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Abstract

Fractional diffusion equations are abstract partial differential equations
that involve fractional derivatives in space and time. They are useful to
model anomalous diffusion, where a plume of particles spreads in a different
manner than the classical diffusion equation predicts. An initial value prob-
lem involving a space-fractional diffusion equation is an abstract Cauchy
problem, whose analytic solution can be written in terms of the semigroup
whose generator gives the space-fractional derivative operator. The corre-
sponding time-fractional initial value problem is called a fractional Cauchy
problem. Recently, it was shown that the solution of a fractional Cauchy
problem can be expressed as an integral transform of the solution to the
corresponding Cauchy problem. In this paper, we extend that results to
inhomogeneous fractional diffusion equations, in which a forcing function
is included to model sources and sinks. Existence and uniqueness is estab-
lished by considering an equivalent (non-local) integral equation. Finally,
we illustrate the practical application of these results with an example from
groundwater hydrology, to show the effect of the fractional time derivative
on plume evolution, and the proper specification of a forcing function in a
time-fractional evolution equation.
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1. Introduction

Fractional derivatives are almost as old as their more familiar integer-
order counterparts [23, 29]. Fractional derivatives have recently been applied
to many problems in physics [5, 10, 11, 13, 18, 20, 21, 22, 28, 30, 35],
finance [16, 19, 26, 30, 27], and hydrology [3, 7, 8, 17, 32, 33]. Fractional
derivatives are used to model anomalous diffusion, where a particle plume
spreads at a rate inconsistent with the classical model, and the plume may
be asymmetric. When a fractional derivative replaces the second derivative
in the diffusion equation, it leads to enhanced diffusion (also called super-
diffusion). A fractional time derivative leads to sub-diffusion, where a cloud
of particles spreads slower than the classical t1/2 rate. In applications to
groundwater flow and transport, the diffusion term in the transport equation
models mechanical dispersion, the spreading of contaminants due to velocity
contrast as the fluid passes through a porous medium [6]. A fractional
derivative in space models the anomalous super-diffusion caused by large
velocity contrasts in heterogeneous porous media [7, 14]. A fractional time
derivative models particle sticking and trapping, a sub-diffusive effect [3, 9,
31].

Fractional diffusion equations are abstract partial differential equations
that involve fractional derivatives in space and time. Since fractional deriva-
tives are non-local operators, solution methods are significantly different
than for integer-order partial differential equations. An initial value prob-
lem ∂t g = Lg involving a space-fractional derivative operator L is an ab-
stract Cauchy problem [1]. Its analytic solution can be written in terms of
the semigroup whose generator L defines the space-fractional derivative op-
erator. The corresponding time-fractional initial value problem ∂β

t g = Lg
is called a fractional Cauchy problem [2]. Here the time-fractional deriva-
tive is the Caputo derivative [12]. The solution of this fractional Cauchy
problem can be expressed as an integral transform of the solution to the
corresponding Cauchy problem [21]. In this paper, we develop an analytical
formula for the solution of an inhomogeneous fractional diffusion equation

∂β
t g = Lg + r. (1)



INHOMOGENEOUS FRACTIONAL . . . 373

Then we prove existence and uniqueness of solutions by considering an
equivalent integral equation of convolution type. The connection between
fractional diffusion equations, and evolution equations with a convolution
flux integral term, was pointed out in [15]. In practical applications, the
forcing function r(x, t) is used to model sources and sinks. At the end of this
paper, we include an example from groundwater hydrology to illustrate the
proper modeling of the forcing term in a time-fractional partial differential
equation.

A final note: After this paper was accepted, we learned of a new
paper by Umarov and Saydamatov [34], where equation (1) is solved using
different methods. That paper also considers the case β > 1 which is not
considered here.

2. Fractional diffusion equations

The Riemann-Liouville fractional integral of order β > 0 is defined by

Jβ
t g(t) =

∫ t

0

(t− u)β−1

Γ(β)
g(u)du (2)

and J0
t g(t) = g(t). The Riemann-Liouville fractional derivative of order

β > 0 is

Dβ
t g(t) =

dm

dtm
Jm−β

t g(t) =
dm

dtm

∫ t

0

(t− u)m−β−1

Γ(m− β)
g(u)du; m = dβe, (3)

where dβe denotes the smallest integer m ≥ β. The Caputo fractional
derivative is

∂β
t g(t) = Jm−β

t

dm

dtm
g(t) =

∫ t

0

(t− u)m−β−1

Γ(m− β)
g(m)(u)du; m = dβe. (4)

If β is a positive integer then Dβ
t = ∂β

t is the usual derivative operator.
In this paper we consider time-fractional derivatives of order 0 < β < 1
for functions g ∈ C∞([0,∞);X) for some Banach space X, and the inte-
grals in the definitions (2), (3), and (4) are Bochner integrals [1]. In that
case, if g(t) has Laplace transform ĝ(λ) =

∫∞
0 e−λtg(t)dt then the Riemann-

Liouville fractional integral Jβ
t g has Laplace transform λ−β ĝ(λ), since (2)

is the convolution of g(t) with a function kβ(t) = tβ−1/Γ(β) whose Laplace
transform (as one can easily check) is λ−β, and since the Laplace transform
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of a convolution is the product of the corresponding Laplace transforms (see,
e.g., [1] Proposition 1.6.4). Furthermore, Jβ

t g ∈ C∞([0,∞);X), and it is
easy to check that Jβ

t g(0) = 0. Using the fact that D1
t g(t) has Laplace trans-

form λĝ(λ)− g(0), it follows that the Riemann-Liouville derivative Dβ
t g has

Laplace transform λβ ĝ(λ) and the Caputo derivative ∂β
t g has Laplace trans-

form λβ ĝ(λ)−λβ−1g(0). Additional properties of time-fractional derivatives
can be found in [4].

For fractional derivatives in space, some additional definitions are useful.
The positive Liouville fractional derivative of order α > 0 is

Dα
xh(x) =

1
Γ(n− α)

dn

dxn

∫ x

−∞
(x− y)n−α−1h(y)dy; n = dαe. (5)

The negative Liouville fractional derivative is

Dα
−xh(x) =

(−1)n

Γ(n− α)
dn

dxn

∫ ∞

x
(y − x)n−α−1h(y)dy; n = dαe. (6)

If h(x) has the Fourier transform ĥ(k) =
∫

e−ikxh(x)dx then Dα
xh has

Fourier transform (ik)αf̂(k) and Dα−xh has Fourier transform (−ik)αĥ(k).
Zaslavsky [35] introduced the space-time fractional diffusion equation ∂β

t g =
Lg with L = Dα

x as a model for Hamiltonian chaos. Benson et al. [7, 8, 9]
use L = −vDx + pDα

x + (1 − p)Dα−x to model advection and dispersion of
contaminants in underground water.

More generally, we assume in this paper that the spatial derivative op-
erator L is the generator of a strongly continuous semigroup {T (t) : t ≥ 0}
on some Banach space X. For example, L could be the generator of a
convolution semigroup on Rd defined by T (t)h(x) =

∫
h(x − y)µt(dy) =∫

p(x − y, t)h(y)dy where p(x, t) is the density function of some infinitely
divisible probability measure µt on Rd [2]. As another example, L could be
a uniformly elliptic operator on some bounded domain in Rd. In any case
the domain D(L) of the generator

Lh = lim
t→0+

T (t)h− h

t
(7)

is dense in X (see, e.g., Theorem 3.1.2 in [1]) and L is closed (see, e.g.,
Proposition 3.1.9 in [1]). Furthermore, the function u : t 7→ T (t)h solves the
abstract Cauchy problem

∂tu(t) = Lu(t); u(0) = h (8)
for any h ∈ D(L), see for example [1, 24]. In the case of L being the gen-
erator of a convolution semigroup, the function p(x, t) is called the Green’s
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function solution to (8) since formally it corresponds to the Dirac delta
function initial condition h(x) = δ(x). For the classical diffusion equation
with drift, take L = −v∂x + D∂2

x in (8). The simplest space-fractional dif-
fusion equation with drift is (8) with L = −v∂x + D∂α

x for 1 < α < 2. It
models anomalous super-diffusion, where a particle cloud spreads out from
its center of mass faster than the classical diffusion model predicts.

For 0 < β < 1 and h ∈ X the fractional Cauchy problem

Dβ
t g(x, t) = Lg(x, t) + h(x)

t−β

Γ(1− β)
(9)

has solution g(x, t) =
∫

q(x− y, t)h(y)dy, where

q(x, t) =
t

β

∫ ∞

0
p(x, s)gβ(ts−1/β)s−1/β−1ds, (10)

and p is the Green’s function solution to (8), see [2, 21]. Here gβ is a
probability density function called the stable subordinator, whose Laplace
transform is exp(−sβ), see for example [29]. We also call q the Green’s
function solution to (9) since formally it corresponds to the case a(x) = δ(x).
Theorem 3.1 in Bajlekova [4] leads to a different formula:

q(x, t) =
∫ ∞

0
p(x, u)t−βΦβ(ut−β)du; Φβ(z) =

∞∑

0

(−z)n

n!Γ(−nβ + 1− β)
,

(11)
but it seems difficult to equate these two forms (10) and (11) directly,
and we note that (10) can be computed explicitly. In the special case
L = −v∂x + D∂2

x, equation (9) is called the time-fractional diffusion equa-
tion. It models anomalous sub-diffusion, in which a particle cloud spreads
slower than the classical diffusion model predicts. The simplest space-time
fractional diffusion equation, (9) with L = D∂α

x , was first used by Zaslavsky
[35] as a model for Hamiltonian chaos. Here the sub-diffusive effect of the
fractional time derivative mitigates the super-diffusive nature of the frac-
tional space derivative, resulting in a model where the particle cloud spreads
like tβ/α, see [21].

3. Fractional diffusion equation with forcing term

In order to illuminate the nature of the last term in (9), and to facili-
tate the introduction of a forcing term, we note that the fractional Cauchy
problem (9) can be written in several equivalent forms. The proof of the
next result extends the main results in [2] and [21]. The arguments are
similar. Recall that a strongly continuous semigroup {T (t) : t ≥ 0} on some
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Banach space X with generator L has a resolvent R(λ, L) = (λ − L)−1, a
linear operator on X whose domain is all of X (see, e.g., [1] p. 41) and
such that

∫∞
0 e−λtT (t)hdt = (λ − L)−1h for <(λ) > ω(T ) and any h ∈ X

(see, e.g., Theorem 3.1.7 in [1]). The notation g = (λ − L)−1h means that
h = (λ − L)g, and ω(T ) = inf{ω > 0 : supt≥0 ‖e−ωtT (t)‖ < ∞} is the
exponential growth bound for the semigroup (see, e.g., [1] Theorem 1.4.3).

Proposition 1. Assume 0 < β < 1. Let L be the generator of a
strongly continuous semigroup {T (t)}t≥0 on a Banach space X and g ∈
C([0,∞);X) be Laplace transformable. Then for all h ∈ X the following
are equivalent:

(i) For all t > 0, the Riemann-Liouville derivative of g exists, g(t) ∈ D(L),
the Laplace transform of Dβ

t g(t) exists, and

Dβ
t g(t) = Lg(t) +

t−β

Γ(1− β)
h. (12)

(ii) For all t > 0, the Caputo derivative of g exists, g(t) ∈ D(L), the

Laplace transform of ∂β
t g(t) exists, and

∂β
t g(t) = Lg(t); g(0) = h. (13)

(iii) For all t > 0 the function g is differentiable, g(t) ∈ D(L), the Laplace
transform of ∂tg(t) exists, and

∂tg(t) = D1−β
t Lg(t); g(0) = h. (14)

(iv) For all t > 0, Jβ
t g(t) ∈ D(L)

g(t) = LJβ
t g(t) + h. (15)

(v) The function g(t) is analytic on 0 < t < ∞, satisfies ‖g(t)‖ ≤ Meωt

on 0 < t < ∞ for some M,ω ≥ 0 and

g(t) =
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
T (s)h ds, (16)

where gβ is the stable subordinator; i.e.
∫∞
0 e−λtgβ(t) dt = exp(−λβ).
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(vi) The function g has Laplace transform defined in terms of the resolvent

ĝ(λ) = λβ−1
(
λβ − L

)−1
h (17)

for all λ with <(λ) > ω(T ), the exponential growth bound of this
semigroup.

P r o o f. We first show that (i) through (iv) each imply (vi). Start-
ing with (i), and recalling that the Riemann-Liouville fractional derivative
Dβ

t g(t) of a function g(t) with Laplace transform ĝ(λ) =
∫∞
0 e−λtg(t)dt

equals λβ ĝ(λ), take Laplace transforms in (12) to obtain

λβ ĝ(λ) = L̂g(λ) + λβ−1h

using the fact, which one can easily check, that λβ−1 is the Laplace transform
of t−β/Γ(1− β) for any β < 1. Fix B > 0 and let x =

∫ B
0 e−λtg(t)dt the

Bochner integral [1] and let y =
∫ B
0 e−λtLg(t)dt. Take xn to be an approxi-

mation to the integral x obtained by replacing g(t) by a step function and
let yn = Lxn. Using the fact that L is closed, it follows that y = Lx exists
and yn = Lxn → y. This shows that

∫ B
0 e−λtLg(t)dt = L

∫ B
0 e−λtg(t)dt.

Then another similar argument shows that L̂g(λ) = Lĝ(λ). Note that
for a function f taking values in X to be Bochner integrable, it is nec-
essary and sufficient that f is measurable and ‖f‖ is integrable (see, e.g.,
Theorem 1.1.4 in [1]). Hence the Laplace transform of g exists as long as∫∞
0 e−λt‖g(t)‖dt < ∞. Now it follows that

(λβ − L)ĝ(λ) = λβ−1h

and hence we have in terms of the resolvent R(λ,L) = (λ− L)−1 that (17)
holds for all λ with <(λ) > ω(T ), the exponential growth bound of this
semigroup.

If (ii) holds, then taking Laplace transforms in (13), and using the fact
that the Caputo fractional derivative ∂β

t g(t) has Laplace transform λβ ĝ(λ)−
λβ−1g(0), we obtain λβ ĝ(λ) − λβ−1h = L̂g(λ). Then using L̂g(λ) = Lĝ(λ)
again we arrive at (17) as before.

If (iv) holds, then taking Laplace transforms in (15) leads to ĝ(λ) =

Lλ−β ĝ(λ) + λ−1h, using the fact that L is closed to obtain that L̂Jβ
t g(λ) =

LĴβ
t g(λ), and recalling that λ−β ĝ(λ) is the Laplace transform of Jβ

t g, and
that λ−1C is the Laplace transform of a constant C. Then (17) follows.
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If (iii) holds, then taking the Laplace transform on both sides of (14)
yields

λĝ(λ)− h =
∫ ∞

0
e−λtD1−β

t Lg(t)dt =
∫ ∞

0
e−λtD1

t J
β
t Lg(t)dt.

Using the fact that L is closed, and the definition (2) of the Riemann-
Liouville fractional integral, it is not hard to show that Jβ

t Lg(t) = LJβ
t g(t).

A similar argument was used previously to show that L̂g(λ) = Lĝ(λ). Ap-
proximating D1

t f(t) by a difference quotient and using the fact that L is
closed, it follows that D1

t LJβ
t g(t) = LD1

t J
β
t g(t). Then the same argument

as before shows that

λĝ(λ)− h =
∫ ∞

0
e−λtD1

t J
β
t Lg(t)dt = L

∫ ∞

0
e−λtD1

t J
β
t g(t)dt.

Integrate by parts to get

λĝ(λ)− h = λL

∫ ∞

0
e−λtJβ

t g(t) dt− Jβ
t Lg(0) = λ1−βLĝ(λ)− Jβ

t Lg(0),

then rearrange and apply the resolvent on both sides to obtain

ĝ(λ) = λβ−1
(
λβ − L

)−1
(h− Jβ

t Lg(0))

for all λ with <(λ) > ω(T ). We now show that Jβ
t Lg(0) = 0. For Laplace

transformable continuous functions g we have that limλ→∞ λĝ(λ) = g(0)
(see, e.g., [1] Proposition 4.1.3). Also, Proposition 3.1.9 in [1] shows that
λ(λ − L)−1g → g as λ → ∞ for all g ∈ X. Hence on one hand λĝ(λ) =
λβ

(
λβ − L

)−1 (h − Jβ
t Lg(0)) → h − Jβ

t Lg(0) as λ → ∞, and on the other
λĝ(λ) → g(0) = h. Hence Jβ

t Lg(0) = 0 and again (17) follows. Hence we
have shown that any of (i) through (iv) implies (vi).

Next we show that (v) implies (vi). Equation (16) along with the fact
that gβ(t) has Laplace transform ĝβ(λ) = e−λβ

implies that

∫ ∞

0
e−λtg(t) dt =

∫ ∞

0
e−λt

∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
T (s)h ds dt

=
∫ ∞

0

∫ ∞

0
e−λt t

βs1+1/β
gβ

(
t

s1/β

)
dt T (s)h ds

=
∫ ∞

0

∫ ∞

0
e−λus1/β us1/β

βs
gβ(u) duT (s)h ds

(18)
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=
∫ ∞

0
− d

dλ

∫ ∞

0
e−λus1/β 1

βs
gβ(u) du T (s)h ds=

∫ ∞

0
− d

dλ

(
e−λβs 1

βs

)
T (s)h ds

=
∫ ∞

0
λβ−1e−λβs T (s)h ds = λβ−1

(
λβ − L

)−1
h,

using Fubini and the dominated convergence theorem. Hence (vi) holds.
Now we show that (vi) implies (v). Since L is the generator of a semi-

group, for some ω > ω(T ) the exponential bound of this semigroup, there
exists M ≥ 0 such that λ 7→ (λ − L)−1h is analytic in the half plane
{λ : <(λ) > ω} (see, e.g., [1] p. 122) and ‖(λ − ω)(λ − L)−1‖ ≤ M for all
λ > ω. (This is a special case of the Hille-Yosida Theorem, see, e.g., [1]
Theorem 3.3.4). Now if ĝ satisfies (17), then ĝ has an analytic extension to
the region R = {λ ∈ C \ (−∞, 0] : <(λβ) > ω} in the complex plane with
‖λĝ(λ)‖ ≤ M for all λ in that region. Since 0 < β < 1, the argument of the
curve (ω + iR)1/β approaches ±π/2β. Hence for any 0 < α < min{π, π

2β}
there exists ω′ > 0 such that the region R contains the sectorial region
ω′ + {re−θ : r > 0, |θ| < α}. Now an application of Theorem 2.6.1 in [1]
shows that g(t) is analytic for t > 0 and also satisfies ‖e−ωtg(t)‖ ≤ M for
all t > 0. By the uniqueness of the Laplace transform, it follows from (18)
that (vi) implies (v). Hence (v) and (vi) are equivalent.

Finally we wish to show that (vi) implies each of (i) through (iv). If
(vi) holds, then (v) also holds, and from (17) it follows that (λβ −L)ĝ(λ) =
λβ−1h. Then ĝ(λ) = λ−βLĝ(λ) + λ−1h. Since ĝ(λ) is analytic in a secto-
rial region, so is λ−β ĝ(λ), and hence this product represents the Laplace
transform of some analytic function. Since Jβ

t g(t) is the convolution of
g(t) with the function kβ(t) = tβ−1/Γ(β), whose Laplace transform is λ−β,
Proposition 1.6.4 in [1] shows that λ−β ĝ(λ) is the Laplace transform of
that convolution. Since L is closed, the convolution kβ ∗ (Lg) = L(kβ ∗ g),
and the Laplace transform of Jβ

t Lg(t) is λ−βLĝ(λ). Recalling that λ−1C is
the Laplace transform of a constant C and inverting the Laplace transform
yields (17), and so (v) implies (iv). Now (i) through (iii) follow in the same
manner, since the Laplace transforms of the corresponding equations are all
equivalent to (17).

Define a family of bounded, strongly continuous (even strongly analytic,
see Theorem 3.1 in [2]) linear operators {S(t)}t≥0 on X via

S(t)h :=
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
T (s)h ds. (19)
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In view of Proposition 1, item (v), the function g(t) = S(t)h defines a
solution to the fractional Cauchy problem given by any of the equivalent
forms in (i) through (iv) for any initial condition h ∈ X, and this solution
depends continuously on the initial condition h. The purpose of this paper
is to solve an inhomogeneous fractional diffusion equation which, in view of
Proposition item (iii), can be written in the form

∂tg(t) = D1−β
t Lg(t) + f(t); g(0) = h. (20)

In practical applications, the Banach space X is specified as a suitable func-
tion space of real-valued functions on some domain in Rd, and the forcing
function f(t) ∈ X can be written with some abuse of notation as f(x, t),
denoting a source/sink term at location x at time t, which has the same
units as ∂tg(x, t). We can also rewrite this equation in the form

∂β
t g(t) = Lg(t) + r(t); g(0) = h, (21)

or equivalently

Dβ
t g(t) = Lg(t) +

t−β

Γ(1− β)
h + r(t), (22)

or in Volterra integral form as

g(t) = LJβ
t g(t) + h +

∫ t

0
f(s) ds. (23)

The equations are equivalent if g is differentiable and if we take f = ∂1−β
t r

with r(0) = 0 (and then f = D1−β
t r as well), but note that the “fractional

forcing function” r(t) here does not have the interpretation of a source or
sink, or even the same units.

Remark. Formally, one can also write the homogeneous version of (20)
by taking g(x, 0) = 0 and f(x, t) = h(x)δ(t). Then the “fractional forcing
function”

r(x, t) = J1−β
t f(x, t) = h(x)

t−β

Γ(1− β)
which motivates the equivalence between the Caputo form (13) and Riemann-
Liouville form (9) of the fractional diffusion equation.

We now show that the fractional diffusion equation (20) can be solved by
an extension of the usual methods, involving superposition and Duhamel’s
principle, for integer-order partial differential equations with a forcing term.
A similar idea was used in Bajlekova [4], p.55, to study existence and unique-
ness of solutions to the equation Dβ

t g = Ag + f ; J1−β
t g(x, 0) = h(x) or in

the context of Volterra integral equations by J. Prüss [25].



INHOMOGENEOUS FRACTIONAL . . . 381

Theorem 1. Assume that 0 < β < 1, f(t) ∈ L1([0, T );X) for some
T > 0, and h ∈ X where L is the generator of some strongly continuous
semigroup on a Banach space X. Then the unique solution of (23) is given
by

g(t) = S(t)h +
∫ t

0
S(t− s)f(s)ds, (24)

where S(t) is the solution family to the fractional Cauchy problem (9) given
by (19).

P r o o f. If g1 and g2 are solutions to (23), then g1−g2 solves (15) with
zero initial condition (h = 0). Hence (16) implies that g1 − g2 = 0.

The function g defined in (24) is well defined and continuous by Prop.
1.3.4 in [1] along with Theorem 3.1 in [2]. Since L is closed, Proposition 1
implies that

g(t) =S(t)h +
∫ t

0
S(t− s)f(s) ds

=LJ1−β
t S(t)h + h +

∫ t

0
LJ1−β

t−s S(t− s)f(s) + f(s) ds

=LJ1−β
t S(t)h + h + L

∫ t

0

∫ t−s

0

(t− s− u)−β

Γ(1− β)
S(u)f(s)duds+

∫ t

0
f(s)ds

=LJ1−β
t S(t)h + h + L

∫ t

0

∫ t

s

(t− v)−β

Γ(1− β)
S(v − s)f(s) dv ds +

∫ t

0
f(s) ds

=LJ1−β
t S(t)h + h + L

∫ t

0

(t− v)−β

Γ(1− β)

∫ v

0
S(v − s)f(s) ds dv +

∫ t

0
f(s) ds

=LJ1−β
t S(t)h + h + LJ1−β

t

∫ t

0
S(t− s)f(s) ds +

∫ t

0
f(s) ds

=LJ1−β
t g(t) + h +

∫ t

0
f(s) ds,

(25)

which agrees with (23).

In case that L generates a convolution semigroup, we have the following
representation.

Corollary 1. Assume that 0 < β < 1, the forcing function f(x, t) ∈
L1(Rd×(0, T )) for some T > 0, the initial condition h ∈ L1(Rd) and assume
that L is the generator of some strongly continuous convolution semigroup
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on Rd associated with a family of infinitely divisible probability distributions
µt with density p(x, t). Then the solution of (23) is given by

g(x, t) =
∫

q(x− y, t)h(y)dy +
∫ t

0

∫
q(x− y, t− u)f(y, u)dydu, (26)

where q is the Green’s function solution to the fractional Cauchy problem
(9) given by (10).

4. Application

We consider a laboratory experiment where a stable left-to-right flow is
established through a long thin homogeneous sandbox, and then a tracer is
injected along with the flow at a constant concentration c starting at time
t = 0 and ending at time t = t1, after which the flow continues without any
additional tracer. The tracer enters at the left boundary x = 0 and concen-
tration g(x, t) is measured inside the sandbox at location x > 0 and time
t > 0. We use the standard advection-dispersion operator and a fractional
time derivative of order 0 < β < 1 in equation (21) to model sticking and/or
trapping of tracer particles. Hence our equation of transport is

∂βg(x, t)
∂βt

= −v
∂g(x, t)

∂x
+ D

∂2g(x, t)
∂2x

+ r(x, t) (27)

with initial condition g(x, 0) = 0 at all x. Note that the parameters v and
D have a different interpretation in this equation than the classical velocity
and dispersion, since the time derivative is fractional. (Even the units of v
and D are different.) The proper forcing function is most easily described
by adopting the equivalent form (20)

∂g(x, t)
∂t

= D1−β
t

(
−v

∂g(x, t)
∂x

+ D
∂2g(x, t)

∂2x

)
+ f(x, t) (28)

where

f(x, t) = cδ(x) [H(t)−H(t− t1)] (29)
and H(t) is the Heaviside function (which equals zero for t < 0 and 1
otherwise). In eq. (21) the corresponding “fractional forcing function” is

r(x, t) = J1−β
t f(x, t) =





cδ(x)
t1−β

Γ(2− β)
for t ≤ t1,

cδ(x)
t1−β − (t− t1)1−β

Γ(2− β)
for t > t1.

(30)
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In general, the appropriate forcing term r(x, t) in (27) is simply the frac-
tional integral of the usual source/sink term f(x, t) in (28).

The solution of the model equation (27) was obtained by numerically
evaluating the integrals in equation (26) from Corollary . We assume that
tracer was injected for t1 = 1 hour at concentration c = 1. We use a
fractional derivative of order β = 0.9 to model light retardation, and we
assume parameter values of v = 1 and D = 0.1. In an actual laboratory
experiment, the values β, v, D can be determined experimentally. The first
integral in (26) disappears since h(x) ≡ 0. The well-known Green’s function
solution of (8) for the operator L = −v∂x + D∂2

x is

p(x, t) =
1√

4πDt
exp

(
− (x− vt)2

4Dt

)
, (31)

and then (10) gives

q(x, t) =
t

β

∫ ∞

0
gβ(u−1/βt)u−1/β−1 1√

4πDu
exp

(
− (x− vu)2

4Du

)
du. (32)

Inserting (32) along with (29) into equation (26), we evaluate the second
integral in (26) using existing numerical routines for computing the stable
density gβ(t) (see, e.g., [29]). The resulting solution curves g(x, t) are plotted
in Figure 1 for several values of t > 0 to show the plume evolution. We also
include the corresponding solution at one time t = 10 for the integer-order
time derivative case β = 1, to show the effect of the fractional time derivative
that models particle sticking and trapping. Note that the β = 0.9 curves
are skewed to the left while the β = 1 curve is symmetrical.

5. Conclusion

A closed analytical solution is obtained for the inhomogeneous fractional
diffusion equation. Existence and uniqueness is proven by considering an
equivalent integral equation. The proper specification of a forcing function
for a time-fractional evolution equation is explained. An example is included
to demonstrate the practical application of these results to a problem in
groundwater hydrology.

References

[1] W. Arendt, C. Batty, M. Hieber, and F. Neubrander, Vector-Valued
Laplace Transforms and Cauchy problems. Monographs in Mathemat-
ics, Birkhaeuser-Verlag, Berlin, 2001.



384 B. Baeumer, S. Kurita, M.M. Meerschaert

−2 0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

x

g
(x

,
t)

t = 1

t = 2

t = 5

t = 10

t = 10, β = 1

Figure 1: Numerical solution of the time-fractional advection-dispersion
equation (27) with v = 1, D = 0.1 and forcing function (30) with c = 1 and
t1 = 1.

[2] B. Baeumer and M. M. Meerschaert, Stochastic Solutions for Frac-
tional Cauchy Problems. Fractional Calculus and Applied Analysis 4,
No 4 (2001), 481-500.

[3] B. Baeumer, M. M. Meerschaert, D. A. Benson, and S. W. Wheatcraft,
Subordinated advection-dispersion equation for contaminant trans-
port. Water Resources Research 37 (2001), 1543-1550.

[4] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces.
PhD Thesis, Eindhoven University of Technology, 2001.

[5] E. Barkai, R. Metzler, and J. Klafter, From continuous time random
walks to the fractional fokker-planck equation. Phys. Rev. E 61 (2000),
132-138.

[6] J. Bear, Dynamics of Fluids in Porous Media. Dover, 1988; Published
originally in 1972 by American Elsevier Pulishing Co.

[7] D. Benson, S. Wheatcraft, and M. Meerschaert, Application of a frac-
tional advection-dispersion equation. Water Resources Research 36,
No 6 (2000), 1403-1412.

[8] D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft,
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