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Attenuated Fractional Wave
Equations With Anisotropy
This paper develops new fractional calculus models for wave propagation. These models
permit a different attenuation index in each coordinate to fully capture the anisotropic
nature of wave propagation in complex media. Analytical expressions that describe
power law attenuation and anomalous dispersion in each direction are derived for these
fractional calculus models. [DOI: 10.1115/1.4025940]

1 Introduction

The attenuation coefficient aðxÞ for sound waves in a complex
heterogeneous medium often follows a power law aðxÞ ¼ a0jxjy
that depends on the frequency x. The goal of fractional wave
equations is to capture this power law attenuation in a convenient
and realistic physical model. In practical applications, where the
medium is not isotropic, the power law attenuation index y can
vary with the coordinate. For example, a layered medium may ex-
hibit a stronger anisotropy across layers than within layers. This
paper develops space-fractional wave equations, where the attenu-
ation index can vary with the coordinate, to model anisotropic
sound propagation in complex media with independent power law
attenuation and anomalous dispersion relations in each direction.

2 Fractional Calculus

Here we recall some relevant facts about fractional calculus,
including fractional vector calculus. The fractional divergence
r~a �~u is most simply defined in terms of its Fourier transform.
Let

~Uð~kÞ ¼
ð

e�i~k�~x~uð~xÞd~x

be the vector-valued Fourier transform of the d-dimensional vec-
tor field ~uð~xÞ. Then r~a �~uð~xÞ is defined as the function whose
Fourier transform is

ðik1Þa1

..

.

ðikdÞad

0
B@

1
CA � ~Uð~kÞ

Then it follows that for any real-valued function pð~xÞ we have

r~a � rpð~xÞ ¼ D~r=2pð~xÞ (1)

where the vector order of fractional integration is ~r ¼ ~aþ~1 and
the anisotropic fractional Laplacian D~r=2pð~xÞ has Fourier
transform

�
Xd

j¼1

ðikjÞrj Pð~kÞ (2)

If ~a ¼~1 then ~r=2 ¼~1 as well, and D~r=2 is the usual Laplacian.
Here

Pð~kÞ ¼
ð

e�i~k�~xpð~xÞd~x

is the scalar-valued Fourier transform of the d-dimensional scalar

field pð~xÞ. Note that r~ap is a vector, while D~r=2p ¼ r~a � rp is a
scalar. To see that (1) holds, recall that the gradient operator has

the Fourier symbol i~k, so that for any scalar field pð~xÞ, the vector

rpð~xÞ has Fourier transform ði~kÞPð~kÞ, and then it follows that the
left-hand side of (1) has Fourier transform

ðik1Þa1

..

.

ðikdÞad

0
B@

1
CA �

ik1
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0
B@
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CAPð~kÞ

which reduces to the expression (2), which is the Fourier trans-
form of the right-hand side of (1) after applying the dot product
and simplifying. See [1] for more details on vector fractional
calculus.

The (positive) Riemann–Liouville fractional derivative Dr
x f ðxÞ

of order r > 0 for a real-valued function f ðxÞ of the real variable x
can be defined by

Dr
x f ðxÞ ¼ drf ðxÞ

dxr
¼ 1

Cðn� rÞ
dn

dxn

ðx

�1

f ðuÞdu

ðx� uÞrþ1�n

where n is an integer such that n� 1 < r � n. The Fourier trans-
form of Dr

x f ðxÞ is ðikÞr f̂ ðkÞ, where

f̂ ðkÞ ¼
ð1
�1

e�ikxf ðxÞdx

is the one variable Fourier transform. See [2,3] for more details.
Then we can write

D~r=2pð~xÞ ¼
Xd

j¼1

@rj

@x
rj

j

pðx1;…; xdÞ (3)

a sum of Riemann–Liouville (partial) derivatives in each variable,
where the order of fractional differentiation depends on the
coordinate.

For a simple exponential function f ðxÞ ¼ ebx it is straightfor-
ward [2, example 2.6] to compute that

Dr
x ebx
� �

¼ brebx (4)

which extends the familiar integer-order derivative formula. Then
it follows that
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D~r=2 e
~b�~x

h i
¼
Xd

j¼1

b
rj

j e
~b�~x (5)

where ~b ¼ ðb1;…; bdÞ0. If we take ~b ¼ ð0;…; 0; bj; 0;…; 0Þ0
pointing along the jth coordinate direction, then in this special

case it follows that D~r=2 e
~b�~x

h i
¼ b

rj

j e
~b�~x, a formula we will use later

in this paper.
The (positive) Riemann–Liouville fractional integral of order

r > 0 is defined by

Ir
xf ðxÞ ¼ 1

CðrÞ

ðx

�1

f ðuÞdu

ðx� uÞ1�r

and the Fourier transform of Ir
xf ðxÞ is ðikÞ�r f̂ ðkÞ. This is the

inverse of the Riemann–Liouville fractional derivative:
Dr

xIr
x f ðxÞ ¼ f ðxÞ. One can also view the Riemann–Liouville

fractional derivative Dr
x f ðxÞ as the integer derivative of a

Riemann–Liouville fractional integral: Dr
x f ðxÞ ¼ Dn

xIn�r
x f ðxÞ.

3 Acoustical Variables

The total pressure P, equilibrium pressure P0, and excess pres-
sure (or acoustic pressure) p are related according to

P ¼ P0 þ p

which represents a first order Taylor expansion about the equilib-
rium pressure value. The total density q, equilibrium density q0;
and condensation s are related by

q ¼ q0 þ q0s

which is a first order Taylor expansion about the equilibrium
value of the density. In nonlinear and linear acoustics, the wave
equation is often expressed in terms of the acoustic pressure p,
and the constitutive equations are written in terms of the total or
acoustic pressure, the total/equilibrium density and/or the conden-
sation, and the vector particle velocity~u.

4 Constitutive Relations of Nonlinear and Linear

Acoustics

The nonlinear constitutive relations for acoustics describe the
relationships between the total or acoustic pressure, the total den-
sity, and the particle velocity through the nonlinear equation of
state, the nonlinear equation of motion, and the nonlinear equation
of continuity. The linear constitutive relations likewise describe
the relationships between the acoustic pressure, the condensation,
and the particle velocity through the linear versions of these equa-
tions. In particular, the nonlinear equation of state relates the total
pressure P to the total density q by the relation

P ¼ f ðqÞ

and the linearized equation of state relates the acoustic pressure p
to the condensation s by

p ¼ q0c2s (6)

The nonlinear equation of motion, neglecting gravity, is

�rP ¼ q
@~u

@t
þ ~u � rð Þ~u

� �

and the linearized equation of motion is

q0

@~u

@t
¼ �rp (7)

The nonlinear equation of continuity is

@q
@t
þr � q~uð Þ ¼ 0

and the linearized equation of continuity is

@s

@t
þr �~u ¼ 0 (8)

The linear wave equation is obtained from the above linear consti-
tutive relations, as shown in Kinsler et al. [4].

5 Fractional Constitutive Relations

Here the equation of continuity is extended to the fractional
case through application of the fractional divergence. The
fractional nonlinear equation of continuity then becomes

@q
@t
þr~a � q~uð Þ ¼ 0 (9)

and the corresponding fractional linear equation of continuity is

@s

@t
þr~a �~u ¼ 0 (10)

The fractional linear equation of continuity (10) enables the deri-
vation of the following fractional linear wave equation.

6 Fractional Anisotropic Wave Equation

Combine the linearized state equation (6) with the linearized
fractional continuity equation (10) to obtain

1

q0c2

@p

@t
þr~a �~u ¼ 0

Then, take the partial with respect to time of both sides

1

q0c2

@2p

@t2
þ @

@t
r~a �~u ¼ 0 (11)

Next, apply the fractional divergence operator to the equation of
motion (7) to obtain

q0r~a �
@~u

@t
¼ �r~a � rp ¼ �D~r=2p

using (1). Then, combine with (11), which yields

1

c2

@2p

@t2
¼ D~r=2p (12)

This anisotropic fractional wave equation extends the isotropic
forms considered in Mainardi [5] to allow a different fractional
space derivative in each coordinate.

6.1 Plane Wave Solution. Assume a plane wave solution
pð~x; tÞ ¼ eið~k�~x�xtÞ with complex ~k and note that a general steady
state solution can be approximated by a linear combination of
plane waves. From (5) we have

D~r=2pð~x; tÞ ¼
Xd

j¼1

ðikjÞrj pð~x; tÞ
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Substitute into (12) and divide by pð~x; tÞ to arrive at the character-
istic equation

1

c2
ð�ixÞ2 ¼

Xd

j¼1

ðikjÞrj

for a general wave vector ~k ¼ ðk1;…; kdÞ0. For a plane wave in

the j coordinate direction, where ~k ¼ ð0;…; 0; kj; 0;…; 0Þ0, it

follows that ðikÞr ¼ ð�ixÞ2=c2, where we write k ¼ kj and r ¼ rj

for simplicity. Then the complex wave number k in this
coordinate satisfies

ik ¼ ð�ixÞ2=r

c2=r

k ¼ �i
jxj2=r

c2=r
cos

p
r

� �
� isgnðxÞ sin

p
r

� �h i

k ¼ jxj
y

cy
�sgnðxÞ sin

py

2

� �
� i cos

py

2

� �h i
(13)

where the attenuation index y ¼ 2=r. Since r ¼ aþ 1 where
0 < a < 1, it follows that 1 < y < 2. Writing k ¼ kjðxÞ
¼ x=cjðxÞ þ iajðxÞ for an outward-going wave, and noting that
cosðpy=2Þ < 0 for 1 < y < 2, the attenuation in the jth coordinate
direction is

ajðxÞ ¼
jxjyj

cyj
cos

pyj

2

� ���� ���
as a function of frequency x. This shows that the anisotropic
fractional wave equation (12) exhibits power law attenuation with
attenuation index yj ¼ 2=rj in the jth coordinate direction, with
1 < yj < 2 depending on the coordinate. Noting that
sinðpy=2Þ > 0 for 1 < y < 2, the phase speed (also called the dis-
persion) as a function of frequency x > 0 in the jth coordinate
direction is

cjðxÞ ¼
cyj

xyj�1
csc

pyj

2

� ���� ���
which also varies with the coordinate. The phase speed decreases
in each direction as the frequency increases, indicating anomalous
(or negative) dispersion. Anomalous dispersion frequently occurs
in bone [6], which is also anisotropic [7]. Anomalous dispersion
has also been demonstrated in plates of Lexan with a step discon-
tinuity, and in a Lexan plate bonded to a Plexiglas plate [8].
Examples of models that predict anomalous dispersion in bone
include a model that superposes fast and slow waves [9] and a
multiple scattering model that also incorporates absorption [10].

The solution (13) is not unique, because for any z ¼ einpy we
have zr ¼ 1, and hence ðikzÞr ¼ ð�ixÞ2=c2 as well. It follows that
the general solution is

k ¼ jxj
y

cy
sin npy� sgnðxÞ py

2

� �
� i cos npy� sgnðxÞpy

2

� �h i

where n is any integer. The power law scaling of attenuation and
dispersion are the same for any solution.

Following the same steps with (10) replaced by the traditional
continuity equation

@s

@t
þr �~u ¼ 0

leads to the traditional isotropic wave equation

1

c2

@2p

@t2
¼ r � rp ¼ Dp (14)

The anisotropic version of this equation is

1

c2

@2p

@t2
¼ r � Jrp (15)

where the two-tensor J accounts for anisotropy. For example, if

J ¼

D2
1 0 � � � 0

0 D2
2 � � � 0

..

. . .
.

0

0 � � � 0 D2
d

0
BBB@

1
CCCA

then the speed of sound cDi is different in each coordinate. The
three operators on the right-hand side of (15), r � Jrp, account
for (reading from right to left) motion, anisotropy, and continuity.

The fractional divergence can also be written in the form
r~a~u ¼ r � J~a�~1~u, where the fractional integration tensor J~a�

~1

applies a fractional integral in each coordinate. The fractional
integration tensor is defined so that the formula

ðik1Þa1�1
0 � � � 0

0 ðik2Þa2�1 � � � 0

..

. . .
.

0

0 � � � 0 ðikdÞad�1

0
BBBBBB@

1
CCCCCCA
~Uð~kÞ

equals the Fourier transform of J~a�
~1~uð~xÞ. This operator applies a

Riemann–Liouville fractional integral of order 1� aj in each
coordinate direction j ¼ 1;…; d. Then we can also write

r~a � rpð~xÞ ¼ r � J~a�~1rpð~xÞ ¼ D~r=2pð~xÞ

which extends the traditional anisotropic diffusion operator. With
this notation, the anisotropic fractional wave equation (12) can be
rewritten in the form

1

c2

@2p

@t2
¼ r � J~a�~1rp (16)

in which the two-tensor J in (15) is replaced by a fractional inte-
gration tensor. Both model anisotropy. The anisotropic wave
equation (15) models mild anisotropy where the wave propagation
is essentially the same in each coordinate, just at a different speed.
The anisotropic fractional wave equation (16) models strong
anisotropy where the power law attenuation index varies with the
coordinate. An even more general model is

1

c2

@2p

@t2
¼ r � J~a�~1Jrp (17)

where the speed of sound and the power law attenuation index
both vary with the coordinate. In fact, it is not hard to show,
following the same steps as before, that the attenuation

ajðxÞ ¼
jxjyj

ðcDjÞyj
cos

pyj

2

� ���� ���

and the phase speed

cjðxÞ ¼
ðcDjÞyj

xyj�1
csc

pyj

2

� ���� ���
for the general model (17).
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7 Fractional Stokes Wave Equation

A related fractional wave equation can be derived by combin-
ing the fractional continuity equation (10) with a more general
equation of state that also contains a first partial derivative of the
condensation with respect to time,

p ¼ q0c2 sþ s
@s

@t

	 

(18)

to obtain

p ¼ q0c2 s� sr~a �~u
� �

Take the partial with respect to time of both sides

@p

@t
¼ q0c2 @s

@t
� s

@

@t
r~a �~u

	 


and again insert the fractional continuity equation (10), yielding

@p

@t
¼ q0c2 �r~a �~u� s

@

@t
r~a �~u

	 

(19)

Take one more derivative in time to get

@2p

@t2
¼ q0c2 �r~a � @

@t
~u� s

@

@t
r~a � @

@t
~u

	 

(20)

Now evaluate the fractional divergence of both sides of the linear-
ized equation of motion (7) and then apply (1) to get

q0r~a �
@

@t
~u ¼ �r~a � rp ¼ �D~r=2p (21)

and finally, combine with the previous equation (20) to obtain

1

c2

@2p

@t2
¼ D~r=2pþ s

@

@t
D~r=2p (22)

This expression is recognized as the Stokes wave equation with
both Laplacian operators replaced by anisotropic fractional Lapla-
cians. Following the derivation for the Stokes wave equation
given in [11], the expression (22) is also obtained for compres-
sional waves when the linearized Navier–Stokes equation is com-
bined with the equation of state (6) and the fractional continuity
equation (10).

7.1 Plane Wave Solution. As in Sec. 6.1, we assume a plane

wave solution pð~x; tÞ ¼ eið~k�~x�xtÞ, substitute into (22), and cancel
the common p term on both sides to get the characteristic equation

1

c2
ð�ixÞ2 ¼ 1� ixs½ �

Xd

j¼1

ðikjÞrj

For a plane wave in the j coordinate, this reduces to

ðikÞr ¼ 1

c2

ð�ixÞ2

1� ixs

where r ¼ rj, and k ¼ kj is the wave number in this coordinate. In
the low frequency limit xs� 1, we can apply the approximation
ð1� ixsÞ�r � 1þ irxs to see that

ik ¼ ð�ixÞ2=r

c2=r
1� ixsð Þ�r

k � �i
jxj2=r

c2=r
�isgnðxÞ½ �2=r

1þ irxsð Þ

k � jxj
y

cy
�sgnðxÞ sin

py

2

� �
þ 2xs

y
cos

py

2

� �� �

þ i
jxjy

cy
� cos

py

2

� �
� 2xs

y
sgnðxÞ sin

py

2

� �� �
(23)

where again y ¼ 2=r is a real number between 1 and 2. Writing
k ¼ kjðxÞ ¼ x=cjðxÞ þ iajðxÞ for an outward-propagating wave,
the attenuation at frequencies 1=s� x > 0 is

ajðxÞ �
jxjyj

cyj
cos

pyj

2

� �
þ 2xs

yj
sin

pyj

2

� �����
����

This shows that the fractional wave equation (12) exhibits power
law attenuation at low frequencies with attenuation index
yj ¼ 2=rj in the jth coordinate direction, where the attenuation
index 1 < yj < 2 depends on the coordinate. The phase speed or
dispersion as a function of frequency 1=s� x > 0 in the jth
coordinate direction is

cjðxÞ ¼
cyj

xyj�1
sin

pyj

2

� �
� 2xs

yj
cos

pyj

2

� �����
����
�1

so that the phase speed also varies with the coordinate in the atte-
nuated model (22). For small frequencies xs� 1, the phase
speed in each direction decreases with increasing frequency, so
anomalous dispersion is also predicted by this model. As in Sec.
6.1, the solution (23) is not unique, but every solution exhibits the
same power scaling of attenuation and dispersion at low
frequencies.

If we apply the traditional dispersion operator in the s term in
(18) instead of the fractional dispersion operator, Eq. (22) reduces
to

1

c2

@2p

@t2
¼ Dpþ s

@

@t
D~r=2p (24)

In the isotropic case where r1 ¼ � � � ¼ rd , Eq. (24) is very similar
to the fractional wave equation in Chen and Holm [12, Eq. (23)].

The difference is that, instead of the operator Dðr=2Þ~1 with symbol
ðik1Þr;…; ðikdÞr½ �0, they employ a different operator (let us call it
�Dy=2) with symbol ð�ky

1;…;�ky
dÞ
0

[12, Eq. (25)]. The Chen and
Holm model

1

c2

@2p

@t2
¼ Dpþ s

@

@t
�Dy=2p

exhibits power law attenuation with index y in every coordinate.
By extending their model to any coordinate direction and using

the anisotropic operator �D~y=2 with symbol ð�ky1

1 ;…;�kyd

d Þ
0
, one

can show that the anisotropic version of their model

1

c2

@2p

@t2
¼ Dpþ s

@

@t
�D~y=2p

exhibits power law attenuation with ajðxÞ � a0jxjyj in the jth
coordinate direction. The Chen and Holm model was extended by
Treeby and Cox [13] with an additional space-fractional term that
accounts for positive dispersion. Since the resulting phase speed
increases as the frequency increases, the Treeby and Cox model is
applicable only to normal (positive) dispersion.
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A third possibility is to use the traditional isotropic fractional

Laplacian Dr=2pð~xÞ with Fourier transform �k~kkrPð~kÞ. This is dif-

ferent from both the operator D~r=2 we use in this paper, and the

operator �Dy=2 used by Chen and Holm. Yet another possibility

D
^
~r=2 uses a fractional Laplacian in each coordinate, so that its Fou-

rier symbol is ð�jk1jr1 ;…;�jkdjrd Þ0. The isotropic version with

every rj ¼ r was employed by Magin et al. [14] to develop a

fractional calculus model for diffusion tensor imaging. The

anisotropic version was recently applied by GadElkarim et al. [15]

to extend the model of Magin et al. to applications in which the

diffusion scales at a different rate in each coordinate. Both Dr=2p
and D

^~r=2
p produce the same result for plane waves in a coordinate

direction. Neither lead to a simple attenuation relation for the frac-

tional Stokes wave equation (22), since the corresponding charac-

teristic equation �x2=c2 ¼ �jkjr½1� ixs� has no solution when

the symbol �jkjr is a real number.
To clearly understand the rich variety of fractional Laplacian

operators, it is helpful to consider the random walk models behind
these operators. In [2, Chap. 6] it is shown that the isotropic frac-

tional diffusion equation @pð~x; tÞ=@t ¼ Dr=2pð~x; tÞ governs the
long time limit of a random walk with heavy tailed symmetric par-
ticle jumps X ¼ RH, where the jump length PðR > xÞ � x�r and
the jump direction H is a random unit vector, uniformly distrib-
uted around the unit sphere. In the application to wave equations,
the random walk models the progression of acoustic energy. If the
medium is isotropic, then the wave motion should also be iso-
tropic. The fractional derivative codes the power law jumps, see
[2]. Physically, the power law jumps are the result of medium het-
erogeneity. In a homogeneous medium, a traditional wave
equation would apply. In a heterogeneous medium, significant
variations in the local speed of sound may occur, leading to a
power law distribution of effective speed, modeled by the frac-
tional derivative [16]. The anisotropic fractional diffusion equa-

tion @p=@t ¼ D~r=2p governs the case where the jump direction H
selects a positive coordinate j at random, and then there is a posi-
tive jump satisfying PðR > xÞ � x�rj in that coordinate direction.

The variation @p=@t ¼ D
^

r=2p from Magin et al. [14] governs the
case where the jump can be either positive or negative, and in the

generalized form @p=@t ¼ D
^
~r=2p from GadElkarim et al. [15], the

power law index rj of the random jump varies with the coordinate.
Such models may be appropriate in layered media. We could not

connect the operator �Dy=2 from Chen and Holm [12] to any ran-

dom walk model, since the Fourier symbol ð�ky
1;…;�ky

dÞ
0

does
not seem to be related to any infinitely divisible stochastic pro-
cess. All of these operators, including the one in Chen and Holm
[12], reduce to the traditional Laplacian when r ¼ 2, reflecting the
fact that all random walk models have a Gaussian diffusion limit
when the jumps lengths have a finite variance.

8 Conclusion

Two anisotropic wave equations with space-fractional deriva-
tives were derived by combining the traditional linear equations
of state and motion with a novel anisotropic fractional continuity

equation. Analytical expressions for the attenuation and dispersion
of plane wave solutions were obtained from the characteristic
equation for each space-fractional wave equation. Both of these
fractional anisotropic wave equations exhibit power law attenua-
tion and anomalous dispersion in each direction, with a power law
index that depends on the direction. Different forms of the frac-
tional Laplacian are evaluated, and a random walk model with
power law jumps provides a physical explanation for the
fractional Laplacian in these space-fractional wave equations.

Acknowledgment

This research was partially supported by NIH Grant R01-
EB012079 and NSF Grant DMS-1025486.

References
[1] Meerschaert, M. M., Mortensen, J., and Wheatcraft, S. W., 2006, “Fractional

Vector Calculus for Fractional Advection-Dispersion,” Phys. A, 367, pp.
181–190.

[2] Meerschaert, M. M., and Sikorskii, A., 2012, Stochastic Models for Fractional
Calculus, De Gruyter, Berlin.

[3] Samko, S. A., Kilbas, A., and Marichev, O., 1993, Fractional Integrals and
Derivatives: Theory and Applications, Gordon and Breach, London.

[4] Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., 2000, Funda-
mentals of Acoustics, 4th. ed., Wiley, New York, p. 119.

[5] Gorenflo, R., Luchko, Yu., and Mainardi, F., 2000, “Wright Functions as Scale-
Invariant Solutions of the Diffusion-Wave Equation,” J. Comput. Appl. Math.,
118, pp. 175–191.

[6] Wear, K. A., 2001, “A Stratified Model to Predict Dispersion in
Trabecular Bone,” IEEE Trans. Ultrason. Ferroelec. Freq. Control, 48(4), pp.
1079–1083.

[7] Nicholson, P. H. F., Haddaway, M. J., and Davie, M. W. J., 1994, “The Depend-
ence of Ultrasonic Properties on Orientation in Human Vertebral Bone,” Phys.
Med. Biol., 39(6), pp. 1013–1024.

[8] Anderson, C. C., Bauer, A. Q., Holland, M. R., Pakula, M., Wielki, K., Laugier,
P., Bretthorst, G. L., and Miller, J. G., 2010, “Inverse Problems in
Cancellous Bone: Estimation of the Ultrasonic Properties of Fast and Slow
Waves Using Bayesian Probability Theory,” J. Acoust. Soc. Am., 128(5), pp.
2940–2948.

[9] Marutyan, K. R., Holland, M. R., and Miller, J. G., 2006, “Anomalous Negative
Dispersion in Bone Can Result From the Interference of Fast and Slow Waves,”
J. Acoust. Soc. Am., 120(5), pp. EL55–EL61.

[10] Ha€ıat, G., Lh�emery, A., Renaud, F., Padilla, F., Laugier, P., and Naili, S., 2008,
“Velocity Dispersion in Trabecular Bone: Influence of Multiple Scattering and
of Absorption,” J. Acoust. Soc. Am., 124(6), pp. 4047–4058.

[11] Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., 2000, Funda-
mentals of Acoustics, 4th ed., Wiley, New York, pp. 211–212.

[12] Chen, W., and Holm, S., 2004, “Fractional Laplacian Time-Space Models for
Linear and Nonlinear Lossy Media Exhibiting Arbitrary Frequency Power-Law
Dependency,” J. Acoust. Soc. Am., 115, pp. 1424–1430.

[13] Treeby, B. E., and Cox, B. T., 2010, “Modeling Power Law Absorption and
Dispersion for Acoustic Propagation Using the Fractional Laplacian,” J.
Acoust. Soc. Am., 127, pp. 2741–2748.

[14] Magin, R. L., Abdullah, O., Baleanu, D., and Zhou, X. J., 2008, “Anomalous
Diffusion Expressed Through Fractional Order Differential Operators in the
Bloch-Torrey Equation,” J. Magn. Reson., 190, pp. 255–270.

[15] GadElkarim, J. J., Magin, R. M., Meerschaert, M. M., Capuani, S., Palombo,
M., Kumar, A., and Leow, A. D., 2013, “Directional Behavior of Anomalous
Diffusion Expressed Through a Multidimensional Fractionalization of the
Bloch-Torrey Equation,” Special Issue on Fractional-Order Circuits and
Systems, IEEE J. Emerging Select. Topics Circuits Syst., 3(3), pp. 432–441.

[16] Kelly, J. F., McGough, R. J., and Meerschaert, M. M., 2008, “Time-Domain 3D
Green’s Functions for Power Law Media,” J. Acoust. Soc. Am., 124(5), pp.
2861–2872.

Journal of Vibration and Acoustics OCTOBER 2014, Vol. 136 / 051004-5

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/26/2014 Terms of Use: http://asme.org/terms

http://dx.doi.org/10.1016/j.physa.2005.11.015
http://dx.doi.org/10.1016/S0377-0427(00)00288-0
http://dx.doi.org/10.1109/58.935726
http://dx.doi.org/10.1088/0031-9155/39/6/007
http://dx.doi.org/10.1088/0031-9155/39/6/007
http://dx.doi.org/10.1121/1.3493441
http://dx.doi.org/10.1121/1.2357187
http://dx.doi.org/10.1121/1.3003077
http://dx.doi.org/10.1121/1.1646399
http://dx.doi.org/10.1121/1.3377056
http://dx.doi.org/10.1121/1.3377056
http://dx.doi.org/10.1016/j.jmr.2007.11.007
http://dx.doi.org/10.1109/JETCAS.2013.2265795
http://dx.doi.org/10.1121/1.2977669

	s1
	s2
	UE1
	UE2
	E1
	E2
	UE3
	UE4
	UE5
	UE6
	E3
	E4
	l
	E5
	UE7
	s3
	UE8
	UE9
	s4
	UE10
	E6
	UE11
	E7
	UE12
	E8
	s5
	E9
	E10
	s6
	UE13
	E11
	UE14
	E12
	s6A
	UE15
	UE16
	E13
	UE17
	UE18
	UE19
	UE20
	E14
	E15
	UE21
	UE22
	UE23
	E16
	E17
	UE24
	UE25
	s7
	E18
	UE26
	UE27
	E19
	E20
	E21
	E22
	s7A
	UE28
	UE29
	E23
	UE30
	UE31
	E24
	UE32
	UE33
	s8
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16

