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The Pareto distribution is a simple model for nonnegative data with a power law probability tail. In many practical applications, there is a
natural upper bound that truncates the probability tail. This article derives estimators for the truncated Pareto distribution, investigates their
properties, and illustrates a way to check for fit. These methods are illustrated with applications from finance, hydrology, and atmospheric
science.
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1. INTRODUCTION

A random variable, X, has a Pareto distribution if P(X > x) =
Cx−α for some α > 0 (see Johnson, Kotz, and Balakrishnan
1994; Arnold 1983). This distributional model is important in
applications, because many datasets are observed to follow a
power law probability tail, at least approximately, for large
values of x. Stable distributions with index α and max-stable
type II extreme value distributions with index α are also as-
ymptotically Pareto in their probability tails, and this fact has
been frequently used to develop estimators for those distribu-
tions. In some applications there is a natural upper bound on
the probability tail that truncates the Pareto law. In other cases
there is empirical evidence that a truncated Pareto gives a better
fit to the data. Because both sums (if α < 2) and extremes (for
any α > 0) fall in different domains of attraction, depending on
whether a dataset follows a Pareto or truncated Pareto distribu-
tion, it is also useful to test for possible truncation in a dataset
with evidence of power law tails. In this article, we develop pa-
rameter estimates for the truncated Pareto distribution that are
easy to compute, prove their consistency (and, in some cases,
asymptotic normality), and propose a way to compare the fit
of truncated and unbounded Pareto distributional models on the
basis of data. These methods should be useful to practitioners in
areas of science and engineering where power law probability
tails are prevalent.

Heavy-tailed random variables are important in applications
in finance (Embrechts, Klüppelberg, and Mikosch 1997; Fama
1965; Jansen and de Vries 1991; Loretan and Phillips 1994;
Mandelbrot 1963; McCulloch 1996; Meerschaert and Scheffler
2003; Rachev and Mittnik 2000), physics (Barkai, Metzler,
and Klafter 2000; Klafter, Blumen, and Shlesinger 1987;
Kotulski 1995; Meerschaert, Benson, Scheffler, and Becker-
Kern 2002; Metzler and Klafter 2000), hydrology (Anderson
and Meerschaert 1998; Benson, Schumer, Meerschaert, and
Wheatcraft 2001; Benson, Wheatcraft, and Meerschaert 2000;
Hosking and Wallis 1987; Lu and Molz 2001; Schumer,
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Benson, Meerschaert, and Wheatcraft 2001), engineering
(Nikias and Shao 1995; Resnick 1997; Resnick and Stărică
1995; Uchaikin and Zolotarev 1999), and many other fields
(Adler, Feldman, and Taqqu 1998; Feller 1971; Samorodnitsky
and Taqqu 1994). Recently, Burroughs and Tebbens (2001b,
2002) surveyed evidence of truncated power law distributions
in datasets on earthquake magnitudes, forest fire areas, fault
lengths (on Earth and on Venus), and oil and gas field sizes.
Earthquake fault sizes are limited by physical (or terrain) con-
siderations (see Scholtz and Contreras 1998; Pacheco, Scholtz,
and Sykes (1992). The size of forest fires may be naturally
limited by the availability of fuel and climate (see Malamud,
Morein, and Turcotte 1998). Additional applications of trun-
cated power law distributions in finance, groundwater hydrol-
ogy, and atmospheric science are given in Section 4.

Burroughs and Tebbens estimated parameters of the trun-
cated Pareto distribution by least squares fitting on a proba-
bility plot (2001a) and by minimizing mean squared error fit
on a plot of the tail distribution function (2001b). Minimum
variance unbiased estimators for the parameters of a truncated
Pareto law were developed by Beg (1981, 1983). Beg (1981)
also provided maximum likelihood estimates of the lower trun-
cation parameter, scale, and probability of exceedance for a
truncated Pareto distribution. The maximum likelihood esti-
mator (MLE) of α when the lower truncation limit is known
was presented by Cohen and Whitten (1988), with some rec-
ommendations for the case when the lower truncation limit is
not known. In this article we develop MLEs for all parame-
ters of a truncated Pareto distribution. We prove the existence
and uniqueness of the MLE under certain easy-to-check con-
ditions that are shown to hold with probability approaching 1
as the sample size increases. A simple formula for the MLE is
obtained that can be easily computed. Asymptotic normality is
established for the estimator of the tail parameter α. We also
consider the case where only the upper tail of the data fits a
truncated Pareto distribution, and we compute the conditional
MLE based on the upper-order statistics. These results can be
used for robust tail estimation for truncated models with power
law tails (e.g., stable data). Examples from hydrology, climatol-
ogy, and finance illustrate the utility and practical application of
these results. For ease of reading, proofs are deferred to the Ap-
pendix.
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2. MAXIMUM LIKELIHOOD ESTIMATION FOR
THE ENTIRE SAMPLE

A random variable W has a Pareto distribution function if

P(W > w) = γ αw−α for w ≥ γ > 0 and α > 0. (1)

An upper-truncated Pareto random variable, X, has distribution

1 − FX(x) = P(X > x) = γ α(x−α − ν−α)

1 − (γ /ν)α
(2)

and density

fX(x) = αγ αx−α−1

1 − (γ /ν)α
(3)

for 0 < γ ≤ x ≤ ν < ∞, where γ < ν. Consider a random sam-
ple X1,X2, . . . ,Xn from this upper-truncated distribution and let
X(1) ≥ X(2) ≥ · · · ≥ X(n) denote its order statistics. We now de-
rive the MLE for the unknown parameters. We start by consid-
ering the simplest case, where γ and ν are both known.

Theorem 1. The MLE, α̃, of α for an upper-truncated Pareto
defined in (2), where γ and ν are known, solves the equation

n

α̃
+ n(γ /ν)α̃ ln(γ /ν)

1 − (γ /ν)α̃
−

n∑

i=1

[
ln X(i) − lnγ

] = 0. (4)

Furthermore,
√

n(α̃ − α) converges to a normal distribution
with mean 0 and variance

{
1

α2
− (γ /ν)α[ln(γ /ν)]2

[1 − (γ /ν)α]2

}−1

.

Remark 1. The MLE for α presented in (4) was first given by
Cohen and Whitten (1988) for the case where the lower trunca-
tion limit γ is known. These authors also made recommenda-
tions for computing the estimate when γ is unknown.

Next we obtain the MLEs for the parameters of an upper-
truncated Pareto distribution where α,γ , and ν are all unknown.

Theorem 2. Consider a random sample X1,X2, . . . ,Xn from
an upper-truncated Pareto distribution defined in (2) where
α,γ , and ν are unknown. The MLEs for the parameters in this
model are given by γ̂ = X(n) = min(X1,X2, . . . ,Xn), ν̂ = X(1) =
max(X1,X2, . . . ,Xn), and α̂ solves the equation

n

α̂
+ n[X(n)/X(1)]α̂ ln[X(n)/X(1)]

1 − [X(n)/X(1)]α̂

−
n∑

i=1

[
ln X(i) − ln X(n)

] = 0. (5)

When γ and ν are unknown, the upper-truncated Pareto
distribution has support that depends on these unknown para-
meters, and hence it is not a member of a multiparameter expo-
nential family of distributions. Furthermore, it does not satisfy
the regularity conditions necessary to directly apply the asymp-
totic properties of MLEs to derive the asymptotic distribution
of α̂. We instead use a Taylor series expansion to obtain the
asymptotic properties of α̂. Note that it is easy to show, using
basic results in probability, that γ̂ and ν̂ are consistent estima-
tors of γ and ν.

Theorem 3. Under the conditions of Theorem 2, the MLE, α̂,
of α has an asymptotic normal distribution with asymptotic
mean α.

Remark 2. The asymptotic variance of α̂ is not the same as
the asymptotic variance of α̃, because adjustments need to be
made on the asymptotic variance of α̂ because γ and ν were es-
timated. Furthermore, the standard theory of obtaining asymp-
totic variance using the Fisher information matrix is no longer
applicable.

The next result shows that the MLE optimization problem
for α typically has a unique solution.

Theorem 4. The probability that a solution to the MLE equa-
tion (4) or (5) exists tends to 1 as n → ∞, and if it exists, then
the solution is unique.

We compare the performance of the proposed estimators with
that of the estimators of Hill and Beg. We generate m = 1,000
random samples of size n = 100 from a truncated Pareto dis-
tribution with α = .8, γ = 1, and ν = 10. Figure 1 summarizes
the observed sampling distributions of the estimators based on
this simulation. The proposed estimators and Beg’s estimators
perform well, with Beg’s estimators performing a little bet-
ter in terms of the bias. It is a well-known fact that MLE is
often biased, but this bias disappears as the sample size in-
creases. Hill’s estimator performed well only in estimating ν

and poorly estimated α, which we attribute to model misspec-
ification. When we simulated data (results not presented here)
from a regular Pareto distribution, Hill’s estimators performed
best; that is, the center of the simulated distribution was near
the true value, and the observed spread was the least. The lat-
ter property results from the fact that Hill’s estimator estimates
only two parameters, and hence there is no additional uncer-
tainty due to estimating the upper truncation parameter. But for
samples from a truncated Pareto distribution, we recommend
using Beg’s estimators or our proposed estimators. One advan-
tage of our estimators is that they may also be extended to the
case where the true distribution is not a truncated Pareto but the
tail behaves like a truncated Pareto. We discuss this in the next
section.

3. MAXIMUM LIKELIHOOD ESTIMATION
FOR THE TAIL

In many practical applications, a truncated Pareto distribution
may be fit to the upper tail of the data if, for sufficiently large
x > 0,

P(X > x) ≈ γ α(x−α − ν−α)

1 − (γ /ν)α
, 0 < γ ≤ x ≤ ν.

In this case we estimate the parameters by obtaining the con-
ditional MLE based on the (r + 1) (0 ≤ r < n) largest-order
statistics representing only the portion of the tail where the trun-
cated Pareto approximation holds. This extends the well-known
Hill estimator (Hall 1982; Hill 1975) to the case of a truncated
Pareto distribution.

Theorem 5. When X(r) > X(r+1), the conditional MLE for
the parameters of the upper-truncated Pareto distribution in (2)
based on the (r +1) largest-order statistics is given by ν̂ = X(1),
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(a)

(b)

(c)

Figure 1. Boxplots of the Observed Sampling Distributions of the
Estimates of (a) α, (b) γ , and (c) ν Based on m = 1,000 Simulated
Datasets of Size n = 100 From a Truncated Pareto With α = .8, γ = 1,
and ν = 10. Broken horizontal lines represent the true values of the pa-
rameters.

γ̂ = r1/α̂(X(r+1))[n − (n − r)(X(r+1)/X(1))
α̂]−1/α̂ , and α̂ solves

the equation

0 = r

α̂
+ r(X(r+1)/X(1))

α̂ ln(X(r+1)/X(1))

1 − (X(r+1)/X(1))α̂

−
r∑

i=1

[
ln X(i) − ln X(r+1)

]
. (6)

Remark 3. The conditional MLE, α̂TP, of α given in Theo-
rem 5 is smaller than the Hill estimator, α̂H of α. This is easy
to see after noting that the second term on the right side of (6)
is always negative.

Remark 4. In some applications it may be natural to use a
truncated and possibly shifted exponential distribution. All of
the results in this section and the previous section also apply to
that case, because Y = ln X has a truncated shifted exponential
distribution with

P(Y > y) = e−α( y−lnγ ) − (γ /ν)α

1 − (γ /ν)α
for lnγ ≤ y ≤ lnν

if and only if X has a truncated Pareto distribution. If γ = 1,
then Y has a truncated exponential distribution with no shift.

Remark 5. For a dataset that graphically exhibits a power
law tail, we propose a simple test to check whether a Pareto
model is appropriate, based on simple results from extreme
value theory. Our proposed asymptotic level-q test (0 < q < 1)
rejects the null hypothesis H0 :ν = ∞ (Pareto) if and only if
X(1) < [(nC)/(− ln q)]1/α , where C = γ α . The corresponding
approximate p value of this test is given by p = exp{−nCX−α

(1) }.
In practice, we use Hill’s estimator (Hill 1975),

α̂H =
[

r−1
r∑

i=1

{
ln X(i) − ln X(r+1)

}
]−1

and

Ĉ = r

n

(
X(r+1)

)α̂H ,

to estimate the parameters C and α. Note that a small p value in
this case indicates that the Pareto model is not a good fit. But in
itself this is not sufficient to indicate goodness of fit of the trun-
cated Pareto distribution. To check whether a truncated Pareto
distribution is a reasonably good fit, the test should always be
supplemented by a graphical check of the data tail, as illustrated
in the next section.

4. APPLICATIONS

Figure 2 shows the upper tail for a dataset of absolute daily
price changes in U.S. dollars for Amazon, Inc. stock from Jan-
uary 1, 1998 to June 30, 2003 (n = 1,378), plotted on a log–
log scale. The apparent downward curve is characteristic of a
truncated Pareto distribution. Hill’s estimator gives α̂H = 2.343
and Ĉ = 2.203, whereas the truncated Pareto estimator from
Theorem 5 gives α̂TP = 1.681, γ̂ = .963, and ν̂ = 15.53 (esti-
mated C = γ α .= .936). Both estimates are based on the upper
r = 100 order statistics. Using the test in Remark 5, the com-
puted p value of approximately .007 is strong evidence that a
regular Pareto is not a good fit to the data. In contrast, Figure 2
shows that the truncated Pareto model fits the data very well
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Figure 2. Log–Log Plot of the Largest Absolute Values of Daily Price Changes in Amazon, Inc. Stock, With Best-Fitting Pareto (- - - -) and
Truncated Pareto (—–) Tail Distributions.

and much better than a regular Pareto. One possible explana-
tion for the fit of the truncated Pareto in this application is that
the stock exchange uses automatic mechanisms to slow trading
in the event of extreme price changes due to automatic trading
by large mutual funds.

Figure 3 shows the upper tail of the survival function for
absolute differences from a series of 2,618 measurements of
hydraulic conductivity in K cm/sec taken at 15-cm inter-
vals in vertical boreholes at the MAcroDispersion Experiment

(MADE) site on the Columbus Air Force Base in northeastern
Mississippi (see Rehfeldt, Boggs, and Gelhar 1992), along with
the best-fitting Pareto and truncated Pareto models. The trun-
cated Pareto model seems to be a good fit to the data, whereas
the Pareto model is not a good fit. The estimated parameters of
the truncated Pareto model based on the 100 upper-order statis-
tics are γ̂ = .008, ν̂ = .783, and α̂TP = 1.196. The estimated pa-
rameters of the Pareto model are Ĉ = .0011 and α̂H = 1.598, so
that the estimated γ = C1/α .= .014. The p value from the test in

Figure 3. Log–Log Plot of the Empirical Survival Function for Absolute Differences of Hydraulic Conductivity at the MADE Site, With Best-Fitting
Pareto (- - - -) and Truncated Pareto (—–) Tail Distributions.
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Table 1. Estimates of Truncated Pareto Parameters for Hydraulic Conductivity at the MADE Site
(n = 2,618), and p Values, for Varying r Values

( r + 1) largest-
order statistics

Estimates Pareto test
p valueγ̂ ν̂ α̂ Hill’s α̂ Hill’s Ĉ

50 .0073 .7828 1.1663 1.9000 .0008 .04068
100 .0079 .7828 1.1958 1.5985 .0011 .0120
200 .0057 .7828 1.0562 1.3160 .0020 .0009
300 .0042 .7828 .9434 1.1496 .0028 .0001

Remark 5 of approximately .012 confirms that Pareto model is
not a good fit. The α estimate from the truncated Pareto model
is also in good agreement with the analysis of Benson et al.
(2001). A possible explanation for truncation is that the depo-
sitional process that formed the MADE aquifer created high-
velocity channels that account for the largest K values. Over
time, these high-flow channels are occluded with sedimenta-
tion, truncating the high K values. Another truncation effect
comes from the K measurement process, which averages val-
ues over a cylindrical region. The highest K values occur in a
relatively small sector of this cylinder and thus are attenuated
by combination with the more prevalent lower K values. Ta-
ble 1 shows how the parameter estimates and the p value for the
Pareto test of Remark 5 vary with the number r of upper-order
statistics used. As a general guide, the value of r should be cho-
sen on the basis of a log–log plot similar to Figure 3 so that r is
as large as possible as long as the model fit is adequate.

Figure 4 shows the 100 largest observations of total daily pre-
cipitation in units of .1 mm at Tombstone, Arizona between
July 1, 1893 and December 31, 2001 (from Groisman et al.
2004), along with the best-fitting Pareto and truncated Pareto
models. Based on the n = 5,216 nonzero observations, the
estimated parameters of the truncated Pareto model are γ̂ =

88.025, ν̂ = 762, and α̂TP = 2.933. The estimated parameters
of the Pareto model are Ĉ = 7.59478 × 107 and α̂H = 3.813,
so that the estimated γ = C1/α .= 117. The p value from the
test in Remark 5 of approximately .017 is evidence against the
regular Pareto model. The fact that the tail of the data curves
downward in Figure 4 is evidence in support of a truncated
Pareto model. Note that because our parameter estimates are
based on the nonzero observations, we are actually modeling
the conditional distribution of precipitation given that some pre-
cipitation occurs. It is generally assumed that precipitation data
have an upper bound, called the “probable maximum precipi-
tation,” computed by various methods (see, e.g., Douglas and
Barros 2003; Thompson and Tomlinson 1995; World Meteoro-
logical Organization 1986), so that a truncated Pareto is more
consistent with standard practice in hydrometerology than the
unbounded model.

Another alternative model, in which the parameter estimates
α = 2.933 and C = 88.0252.933 from the truncated Pareto are
used in the Pareto, is appropriate if the investigator believes
that precipitation follows a power law that has been truncated
by some natural or observational mechanism. For illustration
purposes, we present estimates of the .999th quantile for three
models for daily precipitation. For the Pareto model, the quan-

Figure 4. Log–Log Plot of the Empirical Survival Function for the 100 Largest Observations of Positive Daily Total Precipitation in Tombstone,
AZ Between July 1, 1893 to December 31, 2001 With Best-Fitting Pareto (·····), Pareto With Truncated Pareto Parameters (- - - -), and Truncated
Pareto (—–) Tail Distributions.
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tile is estimated as 714 (71.4 mm or 2.81 inches of precipi-
tation); for the truncated Pareto model, it is 655; and for the
Pareto model with truncated Pareto parameters, it is 928. Be-
cause precipitation was recorded on only 13% of the days in
this period, the .999th percentile actually represents the level of
daily precipitation that one could expect on any given day with
probability (.13 × .001), or about once every 20 years. This ex-
ample is typical in that for extreme upper values, the truncated
Pareto model gives the lowest estimate, and the Pareto model
with truncated Pareto parameters gives the highest estimate.

APPENDIX: PROOFS

Proof of Theorem 1

The likelihood function under this setting is given by

L(γ, ν,α) = αnγ nα

[1 − (γ /ν)α]n

×
n∏

i=1

X−α−1
i

n∏

i=1

I{0 < γ ≤ Xi ≤ ν < ∞}, (A.1)

where γ < ν. Maximizing this likelihood, we get the MLE for α. Next,
note that the density in (3) when γ and ν are fixed and known is a
one-parameter exponential family of distributions. Hence the asymp-
totic distribution of the MLE α̃ is obtained by applying the results on
the asymptotic properties of the MLE for a one-parameter exponential
family (see, e.g., thm. 5.3.5 in Bickel and Doksum 2001).

Proof of Theorem 2

Referring to likelihood function in (A.1) with γ and ν unknown,
note that

∏n
i=1 I{0 < γ ≤ Xi ≤ ν < ∞} = 1 if and only if X(n) ≥ γ and

X(1) ≤ ν. Because the likelihood function L is an increasing function
of γ for γ ≤ X(n) and a decreasing function of ν for ν ≥ X(1), for a
fixed α, the likelihood is maximized when γ̂ = X(n) and ν̂ = X(1). One
can then easily derive (5).

Proof of Theorem 3

For a given γ and ν, suppose that h ≡ h(γ, ν) solves the equation

G = 1

h
+ (γ /ν)h ln(γ /ν)

1 − (γ /ν)h
− 1

n

n∑

i=1

(
ln X(i) − lnγ

) = 0 (A.2)

for a fixed γ and ν. Then, by Theorem 1, α̃ = h(γ0, ν0), where
γ0 and ν0 are the true values of γ and ν, and by Theorem 2, α̂ =
h(γ̂ , ν̂), where γ̂ = X(n) and ν̂ = X(1). By a Taylor series expansion
about γ0 and ν0,

α̂ = h(γ̂ , ν̂)

≈ h(γ0, ν0) + hγ (γ0, ν0)(γ̂ − γ0) + hν(γ0, ν0)(ν̂ − ν0), (A.3)

where hγ (γ0, ν0) and hν(γ0, ν0) are the partial derivatives of h with
respect to γ and ν, evaluated at γ0 and ν0. Because ν̂ and γ̂ are consis-
tent estimators of ν and γ , the last two terms on the right side go to 0
in probability as n → ∞, provided that hγ (γ0, ν0) and hν(γ0, ν0) are
bounded. Applying Slutsky’s theorem (see, e.g., Bickel and Doskum
2001), it then follows that α̂ has asymptotic mean α and converges in
distribution to an asymptotic normal distribution.

We complete the proof by showing that the partial derivatives
hγ (γ0, ν0) and hν(γ0, ν0) are bounded. If (A.2) holds, then dG/dγ =
∂G/∂γ + (∂G/∂h)(∂h/∂γ ) = 0, implying that hγ (γ0, ν0) = ∂h/∂γ =
(−∂G/∂γ )/(∂G/∂h) and, similarly, hν = (−∂G/∂ν)/(∂G/∂h). Be-
cause neither ∂G/∂γ nor ∂G/∂ν has any singularities for 0 < γ < ν

and h > 0, both hγ (γ0, ν0) and hν(γ0, ν0) are bounded if we can show
that ∂G/∂h �= 0. Let b = γ /ν. In fact, we have

∂G

∂h
= −(1 − bh)2 + h2bh(ln b)2

h2(1 − bh)2
< 0

for every 0 < b < 1 and h > 0. (A.4)

To see this, first note that

ex − e−x > 2x for all x > 0. (A.5)

Now (A.4) is equivalent to h2bh(ln b)2 < (1 − bh)2, so that
−hbh/2(ln b) < 1 − bh. Using (A.5), where x = (−h/2) ln b, we get
−h ln b < b−h/2 − bh/2 for all h > 0.

Proof of Theorem 4

First, we consider the case where γ and ν are known. In this case
the MLE α̃ = h, where h > 0 solves the equation

G(h) = 1

h
+ bh ln b

1 − bh
− 1

n

n∑

i=1

(
ln X(i) − lnγ

) = 0,

where b = γ /ν ∈ (0,1). Write M = (1/n)
∑n

i=1(ln X(i) − lnγ ) and
compute limh→0 G(h) = (− ln b)/2−M and limh→∞ G1(h) = 0−M.

In view of (A.4), we have that ∂G/∂h < 0 for all h > 0, so that
G is monotone. Hence the solution to G(h) = 0 is unique if it ex-
ists, and it exists if and only if M < (− ln b)/2. As n → ∞, we
have M → E{ln(X/γ )} in probability by the law of large numbers,
where W = ln(X/γ ) has a truncated exponential distribution with
density g(w) = α exp{−αw}/[1 − exp{−α(− ln b)}] supported on 0 <

w < − ln b. Because the density of W is monotone decreasing, a sim-
ple geometrical argument shows that the mean of W must lie in the
left half of the interval [0,− ln b], and hence EW < −(1/2) ln b. Then
P{M < (− ln b)/2} → 1 as n → ∞, so that the MLE α̃ exists with
probability approaching 1 as n → ∞.

In the case where all three parameters are estimated, the MLE α̂ = h
solves G(h) = 1/h + [(bh ln b)/(1 − bh)] − (1/n)

∑n
i=1(ln X(i) −

ln X(n)) = 0, where b = X(n)/X(1) ∈ (0,1) with probability 1. Write
M′ = (1/n)

∑n
i=1(ln X(i) − ln X(n)) and compute limh→0 G(h) =

(− ln b)/2 − M′ and limh→∞ G1(h) = 0 − M′ as before. Now
(A.4) shows that G is monotone, and hence the solution α̂ = h to
G(h) = 0 is unique if it exists, and it exists if and only if M′ =
M + ln(γ /X(n)) < (− ln b)/2. Because X(n) → γ in probability, the
continuous mapping theorem implies that ln(γ /X(n)) → 0 in proba-
bility. Because M → E{ln(X/γ )} in probability, another application
of the continuous mapping theorem shows that M′ → E{ln(X/γ )} in
probability as well, and the same argument as before shows that the
MLE α̂ exists with probability approaching 1 as n → ∞.

Proof of Theorem 5

The proof is similar to that of the Hill estimator (Hill 1975).
It is convenient to transform the data, taking Z(i) = (X(n−i+1))

−1

so that G(z) = P(Z ≤ z) = γ α(zα − ν−α)/[1 − (γ /ν)α] and Z(1) ≥
· · · ≥ Z(n). Because U(i) = G(Z(i)) are (decreasing) order statistics
from a uniform distribution, E(i) = − ln U(i) are (increasing) order sta-
tistics from a unit exponential. Following David (1981, pp. 20–21),
we let Yi = (n − i + 1)(E(i) − E(i−1)), and hence we can easily check
that {Yi, i = 1, . . . ,n} are independent and identically distributed unit
exponential. Define Y∗ = nE(n−r+1) = n(Y1/n + · · · + Yn−r+1/r)
so that Yn, . . . ,Yn−r+2,Y∗ are mutually independent with joint den-
sity exp(−y(n) − · · · − y(n−r+2))p( y∗), where p( y∗) is the density

of Y∗. Because U(n−r+1) has density K1ur−1(1 − u)n−r , it follows
that Y∗ = −n ln U(n−r+1) has density p( y) = K2 exp(−y/n)r(1 −
exp( y/n))n−r , where {Kj, j = 1,2} are positive constants. Use the
fact that Y(i) = (n − i + 1)[− ln G(Z(i)) + ln G(Z(i−1))] = (n −
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i+1)[ln(Zα
(i−1)

−ν−α)− ln(Zα
(i) −ν−α)], for i = n− r +2, . . . ,n, and

exp(−Y∗/n) = G(Z(n−r+1)) = γ α(Zα
(n−r+1)

− ν−α)/[1 − (γ /ν)α],
to obtain the likelihood conditional on the values of the (r + 1)
smallest-order statistics, Z(n) = z(n), . . . ,Z(n−r+1) = z(n−r+1), as

K

[ r∏

i=1

αzα−1
(n−i+1)

zα
(n−i+1)

− ν−α

]

× exp

[
−

r−1∑

i=1

i
[
ln

(
zα(n−i) − ν−α

) − ln
(
zα(n−i+1) − ν−α

)]
]

×
[

γ α(zα
(n−r+1)

− ν−α)

1 − (γ /ν)α

]r[
1 −

γ α(zα
(n−r+1)

− ν−α)

1 − (γ /ν)α

]n−r

×
r∏

i=1

I

{
1

ν
≤ z(n−i+1) ≤ 1

γ

}
,

where K > 0 does not depend on the data or on the parameters and the
first product term is the Jacobian for the transformations defined by
Yn, . . . ,Yn−r+2,Y∗. Note that

r−1∑

i=1

i
[
ln

(
zα(n−i) − ν−α

) − ln
(
zα(n−i+1) − ν−α

)]

= r ln
(
zα(n−r+1) − ν−α

) −
r∑

i=1

ln
(
zα(n−i+1) − ν−α

)
.

Next, condition on Z(n−r+1) ≤ d < Z(n−r), which multiplies the
conditional likelihood by a factor of

[
1 − γ α(dα − ν−α)

1 − (γ /ν)α

]n−r[
1 −

γ α(zα
(n−r+1)

− ν−α)

1 − (γ /ν)α

]−(n−r)
.

Then the conditional likelihood function simplifies to

Kαr γ rα[1 − (γ d)α]n−r

[1 − (γ /ν)α]n
[ r∏

i=1

zα−1
(n−i+1)

] r∏

i=1

I

{
1

ν
≤ z(n−i+1) ≤ 1

γ

}
.

Substitute β = (γ d)α to obtain

Kαr βrd−rα(1 − β)n−r

[1 − β(dν)−α]n
[ r∏

i=1

zα−1
(n−i+1)

] r∏

i=1

I

{
1

ν
≤ z(n−i+1) ≤ 1

γ

}
.

In terms of the original data, this conditional likelihood becomes

Kαr βrDrα(1 − β)n−r

[1 − β(D/ν)α]n
[ r∏

i=1

x−α+1
(i)

][ r∏

i=1

x−2
(i)

] r∏

i=1

I
{
γ ≤ x(i) ≤ ν

}
,

where d = D−1 and the product term [∏r
i=1 x−2

(i) ] is the Jacobian asso-

ciated with the transformations X(i) = (Z(n−i+1))
−1 for i = 1, . . . , r.

Note that
∏r

i=1 I{γ ≤ x(i) ≤ ν} if and only if x(1) ≤ ν and x(r) ≥ γ .
Consequently, whenever x(1) ≤ ν and x(r) ≥ γ , the conditional log-
likelihood is

ln L = K0 + r lnα + r lnβ + rα ln D + (n − r) ln(1 − β)

− n ln
(
1 − β(D/ν)α

) − (α + 1)

r∑

i=1

ln
(
x(i)

)
,

and we seek the global maximum over the parameter space consisting
of all (α,β) for which α > 0 and 0 < β < 1. Because this conditional
log-likelihood is a decreasing function of ν for ν ≥ X(1), the condi-
tional MLE for ν is ν̂ = X(1). Substituting the ν̂ for ν and taking partial

derivatives of the conditional log-likelihood with respect to α and β ,
we get

∂ ln L

∂α
= r

α
+ nβ(D/X(1))

α ln(D/X(1))

1 − β(D/X(1))
α

−
r∑

i=1

[
ln X(i) − ln D

]
(A.6)

and

∂ ln L

∂β
= r

β
− n − r

1 − β
+ n(D/X(1))

α

1 − β(D/X(1))
α

. (A.7)

We obtain the MLE for α̂ and β̂ by setting these partial deriva-
tives to 0 and solving. The solution to (A.6) and (A.7) depends on
the value of D, which will be unknown in practice. Because we as-
sume X(r) ≥ D > X(r+1) we can estimate D by X(r) or X(r+1) or some
point in between. We use the estimate D = X(r+1) to be consistent
with standard usage for Hill’s estimator (Anderson and Meerschaert
1997; Fofack and Nolan 1999; Hall 1982; Jansen and de Vries 1991;
Loretan and Phillips 1994; Resnick 1997; Resnick and Stărică 1995),
MLE for α in a Pareto. Setting the equations in (A.6) to 0 and solv-
ing, we find that β̂ = r[n − (n − r)(X(r+1)/X(1))

α̂]−1 and α̂ solves the
equation

0 = r

α̂
+ r(X(r+1)/X(1))

α̂ ln(X(r+1)/X(1))

1 − (X(r+1)/X(1))
α̂

−
r∑

i=1

[
ln X(i) − ln X(r+1)

]
.

We complete the proof of the theorem by using γ = Dβ1/α .

[Received May 2004. Revised March 2005.]
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