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Abstract

Fractional Laplace motion is obtained by subordinating fractional Brownian motion to a
gamma process. Used recently to model hydraulic conductivity fields in geophysics,
it might also prove useful in modeling financial time series. Its one-dimensional
distributions are scale mixtures of normal laws, where the stochastic variance has the
generalized gamma distribution. These one-dimensional distributions are more peaked
at the mode than is a Gaussian distribution, and their tails are heavier. In this paper we
derive the basic properties of the process, including a new property called stochastic self-
similarity. We also study the corresponding fractional Laplace noise, which may exhibit
long-range dependence. Finally, we discuss practical methods for simulation.
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1. Introduction

Recent research in geophysics has proposed a model in which hydraulic conductivity is
obtained by subordinating fractional Brownian motion (FBM) to a gamma process. This process
was termed fractional Laplace motion (FLM) since (in the uncorrelated case) at some scale the
increments of the process have a Laplace (two-sided exponential) distribution. Logarithms of
hydraulic conductivity data exhibit a correlation structure similar to that of fractional Brownian
motion, but the increment distributions are more peaked at the mode, with heavier tails.
Furthermore, the increment distributions tend to a Gaussian distribution as the spacing of
the increments widens. The FLM process reproduces all of these features. Similar features are
also present in some financial time series, suggesting that FLM may find wider applications.

Fractional Brownian motion with parameter H ∈ (0, 1) is a centered Gaussian process
{BH (t), t ≥ 0} with BH (0) = 0 and covariance function

E(BH (t)BH (s)) = σ 2

2
(|t |2H + |s|2H − |t − s|2H ), t, s ≥ 0, (1.1)
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where σ 2 = var(BH (1)). FBM exhibits self-similarity with parameter H ; i.e. for each c > 0
we have

{BH (ct), t ≥ 0} d= {cH BH (t), t ≥ 0},
in the sense that all finite-dimensional distributions of the two processes are the same (here ‘

d=’
denotes equality in distribution). Moreover, the stationary increment process {Zk = BH (k) −
BH (k−1)}, called fractional Gaussian noise, exhibits long-range dependence whenH ∈ ( 1

2 , 1),
i.e. its covariance function γ (k) = E(ZiZi+k) tends to 0 so slowly that the series

∑∞
k=1 γ (k)

diverges [6, pp. 41–66], [17], [36].
Historical return distributions (on a short time scale) of currency exchange rates, interest

rates, commodities, equity markets, and other financial data often have ‘fatter tails’and are more
peaked around the mode than is predicted by the normal law [15], [21]. Similar observations
have been made in geophysics [27], [29], [30]. The Laplace distribution with probability density
function f (x) = e−|x|/σ /(2σ) provides one alternative model that captures the higher peaks
and wider tails [20, p. 16]. Given a geometric random variable Np with the probability density
function

P(Np = k) = p(1 − p)k−1, k ∈ N, (1.2)

the (geometric) sum of independent, identically distributed Laplace variables (independent of
Np) is Laplace:

√
p

Np∑
j=1

Xj
d= X1, p ∈ (0, 1). (1.3)

The corresponding limit theorem says that the geometric sum in (1.3) with independent,
identically distributed symmetric Xj with finite second moments converges in distribution
to the Laplace variable as p → 0 [20, p. 30]. Moreover, the Laplace distribution is infinitely
divisible and a corresponding Lévy motion can also be represented as a Brownian motion
{BH (t), t ≥ 0} (H = 1

2 ) subordinated to a gamma process {�(t), t ≥ 0}:

{X(t), t ≥ 0} d= {BH (�t ), t ≥ 0}. (1.4)

The Lévy process {�t , t ≥ 0} starts at the origin, and the distribution of the increment �t+s −�t

has a gamma distribution, G(α, β), with shape parameter α = s and scale β = 1, whose
probability density function is

f (x) = 1

βα�(α)
xα−1e−x/β, x > 0.

Consequently, the marginal distributions of the Laplace motion are scale mixtures of normal
distributions of the form

X(t)
d= σGH

t Z = (σ 2G2H
t )1/2Z, (1.5)

where H = 1
2 , Z is a standard normal variable, and Gt has the gamma distribution G(t, 1). In

the finance literature this is known as stochastic volatility, since (informally) the variance of
the normal variable is random [21].

The aim of this paper is to extend the Laplace motion model to allow dependence between
the increments. We define this process by subordinating fractional Brownian motion with
H ∈ (0, 1) to the gamma process via (1.4), and call it fractional Laplace motion. The marginal
distributions of this process are still of the form (1.5), but now the stochastic variance G2H

t

has the generalized gamma distribution [18, p. 388]. The subordinator �t corresponds to a
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(random) time transformation. In financial applications, the subordinator may correspond to
the trading time or volume (see, e.g. [15] and [16]). In geophysics, it may represent the number
of depositional features over a distance t [27].

Our paper is organized as follows. In Section 2 we formally define the FLM and study
its basic properties. These include the covariance structure as well as densities, moments,
stochastic representations, and tail behavior of one-dimensional laws. In Section 3 we study
the corresponding fractional Laplace noise and discuss long-range dependence. Section 4
is devoted to the discussion of further properties of infinite divisibility and stochastic self-
similarity. There we show that FLM is stochastically self-similar with respect to a family of
negative binomial subordinators. In Section 5 we discuss methods for simulating FLM and
present sample paths for representative values of parameters. Proofs and auxiliary results are
collected in Section 6.

2. Fractional Laplace motion and its basic properties

Let {BH (t), t ≥ 0} be an FBM with the covariance function (1.1), denoted by F BMH (σ).
Let {�t , t ≥ 0} be a gamma process with parameter ν > 0, i.e. a Lévy process such that the
increment �t+s − �t has distribution G(s/ν, 1) (a standard gamma process as discussed in the
introduction has ν = 1). We now define a new process, {X(t), t ≥ 0}, by subordinating BH

to �t , as in (1.4). This process is the FLM, which we denote by F LMH (σ, ν). Note that if
X

d= F LM(σ, 1) then Y = X(·/ν)
d= F LM(σ, ν), meaning that ν is a time scale parameter.

A standard fractional Laplace motion has σ = ν = 1, and is denoted by F LMH .

2.1. One-dimensional distributions

In this subsection we set σ = 1. It is easy to see that the one-dimensional distributions of
FLM given by (1.4) are scale mixtures of normal distributions of the form (1.5), where Z and
Gt are independent, Z is standard normal, and Gt has the gamma distribution G(t/ν, 1). In
the notation of Johnson et al. [18], the ‘stochastic variance’ G2H

t has the generalized gamma
distribution introduced by Amoroso [1] and given by the probability density function

f (x) = γ xαγ−1

cαγ �(α)
e−(x/c)γ , x > 0, (2.1)

with scale c = 1 and shape parameters α = t/ν and γ = 0.5/H .

Remark 2.1. When H = 1
2 and the stochastic variance has a gamma distribution, the distri-

bution of X(t) has been referred to as the variance-gamma distribution [23] or the normal-
gamma distribution [7], in analogy to the normal-inverse Gaussian distribution, which arises
when the stochastic variance has the inverse Gaussian distribution. This model leads to the
improvements in option pricing theory reported by Madan et al. [22]. In the general case
the term is variance-generalized gamma distribution [21]. Such normal mixtures are also
known as G-type distributions when the stochastic variance is infinitely divisible [24], [25], [26,
p. 39], [33].

Representation (1.5), along with well-known expressions for absolute moments of gamma
and normal distributions, leads to the following result.

Proposition 2.1. If {X(t), t ≥ 0} d= F LMH (1, ν) then

E(|X(t)|q) = cq

�(Hq + t/ν)

�(t/ν)
, with cq =

√
2q

π
�

(
1 + q

2

)
. (2.2)
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Remark 2.2. Note that the quantity in (2.2) is linear in t when q = 1/H (in particular, the vari-
ance of X(t) is linear in t when H = 1

2 ). Moreover, this is different than the power law scaling
of the FBM, where E(|BH (t)|q) = cqtqH . However, the asymptotic properties of the gamma
function do yield E(|X(t)|q) ∼ cq(t/ν)qH as t → ∞, which reflects the fact that the increments
of the FLM become Gaussian with an increasing lag (as t → ∞ we have Gt/t

d−→ 1/ν, whence,
by (1.5), X(t)/t

d−→ (1/ν)H Z, ‘
d−→’ denoting convergence in distribution).

Remark 2.3. Using Proposition 2.1, we find the excess kurtosis of X(t) to be

γ2 = E([X(t) − E X(t)]4)

E([X(t) − E X(t)]2)2 − 3 = 3

(
�(4H + t/ν)�(t/ν)

�(2H + t/ν)2 − 1

)
.

It appears that the ratio of the gamma functions above is monotonically decreasing from ∞ to
0 as t varies from 0 to ∞. The variables X(t) are thus leptokurtic (γ2 > 0), indicating heavier
tails and a larger degree of peakedness as compared to the normal distribution, and become less
leptokurtic with increasing t (eventually approaching the Gaussian case as t → ∞) and more
leptokurtic with decreasing t .

The form of the one-dimensional marginal density of X(t) follows easily from conditioning
on Gt in (1.5) as shown in the next result.

Proposition 2.2. The density function of X(t) defined by (1.5) is

ft (x) = 1√
2π�(t/ν)

∫ ∞

0
yt/ν−H−1e−x2y−2H /2−y dy, x �= 0. (2.3)

The cumulative distribution function of X(t) is

Ft(x) =
∫ x

−∞
ft (y) dy =

∫ ∞

0
�(xy−H )

1

�(t/ν)
yt/ν−1e−y dy,

where �(·) is the cumulative distribution function of the standard normal distribution.

Remark 2.4. If H = 1
2 then the above probability density function can be written as

ft (x) =
√

2√
π�(t/ν)

( |x|√
2

)t/ν−1/2

Kt/ν−1/2(
√

2|x|), x �= 0, (2.4)

where Kλ(·) is the Bessel function of the third kind of index λ [20, p. 190]. A closed form
of the density is available when t/ν = n is an integer (see [31]), with n = 1 producing the
standard Laplace distribution.

The asymptotics of ft (mentioned in [21]) and Ft are given in the following result.

Proposition 2.3. The density function of X(t) admits the following asymptotic behavior:

ft (x) ∼ ax(2t/ν)/(1+2H)−1 exp(−bx2/(1+2H)), x → ∞,

where

a = 1√
1 + 2H�(t/ν)

H(t/ν)/(1+2H)−1/2 and b = 1 + 2H

2
H−2H/(1+2H).

The tail probability of X(t) admits the following asymptotic behavior:

P(X(t) > x) ∼ cx2(t/ν−1)/(1+2H) exp(−bx2/(1+2H)), x → ∞, (2.5)

with c = aH 2H/(1+2H).
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2.2. The covariance structure

The covariance function of {X(t), t ≥ 0} d= F LMH (σ, ν) is easily derived from that of
a FBM via a conditioning argument taking into account |�t − �s | d= �|t−s| and well-known
expressions for the moments of gamma distribution, leading to

E(X(t)X(s)) = σ 2

2

(
�(2H + t/ν)

�(t/ν)
+ �(2H + s/ν)

�(s/ν)
− �(2H + |s − t |/ν)

�(|s − t |/ν)

)
, t �= s.

(2.6)
Our next result shows that when t , s, and |s − t | are large, we essentially obtain the covariance
structure of the FBM.

Proposition 2.4. If G(s, t) and F(s, t) are respectively the covariance functions of the FBM
given by (1.1) and the FLM given by (2.6), then, with ν = 1, F(s, t) ∼ G(s, t) as |t | → ∞,
|s| → ∞, and |s − t | → ∞.

3. Fractional Laplace noise

If {X(t), t ≥ 0} d= F LMH (σ, ν) then for any η > 0,

{Y (t), t ≥ 0} d= {X(t + η) − X(t), t ≥ 0} (3.1)

is a stationary process with stationary increments. The process

{Wj, j ∈ N} d= {Y (η(j − 1)), j ∈ N} (3.2)

is called a fractional Laplace noise (FLN) with parameters σ, ν, η > 0, denoted by
F LN H (σ, ν, η). The covariance function of the FLN, presented below, shows that, similarly to
the fractional Brownian noise, an FLN exhibits a long-range dependence when 1

2 < H < 1 [36].
We start with the covariance function of {Y (t), t ≥ 0}. Clearly, for s = t we have

E(Y (t)Y (s)) = var(Y (t)) = E([X(η)]2) = σ 2 �(2H + η/ν)

�(η/ν)
.

The following two results provide the covariance function for s �= t and its asymptotic behavior.

Proposition 3.1. Let {Y (t), t ≥ 0}be the process defined by (3.1), whereX is anF LMH (σ, ν).
Then for any t, s ≥ 0 with s �= t , we have

E(Y (t)Y (s)) = σ 2

2

(
�(2H + |s − t + η|/ν)

�(|s − t + η|/ν)
+ �(2H + |t − s + η|/ν)

�(|t − s + η|/ν)

− 2
�(2H + |s − t |/ν)

�(|s − t |/ν)

)

if η �= |t − s|, and

E(Y (t)Y (s)) = σ 2

2

(
�(2H + 2η/ν)

�(2η/ν)
− 2

�(2H + η/ν)

�(η/ν)

)

when η = |s − t |.
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Proposition 3.2. For each t > 0, we have

E(Y (t)Y (s)) ∼ σ 2H(2H − 1)

(
η

ν

)2(
s − t

ν

)2H−2

as s → ∞.

It follows directly from the above that the covariance function r(n) = E(WjWj+n) of the
FLN {Wj, j ∈ N} is given by

r(0) = E([X(η)]2) = σ 2 �(2H + η/ν)

�(η/ν)
,

r(n) = σ 2

2

(
�(2H + (n + 1)η/ν)

�((n + 1)η/ν)
+ �(2H + (n − 1)η/ν)

�((n − 1)η/ν)
− 2

�(2H + nη/ν)

�(nη/ν)

)
, n ≥ 1.

Moreover, for H �= 1
2 we have

r(n) ∼ σ 2H(2H − 1)

(
η

ν

)2H

n2H−2 as n → ∞.

Remark 3.1. Note that when H > 1
2 and n → ∞, the covariance function tends to 0 so slowly

that the series
∑∞

n=1 r(n) diverges.

Remark 3.2. For η = ν, the autocorrelation function is

ρ(n) = H(2H − 1)

�(2H + 1)

�(2H + n − 1)

�(n + 1)
, n ≥ 2,

showing that the correlations are positive when H > 1
2 and negative when H < 1

2 (as in the
case of FBM).

4. Further properties

4.1. Infinite divisibility

It is well known that variance mixtures of normal distributions are infinitely divisible when-
ever the distribution of the stochastic variance is infinitely divisible (see Property (e) of [12,
Chapter XVII, Section 4]). WhenH = 1

2 , the stochastic varianceG2H
t has a gamma distribution,

which is infinitely divisible. In the general case, we need to consider infinite divisibility of the
generalized gamma distribution with probability density function (2.1), which corresponds to
the (1/γ )th power of a G(α, 1)-distributed variable. It is known that such powers are infinitely
divisible whenever 0 < |γ | ≤ 1, and are not infinitely divisible when γ > 1 (the case γ < −1
is still open) [8], [38]. It follows that all marginal distributions of an FLM are infinitely divisible
when 1

2 ≤ H ≤ 1. Since variance mixtures of normal distributions can be infinitely divisible
even when the stochastic variance is not [19], the divisibility property for H < 1

2 does not
follow trivially. Our next result shows that we actually do not have infinite divisibility in this
case.

Proposition 4.1. The marginal distributions of an F LMH (σ, ν) are infinitely divisible if and
only if 1

2 ≤ H ≤ 1.

Remark 4.1. In the terminology of [9] and [37], when 1
2 ≤ H ≤ 1 the marginal distributions

of an FLM are symmetric extended generalized gamma convolutions, i.e. variance mixtures of
normal distributions where the stochastic variance is a generalized gamma convolution. These
distributions are also self-decomposable [9, p. 107], [37].
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4.2. Connection with the abstract Cauchy problem

A standard FLM {X(t)} with H = 1
2 is a Lévy process that induces the semigroup of

operators {Tt , t ≥ 0}, where

Ttf (x) =
∫

f (x − s)ft (s) ds

and ft is the (Bessel function) density of X(t) given by (2.4) with ν = 1. The function

q(x, t) =
∫

p(x − y)ft (y) dy

solves an abstract Cauchy problem

∂q(x, t)

∂t
= Lq(x, t) (4.1)

with the initial condition q(x, 0) = p(x), where L is the generator (of the semigroup) given by

Lf (x) =
∫

y �=0

(
f (x − y) − f (x) − f ′(x)y

1 + y2

)
φ(dy)

(see [2]). Here φ(dy) is the Lévy measure of X(1), which in our case is of the form φ(dy) =
exp(−√

2|y|)/|y| [20, p. 47]. Taking this into account, we find that the function q(x, t) above
solves the equation

∂q(x, t)

∂t
= 1

λ
E+

λ q(x, t) + 1

λ
E−

λ q(x, t),

where λ = √
2 and, for each λ > 0, the quantities E+

λ and E−
λ are respectively right and left

exponentially weighted derivative operators, defined as

E±
λ f (x) =

∫ ∞

0

f (x − y) ∓ f (x)

y
λe−λy dy. (4.2)

If {X(t)} is a Brownian motion, then L = ∂2/∂x2 and (4.1) is the governing equation for
classical diffusion. When {X(t)} is an α-stable Lévy motion, the generator L involves fractional
derivatives of order α with respect to the space variable x, and (4.1) becomes the fractional
diffusion equation used in hydrology and physics to model anomalous diffusion (where the
particles spread faster than in classical diffusion) [3], [4], [5], [28]. Fractional derivatives are
defined similarly to the operators in (4.2), with the exponential weights replaced by a power
function [34, pp. 109–110]. In fractional diffusion, the power function weights represent a
particle flux that exceeds a given threshold r with a probability that falls off like r−α . In
situations in which the dynamics is governed by exponential probability tails (there is some
evidence of this in chaotic dynamics [11]), a Laplace model may prove similarly useful.

4.3. Stochastic self-similarity

As mentioned in the introduction, FLM admits an interesting property, self-similarity, under
random transformations of scale. In this section we formalize this notion and provide examples
of stochastic processes that enjoy this property. Let {Tc(t), t ≥ 0, c ∈ (1, ∞)} be a family of
stochastic processes, with Tc(0) = 0 almost surely and nondecreasing sample paths, such that
E(Tc(t)) = ct for each t ≥ 0 and c ∈ (1, ∞). This family corresponds to a stochastic time
change, which on average is linear. In analogy to classical self-similarity, we define stochastic
self-similarity as follows.
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Definition 4.1. Let X = {X(t), t ≥ 0} be a stochastic process on R
d and let

T = {Tc(t), t ≥ 0, c ∈ (1, ∞)}
be a family of processes as described above, independent of X. The process X is stochastically
self-similar with index H > 0 (or ‘H-sss’) with respect to the family T if

{X(Tc(t)), t ≥ 0} d= {cH X(t), t ≥ 0}, c ∈ (1, ∞). (4.3)

For each p ∈ (0, 1), let {Np(t), t ≥ 0} be the Lévy process such that Np(1) has the geometric
distribution (1.2). This is a negative binomial process with a drift

{Np(t), t ≥ 0} d= {t + NBp(t), t ≥ 0},
where NBp is an integer-valued Lévy process with negative binomial marginal distributions
given by

P(NBp(t) = k) =
(

t + k − 1

k

)
pt (1 − p)k, k = 0, 1, 2, . . . , t > 0.

Proposition 4.2. Let � = {�t , t ≥ 0} be a gamma process with parameter ν and let Np be a
negative binomial process with drift independent of �. Then � is stochastically self-similar with
index H = 1 with respect to the family T = {Tc, c ∈ (1, ∞)}, where Tc = {νN1/c(t/ν), t ≥ 0}.
Corollary 4.1. Let X = {X(t), t ≥ 0} be an F LMH (σ, ν) and let T be as in Proposition 4.2,
independent of X. Then X is H-sss with respect to the family T .

Remark 4.2. Corollary 4.1 can be generalized. If Y = {Y (t), t ≥ 0} is an H -ss process
(i.e. self-similar with index H ) and � = {�t , t ≥ 0} is a gamma process independent of Y ,
then the compound process X defined as X(t) = Y (�t ) is H -sss with respect to the family
T above. This leads to a class of processes that are stochastically self-similar with respect to
negative binomial changes of scale. For example, by taking Y to be a stable H -ss process we
obtain a corresponding geometric stable process with the stochastic self-similarity property. It
is an interesting open question to find nontrivial examples of H -sss processes with respect to a
different family of subordinators.

Remark 4.3. A completely different notion of stochastic self-similarity was proposed by Gupta
and Waymire [14] and Veneziano [39]. Their notion involves stochastic renormalization in
space, while ours involves stochastic renormalization in time. The two kinds of stochastic
self-similarity are apparently unrelated.

4.4. Stability properties of FLN

Stochastic self-similarity properties of FLM lead to corresponding stability properties of
FLN. For simplicity, we consider a standard FLM X = {X(t), t ≥ 0} with ν = σ = 1. With
t = 1/n in (4.3), in view of Corollary 4.1 we find that (1/p)H X(1/n)

d= X(Np(1/n)), where
{Np(t), t ≥ 0} is the negative binomial process with drift described in Subsection 4.3. By
writing this in terms of lag-η increments of X (see (3.2)), for η = 1/n we obtain the relation

pH

nNp(1/n)∑
j=1

Wj
d= W1,
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since X(Np(1/n)) is the sum of the first nNp(1/n) lag-η increments Wj . If the lag size is
one (n = 1), the number of terms in this sum is a geometric variable (1.2) and we obtain a
generalization of the stability property (1.3) of the Laplace distribution.

Motivated by the last relation, we define a geometric renormalization group of transforma-
tions, {Tp, ◦}, and the corresponding concept of geometric self-similarity. Consider a stationary
sequence W = {Wj, j ∈ N} and for each p ∈ (0, 1) define the transformation

Tp : W → TpW = {(TpW)k, k ∈ N},
where

(TpW)k = pH (WNp(k−1)+1 + · · · + WNp(k)), k ∈ N.

As before, Np(t) is a negative binomial process with drift, independent of W . In words, Tp

transforms the original sequence into a new one obtained by summing the components of W over
successive blocks of random geometric size N

(k)
p = Np(k) − Np(k − 1) and then normalizing

with pH = (expected block size)H . The group operation is composition, satisfying

Tp ◦ TqW = Tp(TqW)
d= TpqW

since, for two independent negative binomial processes with respective drifts Np and Nq , we
have Npq(k) = Np(Nq(k)), k ∈ N. Now, for the lag-1 stationary FLN, W = {Wj, j ∈ N},
we notice that WNp(k−1)+1 + · · · + WNp(k) = X(Np(k)) − X(Np(k − 1)). Thus, stochastic
self-similarity of X, discussed in Corollary 4.1, implies that W is a fixed point of the geometric
renormalization group {Tp, ◦}, i.e. that TpW

d= W, p ∈ (0, 1). This motivates the following
definition.

Definition 4.2. If W = {Wj, j ∈ N} is a stationary sequence and TpW
d= W , then we say that

W is geometrically self-similar with index H .

Proposition 4.3. The lag-1 FLN corresponding to an FLM with ν = 1 is geometrically self-
similar with index H .

Remark 4.4. The above notion of geometric self-similarity as applied to stationary sequences
is similar to invariance properties of renewal processes with respect to geometric thinning [13],
[32], since both properties are based on stability with respect to geometric compounding.

5. Simulation

The most direct approach to simulating sample paths of FLM is by using a subordination
of a fractional Brownian motion to a gamma process. For H > 3

4 and large-to-moderate
values of ν, we find it adequate to simulate a fractional Brownian motion on a regular grid
and subordinate it to a discretized gamma process. For other parameter values we generate
values of �(tk) for points tk on an equally spaced grid. Then we simulate Xk = BH (�(tk)),
which, conditionally on the values of �(tk), is a second-order Gaussian process with the explicit
covariance function of FBM evaluated at the values of the gamma process (note that in this case
Xk is not a stationary sequence). To generate the second-order Gaussian sequence Xk we use
the innovations algorithm to represent the sequence as Xk = α1kZ1 + · · · + αkkZk , where the
Zi are independent, identically distributed standard normal variables and the αij are computed
using the innovations algorithm [10, p. 172]. Figure 1 shows some representative sample paths
of FLMs. The graphs show how the time scale parameter ν affects the degree of jump-type
behavior for different degrees of similarity to FBM. In the upper graph H = 0.3 and in the
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Figure 1: Trajectories of FLM for different values of the self-similarity parameter, H , and time scale
parameter, ν.

lower graph H = 0.8, while in each graph ν = 1 for the solid line of medium weight, ν = 1
2

for the heavy solid line, ν = 1
4 for the light solid line, and ν = 1

16 for the dotted line.

6. Proofs

Proof of Proposition 2.3. Making the substitution τ = y−2H /2 in (2.3) allows us to write

ft (x) = 1

H
2−t/(2Hν)−1/2h(x2), x �= 0,

where
h(ρ) =

∫ ∞

0
τγ−1e−ρτ−ατ−β

dτ

with α = 2−1/(2H), β = 1/(2H), and γ = [1 − t/(Hv)]/2. The statement of the proposition
now follows from the asymptotic relation

h(ρ) ∼
(

αβ

ρ

)γ /(β+1)

e−λ(1+1/β)

√
2π

β + 1
λ−1/2, ρ → ∞,

where λ = (αβρβ)1/(β+1) (see [40, p. 62, Example 2]).
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The tail probability asymptotics is obtained via l’Hôpital’s rule applied to the ratio of the
sides of (2.5).

Proof of Proposition 2.4. It suffices to consider the case in which 0 < s < t and s → ∞.
By Stirling’s formula, we have x−2H �(x + 2H)/�(x) → 1 as x → ∞. We now consider
three cases.

Case 1. Suppose that t ∼ λs for some λ > 1. Then (t − s) ∼ (λ − 1)s → ∞, meaning that
G(s, t) ∼ [s2H (λ2H + 1 − (λ − 1)2H )]/2 and, thus,

F(s, t)

G(s, t)
∼ 1

λ2H + 1 − (λ − 1)2H

(
λ2H t−2H �(t + 2H)

�(t)
+ s−2H �(s + 2H)

�(s)

− (λ − 1)2H (t − s)−2H �(t − s + 2H)

�(t − s)

)
→ 1.

Case 2. Suppose that (t − s)/t → 0. Then t ∼ s, meaning that G(s, t) ∼ t2H and, thus,

F(s, t)

G(s, t)
∼ 1

2

(
�(t + 2H)

t2H �(t)
+ �(s + 2H)

s2H �(s)
−

(
t − s

t

)2H
�(t − s + 2H)

(t − s)2H �(t − s)

)
→ 1.

Case 3. Suppose that s/t → 0. Then (t − s)/t → 1, meaning that

G(s, t) ∼ 1

2
t2H

[
1 −

(
1 − s

t

)2H ]
= 1

2
t2H

[
1 −

{
1 − 2H

(
s

t

)
+ o

(
s

t

)}]
∼ Hst2H−1

and, thus, with �(t) = d ln(�(t))/dt the digamma function,

F(s, t)

G(s, t)
∼ t

Hs
t−2H �(t + 2H)

�(t)

1

2

(
1 − �(t)

�(t + 2H)

�(t − s + 2H)

�(t − s)

)

= t

Hs
t−2H �(t + 2H)

�(t)

1

2

(
1 −

{
1 − (�(t + 2H) − �(t))s + o

(
s

t

)})

∼ t

Hs

Hs

t
= 1,

using a Taylor expansion and the fact that �(t + 2H) − �(t) ∼ 2H/t .
In the general case, given any two sequences sn → ∞ and tn > sn, any subsequence (n′)

contains a further subsequence, (n′′), along which sn′′/tn′′ → µ for some µ ∈ [0, 1]. One
of the three cases above then implies that F(sn′′ , tn′′)/G(sn′′ , tn′′) → 1 and, since this is true
for every subsequence, it follows that F(sn, tn)/G(sn, tn) → 1 as n → ∞, which proves the
claim.

Proof of Proposition 3.1. Write

E(Y (t)Y (s)) = E(X(t + η)X(s + η))+ E(X(t)X(s))− E(X(t + η)X(s))− E(X(t)X(s + η))

and use the formulae for the covariance function of {X(t), t ≥ 0} presented in Section 2.

Proof of Proposition 3.2. For r > h > 0, let

F(r, h) = 1

2

[
�(r + h + 2H)

�(r + h)
+ �(r − h + 2H)

�(r − h)
− 2

�(r + 2H)

�(r)

]
.
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It is enough to show that for each h > 0 we have F(r, h) ∼ H(2H − 1)h2r2H−2 as r → ∞
(then, to obtain the result desired here, set r = (s − t)/ν and h = η/ν).

Let gt = �(t + 2H)/�(t). Using Taylor expansions yields

gr+h

gr

= 1 + (�(r + 2H) − �(r))h + (�(r + 2H) − �(r))2 + �1(r + 2H) − �1(r)

2
h2

+ O(r−3),

where �(x) = d ln(�(x))/dx and �1(x) = d�(x)/dx are the digamma and trigamma
functions, respectively. We have

�(x) = ln x + 1

2x
+

∞∑
n=1

B2n

2nx2n
,

�1(x) = 1

x
− 1

2x2 −
∞∑

n=1

B2n

x2n+1 ,

where the B2ns are the Bernoulli numbers. Thus, �(r + 2H) − �(r) ∼ 2H/r and

�1(r + 2H) − �1(r) = −2H

r(r + 2H)
+ O(r−3),

whence
gr+h

gr

= 1 + 2H
h

r
+ H(2H − 1)

(
h

r

)2

+ O(r−3).

Finally,

F(r, h) = gr

2

[
gr+h

gr

+ gr−h

gr

− 2

]

= gr

[
H(2H − 1)

r2 h2 + O(r−3)

]
∼ H(2H − 1)h2r2H−2.

Proof of Proposition 4.1. In view of the remarks preceding Proposition 4.1, it is enough to
show that X(t) is not infinitely divisible when H < 1

2 . To see this, assume the contrary and
use Proposition 2.3 to conclude that the limit

lim
x→∞ − log P(X(t) > x)

x log x

is the same as limx→∞ bxβ/(x log x), where

β = 2

1 + 2H
and b = 1

2
(1 + 2H)H−2H/(1+2H).

Since β > 1 when H < 1
2 , the limit is infinite. Since X(t) is not degenerate, this would imply

that X(t) is Gaussian (see [35, p. 200, Corollary 9.9]). This contradiction shows that X(t)

cannot be infinitely divisible in this case.
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Proof of Proposition 4.2. Since �(νN1/c(t/ν)) and �(t)/p are Lévy processes, it is enough
to show that for some t > 0 the random variables �(νN1/c(t/ν)) and �(t)/p have the same
distribution. For t = ν we find that �(t) is a standard exponential random variable and that
�(νN1/c(t/ν)) is the sum of a geometric number, N1/c(1), of independent standard exponential
random variables. The latter has the characteristic function

φ(t) =
∞∑

k=1

1

(1 − it)k
(1 − p)k−1p = p

(1 − it) − (1 − p)
= 1

1 − it/p
,

which corresponds to an exponential random variable multiplied by 1/p.
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