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Anisotropic fractional diffusion tensor
imaging

Mark M Meerschaert1, Richard L Magin2 and Allen Q Ye2

Abstract

Traditional diffusion tensor imaging (DTI) maps brain structure by fitting a diffusion model to the magnitude of the

electrical signal acquired in magnetic resonance imaging (MRI). Fractional DTI employs anomalous diffusion models to

obtain a better fit to real MRI data, which can exhibit anomalous diffusion in both time and space. In this paper, we

describe the challenge of developing and employing anisotropic fractional diffusion models for DTI. Since anisotropy is

clearly present in the three-dimensional MRI signal response, such models hold great promise for improving brain

imaging. We then propose some candidate models, based on stochastic theory.
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1. Introduction

The structural complexity of the human brain is
manifest at each level of functional organization:
synapses, axons, neurons, cortical layers, fiber
tracts, and cerebral convolutions (gyri and sulci)
(Schaltenbrand and Wahren, 1998). Magnetic reson-
ance imaging (MRI) in general, and diffusion tensor
imaging (DTI) in particular, exhibit contrast that
reflects tissue heterogeneity and anisotropy in both
the white and the gray matter (Mori, 2006). The
overall goal of these imaging modalities is to provide
spatial maps of structural features that correspond
to the specific neural networks that provide the
basis for sensory awareness, memory, cognition and
coordinated movement (Le Bihan, 1995). Disruption
of these neural pathways is a hallmark of trauma,
stroke, tumors and degenerative disease. Although
MRI and DTI are useful clinical tools for diagnosis
and treatment monitoring, their typical voxel reso-
lution (1mm3) is orders of magnitude above that
of a single cell (10 mm3) (Johansen-Berg and
Behrens, 2009). Therefore there is a need to probe
sub-voxel structure to improve both the sensitivity
and the specificity of diagnosis. Since water move-
ment within the voxel leads to MR signal attenu-
ation that reflects collisions with molecules,
membranes, and axonal fibers (Haacke et al., 1999)
we anticipate that stochastic models of diffusion

(isotropic, anisotropic, restricted, hindered,
Gaussian, nonGaussian) can be used to encode
sub-millimeter structure.

2. Fractional DTI

The connection between diffusion and magnetic reson-
ance for water protons is described by the Bloch–
Torrey equation (Torrey, 1956; Haacke et al., 1999;
Callaghan, 2011). Solving the Bloch–Torrey equation
for an anisotropic material, such as brain white
matter (WM), provides the basis for DTI (Le Bihan,
1995). In standard DTI, a pair of trapezoidal gradient
pulses is added to the MR imaging sequence (Mori,
2006). The acquired diffusion-weighted (DW) signal S
decays in a manner dependent upon the diffusion gra-
dient strength, G, gradient duration, �, and the time
interval, �, between gradient pulses. The resultant
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decay can be modeled (Haacke et al., 1999) by the
equation

S ¼ S0 expð�ð�G�Þ
2g � Dg � ð�� �=3ÞÞ ð2:1Þ

where S0 is the initial signal intensity, � is the gyromag-
netic ratio (42.57MHz/T for water protons), D is a
symmetric positive-definite matrix that defines the dif-
fusion tensor, G¼Gg where g is a unit vector that
points in the direction of the applied magnetic field
gradient G. The eigenvector corresponding to the lar-
gest eigenvalue of the matrix D points in the direction
of WM fibers, since the water is maximally dispersed in
this direction. A single parameter b describes the overall
diffusion sensitivity of a sequence, and for a pair of
identical rectangular gradient pulses (height G and
width �) we find b¼ (�G�)2(�� �/3) (Haacke et al.,
1999). Then (2.1) reduces to

Sðb, gÞ ¼ S0 expð�bg �DgÞ ð2:2Þ

If the gradient pulses are of short duration (Callaghan,
2011), one can view (2.2) as the Fourier transform of
the solution to a traditional diffusion equation, and this
observation provides the essential link between
MRI and diffusion: let p(x, t) be the probability density
of a diffusing particle, which solves the diffusion
equation

@tpðx, tÞ ¼ r �Drpðx, tÞ ð2:3Þ

with a point source initial condition p(x, 0)¼ �(x).
Given a suitable function f(x), define its Fourier trans-
form f̂ ðkÞ ¼

R
e�ik�xf ðxÞdx, and recall that ðikÞf̂ ðkÞ is

the Fourier transform of rf(x) (Meerschaert and
Sikorskii, 2012, p. 150). Take Fourier transforms
in (2.3) to get the ordinary differential equation
@tp̂ðk, tÞ ¼ ðikÞ �DðikÞp̂ðk, tÞ with initial condition p̂(k,
0)� 1. Obviously the solution to this simple differential
equation is p̂(k, t)¼ exp(�tk �Dk), which is the same
form as (2.2) with b¼ tkkk2 and g¼ k/kkk.

Since D is symmetric and positive definite, there is an
orthonormal basis of eigenvectors v1, . . . , vd with cor-
responding eigenvalues ai such that Dvi¼ aivi for
1� i� d. For any k2R

d we can write k¼
Pd

j¼1 kjvj
where kj¼ k � vj. Then vi �Dvj¼ 0 if j 6¼ i and vi �Dvi¼
ai. It follows easily that

p̂ðk, tÞ ¼ exp �t
Xd
i¼1

aik
2
i

" #
ð2:4Þ

The level sets of the function k� p̂ðk, tÞ are ellipsoids
a1k

2
1 þ � � � þ adk

2
d ¼ C whose principal axes are the

eigenvectors v1, . . . , vd. The level sets are widest in the

direction of the eigenvector with the smallest eigen-
value. Figure 1 shows the level sets of this function at
time t¼ 1 in the case where

D ¼
1=2 0

0 2

� �
ð2:5Þ

in d¼ 2 dimensions. In this case, the eigenvectors of D
are the coordinate axes, which give the major and
minor axes of the elliptical level sets. As t increases,
the level sets spread out at the rate t1/2, which is the
hallmark of traditional diffusion. This spreading rate
can easily be verified by noting that p̂(k, t)¼ (t1/2k, 1).
This solution exhibits mild isotropy, in which the solu-
tion spreading rate is radially symmetric, but the level
sets are not. For complete details, see Meerschaert and
Sikorskii (2012, Section 6.1).

In many applications (Metzler and Klafter, 2000,
2004; Mainardi, 2010; Meerschaert and Sikorskii,
2012), a diffusing front spreads at a different rate
than the t1/2 predicted by the traditional diffusion equa-
tion. This can be captured by introducing fractional
derivatives into the diffusion model. For simplicity, let
us focus on the isotropic diffusion model where D¼DI

for some positive constant D, and where I is the d� d
identity matrix. Then the diffusion equation (2.3)
reduces to @tp(x, t)¼DDp(x, t), and its point source
solution has Fourier transform (k, t)¼ exp(�Dtkkk2)
where kkk2¼ k � k. The level sets of the solution p(x, t)
are circles in two dimensions, or spheres in three
dimensions.

The fractional Laplacian is an isotropic space-
fractional derivative, defined so that ��/2f(x) has
Fourier transform �kkk�f̂(k) with 0<�< 2.

k1

k2

−1

0

1

−1 0 1

Figure 1. Level sets of the Fourier solution (2.4) to the trad-

itional diffusion equation in d¼ 2 dimensions with diffusion

tensor (2.5) at b¼ 1.
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This reduces to the traditional Laplacian when �¼ 2.
The isotropic space-fractional diffusion equation

@tpðx, tÞ ¼ D��=2pðx, tÞ ð2:6Þ

has Fourier transform @tp̂(k, t)¼�Dkkk
�(k, t), whose

point source solution is p̂(k, t)¼ exp(�Dtkkk�). Since
(k, t)¼ p̂(t1/�k, 1), solutions spread like t1/� in this
model, a phenomenon called superdiffusion. This
model is also isotropic, which follows from the fact
that p̂(k, t) only depends on kkk.

3. Fractional Bloch–Torrey equation

The traditional Bloch–Torrey equation

@tS ¼ �ði� x � GÞSþ r �DrS ð3:1Þ

describes magnetization S(x, t) in a time-varying gradi-
ent G(t). Assume a solution S¼S0Ae

�ix �L where S0> 0
is a constant, and A, L are functions of t with

L :¼ �

Z t

0

Gð�Þd�

Substitute the solution into (3.1) to see that

A0

A
S� ðix � �GÞS ¼ �i�ðx � GÞSþ r �DrS

Compute r �DrS¼L �DLS: then it follows that the
solution with A(0)¼ 1 satisfies

AðtÞ ¼ exp �

Z t

0

Lð�Þ �DLð�Þd�

� �

for any t> 0. For a specified signal, it is then straight-
forward to compute the solution to the Bloch–Torrey
equation (3.1). The Stejskal–Tanner pulse sequence
consists of two rectangular functions of length � sepa-
rated by time �, with amplitude G and direction g.
Then one can easily compute the solution (2.1), which
reduces to (2.2) with b¼ (�G�)2(�� �/3).

The simplest space-fractional Bloch–Torrey equation

@tS ¼ �ði�x � GÞSþD0�
�=2S ð3:2Þ

can be solved by a similar method. Assume the solution
S¼S0Ae

�ix�L as before, and compute

A0

A
S ¼ D0�

�=2S

Next compute the fractional Laplacian of the solution
using Fourier transforms. It follows from the Fourier

inversion formula f(x)¼ (2�)�d
R
eik � x(k)dk that the

function f(x)¼ e�ia�x has the Fourier transform f̂(k)¼
(2�)d�(kþ a) using the Dirac delta function. Then
D0�

�/2S is the inverse Fourier transform of
�D0kkk

�Ŝ(k, t), which is evidently �D0kLk
�S. Hence

we have

AðtÞ ¼ exp �D0

Z t

0

kLð�Þk� d�

� �

in this case. For a Stejskal–Tanner pulse sequence, the
solution reduces to

S ¼ S0 exp �D0ð�G�Þ
� ��

�� 1

�þ 1
�

� �� �
ð3:3Þ

where �> 0 is a constant; see Magin et al. (2008) for
more details. If we take D¼D0��D0(�� 1)�/(�þ 1)
and b¼ �G�, this reduces to the stretched exponential
form

S ¼ S0 expð�b
�DÞ ð3:4Þ

where 0<�< 2.

4. The need for anisotropic fractional
DTI models

In MRI experiments, it is often observed (Bennett et al.,
2003; Hall and Barrick, 2008; Ingo et al., 2014) that the
acquired DW signal S follows the stretched exponential
model (3.4) for high b values. In applications to brain
imaging, it is also found that the parameter � varies
with direction: an indication of anisotropy (Hall and
Barrick, 2012). For example, in one experiment (Ingo
et al., 2014), formalin-fixed brains from normal, adult
rats were soaked in Fluorinert to reduce magnetic sus-
ceptibility and imaged ex vivo in a Bruker 750MHz
spectrometer (17.6 T, 89mm bore). A pulsed gradient
stimulated echo diffusion sequence was used with pulse
repetition time of 2 s, echo time of 28ms, in-plane reso-
lution of 190 mm and slice thickness of 1mm. The signal
S was acquired in six different vector directions
g1¼ (0, 0, 1)T, g2¼ (0.89, 0, 0.45)T, g3¼ (0.28, 0.09,
0.45)T, g4¼ (�0.72, �0.53, 0.45)T, g5¼ (0.28, �0.85,
0.45)T, and g6¼ (�0.72, �0.53, 0.45)T with 10 different
b values ranging up to a maximum value of
26,190 s/mm2. In this experiment, � (17.5ms) and �
(3.5ms) were kept constant and G was scaled to
increase with the b value. Under these conditions, the
short-pulse condition ��� holds.

Next, we validate the stretched exponential model
(3.4) using linear regression. Taking logs in the

Meerschaert et al. 2213
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model yields ln(S/S0)¼�Db�, and taking logs again
produces

s :¼ lnð� lnðS=S0ÞÞ ¼ lnDþ � ln b ð4:1Þ

Hence, a plot of s versus ln b should produce a straight
line with slope �. Figure 2 shows this plot for each of
the directions g1, . . . , g6 along with the best-fitting
straight line model, found using simple linear regres-
sion. It is apparent from these graphs that the relation
between the acquired signals S and b follows the
stretched exponential model (3.4).

To illustrate the anisotropic nature of DTI, we com-
pare the slopes � from the straight line fit of s versus ln
b for each direction j¼ 1, 2, . . . , 6. The results are sum-
marized in Table 1. It is clear that the power law slope
depends on direction. For example, the slope for direc-
tion 4 (corresponding to direction vector g4) is
�¼ 0.379 �0.023 which is significantly different from
the �¼ 0.294 value in direction 2. To obtain a formal
confidence interval for these � values, one can use the
standard t-interval from linear regression theory. Since
the sample size is n¼ 7, the 95% confidence interval is
�� 2.571 SE where � is the estimate in the first row of

Table 1, SE is the standard error in the second row of
Table 1, and 2.571 is the 97.5th percentile of the stand-
ard t distribution with n� 2¼ 5 degrees of freedom.
For example, we are 95% confident that the correct �
value for direction 1 lies in the interval (0.300, 0.336).

Previous work has shown � to be a biomarker that
reflects tissue heterogeneity (Bennett et al., 2003;
Ozarslan and Mareci, 2003; Hall and Barrick, 2008;
Magin et al., 2008; Zhou et al., 2010; Palombo et al.,
2011; Ingo et al., 2014; Magin et al., 2014). In particu-
lar, the stretched exponential parameter � exhibits a
lower value in more tortuous porous materials, and
more heterogeneous tissue. Since the heterogeneity par-
ameter � also varies with direction, it would be advan-
tageous to include anisotropy in the fractional DTI
model, to capture this effect.

Figure 2. Plot of s versus ln b in six different directions, to validate the stretched exponential model (4.1).

Table 1. Best-fit � values via linear regression on the data in

Figure 2 for six different directions, demonstrating anisotropy.

Direction 1 2 3 4 5 6

� 0.318 0.294 0.303 0.379 0.305 0.362

Standard error 0.007 0.014 0.022 0.023 0.018 0.018
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5. Anisotropic fractional diffusion
models for DTI

In the previous section, we demonstrated that the
anisotropy parameter � in a DTI model can vary with
direction. An open challenge in MRI theory is to
develop a suitable anisotropic model for fractional dif-
fusion that captures this anisotropy, and can be fit to
data acquired within the constraints of a clinical MR
scan. The scan generates multidimensional data that
must be quickly and accurately presented to the radi-
ologist for analysis. Fractional order models are
attractive because they capture tissue complexity in a
small set of parameters. Within the continuous time
random walk (CTRW) paradigm, for example, the
random motion of water is hindered or restricted by
tissue heterogeneity that alters the waiting times and
jump increments in a manner simply expressed by
power laws (Metzler and Klafter, 2000, 2004;
Meerschaert and Sikorskii, 2012). In the remainder of
this paper, we survey existing anisotropic models for
fractional DTI, and also discuss some potential new
models.

5.1. Anisotropic fractional diffusion

A recent paper of Hanyga and Magin (2014) proposed
a new space-fractional diffusion model that seems well-
suited for applications to DTI. The model is

@tpðx, tÞ ¼ Qpðx, tÞ ð5:1Þ

where the anisotropic fractional derivative operator Q
is defined in terms of Fourier transforms. Define

Q̂ðkÞ ¼ �

Z
y2�

jy � kj�ðyÞm ðdyÞ ð5:2Þ

where �¼ {y2R
d : kyk¼ 1} is the unit sphere in d-

dimensional Euclidean space, m(dy) is a finite Borel
measure on the sphere, and �(y) is a symmetric function
�(y)¼ �(�y) on the sphere that takes values in the
interval (0, 2). Then one definesQf(x) to be the function
with Fourier transform Q̂(k)f̂(k). Hanyga and Magin
(2014) continue to prove that solutions to (5.1)
remain nonnegative for a nonnegative initial condition
p(x, 0)¼ f(x)	 0. Next we provide an alternative proof
of this fact, by showing that the solutions to (5.1) are
the probability densities of a Lévy process (Sato, 1999;
Meerschaert and Sikorskii, 2012, Section 4.3).

Proposition 5.1. There exists a Lévy process X(t) that
satisfies

p̂ðk, tÞ ¼ E½e�ik�XðtÞ
 ¼ etQ̂ðkÞ ð5:3Þ

for all k2R
d and all t	 0, for any symmetric index

function �: �! (0, 2) and any finite Borel measure
m(dy) on the unit sphere.

Proof. Any Lévy process {X(t) : t	 0} is determined by
the distribution of X:¼X(1), which can be specified
using the Lévy representation (Meerschaert and
Scheffler, 2001, Theorem 3.1.11): a random vector X

on R
d is infinitely divisible if and only if we can write

E[e�ik �X]¼ exp(Q̂(k)), where

Q̂ðkÞ ¼ �ia � kþ
1

2
k � Ak

�

Z
x 6¼0

eik�x � 1�
ik � x

1þ kxk2

� �
� ðdxÞ ð5:4Þ

for a2R
d, A a nonnegative definite d� d matrix, and �

a �-finite Borel measure on R
d\{0} such that

Z
x 6¼0

minf1, kxk2g� ðdxÞ51 ð5:5Þ

The triple [a,A,�] is unique. Next we note that, in the
one-dimensional case d¼ 1, there exists an infinitely div-
isible random variable X such that E[e�ikX]¼ exp(�jkj�)
for any 0<�< 2, and in this case, it follows from
Meerschaert and Scheffler (2001, Lemma 7.3.10) (for
0<�< 1), Meerschaert and Scheffler (2001, Lemma
7.3.11) (for 1<�< 2), and Meerschaert and Scheffler
(2001, Lemma 7.3.12) (for �¼ 1) that this random vari-
able has Lévy representation [0, 0, ��] where

��ðdxÞ ¼
C�
2
�jxj���1dx ð5:6Þ

with

C� ¼
1� �

�ð2� �Þ cosð��=2Þ
for 05�5 1 or 15�5 2

ð5:7Þ

and C1¼ 2/�. Then we have

jkj� ¼

Z
x 6¼0

eikx � 1�
ikx

1þ x2

� �
�� ðdxÞ ð5:8Þ

for each 0<�< 2. Next, define an infinitely divisible
random vector X on R

d (e.g. let d¼ 3) by specifying
its Lévy representation [0, 0, �] where x¼ ry in polar
coordinates r> 0 and kyk¼ 1, and

�ðdxÞ ¼ �ðdr, dyÞ ¼ C�ðyÞ�ðyÞr
��ðyÞ�1dr �mðdyÞ ð5:9Þ

where m(dy)¼ [m(dy)þm(�dy)]/2 is the symmetrized
version of the measure m(dy). Then the random

Meerschaert et al. 2215
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vector X has Lévy representation E[e�ik �X]¼ exp(Q̂(k)),
where

�Q̂ðkÞ ¼

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

� C�ðyÞ�ðyÞr
��ðyÞ�1 dr �mðdyÞ

¼

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞr��ðyÞ�1 dr mðdyÞ

þ

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞr��ðyÞ�1 dr mð�dyÞ

¼

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ
2

�ðyÞr��ðyÞ�1 dr mðdyÞ

þ

Z
y2�

Z 1
0

e�irk�y � 1�
�irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞr��ðyÞ�1 dr mðdyÞ

¼

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞr��ðyÞ�1 dr mðdyÞ

þ

Z
y2�

Z 0

�1

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞjrj��ðyÞ�1 dr mðdyÞ

¼

Z
y2�

Z
r6¼0

eirðk�yÞ � 1�
irðk � yÞ

1þ r2

� �

�
C�ðyÞ

2
�ðyÞjrj��ðyÞ�1 dr mðdyÞ

þ

Z
y2�

Z
r6¼0

irðk � yÞ

1þ r2
�

irðk � yÞ

1þ r2ðk � yÞ2

� �

�
C�ðyÞ
2

�ðyÞjrj��ðyÞ�1 dr mðdyÞ

¼

Z
y2�

jk � yj�ðyÞ mðdyÞ

ð5:10Þ

in view of (5.8), since the integral in the next to last line
equals zero by symmetry. This shows that (5.3) holds.
Since C� is a bounded continuous function on the inter-
val 0<�< 2, it follows easily that (5.5) holds, so (5.9) is
a Lévy measure. «

We say that a random vector X is full if it is not
supported on a lower-dimensional hyperplane, that is,

if there is no unit vector y2� such that X � y¼ 0 with
probability one.

Proposition 5.2. If
R
y2�jy �wj

�(y)m(dy)> 0 for every
w2�, and �(y)	�0> 0 for all y2�, then the infinitely
divisible random variable X(t) in Proposition 5.1 is full,
and has a density p(x, t) with respect to Lebesgue meas-
ure for any t> 0.

Proof. Define p̂ðk; tÞ ¼ etQ̂ðkÞ for all k2R
d and all t	 0.

The Fourier inversion theorem (Meerschaert and
Scheffler, 2001, Theorem 1.3.7) implies that

pðx, tÞ ¼ ð2�Þ�d
Z

eik�xp̂ðk, tÞ dk ð5:11Þ

is the function with Fourier transform p̂(k, t), so long as
the integral

R
jp̂(k, t)jdk<1. Since Q̂(k)� 0 for any

k2R
d, it follows that 0� p̂(k, t)� 1 for all k2R

d

and all t	 0. Hence it suffices to check thatR
kkk	 1jp̂(k, t)jdk<1. Adopt the polar coordinates

k¼ 	w where 	> 0 and kwk¼ 1. Since �(y)	�0> 0
for all y2�, we have

�Q̂ðkÞ ¼

Z
y2�

	�ðyÞjy �wj�ðyÞmðdyÞ 	 	�0
Z
y2�

jy �wj�ðyÞmðdyÞ

for all kkk	 1. It follows from the Dominated
Convergence Theorem (Rudin, 1976, Theorem 11.32)
that g(w) :¼

R
y2�jy �wj

�(y)m(dy) is a continuous func-
tion on the compact set �, and since g(w)> 0 by
assumption, it follows that g(w)	 g0> 0 for all w2�.
Then �Q̂ðkÞ 	 g0	

�0 for all kkk	 1. Then we have

Z
kkk	1

jp̂ðk, tÞj dk �

Z
w2�

Z 1
0

e�g0	
�0
d	 mðdwÞ � C0mð�Þ

where C0 ¼
R1
0 e�g0	

�0 d	51. This shows that (5.11)
holds. If X(t) were not full, then we would have
X(t) �w¼ 0 for some unit vector w, and then we
would have E(e�iw �X(t))¼ etQ̂(w)

¼ 1, hence Q̂(w)¼ 0.
But this contradicts �Q̂(k)	 g0	

�0, and so X(t) is full
for every t> 0. «

Remark 5.3. Since p(x, t) is a probability density for
any t> 0, it follows that p(x, t)	 0 for all x2R

d and
all t> 0. With some additional work, it should be pos-
sible to show that p(x, t)> 0 for all x2R

d and all t> 0.

Remark 5.4. It should not be hard to extend these
arguments to the asymmetric case

Q̂ðkÞ ¼

Z
y2�

ðy � ikÞ�ðyÞmðdyÞ ð5:12Þ
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which reduces to the case (5.2) if the measure m(dy) is
symmetric, that is, m(dy)¼m(�dy). One just has to be a
bit careful about the centering constants.

Remark 5.5. A variety of stable-like processes have been
considered in the literature, but the process constructed
in Proposition 5.1 seems new. Bass (1988) considers a
stable-like process in one dimension with jump intensity

�ðx, dyÞ ¼
C�ðxÞ

2
�j yj��ðxÞ�1dy

which behaves locally like an �-stable process whose
index varies in space. Bass and Tang (2009) consider
a d-dimensional stable-like process with jump
intensity �(x, dy)¼A(x,y)kyk���ddy where A(x,y)> 0
is bounded away from zero and infinity. That model
exhibits mild anisotropy, as opposed to the strong
anisotropy in the Hanyga model. It would certainly
be interesting to explore the mathematical properties
of the Lévy process in Proposition 5.1 in more detail.

5.2. Anisotropic fractional Bloch–Torrey equation

Here we propose a new anisotropic fractional Bloch–
Torrey equation

@tS ¼ �ði�x � GÞSþD0QS ð5:13Þ

which can be solved by the method introduced
in Section 3. Assume the same solution form
S¼S0Ae

�ix �L as before, and compute

A0

A
S ¼ D0Q

Next compute Q̂S using Fourier transforms. Recall that
the function f(x)¼ e�ia � x has Fourier transform f̂ ðkÞ ¼
(2�)d�(kþ a). Then note that D0Q̂S has Fourier
transform

D0Q̂ðkÞŜðk, tÞ ¼ �D0

Z
y2�

jy � kj�ðyÞmðdyÞ Ŝðk, tÞ

Inverting as in Section 3, it follows that

AðtÞ ¼ exp �D0

Z t

0

Z
y2�

jy � Lð�Þj�ðyÞmðdyÞ d�

� �

in this case. For a Stejskal–Tanner pulse sequence, the
solution reduces to

S ¼ S0 exp �D0

Z
y2�

j�G� � yj�ðyÞ ��
�ðyÞ � 1

�ðyÞ þ 1
�

� �
mðdyÞ

�
ð5:14Þ

If the mixing measure m(dy) is concentrated on d point
masses on an arbitrary set of coordinate axes v1, . . . , vd
which need not be orthogonal, this reduces to a model
recently proposed and tested by GadElkarim et al.
(2013). That model has the solution

S ¼ S0 exp �
Xd
j¼1

Dj j�G� � vj j
�j ��

�j � 1

�j þ 1
�

� �" #

ð5:15Þ

where Dj¼D0m(vj), which agrees with GadElkarim
et al. (2013, equation (20)) up to an obvious change
in notation.

Remark 5.6. In practical applications, an open chal-
lenge is to fit the model (5.14) to MRI data as in
Figure 2. The statistical problem is under-specified,
since there are an infinite number of choices for �(y)
and m(dy)¼M(y)dy that will agree with any finite data
set. One reasonable approach is to fit the simplest func-
tions �(y) and M(y) using spherical harmonics in d¼ 3
dimensions. For example, the data in Figure 2 can be fit
using six spherical harmonics. The resulting functions
�(y) and M(y) will agree exactly with the measured
values of �(y) and the corresponding weights M(y)
obtained from the regression lines in Figure 2, and
smoothly interpolate in between.

6. Time-fractional models for DTI

Here we explore the challenge of developing effective
time-fractional models for DTI. These models can be
useful if the data exhibit a power law decay in S as a
function of b.

Anomalous subdiffusion can be modeled using a
fractional derivative in time. Given a function f(t)
with Laplace transform ~f ðsÞ ¼

R1
0 e�stf ðtÞdt, recall

that s~f (s)� f(0) is the Laplace transform of the first
derivative f0(s). The Caputo fractional derivative
@t

f(t) is defined for 0<
< 1 as the function with

Laplace transform s
(s)� s
�1f(0), extending the trad-
itional form. Take Fourier and then Laplace trans-
forms in the space-time fractional diffusion equation

@
t pðx, tÞ ¼ D��=2pðx, tÞ ð6:1Þ

with point source initial condition p̂(k, t)� 0 to get
s
 �p(k, s)� s
�1¼�Dkkk� �p(k, s), where �p(k, s) is the
Laplace transform of p̂(k, t). Solve to obtain

�pðk, sÞ ¼
s
�1

s
 þDkkk�
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and then use the fact that ~g(s):¼ s
� 1/(s
þ c) is the
Laplace transform of g(t)¼E
(�ct


), where the
Mittag-Leffler function

E
ðxÞ :¼
X1
n¼0

xn

�ð1þ 
nÞ

for 
> 0 (Mainardi, 2010, p. 223). It follows that
p̂(k, t)¼E
(�t


Dkkk�) is the Fourier transform of the
solution to the isotropic time-fractional diffusion equa-
tion (6.1). Since p̂(k, t)¼ p̂(t
/�k, 1), solutions spread at
the subdiffusive rate t
/2 in this model when �¼ 2. This
model is isotropic, since p̂(k, t) only depends on kkk.
Recalling the asymptotic property

E
ðxÞ �
x�1

�ð1� 
Þ
as x!1 ð6:2Þ

(Mainardi, 2010, p. 215) we can see that p̂(k, t) then
falls off like t�
 for large values of t.

Figure 3 shows a log–log plot of S versus b for the
data from Figure 2, for all six directions. The straight
line behavior in Figure 3 shows that a time-fractional
model is a reasonable alternative to the stretched expo-
nential, since a power law S&Cb�
 also gives a good
fit to the data. This is indicated by a straight line on the
log–log plot with slope �
, since ln S& lnC�
 ln b.

The 
 estimates and standard errors are listed in
Table 2.

Again, it is clear that the data exhibit significant
anisotropy, since the 
 values vary significantly with
direction. For example, the value for direction 1 (cor-
responding to direction vector g1) is 
¼ 0.494� 0.006
which is significantly different from the 
¼ 0.571 value
in direction 2. Since the sample size is n¼ 9, the 95%
confidence interval is 
� 2.365 SE using the 97.5th per-
centile of the standard t distribution with n� 2¼ 7
degrees of freedom. For example, we are 95% confident
that the correct 
 value for direction 1 lies in the inter-
val (0.480, 0.508).

6.1. Time-fractional Hanyga diffusion

The paper of Hanyga and Magin (2014) also proposed
a time-fractional version of their anisotropic fractional

1.8

2.3

2.8

3.3

8 9 10
ln b

g1

1.8

2.3

2.8

3.3

ln b

g2

1.8

2.3

2.8

3.3

ln b

g3

1.8

2.3

2.8

3.3

ln b

g4

1.8

2.3

2.8

3.3

ln b

g5

1.8

2.3

2.8

3.3

8 9 10

8 9 10 8 9 10

8 9 10 8 9 10
ln b

g6

Figure 3. Plot of ln S versus ln b in six different directions, to validate the power law model S& Cb�
.

Table 2. Best-fit 
 values via linear regression on the data in

Figure 3 for six different directions, demonstrating anisotropy.

Direction 1 2 3 4 5 6


 0.494 0.571 0.599 0.676 0.605 0.661

Standard error 0.006 0.017 0.020 0.014 0.018 0.014
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diffusion model. Define the pseudo-differential operator
Q on the space C0(R

d) of smooth functions with com-
pact support (i.e. f(x)¼ 0 for all kxk	M for some
M> 0) such that Qf(x) has Fourier transform
Q̂(k)f̂(k), where Q̂ðkÞ is defined by (5.2). This operator
can then be extended to larger spaces of functions, or
even distributions (i.e. generalized functions). Since
p̂ðk; tÞ ¼ etQ̂ðkÞ, it is obvious that this Fourier transform
solves the ordinary differential equation

d

dt
p̂ðk, tÞ ¼ Q̂ðkÞp̂ðk, tÞ; p̂ðk, 0Þ � 1 ð6:3Þ

Inverting the Fourier transform shows that the probabil-
ity densities p(x, t) of the stochastic process X(t) from
Proposition 5.1 solve the pseudo-differential equation

@

@t
pðx, tÞ ¼ Qpðx, tÞ; pðx, 0Þ ¼ �ðxÞ ð6:4Þ

The equation (6.4) is also called a Cauchy problem
(Arendt et al., 2001). In fact, if we define the semigroup

Ttf ðxÞ ¼

Z
f ðx� yÞ pðy, tÞ dy

on the space L1(Rd) of integrable functions f: R
d
!R,

then Q̂ is the generator of that semigroup (Baeumer and
Meerschaert, 2001, Theorem 2.2), and Tt f(x) solves the
Cauchy problem

@tpðx, tÞ ¼ Qpðx, tÞ; pðx, 0Þ ¼ f ðxÞ ð6:5Þ

for any f2Dom(Q̂), the domain of the generator. It
follows from Baeumer and Meerschaert (2001,
Proposition 2.1) that this semigroup Tt is strongly con-
tinuous and uniformly bounded, and that we can write
the generator explicitly in the form

Qf ðxÞ ¼

Z
y6¼0

f ðx� yÞ � f ðxÞ þ
y � rf ðxÞ

1þ kyk2

� �
�ðdyÞ

for any f2W2,1(Rd), the Sobolev space of functions in
L1(Rd) whose first and second partial derivatives are all
in L1(Rd).

Given any 0<
< 1, define the Riemann–Liouville
fractional derivative

D


t gðtÞ ¼

1

�ð1� 
Þ

d

dt

Z 1
0

gðt� sÞs�
ds

Then it follows from Baeumer and Meerschaert (2001,
Theorem 3.1) that the function

qðx, tÞ ¼

Z 1
0

pðx, ðt=uÞ
Þ g
ðuÞ du ð6:6Þ

solves the fractional Cauchy problem

D


t qðx, tÞ ¼ Qqðx, tÞ þ

t�


�ð1� 
Þ
f ðxÞ ð6:7Þ

whenever p(x, t) solves the Cauchy problem (6.5). Here
g
(u) is the probability density function of the standard

-stable subordinator, most simply characterized in
terms of its Laplace transform

Z 1
0

e�stg
ðtÞ dt ¼ e�s



ð6:8Þ

for all s> 0, for any 0<
< 1. A simple change of vari-
able in the formula (6.6) reveals that

qðx, tÞ ¼

Z 1
0

pðx, uÞhðu, tÞ du ð6:9Þ

where

hðu, tÞ ¼
t



u�1�1=
g
ðtu

�1=
Þ ð6:10Þ

and this leads to a stochastic solution: let D(t) be the
standard 
-stable subordinator, a strictly increasing
infinitely divisible Lévy process such that D¼D(1)
has the probability density function g
(t). Define the
inverse stable process (first passage time)

Et ¼ inffu4 0 : DðuÞ4 tg ð6:11Þ

and apply Corollary 3.1 from Meerschaert and
Scheffler (2004) to see that the function h(u,t) in
(6.10) is the probability density function of the sto-
chastic process Et for each t> 0. Then it follows by
a standard conditioning argument that the solution
q(x, t) to the fractional Cauchy problem (6.7) with
the point source initial condition f(x)¼ �(x) is also
the probability density function of the time-changed
process X(Et), where Et is independent from X(t).
For a general initial condition f(x) that is a probability
density function, the solution q(x, t) to the fractional
Cauchy problem (6.7) with initial condition f(x) is the
probability density function of X0þX(Et), where the
initial particle location X0 has probability density
function f(x). See Meerschaert and Scheffler (2008,
Theorem 4.1 and Remark 4.6) for more details and
extensions. Freely available R code to compute the
function h(u,t) is available (Meerschaert and
Sikorskii, 2012, Example 5.13) so that the solution
(6.9) to the fractional Cauchy problem can be expli-
citly computed by numerically integrating the formula
(6.9), once the probability density function p(x, t) has
been computed.
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The Caputo and Riemann–Liouville fractional
derivatives are related by

@
t gðtÞ ¼ D


t gðtÞ �

t�


�ð1� 
Þ
gð0Þ

Then clearly one can also write the fractional Cauchy
problem in a more compact form:

@
t qðx, tÞ ¼ Qqðx, tÞ ð6:12Þ

This extends the results of Hanyga (2002) for the case
where 
(y) is a constant.

6.2. Time-fractional Bloch–Torrey equation

Let Q̂ be the generator of some C0 semigroup (Arendt
et al., 2001). The time-fractional Bloch–Torrey equa-
tion has been written in the literature as

@
t S ¼ �ði�x � GÞSþD0QS ð6:13Þ

but this form is not dimensionally correct, since the
time units of @t


S are different to the units of the
term @tS and, more importantly, the reaction term
�(i�x �G)S.

Using an idea from Baeumer et al. (2005), we can
write a dimensionally correct version of the time-frac-
tional Bloch–Torrey equation as

@tS ¼ �ði� x � GÞSþ r �Dr@1�
t S

Equivalently, we can write

@
t S ¼ �i� x � I1�
t ½GS
 þ r �DrS

where I
1�
 is the Riemann–Liouville fractional integral

defined by

I
�gðtÞ :¼

1

�ð�Þ

Z 1
0

gðt� uÞu��1du

An alternative form is proposed by Haynga and
Seredyńska (2012, equation (17)). An open challenge
in the theory of DTI is to derive an analytical solution
for a physically correct time-fractional Bloch–Torrey
equation, suitable for clinical applications.

7. Space-variable fractional DTI models

In clinical practice, the parameters of the (fractional)
Bloch–Torrey equation vary with location. Indeed,
three-dimensional maps of the parameters are an
important outcome of fractional DTI modeling; see
for example GadElkarim et al. (2013). An open

challenge is to develop the mathematical foundations
of space-variable fractional DTI models. One promis-
ing approach is to use the theory of pseudo-differential
operators (Schilling, 1998; Jacob, 2001). We can con-
sider the Cauchy problem

@

@t
pðx, tÞ ¼ Qpðx, tÞ; pðx, 0Þ ¼ p0ðxÞ ð7:1Þ

where the pseudo-differential operator Q is defined in
terms of the equation

Qf ðxÞ ¼

Z
y6¼0

f ðx� yÞ � f ðxÞ þ
y � rf ðxÞ

1þ kyk2

� �
�ðx, dyÞ

Here the Lévy measure is generalized to a jump inten-
sity �(x, dy) that varies in space. Then, for example, one
can consider the Hanyga diffusion model where (5.2) is
replaced by

Q̂ðx,kÞ ¼ �

Z
y2�

jy � kj�ðx, yÞmðx, dyÞ ð7:2Þ

The extension to time-fractional forms follows along
the same lines as in Section 6, using the general
theory of time-fractional Cauchy problems.
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