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Tail estimates are developed for power law probability distributions with exponential
tempering, using a conditional maximum likelihood approach based on the upper-
order statistics. Tempered power law distributions are intermediate between heavy
power-law tails and Laplace or exponential tails, and are sometimes called “semi-
heavy” tailed distributions. The estimation method is demonstrated on simulated
data from a tempered stable distribution, and for several data sets from geophysics
and finance that show a power law probability tail with some tempering.
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1. Introduction

Probability distributions with heavy, power law tails are important in many areas
of application, including physics (Metzler and Klafter, 2000, 2004; Uchaikin and
Zolotarev, 1999), finance (Gorenflo et al., 2001; Mainardi et al., 2000; Raberto
et al., 2002; Scalas et al., 2000; Sabatelli et al., 2002), and hydrology (Benson et al.,
2000, 2001; Schumer et al., 2001, 2003). Stable Lévy motion with power law tails is
useful to model anomalous diffusion, where long particle jumps lead to anomalous
superdiffusion (Meerschaert et al., 1999; Meerschaert and Scheffler, 2004). Often the
power law behavior does not extend indefinitely, due to some truncation or tapering
effects. Truncated Lévy flights were proposed by Mantegna and Stanley (1994, 1995)
as a modification of the �-stable Lévy motion, to avoid infinite moments. In that
model, the largest jumps are simply discarded. Tempered stable Lévy motion takes
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1840 Meerschaert et al.

a different approach, exponentially tapering the probability of large jumps, so that
all moments exist (Rosiński, 2007). Tempered stable laws were recently applied in
geophysics (Meerschaert et al., 2008). The problem of parameter estimation for
tempered stable laws remains open. Normal inverse Gaussian distributions have
the same asymptotic tail behavior, which Barndorff-Neilson calls “semi-heavy tails”
(Barndorff-Nielsen, 1998). These distributions are important in finance (Barndorff-
Nielsen, 1997) and turbulence (Barndorff-Nielsen and Leonenko, 2005). Parameter
estimation for the normal inverse Gaussian distribution is a difficult problem
(Protassov, 2004). Laplace distributions have also found many applications in
engineering, finance, biology, and environmental science. Kotz et al. (2001) contains
a comprehensive introduction to the theory and application of Laplace distributions
and processes, as well as a number of applications. See Meerschaert et al. (2004) for
some additional applications to geophysics.

In practical applications, it is often apparent that data tails are too heavy to
admit a Gaussian model. Fitting alternative models with a heavier tail requires a
judgment about whether the tails are exponential (Laplace, gamma, Weibull, etc.),
power-law (Pareto, stable, geometric stable, etc.), or something in between. This
judgment starts with an examination of the empirical tail distribution. If the tail
appears to follow a pure exponential, then a Laplace or related model may be
appropriate. If it follows a pure power-law, then a stable or related model may
suffice. For cases in between, where the tail gradually transitions from power-law
to exponential, the methods of this article can be useful. Some further discussion,
along with a test for determining the extent of truncation/tempering, appears in
Chakrabarty and Samorodnitsky (2009).

This article treats exponentially tempered Pareto distributions P�X > x� =
�x−�e−�x, where � is a scale parameter, � controls the power law tail, and � governs
the exponential tempering. In practical applications, the tempering parameter is
relatively small, so that the data seems to follow the power law distribution until
the largest values are exponentially cooled. A log-log plot of the data versus rank is
linear until the tempering causes the plot to curve downward. Such plots are often
observed in real data applications. It is also common that the power law behavior
emerges only for large data values, so that the tail of the data is fit to this model.
Hence, we will consider parameter estimates based on the largest order statistics.
The main technical tool is the Rényi representation for the order statistics, and
the mathematical details are similar to Hill’s estimator (Hall, 1982; Hill, 1975) for
the traditional Pareto distribution. A related article (Aban et al., 2006) considered
parameter estimation for the truncated Pareto distribution, relevant to the original
model of Mantegna and Stanley.

2. Estimation

Suppose X1� X2� � � � � Xn is a random sample from the tempered Pareto distribution
with the survival function

�FX�x� �� = P	X1 > x
 = �x−�e−�x� x ≥ x0� (2.1)

where � �= 	�� �� �
 are unknown parameters and x0 > 0 satisfies � = x�0e
�x0 . Clearly,

the corresponding density function is given by

fX�x� �� = �x−�−1e−�x��+ x��� x ≥ x0� (2.2)
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Parameter Estimation for Tempered Distributions 1841

Let X�1� < X�2� < · · · < X�n� be the order statistics of the sample, z �= 1/x, z0 �= 1/x0,
and Zi �= 1/Xi for i = 1� 2� � � � � n. Then Z�k� �= 1/X�k� > Z�k+1� for all k = 1� � � � � n−
1 and we have

P	Z1 ≤ z
 = FZ�z� �� = �z�e−�/z� z ≤ z0�

which implies that for z ≤ z0,

dFZ�z� ��

dz
= �z�e−�/z

(
�

z
+ �

z2

)
�

By the formula (2.5) in Hill (1975), it follows that that the conditional log-likelihood
of 	Z�n−k+1�, � � � � Z�n�
 given Z�n−k+1� < dz ≤ Z�n−k� is proportional to the following:

log�1− FZ�dz� ��
n−k +

k∑
i=1

log
dFZ�z�n−i+1��

dz�n−i+1�

∝ �n− k� log
[
1− �d�

ze
−�/dz

]+ k log �+ �
k∑

i=1

log z�n−i+1�

− �
k∑

i=1

z−1
�n−i+1� +

k∑
i=1

log

(
�

z�n−i+1�

+ �

z2�n−i+1�

)
�

Let xk = 	x�n−k+1� � � � � x�n�
 �=
{
z−1
�n−k+1�� � � � � z

−1
�n�

}
and dx = 1/dz. Using the change

of variable formula, the conditional log-likelihood of Xk = 	X�n−k+1�� � � � � X�n�
 given
X�n−k+1� > dx ≥ X�n−k� is of the form

logLc��� xk� ∝ �n− k� log
[
1− �d−�

x e−�dx
]+ k log �− ��+ 2�

k∑
i=1

log x�n−i+1�

− �
k∑

i=1

x�n−i+1� +
k∑

i=1

log
(
�x�n−i+1� + �x2�n−i+1�

)
� (2.3)

The following result gives the normal equations of the conditional likelihood
problem with the notation introduced above.

Proposition 2.1.

(a) The conditional maximum likelihood estimator (MLE) �̂ = 	�̂� �̂� �̂
 of � = 	�� �� �

given X�n−k+1� > dx ≥ X�n−k� satisfies the normal equations

k∑
i=1

�log dx − logX�n−i+1��+
k∑

i=1

1

�̂+ �̂X�n−i+1�

= 0� (2.4)

k∑
i=1

�dx − X�n−i+1��+
k∑

i=1

X�n−i+1�

�̂+ �̂X�n−i+1�

= 0� (2.5)

�̂ = k

n
d�̂
xe

�̂dx � (2.6)
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1842 Meerschaert et al.

(b) If the above system of normal equations has a solution �̂ with �̂ > 0 and �̂ > 0, then
it is the unique conditional MLE.

Proof. (a) Defining � = �d−�
x e−�dx , the conditional log-likelihood in (2.3) is

simplified to

logLc��� xk� ∝ �n− k� log�1− ��+ k log �− ��+ 2�
k∑

i=1

log x�n−i+1�

− �
k∑

i=1

x�n−i+1� +
k∑

i=1

log
(
�x�n−i+1� + �x2�n−i+1�

)
� (2.7)

The estimates �̂ satisfies the following normal equations obtained by � logLc���xk�
��

�n− k�� log dx

1− �
−

k∑
i=1

log x�n−i+1� +
k∑

i=1

1
�+ �x�n−i+1�

= 0� (2.8)

�n− k��dx

1− �
−

k∑
i=1

x�n−i+1� +
k∑

i=1

x�n−i+1�

�+ �x�n−i+1�

= 0� (2.9)

k− n�

��1− ��
= 0� (2.10)

From (2.10), we have � = k/n from which (2.6) follows. Thus, (2.8) and (2.9) are
simplified to (2.4) and (2.5), respectively. This proves (a).

(b) We plug � = k/n in (2.7) and obtain

logL∗
c��� �� xk� ∝ �n− k� log

(
1− k

n

)
− ��+ 2�

k∑
i=1

log x�n−i+1� − �
k∑

i=1

x�n−i+1�

+
k∑

i=1

log
(
�x�n−i+1� + �x2�n−i+1�

)
+ k log

k

n
+ k� log dx + k�dx�

Taking the second partial derivatives of L∗
c��� �� xk� yields:

�2 logL∗
c��� �� xk�

��2
∝ −

k∑
i=1

1
��+ �x�n−i+1��

2
�

�2 logL∗
c��� �� xk�

��2
∝ −

k∑
i=1

x2�n−i+1�

��+ �x�n−i+1��
2
�

�2 logL∗
c��� �� xk�

����
∝ −

k∑
i=1

x�n−i+1�

��+ �x�n−i+1��
2
�

Observe that �2 logL∗
c �����xk�
��2

< 0 and by Cauchy-Schwarz inequality,

(
�2 logL∗

c��� �� xk�

����

)2

<

(
�2 logL∗

c��� �� xk�

��2

)(
�2 logL∗

c��� �� xk�

��2

)
�
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Parameter Estimation for Tempered Distributions 1843

for all �� �, and xk. Hence, it follows that Lc��� xk� has at most one local maximum,
which, if exists, has to be the unique global maximum. This completes the proof
of (b).

Next, we consider the important question of whether the system of normal Eqs.
(2.4) and (2.5) has a positive solution. In order to answer this question, we introduce
some notation so that we can eliminate the secondary parameter � and focus on the
tail parameter �, which is the main parameter of interest. We start by defining

T1 �=
k∑

i=1

�logX�n−i+1� − log dx� =
k∑

i=1

log �X�n−i+1�/dx�

and

T2 �=
k∑

i=1

�X�n−i+1� − dx��

Observe that both T1 and T2 are positive. Also, for n ≥ 1 and 1 ≤ k ≤ n, define

Gn�k�u� xk� �=
k∑

i=1

x�n−i+1�

kx�n−i+1� + u�T2 − T1x�n−i+1��
− 1� u ∈ �0� k/T1 (2.11)

and note that Gn�k�0� xk� = 0. With these notation we have the following result
which gives the normal equation for �̂.

Proposition 2.2.

(a) For any order statistics xk of a given sample with size n ≥ 1, Gn�k�u� xk� is a well-
defined continuous function of u at every point of the closed interval �0� k/T1.

(b) ��̂� �̂� ∈ �0���× �0��� satisfies the normal Eqs. (2.4) and (2.5) if and only if �̂ ∈
�0� k/T1� satisfies

Gn�k��̂�Xk� = 0 (2.12)

and �̂ = �k− �̂T1�/T2.
(c) There is at most one �̂ ∈ �0� k/T1� satisfying (2.12).

Proof. (a) We just need to verify that Gn�k has no pole in �0� k/T1. This is obvious
because for each i = 1� 2� � � � � k, and u ∈ �0� k/T1,

kx�n−i+1� + u�T2 − T1x�n−i+1�� > �k− uT1� x�n−i+1� > 0�

(b) If ��̂� �̂� ∈ �0���× �0��� satisfies (2.4) and (2.5), then multiplying (2.4) by
�̂ and (2.5) by �̂ and adding we have �̂T1 + �̂T2 = k which gives �̂ = �k− �̂T1�/T2.
Using this we can eliminate �̂ from (2.5) to get (2.12). The positiveness of �̂ implies
�̂ ∈ �0� k/T1�.
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1844 Meerschaert et al.

To prove the converse observe that (2.12) and �̂ = �k− �̂T1�/T2 yields �̂ > 0
and (2.5). Multiplying both sides of (2.5) by �̂, we have

k∑
i=1

�̂X�n−i+1�

�̂+ �̂X�n−i+1�

= �̂T2 = k− �̂T1�

which yields

k∑
i=1

�̂

�̂+ �̂X�n−i+1�

= �̂T1

from which (2.4) follows since �̂ > 0.

(c) This part follows from part (b) of Proposition 2.1. �

The above result is important for two reasons: firstly, it gives normal equations
for the tail parameter (as well as for the parameter �); and secondly it enables us to
establish the existence (with high probability for a large sample), consistency, and
asymptotic normality of the unconditional MLE, the parameter estimates based on
the entire data set.

Remark 2.1. Putting k = n and dx = x̂0 �= X�1� in (2.4)–(2.6) we obtain the normal
equations for the unconditional MLE of � as follows:

n∑
i=1

1

�̂+ �̂Xi

=
n∑

i=1

log
Xi

x̂0
� (2.13)

n∑
i=1

Xi

�̂+ �̂Xi

=
n∑

i=1

�Xi − x̂0�� (2.14)

�̂ = x̂�̂0e
�̂x̂0 � (2.15)

Theorem 2.1.

(a) The probability that the normal Eqs. (2.13)–(2.15) of the unconditional MLE for
� has a unique solution �̂n �= 	�̂n� �̂n� �̂n
 converges to 1 as n → � and the
unconditional MLE �̂n is consistent for �.

(b) �̂n and �̂n are asymptotically jointly normal with asymptotic means � and �,
respectively, and asymptotic variance–covariance matrix 1

n
W−1, where

W �=
(

E
(
��+ �X1�

−2
)

E
(
X1��+ �X1�

−2
)

E
(
X1��+ �X1�

−2
)
E
(
X2

1��+ �X1�
−2
)) � (2.16)

which is invertible by Cauchy-Schwarz inequality.

In order to prove this theorem, we will need the following lemmas.

Lemma 2.1.

(a) E

(
X1

�+ �X1

)
= E�X1 − x0�.
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Parameter Estimation for Tempered Distributions 1845

(b) E

(
1

�+ �X1

)
= E

(
log

X1

x0

)
.

Proof. (a) Using the forms of the density and the survival functions of X1, we have

E

(
X1

�+ �X1

)
=
∫ �

x0

x

�+ �x
�x−�−1e−�x��+ �x�dx

=
∫ �

x0

�x−�e−�xdx

=
∫ �

0
P�X1 > x�dx − x0 = E�X1 − x0��

(b) To prove this observe that

E

(
log

X1

x0

)
=
∫ �

0
P

(
log

X1

x0
> t

)
dt

=
∫ �

0
P �X1 > x0e

t� dt

=
∫ �

0
��x0e

t�−� exp �−�x0e
t�dt�

which by a change of variable x = x0e
t becomes

=
∫ �

x0

�x−�−1e−�xdx

=
∫ �

x0

1
�+ �x

�x−�−1e−�x��+ �x�dx = E

(
1

�+ �X1

)
and this completes the proof.

Lemma 2.2. For x̂0 = X�1� the following hold:

(a)
√
n�x̂0 − x0�

p−→ 0;
(b)

√
n �log x̂0 − log x0�

p−→ 0.

Proof. (a) By the Markov inequality, it is enough to show that E
(√

n�x̂0 − x0�
)→

0 as n → �. Observe that

0 ≤ E
(√

n�x̂0 − x0�
) = ∫ �

0
P
(√

n�x̂0 − x0� > t
)
dt

=
∫ �

0

(
P

(
X1 > x0 +

t√
n

))n

dt

=
∫ �

0

(
1+ t

x0
√
n

)−�n

e−�t
√
ndt

≤
∫ �

0
e−�t

√
ndt = 1

�
√
n
→ 0

as n → � and this finishes the proof of part (a).
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1846 Meerschaert et al.

(b) Part (b) follows from part (a) using the inequality 
 log y − log x0
 ≤ C
y −
x0
 for all y in a neighborhood of x0 and for some C > 0.

Proof of Theorem 2.1. (a) In this case, k = n (see Remark 2.1). For simplicity of
notation, we use Gn to denote Gn�n, i.e.,

Gn�u�Xn� =
1
n

n∑
i=1

Xi

Xi + u
(
T2
n
− T1

n
Xi

) − 1� u ∈ �0� n/T1�

We will eventually show that for all � > 0,

lim
n→�P

[
Gn�u�Xn� = 0 has a solution in ��− �� �+ ��

]
= 1� (2.17)

To prove (2.17), we start by introducing some notation. Define

G̃n�u�Xn� �=
1
n

n∑
i=1

Xi

Xi + u �B − AXi�
− 1�

where, in view of Lemma 2.1,

A �= E

(
1

�+ �X1

)
= E

(
log

X1

x0

)
> 0� and

B �= E

(
X1

�+ �X1

)
= E�X1 − x0� > 0� (2.18)

Define

G�u� �= E

(
X1

X1 + u�B − AX1�

)
− 1� (2.19)

Since

�A+ �B = 1� (2.20)

it follows that 1− uA > 0 for all u in a small enough neighborhood N��� of
�, which yields that G̃n�u�Xn� has no pole and hence is well-defined on N���.
Similarly, G�u� is also well defined on N��� because for all u ∈ N���, −1 < G�u� <

E �X1/uB�− 1 < �.
From (2.20) and (2.18) we obtain

G��� = 0� (2.21)

By a dominated convergence argument, we differentiate under the integral sign in
(2.19) and obtain

G′��� = E

[
�AX1 − B�X1

�X1 + ��B − AX1��
2

]
= E�YZ�
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Parameter Estimation for Tempered Distributions 1847

where

Y = AX1 − B

X1 + ��B − AX1�
and Z = X1

X1 + ��B − AX1�
�

Since Z = 1+ �Y , we have Cov�Y� Z� = �Var�Y� > 0 and E�Y� = �−1 �E�Z�− 1� =
0 by (2.21). This shows

G′��� = E�YZ� > E�Y�E�Z� = 0� (2.22)

By (2.20), we can find a small enough neighborhood N ∗��� ⊆ N��� of � and
� > 0 such that 1− ux > 0 whenever u ∈ N ∗��� and 
x − A
 < �. We will show that
Gn�u�Xn�

p−→ G�u� as n → � for all u ∈ N ∗��� in the following. Since, by the weak
law of large numbers, G̃n�u�Xn�

p−→ G�u� as n → � for all u ∈ N���, it is enough
to show that

Gn�u�Xn�− G̃n�u�Xn� = op�1� (2.23)

for all u ∈ N ∗��� ⊆ N���. Since T1/n
p−→ A and T2/n

p−→ B as n → �, we obtain
using bivariate mean value theorem that

Gn�u�Xn�− G̃n�u�Xn� =
(
T1

n
− A

)
Rn +

(
B − T2

n

)
Sn�

where

Rn =
1
n

n∑
i=1

uX2
i

�Xi + u��n − �nXi��
2

and

Sn =
1
n

n∑
i=1

uXi

�Xi + u��n − �nXi��
2

with �n
p−→ A and �n

p−→ B as n → �. Then in order to show (2.23), it is
enough to establish that both Rn and Sn are tight for all u ∈ N ∗���. Let �n �=
	
�n − A
 < �� �n > B/2
, where � is as above. Then on the event �n, we have for
all u ∈ N ∗���,

Rn ≤
4

uB2

1
n

n∑
i=1

X2
i �

which is tight because n−1∑n
i=1 X

2
i

p−→ E�X2
1� < �. Similarly on �n, for all

u ∈ N ∗���,


Sn
 ≤
4

uB2

1
n

n∑
i=1


Xi
�

which is also tight. Since P��n� → 1 as n → �, the required tightnesses follow
establishing (2.23) and hence Gn�u�Xn�

p−→ G�u� as n → � for all u ∈ N ∗���.
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1848 Meerschaert et al.

We are now all set to complete the proof. By (2.21) and (2.22), we can find
�0 > 0 small enough such that ��− �0� �+ �0� ⊆ N ∗���, G�u� > 0 for all u ∈ ��� �+
�0� and G�u� < 0 for all u ∈ ��− �0� ��. Since Gn�u�Xn�

p−→ G�u� as n → � for all
u ∈ ��− �0� �+ �0�, (2.17) follows for all � ∈ �0� �0� and hence for all � > 0. The
existence of �̂n (with probability tending to 1 as n → �) follows from (2.17) by
continuity of u → Gn�u�Xn�, part (b) of Proposition 2.2 and the observation that
nT−1

1

p−→ A−1 > �+ � for small enough � > 0. The uniqueness is obvious from part
(c) of Proposition 2.2. The consistency of �̂n follows by choosing � > 0 arbitrarily
small in (2.17). The consistency of �̂n is straightforward from the equations �̂n =
�n− �̂nT1�/T2 and (2.20) and finally (2.15) yields the consistency of �̂n.

(b) In order to establish the asymptotic normality of �̂n and �̂n, we start with
the following notation. Define, for s� t� x > 0,

Hn�s� t� x� �=
1
n

n∑
i=1

1
s + tXi

− 1
n

n∑
i=1

log
Xi

x
�

Kn�s� t� x� �=
1
n

n∑
i=1

Xi

s + tXi

− 1
n

n∑
i=1

�Xi − x��

By Remark 2.1, �̂n and �̂n satisfies Hn��̂n� �̂n� x̂0� = Kn��̂n� �̂n� x̂0� = 0. Let �̃n and �̃n

be the unconditional MLE of � and �, respectively, when x0 is known. Then, �̃n
and �̃n satisfies Hn��̃n� �̃n� x0� = Kn��̃n� �̃n� x0� = 0. When x0 is known, the support
of the density (2.2) does not depend on the parameter values and the corresponding
information matrix is given by W as in (2.16). Hence, using the asymptotic
properties of the MLE (see, for example, Shorack, 2000, p. 564), it can easily be
deduced that

√
n
(
�̃n − �� �̃n − �

)
converges in distribution to a bivariate normal

distribution with mean vector 0 and variance–covariance matrix W . To complete
the proof it is enough to show that

√
n��̃n − �̂n�

p−→ 0 and
√
n��̃n − �̂n�

p−→ 0.
To this end, define

H̃n�s� t� �=
1
n

n∑
i=1

1
s + tXi

− E

(
log

X1

x0

)
�

K̃n�s� t� �=
1
n

n∑
i=1

Xi

s + tXi

− E �X1 − x0�

for s� t > 0. Then we have

Un �= √
n
(
H̃n��̂n� �̂n�− H̃n��̃n� �̃n�

)
= √

n
(
H̃n��̂n� �̂n�−Hn��̂n� �̂n� x̂0�

)
+√

n
(
Hn��̃n� �̃n� x0�− H̃n��̃n� �̃n�

)
= √

n

(
1
n

n∑
i=1

log
Xi

x̂0
− E

(
log

X1

x0

))
+√

n

(
E

(
log

X1

x0

)
− 1

n

n∑
i=1

log
Xi

x0

)

= √
n �log x0 − log x̂0�

p−→ 0 (2.24)
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by Lemma 2.2. Similarly, we can show

Vn �=
√
n
(
K̃n��̂n� �̂n�− K̃n��̃n� �̃n�

)
p−→ 0� (2.25)

Using bivariate mean value theorem we have

Un = √
n��̃n − �̂n�

�H̃n

�s
��n� �n�+

√
n��̃n − �̂n�

�H̃n

�t
��n� �n��

=�
√
n��̃n − �̂n�W

�n�
11 +√

n��̃n − �̂n�W
�n�
12 � (2.26)

where �n

p−→ � and �n
p−→ � as n → �, and

Vn = √
n��̃n − �̂n�

�K̃n

�s
��̃n� �̃n�+

√
n��̃n − �̂n�

�K̃n

�t
��̃n� �̃n�

=�
√
n��̃n − �̂n�W

�n�
21 +√

n��̃n − �̂n�W
�n�
22 � (2.27)

where �̃n

p−→ � and �̃n
p−→ � as n → �. Defining W�n� �= �W

�n�
ij �1≤i�j≤2 we get from

Eqs. (2.26) and (2.27) that

√
n��̃n − �̂n� =

W
�n�
22 Un −W

�n�
12 Vn

detW�n�

(2.28)

and using an argument similar to the proof of (2.23), we get that W�n�

p−→ −W ,

where W is as in (2.16). This, in particular, implies detW�n�

p−→ detW > 0 by
Cauchy–Schwarz inequality. Hence, using (2.24), (2.25), and (2.28), it follows that√
n��̃n − �̂n�

p−→ 0. By a similar argument we can also show that
√
n��̃n − �̂n�

p−→ 0
and this completes the proof of Theorem 2.1.

3. Applications

Extensive simulation trials were conducted to validate the estimator developed in
the previous section. For simulated data from the exponentially tempered Pareto
distribution (2.1) the parameter estimates were generally close to the assumed values,
so long as the data range was sufficient to capture both the power law behavior
and the subsequent tempering at the highest values. If the tempering parameter �
is very large, so that the term x−� in (2.1) hardly varies over the data range, then
estimates of � are unreliable. If � is so small that the term e−�x in (2.1) hardly varies
over the data range, then estimates of � are widely variable. In either case, a simpler
model (exponential or power law) is indicated. Naturally the tempered Pareto model
(2.1) is only appropriate when both terms are significant. This can be seen in a
log-log plot of data versus ranks, where a straight line eventually falls away due
to tempering. If the data follows a straight line over the entire tail, then a simpler
Pareto model is indicated. If the data follows a straight line on a semi-log plot, then
an exponential model is appropriate. Several illustrative examples follow.

Figure 1 illustrates the behavior of the tail estimate �̂ from Proposition 2.2
as a function of the number k of upper order statistics used. The simulated data
comes from the tempered Pareto distribution (2.1) with lower limit x0 = 1, tail
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1850 Meerschaert et al.

Figure 1. Behavior of � estimate as a function of the number k of upper-order statistics
used.

parameter � = 4, and tempering parameter � = 0�5. Simulation was performed using
a standard rejection method. It is apparent that, once the number k of upper-order
statistics used reaches a few percent of the total sample size of n = 10� 000, the �

estimate settles down to a reasonable value. In practice, any sufficiently large value
of k will give a reasonable fit for this data, since the entire distribution follows a
tempered Pareto.

Figure 2 shows a histogram and normal quantile–quantile plot for � estimates
obtained from 500 replications of the same tempered Pareto simulation. In this case
we set � = 2, � = 0�5, and x0 = 1. The sample size is n = 1�000 and we use the k =
500 largest observations to estimate the distribution parameters. The corresponding
plots are similar for various values of the parameters. We conclude that the
sampling distribution of the parameters is reasonably well approximated by a

Figure 2. Evidence of normal sampling distribution for � estimates.
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Parameter Estimation for Tempered Distributions 1851

normal distribution. Note that the asymptotic normality of the parameter estimates
based on the entire data set was established in Theorem 2.1. The asymptotic theory
for the general case k < n is much more difficult, since the usual second order
regular variation method for Hill-type estimators is not applicable here, due to the
exponential tempering.

Tempered stable laws (Rosiński, 2007) have power law tails modified by
exponential tempering. Therefore, the exponentially tempered Pareto model (2.1)
gives a simple way to approximate the tail behavior, and estimate the parameters.
The simple and efficient exponential rejection method of Baeumer and Meerschaert
(2010) was used to simulate tempered stable random variates. Figure 3 shows
the upper tail of simulated data following a tempered stable distribution. The
largest k = 100 of the n = 1�000 order statistics are plotted. The underlying stable
distribution has tail parameter � = 1�5, skewness 1, mean 0, and scale � = 4 in
the usual parameterization (Samorodnitsky and Taqqu, 1994), and the tempering
parameter is � = 0�01. Figure 3 is a log-log plot of the sorted data X�i� vs. rank
�n− i�/n exhibiting the power-law tail as a straight line that eventually falls off due
to tempering. It is apparent that the tempered Pareto model gives a reasonable fit
to the more complicated tempered stable distribution, which has no closed form.
Similar results were obtained for other values of the parameters. For smaller values
of � the data plot more closely resembles a straight line (power law tail).

Next, we apply the conditional MLE developed in this article to several real
data sets. First we consider a data set from hydrology. Hydraulic conductivity K
measures the ability of water to pass through a porous medium. This is a function
of porosity (percent of the material consisting of pore space) as well as connectivity.
We examine a data set with n = 2� 618 observations of K collected from boreholes
at the MAcroDispersion Experiment (MADE) site on an Air Force base near
Columbus MS. The data set has been analyzed by several researchers, see for
example Benson et al. (2001). Figure 4 shows a log-log plot of the largest 10% of the
data, with the best-fitting tempered Pareto model (2.1), where the parameters were
fit using Proposition 2.2. Absolute values of K were modeled in order to combine

Figure 3. Tempered Pareto fit to the upper tail of simulated tempered stable data.
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1852 Meerschaert et al.

Figure 4. Tempered Pareto model for hydraulic conductivity data.

the heavy tails at both extremes. The largest k = 262 values of the data were used
(approximately 10%). It is apparent that the tempered Pareto model gives a good fit
to the data. Since the data deviates from a straight line on this log-log plot, a simple
Pareto model would be inadequate.

Figure 5 shows the constraint function Gn�k�u� xk� from Proposition 2.2 for the
same data set, as a function of u. The vertical line on the graph is the upper bound
of u = k/T1. The constraint function has roots at u = 0 (by definition) and at u =
�̂ = 0�6171 which is the estimate of the tail parameter. In view of Proposition 2.2,
this is the unique solution to the normal equations. The remaining parameter

Figure 5. Constraint function Gn�k�u� xk� for the hydraulic conductivity data, showing
unique positive root.
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Parameter Estimation for Tempered Distributions 1853

Figure 6. Tempered Pareto model for AMZN stock daily price returns.

estimates are �̂ = 5�2397 and �̂ = 0�0187. This is a relatively heavy tail with a strong
tempering. For any value of k in the range 100 < k < 750, the tempered Pareto fit to
the k largest order statistics of the MADE data appears similar to Fig. 4. However,
the individual parameter values �̂� �̂� �̂ vary significantly with k in that range.

Figure 6 fits a tempered Pareto model to absolute log returns in the daily price
of stock for Amazon, Inc. The ticker symbol is AMZN. The data ranges from
January 1, 1998 to June 30, 2003 (n = 1� 378). Based on the upper 10% of the data
k = 138, the best fitting parameter values (conditional MLE from Proposition 2.2)
are �̂ = 0�578, �̂ = 0�281, and �̂ = 0�567. The data shows a classic power law shape,

Figure 7. Tempered Pareto model for daily precipitation data.
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1854 Meerschaert et al.

linear on this log-log plot, but eventually falls off at the largest values. This indicates
an opportunity to improve prediction using a tempered model.

Figure 7 shows the tempered Pareto fit to daily precipitation data at Tombstone
AZ between July 1, 1893 and December 31, 2001. The fit is based on the largest
k = 2� 608 observations, which constitutes the upper half of the non zero data. The
fitted parameters were �̂ = 0�212, �̂ = 0�00964, and �̂ = 1�56. The data tail is clearly
lighter than a pure power law model (straight line) but is fit well by the tempered
model. A semi-log plot (not shown) was examined to rule out a simpler exponential
fit.

The same three data sets were also analyzed in Aban et al. (2006) and fit to
a truncated Pareto model. In both papers, a log-log plot of the fitted distribution
tail shows a straight line that eventually curves downward, matching the data. In
our view, the choice between tempered or truncated Pareto in these cases should
be based on modeling issues. If the practitioner believes that a fixed upper bound
is reasonable, then the truncated Pareto is suitable. Otherwise, a tempered Pareto
can offer an attractive alternative, and the fitted parameter � can provide a useful
quantification of the tempering effect. For example, the K data in Fig. 5 comes from
an instrument that effectively averages hydraulic conductivity, and the parameter �
controls the extent to which averaging tempers the largest K values. For additional
discussion, see Liu et al. (2009). Note that the fitted � values in such data sets
will typically be smaller (indicating a heavier tail) than Hill’s estimator. This is
because a straight line (power law) fit to the data in Figs. 5–7 for a pure Pareto
will require a steeper slope. This provides one explanation for the observation that
Hill’s estimator can often over-estimate the tail parameter � in practice. For a nice
discussion with applications to finance, see McCulloch (1997). We also note that a
simple test for tempering/truncation is provided by Remark 5 in Aban et al. (2006).
That test uses Hill’s estimator and extreme value theory to reject the null hypothesis
of a pure Pareto with approximate p-value given by p = exp�−n�X�1�/x0�

−��. For
the data sets in Figs. 5–7 the test yields p < 0�02, see Aban et al. (2006).

We conclude this section with some practical advice for tail modeling. If a
data set exhibits tails that are heavier than Gaussian (e.g., if there are numerous
outliers), then it makes sense to consider alternative models. Plotting order statistics
of the data X�i� vs. ranks �n− i�/n gives a simple method for initial model selection.
For signed data, it is often advisable to begin by examining the absolute values.
If the points corresponding to the largest data values follow a straight line on
a log-log plot, this indicates a power-law probability tail. If a semi-log plot of
the same data appears to follow a straight line, this suggests an exponential tail
(e.g., a Laplace model, if the data distribution appears symmetric). Upward or
downward curvature on those plots indicates a heavier or lighter tail than the pure
power-law or exponential. For example, the downward curvature in Fig. 7 indicates
that the data tail is lighter than a power-law. A semi-log plot of the same data
(not shown) produced an upward curving shape, indicating that the data tail is
heavier than an exponential. Then it makes sense to consider an intermediate model
with “semi-heavy” tails, for which the methods of this article may be useful. Some
additional discussion of these intermediate models may be found in Chakrabarty
and Samorodnitsky (2009).
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Parameter Estimation for Tempered Distributions 1855

4. Conclusions

Tempered Pareto distributions are useful to model heavy-tailed data, in cases where
a pure power law places too much probability mass on the extreme tail. The
simple form of this probability law facilitates the development of a maximum
likelihood estimator (MLE) for the distribution parameters, accomplished in this
article. Those estimates are proven to be consistent and asymptotically normal.
In some practical applications, including the tempered stable model, it is only the
upper tail of the data that follows a tempered power law. For that reason, we
also develop a conditional MLE in this article, based on the upper tail of the
data. The conditional MLE is easily computable. A detailed simulation study was
performed to validate the performance of the MLE. In cases where the tempered
Pareto model would be appropriate, the conditional MLE is reasonably accurate,
and its sampling distribution appears to be well approximated by a normal law.
Tempered stable laws are useful models in geophysics, but parameter estimation for
this model is an open problem. Simulation demonstrates that the tempered Pareto
model is a reasonable approximation, for which efficient parameter estimation can
be accomplished, via the methods of this article. Finally, data sets from hydrology,
finance, and atmospheric science are examined. In each case, the methods of this
article are used to fit a reasonable and predictive tempered Pareto model.
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