-x)^{H-\frac{1}{\alpha}} - e^{-\lambda(s-x)} (s-x)^{H-\frac{1}{\alpha}} \right|^{\alpha} dx,$$

$$I_{2} = \int_{s}^{t} \left| e^{-\lambda(t-x)} (t-x)^{H-\frac{1}{\alpha}} \right|^{\alpha} dx \le \int_{s}^{t} \left| (t-x)^{H-\frac{1}{\alpha}} \right|^{\alpha} dx = \frac{1}{H\alpha} |t-s|^{H\alpha}.$$

Using the inequality $|x+y|^{\alpha} \le 2^{\alpha}(|x|^{\alpha}+|y|^{\alpha})$ for $x,y \in \mathbb{R}$ and $\alpha>0$ we have $I_1 \le 2^{\alpha}(I_{11}+I_{12})$ where

$$I_{11} = \int_{-\infty}^{s} \left| e^{-\lambda(t-x)} (t-x)^{H-\frac{1}{\alpha}} - e^{-\lambda(t-x)} (s-x)^{H-\frac{1}{\alpha}} \right|^{\alpha} dx,$$

$$I_{12} = \int_{-\infty}^{s} \left| e^{-\lambda(t-x)} (s-x)^{H-\frac{1}{\alpha}} - e^{-\lambda(s-x)} (s-x)^{H-\frac{1}{\alpha}} \right|^{\alpha} dx.$$

Use the inequality $|e^{-x} - e^{-y}| \le |x - y|$ for x, y > 0, substitute u = s - x and then $w = \lambda \alpha u$ to see that

$$I_{12} = \int_{-\infty}^{s} (s - x)^{H\alpha - 1} \left| e^{-\lambda(t - x)} - e^{-\lambda(s - x)} \right|^{\alpha} dx$$

$$= \left| e^{-\lambda(t - s)} - 1 \right|^{\alpha} \int_{0}^{\infty} u^{H\alpha - 1} e^{-\lambda\alpha u} dx$$

$$\leq \lambda^{\alpha} |t - s|^{\alpha} (\lambda\alpha)^{H\alpha} \int_{0}^{\infty} e^{-w} w^{H\alpha - 1} dw$$

$$= \lambda^{\alpha} (\lambda\alpha)^{-H\alpha} \Gamma(H\alpha) |t - s|^{\alpha}$$

$$\leq \lambda^{\alpha} (\lambda\alpha)^{-H\alpha} \Gamma(H\alpha) |t - s|^{H\alpha}$$

for $0 \le s < t \le 1$, since $\alpha > H\alpha > 0$. Here, $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ is the gamma function. Let h = t - s > 0 and write

$$I_{11} = \int_{-\infty}^{s} e^{-\lambda(t-x)} \left| (t-x)^{H-\frac{1}{\alpha}} - (s-x)^{H-\frac{1}{\alpha}} \right|^{\alpha} dx$$

$$\leq \int_{-\infty}^{s} \left| (s+h-x)^{H-\frac{1}{\alpha}} - (s-x)^{H-\frac{1}{\alpha}} \right|^{\alpha} dx$$

$$= h^{H\alpha-1} \int_{-\infty}^{s} \left| \left(1 + \frac{s-x}{h} \right)^{H-\frac{1}{\alpha}} - \left(\frac{s-x}{h} \right)^{H-\frac{1}{\alpha}} \right|^{\alpha} dx$$

$$= h^{H\alpha} \int_{0}^{\infty} \left| (1+u)^{H-\frac{1}{\alpha}} - (u)^{H-\frac{1}{\alpha}} \right|^{\alpha} dx = C_{11} |t-s|^{H\alpha}$$

which concludes the proof.

Lemma 4.3 Suppose that $\frac{1}{\alpha} < H < 1$ for some $1 < \alpha < 2$. Then, there exist positive constants C_1 and C_2 such that the HTFSM (3.3) satisfies

$$C_1 \left| t - s \right|^{H\alpha} \le \left\| \widetilde{X}_{H,\alpha,\lambda}(t) - \widetilde{X}_{H,\alpha,\lambda}(s) \right\|_{\alpha}^{\alpha} \le C_2 \left| t - s \right|^{H\alpha} \tag{4.1}$$

locally uniformly in $s, t \in [0, 1]$, for any $\lambda > 0$.

Proof To get the upper bound, note that

$$\begin{split} \left\|\widetilde{X}_{H,\alpha,\lambda}(t) - \widetilde{X}_{H,\alpha,\lambda}(s)\right\|_{\alpha}^{\alpha} &= \int_{-\infty}^{+\infty} \frac{|e^{-ikt} - e^{-iks}|^{\alpha}}{|\lambda - ik|^{H\alpha + 1}} \, \mathrm{d}k \\ &\leq C \int_{-\infty}^{+\infty} \left(1 \wedge |t - s|^{\alpha} |k|^{\alpha}\right) |\lambda - ik|^{-H\alpha - 1} \, \mathrm{d}k \\ &= C \Big[|t - s|^{\alpha} \int_{|k| < \frac{1}{|t - s|}} |k|^{\alpha} ||\lambda - ik|^{-H\alpha - 1} \, \mathrm{d}k \Big] \\ &+ \int_{|k| > \frac{1}{|t - s|}} |\lambda - ik|^{-H\alpha - 1} \, \mathrm{d}k \Big] \end{split}$$

$$\leq C \Big[|t - s|^{\alpha} I_1 + I_2 \Big] \tag{4.2}$$

for some constant C > 0, where

$$I_1 := \int_{|k| < \frac{1}{|t-s|}} \left| k \right|^{\alpha} \left| \lambda - ik \right|^{-H\alpha - 1} dk \quad \text{and} \quad I_2 := \int_{|k| > \frac{1}{|t-s|}} \left| \lambda - ik \right|^{-H\alpha - 1} dk.$$

Observe that

$$I_{1} = \int_{|k| < \frac{1}{|t-s|}} \left| k \right|^{\alpha} \left| \lambda^{2} + k^{2} \right|^{\frac{-H\alpha - 1}{2}} dk$$

$$\leq \int_{|k| < \frac{1}{|t-s|}} \left| k \right|^{\alpha} \left| k \right|^{-H\alpha - 1} dk = \int_{|k| < \frac{1}{|t-s|}} \left| k \right|^{-H\alpha - 1 + \alpha} dk$$

$$\leq \left| t - s \right|^{H\alpha - \alpha} \cdot \frac{2}{\alpha (1 - H)}$$

$$(4.3)$$

and

$$I_{2} = \int_{|k| > \frac{1}{|t-s|}} \left| \lambda^{2} + k^{2} \right|^{\frac{-H\alpha - 1}{2}} dk$$

$$\leq \int_{|k| > \frac{1}{|t-s|}} \left| k^{2} \right|^{\frac{-H\alpha - 1}{2}} dk = \int_{|k| > \frac{1}{|t-s|}} \left| k \right|^{-H\alpha - 1} dk$$

$$\leq \left| t - s \right|^{H\alpha} \cdot \frac{2}{H\alpha}. \tag{4.4}$$

Finally, from (4.2), (4.3) and (4.4) we get

$$\left\| \widetilde{X}_{H,\alpha,\lambda}(t) - \widetilde{X}_{H,\alpha,\lambda}(s) \right\|_{\alpha}^{\alpha} \le C \left[\left| t - s \right|^{\alpha} I_{1} + I_{2} \right]$$

$$\le C \left[\frac{2}{\alpha(1 - H)} + \frac{2}{H\alpha} \right] \left| t - s \right|^{H\alpha}$$

$$= C_{2} \left| t - s \right|^{H\alpha}$$

which gives the upper bound in (4.1). In order to get the lower bound, we use the fact that there exist positive constants c_1 , c_2 such that $|e^{-iy} - 1| > c_1|y|$ for $|y| < c_2$. Therefore,

$$\begin{split} \left\| \widetilde{X}_{H,\alpha,\lambda}(t) - \widetilde{X}_{H,\alpha,\lambda}(s) \right\|_{\alpha}^{\alpha} &= \int_{-\infty}^{+\infty} \left| e^{-ikt} - e^{-iks} \right|^{\alpha} \left| \lambda - ik \right|^{-(H\alpha+1)} \mathrm{d}k \\ &= \int_{-\infty}^{+\infty} \left| e^{-ik(t-s)} - 1 \right|^{\alpha} \left| \lambda - ik \right|^{-(H\alpha+1)} \mathrm{d}k \end{split}$$

$$\begin{split} & \geq c_1^\alpha \int_{|k| < \frac{c_2}{|t-s|}} \left| k \right|^\alpha \left| t - s \right|^\alpha \left| \lambda - ik \right|^{-(H\alpha+1)} \mathrm{d}k \\ & = c_1^\alpha |t-s|^\alpha \int_{|k| < \frac{c_2}{|t-s|}} \left| k \right|^\alpha (\lambda^2 + k^2)^{\frac{-(H\alpha+1)}{2}} \mathrm{d}k. \end{split}$$

We now use the fact that

$$\left(\lambda^2 + k^2\right)^{\frac{-(H\alpha+1)}{2}} \ge \left(1 + c_2^2\right)^{\frac{-(H\alpha+1)}{2}} \left|t - s\right|^{H\alpha+1}$$

for $\lambda < \frac{1}{|t-s|}$ and $|k| < \frac{c_2}{|t-s|}$ to continue the rest of the proof as follows:

$$\begin{split} c_{1}^{\alpha} \left| t - s \right|^{\alpha} \int_{|k| < \frac{c_{2}}{|t - s|}} \left| k \right|^{\alpha} \left(\lambda^{2} + k^{2} \right)^{\frac{-(H\alpha + 1)}{2}} \mathrm{d}k \\ &\geq 2c_{1}^{\alpha} \left(1 + c_{2}^{2} \right)^{\frac{-(H\alpha + 1)}{2}} \left| t - s \right|^{\alpha} \left| t - s \right|^{H\alpha + 1} \int_{0}^{\frac{c_{2}}{|t - s|}} k^{\alpha} \, \mathrm{d}k \\ &= C_{1} \left| t - s \right|^{H\alpha + \alpha + 1} \left| t - s \right|^{-\alpha - 1} = C_{1} \left| t - s \right|^{H\alpha} \end{split}$$

and this gives the lower bound.

5 Local Times and Local Nondeterminism

In this section, we prove the existence of local times for LTFSM and HTFSM for $1 < \alpha < 2$ and $\frac{1}{\alpha} < H < 1$. In this case, we will also show that LTFSM and HTFSM are locally nondeterministic on every compact interval. Suppose $X = \{X(t)\}_{t \ge 0}$ is a real-valued separable random process with Borel sample functions. The random Borel measure

$$\mu_B(A) = \int_{s \in B} I\{X(s) \in A\} \, \mathrm{d}s$$

defined for Borel sets $A \subseteq B \subseteq \mathbb{R}^+$ is called the occupation measure of X on B. If μ_B is absolutely continuous with respect to Lebesgue measure on \mathbb{R}^+ , then the Radon-Nikodym derivative of μ_B with respect to Lebesgue measure is called the local time of X on B, denoted by L(B,x). See Boufoussi et al. [2] for more details. For brevity, we will also write L(t,x) for the local time L([0,t],x).

Proposition 5.1 If $\frac{1}{\alpha} < H < 1$ for some $1 < \alpha < 2$, then the LTFSM (2.4) has a square integrable local time L(t, x) for any $\lambda > 0$.

Proof It follows from Boufoussi et al. [2, Theorem 3.1] that a stochastic process $X = \{X(t)\}_{t \in [0,T]}$ has a local time L(t,x) that is continuous in t for a.e. $x \in \mathbb{R}$, and square integrable with respect to x, if X satisfies:

Condition (\mathcal{H}) : There exist positive numbers $(\rho_0, H) \in (0, \infty) \times (0, 1)$ and a positive function $\psi \in L^1(\mathbb{R})$ such that for all $\kappa \in \mathbb{R}$, $t, s \in [0, T]$, $0 < |t - s| < \rho_0$ we have

$$\left| \mathbb{E} \left[\exp \left(i\kappa \frac{X(t) - X(s)}{|t - s|^H} \right) \right] \right| \le \psi(\kappa). \tag{5.1}$$

Apply (2.6) and Lemma 4.2 to get

$$\mathbb{E}\left[\exp\left(i\kappa\frac{X_{H,\alpha,\lambda}(t) - X_{H,\alpha,\lambda}(s)}{|t - s|^H}\right)\right] = \exp\left(-|\kappa|^{\alpha}\frac{\|X_{H,\alpha,\lambda}(t) - X_{H,\alpha,\lambda}(s)\|_{\alpha}^{\alpha}}{|t - s|^{\alpha H}}\right)$$

$$\leq \exp\left(-|\kappa|^{\alpha}C\right) := \psi(\kappa)$$

where the function $\psi(\kappa) \in L^1(\mathbb{R}, dk)$. Hence, LTFSM satisfies Condition \mathcal{H} .

Proposition 5.2 If $\frac{1}{\alpha} < H < 1$ for some $1 < \alpha < 2$, then the HTFSM (3.3) has a square integrable local time L(t, x) for any $\lambda > 0$.

Proof Apply (3.2) and Lemma 4.3 to obtain

$$\begin{split} \mathbb{E}\left[\exp\left(i\kappa\frac{\widetilde{X}_{H,\alpha,\lambda}(t)-\widetilde{X}_{H,\alpha,\lambda}(s)}{|t-s|^H}\right)\right] &= \exp\left(-|\kappa|^{\alpha}\frac{\|\widetilde{X}_{H,\alpha,\lambda}(t)-\widetilde{X}_{H,\alpha,\lambda}(s)\|_{\alpha}^{\alpha}}{|t-s|^{\alpha H}}\right) \\ &\leq \exp\left(-|\kappa|^{\alpha}C\right) := \psi(\kappa). \end{split}$$

Since $\psi(\kappa) \in L^1(\mathbb{R}, dk)$, the HTFSM satisfies Condition \mathcal{H} .

We next show that HTFSM is locally nondeterministic on every compact interval $[\epsilon, T]$, for any $0 < \epsilon < T < \infty$. Recall that a stochastic process $\{X(t)\}_{t \in T}$ is *locally nondeterministic* (LND) if:

- (1) $||X(t)||_{\alpha} > 0$ for all $t \in T$
- (2) $||X(t) X(s)||_{\alpha} > 0$ for all $t, s \in T$ sufficiently close; and
- (3) for any $m \ge 2$,

$$\liminf_{\epsilon \downarrow 0} \frac{\|X(t_m) - \operatorname{span}\{X(t_1), \dots, X(t_{m-1})\}\|_{\alpha}}{\|X(t_m) - X(t_{m-1})\|_{\alpha}} > 0,$$

where span $\{x_1, \ldots, x_m\}$ is the linear span of x_1, \ldots, x_m , the liminf is taken over distinct, ordered $t_1 < t_2 < \cdots < t_m \in T$ with $|t_1 - t_m| < \epsilon$, $T \subset \mathbb{R}$, $1 < \alpha < 2$ and $||X(t)||_{\alpha}$ is the norm given by (2.1).

Remark 5.3 According to Nolan [12], the ratio in Condition (3) is a relative linear prediction error and is always between 0 and 1. If the ratio is bounded away from zero as $|t_1 - t_m| \to 0$, then we can approximate $X(t_m)$ in the $\|\cdot\|_{\alpha}$ norm by the most recent value $X(t_{m-1})$ with the same order of error as by the set of values $X(t_1), \ldots, X(t_{m-1})$.

Proposition 5.4 The LTFSM (2.4) with $1 < \alpha < 2$ and $\frac{1}{\alpha} < H < 1$ is LND on every interval $[\epsilon, \kappa]$ for $\epsilon < \kappa < \infty$.

Proof To prove LND for the LTFSM $\{X_{H,\alpha,\lambda}(t)\}$, we need to verify Conditions (1), (2) and (3) as described above (for $1 < \alpha < 2$). The first and second conditions follow from Lemma 4.2. That is,

$$\|X_{H,\alpha,\lambda}(t) - X_{H,\alpha,\lambda}(s)\|_{\alpha}^{\alpha} \ge C_1 |t-s|^{H\alpha}$$

where C_1 is a positive constant. It remains to show that the LTFSM $\{X_{H,\alpha,\lambda}(t)\}$ satisfies Condition (3):

$$\lim_{\epsilon \downarrow 0} \inf \frac{\left\| X_{H,\alpha,\lambda}(t_m) - \operatorname{span}\{X_{H,\alpha,\lambda}(t_1), \dots, X_{H,\alpha,\lambda}(t_{m-1})\} \right\|_{\alpha}^{\alpha}}{\left\| X_{H,\alpha,\lambda}(t_m) - X_{H,\alpha,\lambda}(t_{m-1}) \right\|_{\alpha}^{\alpha}} > 0.$$
(5.2)

Observe that

$$\begin{aligned} & \left\| X_{H,\alpha,\lambda}(t_{m}) - \operatorname{span}(X_{H,\alpha,\lambda}(t_{i}), i = 1, \dots, m - 1) \right\|_{\alpha}^{\alpha} \\ & \geq \left\| X_{H,\alpha,\lambda}(t_{m}) - \operatorname{span}(X_{H,\alpha,\lambda}(u), u \leq t_{m-1}) \right\|_{\alpha}^{\alpha} \\ & = \int_{t_{m-1}}^{t_{m}} |t_{m} - u|^{\alpha(H - \frac{1}{\alpha})} e^{-\lambda\alpha|t_{m} - u|} du \\ & \geq e^{-\lambda\alpha|t_{m} - t_{m-1}|} \int_{t_{m-1}}^{t_{m}} |t_{m} - u|^{H\alpha - 1} du \\ & = \frac{e^{-\lambda\alpha|t_{m} - t_{m-1}|} \left| t_{m} - t_{m-1} \right|^{H\alpha}}{H\alpha} \end{aligned}$$

$$(5.3)$$

Now, apply Lemma 4.2 to see that

$$\left\| X_{H,\alpha,\lambda}(t_m) - X_{H,\alpha,\lambda}(t_{m-1}) \right\|_{\alpha}^{\alpha} \le C_2 \left| t_m - t_{m-1} \right|^{H\alpha}$$
(5.4)

for $|t_m - t_{m-1}| < \epsilon$. Combining (5.3) and (5.4), we get that the ratio in (5.2) is bounded below by

$$\frac{e^{-\lambda\alpha|t_m-t_{m-1}|}\Big|t_m-t_{m-1}\Big|^{H\alpha}}{C_2H\alpha\Big|t_m-t_{m-1}\Big|^{\alpha H}}.$$

Since $|t_m - t_{m-1}| < \epsilon$,

$$\liminf_{\epsilon \downarrow 0} \frac{e^{-\lambda \alpha |t_m - t_{m-1}|} \left| t_m - t_{m-1} \right|^{H\alpha}}{C_2 H\alpha \left| t_m - t_{m-1} \right|^{\alpha H}} \to \frac{1}{C_2 H\alpha} = C > 0; \tag{5.5}$$

hence, (5.2) holds which means $\{X_{H,\alpha,\lambda}\}$ is LND.

Proposition 5.5 If $\frac{1}{\alpha} < H < 1$ for some $1 < \alpha < 2$, then the HTFSM (3.3) is LND on every interval $[\epsilon, \kappa]$ for any $\epsilon < \kappa < \infty$ and any $\lambda > 0$.

Proof We follow the proof of Dozzi and Shevchenko [3, Theorem 3.3], who show that a harmonizable multifractional stable motion is LND on every interval $[\epsilon, \kappa]$ for $\epsilon < \kappa < \infty$. Conditions (1) and (2) follow from the lower bound in Lemma 4.3. Next, observe that the kernel

$$\tilde{g}_{\alpha,\lambda,t}(k) := \frac{e^{-ikt} - 1}{(\lambda - ik)^{H + \frac{1}{\alpha}}}$$

$$(5.6)$$

in Definition (3.3) of HTFSM is the Fourier transform of the function

$$\frac{\Gamma(H + \frac{1}{\alpha})}{\sqrt{2\pi}} \left[e^{-\lambda(t-x)_{+}} (t-x)_{+}^{H - \frac{\alpha-1}{\alpha}} - e^{-\lambda(-x)_{+}} (-x)_{+}^{H - \frac{\alpha-1}{\alpha}} \right], \tag{5.7}$$

which is a constant multiple of the kernel in (2.4). Here, $\Gamma(x)$ is the gamma function. In order to verify Condition (3), we shall establish a lower bound for

$$\left\|\widetilde{X}_{H,\alpha,\lambda}(t_m) - \sum_{i=1}^{m-1} u_j \widetilde{X}_{H,\alpha,\lambda}(t_j)\right\|_{\alpha} = \left\|\widetilde{g}_{\alpha,\lambda,t_m}(k) - \sum_{i=1}^{m-1} u_j \widetilde{g}_{\alpha,\lambda,t_j}(k)\right\|_{L^{\alpha}(\mathbb{R})}$$

where $f_{H,\alpha,\lambda}(t,k)$ is defined in (5.6). Let $\beta = \frac{\alpha}{\alpha-1}$. Apply the Hausdorff–Young inequality [5, Theorem 5.7] to get

$$\left\| \tilde{g}_{\alpha,\lambda,t_{m}}(k) - \sum_{j=1}^{m-1} u_{j} \tilde{g}_{\alpha,\lambda,t_{j}}(k) \right\|_{L^{\alpha}(\mathbb{R})}$$

$$\geq C \left\| \mathcal{F}^{-1} \tilde{g}_{\alpha,\lambda,t_{m}}(k) - \sum_{j=1}^{m-1} u_{j} \mathcal{F}^{-1} \tilde{g}_{\alpha,\lambda,t_{j}}(k) \right\|_{L^{\beta}(\mathbb{R})}$$

$$= C \left(\int_{-\infty}^{t_{m-1}} \left| \mathcal{F}^{-1} \tilde{g}_{\alpha,\lambda,t_{m}}(k) - \sum_{j=1}^{m-1} u_{j} \mathcal{F}^{-1} \tilde{g}_{\alpha,\lambda,t_{j}}(k) \right|^{\beta} \right)$$

$$+ \int_{t_{m-1}}^{t_{m}} \left| \mathcal{F}^{-1} \tilde{g}_{\alpha,\lambda,t_{m}}(k) \right|^{\beta} dk, \qquad (5.8)$$

where \mathcal{F}^{-1} denotes the inverse Fourier transform. From (5.7), we have

$$\mathcal{F}^{-1}\tilde{g}_{\alpha,\lambda,t_{m}}(k) = \frac{\Gamma(H + \frac{1}{\alpha})}{\sqrt{2\pi}} \left[e^{-\lambda(t_{m} - x)_{+}} (t_{m} - x)_{+}^{H - \frac{\alpha - 1}{\alpha}} - e^{-\lambda(-x)_{+}} (-x)_{+}^{H - \frac{\alpha - 1}{\alpha}} \right]$$

and the second term, $e^{-\lambda(-x)_+}(-x)_+^{H-\frac{\alpha-1}{\alpha}}$, vanishes on the interval $[t_{m-1}, t_m]$. Hence, we can continue (5.8) as the following:

$$\geq C \left[\int_{t_{m-1}}^{t_{m}} (t_{m} - x)^{\beta(H - \frac{1}{\beta})} e^{-\lambda \beta(t_{m} - x)} dx \right]^{\frac{1}{\beta}}$$

$$\geq C e^{-\lambda(t_{m} - t_{m-1})} \left| t_{m} - t_{m-1} \right|^{H} \geq C e^{-\lambda(\kappa - \epsilon)} \left\| \widetilde{X}_{H,\alpha,\lambda}(t_{m}) - \widetilde{X}_{H,\alpha,\lambda}(t_{m-1}) \right\|_{\alpha} (5.9)$$

for t_m and t_{m-1} close enough (and C is a constant). In the last line in (5.9), we used the fact that $|t_m - t_{m-1}| < \kappa - \epsilon$ and we also applied Lemma 4.3 to get the last inequality. Therefore,

$$\begin{split} & \left\| \widetilde{X}_{H,\alpha,\lambda}(t_m) - \operatorname{span} \{ \widetilde{X}_{H,\alpha,\lambda}, \dots, \widetilde{X}_{H,\alpha,\lambda}(t_{m-1}) \} \right\|_{\alpha} \\ & = \left\| \widetilde{X}_{H,\alpha,\lambda}(t_m) - \sum_{j=1}^{m-1} u_j \widetilde{X}_{H,\alpha,\lambda}(t_j) \right\|_{\alpha} \\ & \geq C \left\| \widetilde{X}_{H,\alpha,\lambda}(t_m) - \widetilde{X}_{H,\alpha,\lambda}(t_{m-1}) \right\|_{\alpha} \end{split}$$

and consequently

$$\liminf_{\epsilon \downarrow 0} \frac{\left\|\widetilde{X}_{H,\alpha,\lambda}(t_m) - \operatorname{span}\{\widetilde{X}_{H,\alpha,\lambda}, \dots, \widetilde{X}_{H,\alpha,\lambda}(t_{m-1})\}\right\|_{\alpha}}{\left\|\widetilde{X}_{H,\alpha,\lambda}(t_m) - \widetilde{X}_{H,\alpha,\lambda}(t_{m-1})\right\|_{\alpha}} > C,$$

where C is a positive constant.

References

- Astrauskas, A., Levy, J.B., Taqqu, M.S.: The asymptotic dependence structure of the linear fractional Lévy motion. Lithuanian Math. J. 31(1), 1–19 (1991)
- Boufoussi, B., Dozzi, M.E., Guerbaz, R.: Path properties of a class of locally asymptotically self similar processes. Electron. J. Probab. 13, 898–921 (2008)
- Dozzi, M., Shevchenko, G.: Real harmonizable multifractional stable process and its local properties. Stoch. Proc. Appl. 121(7), 1509–1523 (2011)
- Levy, J., Taqqu, M.S.: A characterization of the asymptotic behavior of stationary stable processes.
 Stable processes and related topics (Ithaca, NY, 1990). Prog. Probab. 25, 181–198 (1991)
- 5. Lieb, E.H., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Providence, RI (2001)
- Magdziarz, M.: The dependence structure of the fractional Ornstein–Uhlenbeck process. Prob. Math. Stat. 25, 97–104 (2005)
- 7. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012)
- Meerschaert, M.M., Sabzikar, F.: Tempered fractional Brownian motion. Stat. Probab. Lett. 83(10), 2269–2275 (2013)
- Meerschaert, M.M., Sabzikar, F.: Stochastic integration for tempered fractional Brownian motion. Stoch. Proc. Appl. 124(7), 2363–2387 (2014)
- Meerschaert, M.M., Sabzikar, F., Phanikumar, M.S., Zeleke, A.: Tempered fractional time series model for turbulence in geophysical flows. J. Stat. Mech. Theory Exp. 2014, P09023 (2014)
- 11. Nolan, J.P.: Path properties of index- β stable fields. Ann. Probab. **16**(4), 1596–1607 (1988)
- Nolan, J.P.: Local nondeterminism and local times for stable processes. Probab. Theory Relat. Fields 82(3), 387–410 (1989)
- Kokoszka, P.S., Taqqu, M.S.: New classes of self-similar symmetric stable random fields. J. Theor. Probab. 7, 527–549 (1994)

- Sabzikar, F., Meerschaert, M. M.: Tempered fractional calculus. J. Comput. Phys. (to appear in the Special Issue on Fractional Partial Differential Equations). Preprint available at www.stt.msu.edu/ users/mcubed/TFC
- Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach, London (1993)
- Samorodnitsky, S., Taqqu, M.S.: Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall. New York (1994)
- 17. Stoey, S., Taqqu, M.S.: Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier transform. Fractals 12(1), 95–121 (2004)
- Watkins, N.W., Credgington, D., Hnat, B., Chapman, S.C., Freeman, M.P., Greenhough, J.: Towards synthesis of solar wind and geomagnetic scaling exponents: a fractional Lévy motion model. Space Sci. Rev. 121(1–4), 271–284 (2005)
- Xiao, Y.: Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math XV, 157–193 (2006)

