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1. Introduction

Fractional differential equations have become an important and useful tool in many areas of science and
engineering [15,17,34]. This literature includes important applications to physics [20,21], finance [19,36],
and hydrology [4, 5]. The mathematical theory of fractional calculus began with a letter from Leibniz
to L’Hôpital in 1695, as a mathematical curiosity, but recent applications have intensified interest in the
mathematical community [26,32,35,43].

An interesting connection with probability theory illuminates the physical meaning of the fractional
derivatives. The famous paper of Einstein [8] connects the diffusion equation ∂tp = ∂2xp, Brownian
motion, and a simple random walk. The time-fractional diffusion equation ∂βt p = ∂2xp governs the limit
of a random walk with waiting times between jumps [23]: The nth particle jump Xn is preceded by a
waiting time Wn with a power law probability distribution P (Wn > t) ≈ t−β for some 0 < β < 1. This
random walk model converges to a Brownian motion B(t), with the time index t replaced by a random
clock Et. The resulting process B(Et) is sub-diffusive, spreading at a slower rate tβ/2 than the usual rate
t1/2 for a traditional Brownian motion. Explicit solutions to the time-fractional diffusion equation can be
obtained by a conditioning argument (see Eq. (2.7) below), using the probability density for the inverse
stable subordinator Et. The resulting solutions are useful to model diffusive phenomena in which particles
rest for long periods between movements. This link between probability and differential equations has
proven useful as the basis for particle tracking, a popular numerical method for solving certain partial
differential equations [16,45].

The purpose of this paper is to review the basic ideas behind the inverse stable subordinator Et, as a
probability model for time-fractional differential equations. The simplest such equation is the one that
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governs the process Et itself. A number of seemingly different governing equations have been reported
in the literature. In this paper, we will review the various approaches, and show how they can be
reconciled, by carefully investigating the different kinds of (ordinary and fractional) derivatives used in
those equations.

2. Time-fractional diffusion

The random walk S(n) = X1+ · · ·+Xn is a model for diffusive particle movements. The random variable
Xn represents the nth particle jump, and the sum S(n) gives the particle location after n jumps. The
central limit theorem [26, Theorem 3.36] shows that the long-time limit of this random walk is a Brownian
motion: n−1/2S([nt]) ⇒ B(t) in distribution, where B(t) is normal with mean zero and variance σ2t.
This assumes that the jumps Xn are independent and identically distributed with variance σ2 and mean
zero. The probability density function

p(x, t) =
1

σ
√
2πt

e−x2/(2σ2t) (2.1)

of B(t) is the unique point source solution to the diffusion equation

∂tp = D∂2xp (2.2)

where 2σ2 = D. This can easily be checked using the Fourier transform p̂(k, t) =
∫

e−ikxp(x, t) dx: Recall

that (ik)f̂(k) is the Fourier transform of ∂xf(x), and take Fourier transforms in the diffusion equation
(2.2) to get

∂tp̂(k, t) = D(ik)2p̂(k, t) = −Dk2p̂(k, t). (2.3)

Using the point source initial condition p(x, 0) = δ(x), and noting that p̂(k, 0) ≡ 1, the unique solution to
the ordinary differential equation (2.3) is given by p̂(k, t) = exp(−Dtk2). Inverting this Fourier transform
[41, p. 524] leads back to (2.1).

In a continuous time random walk [23,28,39], a random waiting time Wn precedes the random particle
jump Xn. Now Tn = W1 + · · · +Wn is the time of the nth particle jump. The number of jumps by
time t > 0 is Nt = max{n ≥ 0 : Tn ≤ t}, and the particle location at time t > 0 is therefore S(Nt).
If the mean waiting time µ = E[Wn] is finite, then the renewal theorem [7, Theorem 2.4.6] shows that
Nt/t→ λ = 1/µ with probability one as t→ ∞, and the long-time limit of the particle location is another
Brownian motion B(λt). However, for power law distributed waiting times, with P (Wn > t) ∼ Ct−β as
t → ∞ for some 0 < β < 1, the mean diverges, and the extended central limit theorem [26, Theorem
3.37] shows that n−1/βT[nu] ⇒ Du, a stable subordinator whose probability density g(x, u) has Laplace
transform

g̃(s, u) =

∫ ∞

0

e−stg(t, u) dt = exp(−uCΓ (1− β)sβ). (2.4)

For C = 1/Γ (1−β), the Laplace transform simplifies to g̃(s, u) = exp(−usβ). This is called the standard
stable subordinator. The inverse process has an inverse limit [23, Theorem 3.2]: n−βNnt ⇒ Et where the
inverse stable subordinator

Et = inf{u > 0 : Du > t} (2.5)

is also the first passage time of the process Du above the level t > 0. An explicit formula for the moments
of Et was given by Piryatinska, Saichev and Woyczynski [31]. Now it follows [23, Theorem 4.2] that

n−β/2S(Nt) = (n−β)−1/2S(nβ n−βNt) ≈ (n−β)−1/2S(nβ Et) ⇒ B(Et). (2.6)

Figure 1 shows a typical particle trace (sample path) for this process, simulated using R [33] (see [26,
Section 5.2] for more details). The graph in Figure 1 resembles a Brownian motion, with occasional long
resting periods between particle movements.
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Figure 1. Typical sample path of the time-fractional diffusion process B(Et) from (2.6)
with D = 0.5 and β = 0.8.

A simple conditioning argument shows that the stochastic limit B(Et) has density function

q(x, t) =

∫ ∞

0

p(x, u)h(u, t) du (2.7)

where h(u, t) is the density of Et. Since t = Du and u = Et are inverse processes, we have P (Et ≤ u) =
P (Du ≥ t), and hence

h(u, t) = ∂uP (Et ≤ u) = ∂u [1− P (Du < t)] = −∂u
∫ t

0

g(y, u) dy. (2.8)

Since Du has the same distribution as u1/βD(1), we can write g(t, u) = u−1/βgβ(tu
−1/β), where g̃β(s) =

exp(−sβ). Then a simple computation [23, Corollary 3.1] shows that

h(u, t) =
t

β
u−1−1/βgβ(tu

−1/β). (2.9)

Figure 2 plots a typical density h(x, t). Note that the density is zero for x < 0 (since Et > 0 for t > 0),
with a discontinuity at x = 0. Take Laplace transforms in (2.8), recalling that s−1f̃(s) in the Laplace

transform of
∫ t

0
f(y) dy, to see that

h̃(u, s) = −∂u
[

s−1 exp(−usβ)
]

= sβ−1 exp(−usβ). (2.10)

3
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Figure 2. Inverse stable density h(x, t) from (2.9) with β = 0.6 and t = 1.

Now take Fourier transforms as well, to see that

q̄(k, s) =

∫

e−ikxq̃(x, s) dx =

∫ ∞

0

p̂(k, u)h̃(u, s) du

=

∫ ∞

0

e−uDk2

sβ−1e−usβ du =
sβ−1

sβ +Dk2
.

Rewrite in the form sβ q̄ = −Dk2q̄ + sβ−1. Invert the Fourier transform to get

sβ q̃(x, s) = D∂2xq̃(x, s) + sβ−1δ(x).

Use the definition of the gamma function to check that f(t) = t−β/Γ (1 − β) has Laplace transform
f̃(s) = sβ−1 for any β > 0. Define the Riemann-Liouville fractional derivative D

β
t f(t) as the function

with Laplace transform sβ f̃(s). Now invert the Laplace transform to obtain the time-fractional diffusion
equation [12,40,44]

D
β
t q(x, t) = D∂2xq(x, t) +

t−β

Γ (1− β)
δ(x). (2.11)

The conditioning formula (2.7) along with (2.1) and (2.9) gives an explicit solution in terms of the stable
density. Figure 3 plots a typical solution curve. The sharp peak is the result of particles that get stuck
at or near the source, due to long waiting times between movements.
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Figure 3. Solution (2.7) to time-fractional diffusion equation (2.11) at time t = 0.1 with
β = 0.8 and D = 1.0.

3. Fractional derivatives

In the previous section, we defined the Riemann-Liouville fractional derivative D
β
t f(t) as the function

with Laplace transform sβ f̃(s). The Caputo fractional derivative ∂βt f(t) can be defined as the function
with Laplace transform sβ f̃(s) − sβ−1f(0+). When β = 1, this is the traditional first derivative. Since
sβ−1 is the Laplace transform of t−β/Γ (1− β), it follows that these two derivatives are related by

∂βt f(t) = D
β
t f(t)−

t−β

Γ (1− β)
f(0+). (3.1)

A more general definition, without resorting to transforms, uses fractional integration. The Riemann-

Liouville fractional integral of order β > 0 is defined by the formula

I
βf(t) =

1

Γ (β)

∫ ∞

0

f(t− r)rβ−1 dr. (3.2)

Fractional integration satisfies the semigroup property I
β
I
αf(t) = I

β+αf(t), and I
1f(t) =

∫ t

−∞
f(u) du is

the traditional first integral. The Riemann-Liouville fractional derivative of order β ∈ (0, 1] is defined by

D
β
t f(t) = ∂tI

1−β
t f(t) =

d

dt

1

Γ (1− β)

∫ ∞

0

f(t− r)r−β dr. (3.3)

If f is a bounded function, then I
1−β
t f(0+) = 0, and it follows, using the formula for the Laplace transform

of the first derivative, that the right-hand side of equation (3.3) has Laplace transform sβ f̃(s). More
generally, the Laplace transform of Dβ

t f(t) is s
β f̃(s)− sβ−1

I
1−β
t f(0+). The Caputo fractional derivative

5
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of order β ∈ (0, 1] is defined by

∂βt f(t) = I
1−β
t ∂tf(t) =

1

Γ (1− β)

∫ ∞

0

f ′(t− r)r−β dr. (3.4)

Some authors (e.g., see [12]) use (3.1) as the definition of the Caputo derivative, since it exists for a broader
class of functions f . Since f ′ has Laplace transform sf̃(s)−f(0+), it follows from the convolution formula
for Laplace transforms that the right-hand side of (3.4) has Laplace transform sβ−1[sf̃(s) − f(0+)] =
sβ f̃(s)− sβ−1f(0+). If f(0+) = 0, then the two forms (3.3) and (3.4) are equivalent.

3.1. Weak derivatives

In the theory of differential equations, it is common to consider distributional solutions, where derivative
operators are interpreted in a weak sense. Let C∞

c (R) denote the topological vector space of infinitely
differentiable real-valued functions on R with compact support (test functions). A distribution is a
continuous linear functional f : C∞

c (R) → R. Here continuity means [42] that f(φn) → 0 for any sequence
(φn) in C

∞
c such that ∂kφn → 0 as n→ ∞ for all k ≥ 0, and every φn is supported on the same compact

set K. Any locally integrable function f on R defines a distribution f(φ) =
∫

f(x)φ(x) dx. Any σ-
finite Borel measure µ defines a distribution

∫

φ(x)µ(dx). The Dirac delta function
∫

δ(x)φ(x) dx = φ(0)
corresponds to a Borel measure that assigns unit mass to the point x = 0. Any distribution f has a
derivative Dxf , another distribution defined via integration by parts: Dxf(φ) = −

∫

f(x)φ′(x) dx. If
f(x) is a differentiable function, then the distributional (weak) derivative is the distribution associated
with the ordinary derivative.

Suppose that: f(x) is differentiable at every point x > 0; f(x) = 0 for x < 0; and the right limit f(0+)
exists. Then Dxf(x) is defined by

Dxf(x) = f ′(x) + f(0+)δ(x). (3.5)

Equation (3.5) can be used to explain the difference between the standard formulae for the Laplace and
Fourier transforms of the first derivative f ′. The Laplace transform of f ′ is given by

∫ ∞

0

e−stf ′(t) dt = e−stf(t)
∣

∣

∞

t=0+
+

∫ ∞

0

se−stf(t) dt

= −e−0f(0+) + sf̃(s) = sf̃(s)− f(0+),

assuming that e−stf(t) → 0 as t → ∞. If we interpret the Fourier transform as a traditional integral,
ignoring the jump at x = 0, then since f ′ = 0 for x < 0, we get the analogous result:

∫ ∞

−∞

e−ikxf ′(x) dx =

∫ ∞

0

e−ikxf ′(x) dx

= e−ikxf(x)
∣

∣

∞

x=0+
+

∫ ∞

0

(ik)e−ikxf(x) dx

= −e−0f(0+) + (ik)f̂(k) = (ik)f̂(k)− f(0+),

assuming that f(x) → 0 as x → ∞. Indeed, this formula can be interpreted as the Laplace transform
of f ′ evaluated at the complex argument s = ik. In many applications [1, 46] it is common to consider
Laplace transforms with complex arguments. However, the usual interpretation of the derivative in this
situation (when the Fourier transform is applied) is in terms of distributions. In that sense, we see that

∫ ∞

−∞

e−ikx
Dxf(x) dx =

∫ ∞

−∞

e−ikxf(0+)δ(x) dx+

∫ ∞

0

e−ikxf ′(x) dx

= e−0f(0+) + (ik)f̂(k)− f(0+) = (ik)f̂(k).

6
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In the theory of fractional differential equations, it is also useful to interpret fractional derivatives as
distributions. First, we define the convolution f ∗ g of two distributions f and g. For our purposes, the
case where f and g are locally integrable functions will suffice. Then f ∗ g is given via [37]

f ∗ g(φ) =
∫∫

f(x)g(y)φ(x+ y)dxdy

and we note that this definition is valid whenever f has compact support or when the support of both f
and g is bounded below, e.g., when f(x) = g(x) = 0 for x < 0. The distribution f∗g can then be associated
with the (locally integrable) function x 7→

∫

f(x− y)g(y)dy. Next, we note that, for a distribution f , the
fractional integral (3.2) can be interpreted as the distribution f ∗ kβ , where kβ(x) = I(x > 0)xβ−1/Γ (β).
Since convolution and weak derivative commute, that is D(f ∗ g) = (Df) ∗ g, replacing the derivative ∂t
in (3.3) and (3.4) by the weak derivative Dt yields the same distribution. Hence within the framework of
distributional calculus, we do not need to distinguish between the Riemann-Liouville and Caputo forms,
and we refer to D

βf := D[k1−β ∗ f ] = k1−β ∗ Df as the weak fractional derivative of order β. This
can also be seen via Fourier transforms: Since k1−β(x) has Fourier transform (ik)β−1 in the sense of
generalized functions [44], the convolution property of the Fourier transform implies that convolution
with k1−β corresponds to a multiplication with (ik)β−1 in Fourier space. As mentioned above, a weak
derivative corresponds to a multiplication with (ik) in Fourier space. The two different orderings of the
two operations hence correspond to the same multiplication by (ik)(ik)β−1 = (ik)β−1(ik) = (ik)β in
Fourier space, and so D

β
xf(x) has Fourier transform (ik)β f̂(k). In the recent book [26], Dβ

xf(x) is called
the generator form of the fractional derivative.

In this paper, we apply weak fractional derivatives to functions f(x) that are differentiable at every
point x > 0, with f(x) = 0 for x < 0, and f(0+) exists. Then I

1−β
x f(x) is differentiable at every point,

except possibly x = 0, and vanishes on x < 0. Now we can use (3.5) to write the weak fractional derivative
in the form

D
β
xf(x) = D

β
xf(x) + δ(x)I1−β

x f(0+). (3.6)

If f(x) is bounded, then I
1−β
x f(x) → 0 as x→ 0+, and the Riemann-Liouville fractional derivative equals

the weak fractional derivative.

4. The inverse stable density

The explicit solution (2.7) to the time-fractional diffusion equation (2.11) involves the probability density
h(x, t) of the inverse stable subordinator (2.5). Equation (2.9) expresses h(x, t) for all t > 0 and x > 0 in
terms of the density gβ of a standard stable subordinator. The function gβ(u) is infinitely differentiable
on the entire real line, with gβ(u) = 0 for all u ≤ 0, see Zolotarev [46]. For x < 0 or t < 0, we will define
h(x, t) = 0. At the boundary of the first quadrant, we will define h(x, t) to be right-continuous: Equation
(2.2) in [10] (see also [43]) shows that

gβ(u) ∼ K (β/u)
(1−β/2)/(1−β)

exp{−|1− β|
(

u/β
)β/(β−1)} as u→ 0+ (4.1)

where K = 1/
√

2πβ(1− β) > 0. It follows that h(x, t) → 0 as t → 0+, so that h(x, t) is a continuous
function of t ∈ R for all x > 0.

Furthermore, we have

gβ(u) ∼
β

Γ (1− β)
u−β−1 as u→ ∞, (4.2)

as noted for example in (2.3) of [10]. Then it follows from (2.9) and (4.2) that

h(x, t) ∼ t

β
x−1−1/β β

Γ (1− β)
(tx−1/β)−β−1 → t−β

Γ (1− β)
as x→ 0+ (4.3)

for all t > 0. This jump in the function x 7→ h(x, t) was illustrated in Figure 2.

7
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The governing equation for h(x, t) involves a fractional derivative in the t variable, and a derivative of
order one in the x variable. Suppose that x > 0. Since h(x, t) is a bounded function of t ∈ R, it follows
from [26, Section 2.3] that the Riemann-Liouville fractional derivative D

β
t h(x, t) exists, and its Laplace

transform equals s2β−1 exp(−xsβ). Since gβ(u) is a smooth function of u ∈ R that vanishes on u ≤ 0, it

follows from (2.9) that h(x, t) = 0 for x > 0 and t ≤ 0. Then D
β
t h(x, t) = 0 when x > 0 and t < 0. Since

h(x, 0+) = 0 for x > 0, it follows from (3.1) that the Caputo fractional derivative ∂βt h(x, t) equals the
Riemann-Liouville form when x > 0. Since h(x, t) is a bounded function of t ∈ R, equation (3.6) implies
that the weak fractional derivative Dβ

t h(x, t) equals the Riemann-Liouville fractional derivative Dβ
t h(x, t)

when x 6= 0.

If t > 0, then h(x, t) is a differentiable function of x ∈ R except for a jump at x = 0. Using (4.3), it
follows from (3.5) that

Dxh(x, t) = ∂xh(x, t) +
t−β

Γ (1− β)
δ(x)

for all t > 0. If t < 0, then we have defined h(x, t) = 0 for all x ∈ R, so both the weak and traditional
derivatives are identically zero.

5. Governing equations

In this section, we review several seemingly different governing equations for the inverse stable density
h(x, t) that have appeared in the mathematics and physics literature. By carefully considering the
different kinds of (ordinary and fractional, weak and traditional) derivatives used, we will show how all
these equations can be reconciled. Along the way, we will review several important applications of the
inverse stable subordinator to the general theory of time-fractional diffusion.

5.1. Semigroup approach

The inverse stable density (2.9) can be used to solve fractional Cauchy problems. A family of linear
operators {Tt : t ≥ 0} on a Banach space X of functions is called a C0 semigroup if T0f(x) = f(x),
TtTsf(x) = Tt+sf(x), ‖Ttf(x)− f(x)‖ → 0 in the Banach space norm as t→ 0, and for each t ≥ 0 there
exists a constant Mt > 0 such that ‖Ttf(x)‖ ≤ Mt‖f(x)‖ for every function f(x) in the Banach space
[1, 30]. Every C0 semigroup has a generator

Lf(x) = lim
t→0

Ttf(x)− f(x)

t

defined for f ∈ Dom(L), a dense subset of X, and p(x, t) = Ttf(x) solves the Cauchy problem

∂tp(x, t) = Lp(x, t); p(x, 0) = f(x) (5.1)

for any f ∈ Dom(L).

Time-fractional Cauchy problems were first considered in [12, 13, 29, 40]. For any C0 semigroup, The-
orem 3.1 in [2] shows that the fractional Cauchy problem

D
β
t q(x, t) = Lq(x, t) +

t−β

Γ (1− β)
f(x) (5.2)

has solution (2.7) for every f ∈ Dom(L), where p(x, u) is the corresponding solution to the Cauchy
problem (5.1), and h(u, t) is given by (2.9). Since h(u, t) is the probability density of Et, we can also
write q(x, t) = E[p(x,Et)], and since E0 = 0, this shows that q(x, 0) = p(x, 0) = f(x), i.e., the fractional
Cauchy problem (5.2) has the same initial data as the Cauchy problem (5.1).

8
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The governing equation for h(x, t) follows as a special case of (5.2). First note that the shift semigroup
Ttf(x) = f(x− t) has generator Lf(x) = −Dxf(x) using the weak derivative: For any test function φ(x),
write

Lf(φ) =

∫

Lf(x)φ(x) dx

=

∫
[

lim
t↓0

f(x− t)− f(x)

t

]

φ(x) dx

= lim
t↓0

1

t

[
∫

f(x)φ(x+ t) dx−
∫

f(x)φ(x) dx

]

=

∫

f(x)φ′(x) dx = f(φ′) = −Dxf(φ).

For example, we can work on the Banach space of bounded continuous functions that vanish at infinity,
with the supremum norm. Then p(x, t) = Ttf(x) = f(x − t) solves the Cauchy problem ∂tp(x, t) =
−Dxp(x, t) with initial condition p(x, 0) = f(x). Apply [2, Theorem 3.1] to see that (2.7) with p(x, t) =
f(x− t) solves the fractional Cauchy problem (5.2) with L = −Dx. Next we will show that h(x, t) solves
the same fractional Cauchy problem, with a point source initial condition, in the distributional sense.

Assume, without loss of generality, that f has compact support. Then it is easy to check that q(x, t)
from (2.7) with p(x, t) = f(x− t) satisfies q(x, t) = h(x, t) ∗ [f(x)δ(t)] in the sense of distributions on R

2

(the convolution is taken in both variables). Since convolution and partial derivatives commute in the
framework of distributional calculus, we find using (5.2)

[(Dβ
t +Dx)h(x, t)] ∗ [f(x)δ(t)] = (Dβ

t +Dx)q(x, t) = f(x)
t−β

Γ (1− β)
. (5.3)

Applying left and right-hand side to R
2-test functions of the form φ(x)ψ(t), it follows that m(x, t) :=

(Dβ
t +Dx)h(x, t) must satisfy

∫

m(x− y, t)f(y)dy = f(x)
t−β

Γ (1− β)
(5.4)

for almost all (x, t) ∈ R
2. But then for almost every t ∈ R necessarily m(x, t) = δ(x) t−β

Γ (1−β) , as f was

chosen arbitrarily from the dense domain of L. It follows that h(x, t) solves the fractional Cauchy problem

D
β
t h(x, t) = −Dxh(x, t) +

t−β

Γ (1− β)
δ(x) (5.5)

in the sense of distributions. Since q(x, 0) =
∫∞

0
f(x − u)h(u, 0) du = f(x), the initial data is h(x, 0) =

δ(x).

5.2. CTRW approach

The inverse stable subordinator (2.5) emerges as the time change in a CTRW limit. A general triangular
array scheme outlined in [24] leads to a CTRW limit process A(Et) with governing equation

D
β
t q(x, t) = −ψ(−iDx)q(x, t) +

t−β

Γ (1− β)
δ(x). (5.6)

The random walk of particle jumps converges in the limit to a Lévy process A(u) with density p(x, u),
and Fourier transform p̂(k, u) = exp(−uψ(k)). The pseudo-differential operator term ψ(−iDx)q(x, t)
is defined as the function with Fourier transform ψ(k)q̂(k, t) (e.g., see Jacob [11]). For a CTRW with

9
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mean zero, finite variance jumps, the limit process A(t) is a Brownian motion, ψ(k) = Dk2, the pseudo-
differential operator ψ(−iDx) = D(−iDx)

2
= −DD

2
x, and (5.6) reduces to a weak form of the time-

fractional diffusion equation (2.11).
The simplest CTRW uses a deterministic particle jump Xn = 1. Then x = A(u) = u is a ballistic

motion, with “density” p(x, u) = δ(x − u), and the CTRW limit A(Et) equals the inverse stable subor-
dinator Et. Since p̂(k, u) = e−iku, the Fourier symbol is ψ(k) = ik, and the pseudo-differential operator
ψ(−iDx) = Dx is the (weak) first derivative. Since q(x, t) = h(x, t), it follows from (5.6) that the inverse
stable subordinator has governing equation (5.5). Since h(x, 0) = δ(x), the relation (3.1) between Ca-
puto and Riemann-Liouville fractional derivatives can be used [24, Remark 4.8] to rewrite the governing
equation (5.5) in a more compact form

∂βt h(x, t) = −Dxh(x, t). (5.7)

5.3. Hamiltonian chaos

Saichev and Zaslavsky [38] derive the equation

∂β

∂tβ
q(x, t) = Lq(x, t) +

t−β

Γ (1− β)
q(x, 0) (5.8)

as a model for Hamiltonian chaos, where 0 < β < 1, and L is the generator of the semigroup associated
with the particle movement process. Taking Lf(x) = −Dxf(x) for ballistic motion, this reduces to an
alternative governing equation

∂β

∂tβ
h(x, t) = −Dxh(x, t) +

t−β

Γ (1− β)
h(x, 0) (5.9)

for the inverse stable subordinator, as noted in [38, Eq. (B.14)]. The paper [38] also develops the explicit
solution (2.7) and the density formula (2.9), but does not identify the underlying stochastic process Et.
The fractional derivative ∂β/∂tβ in (5.9) is defined in [38, Eq. (A.10)] as a convolution of generalized
functions

∂β

∂tβ
f(t) = f ∗ k−β(t) =

∫ ∞

0

f(t− u)
u−β−1

Γ (−β) du.

The authors note that this integral does not exist in the traditional sense, since the kernel k−β(t) = I(t >
0)t−β−1/Γ (−β) is not integrable at t = 0+, and they offer an alternative form

∂β

∂tβ
f(t) =

1

Γ (1− β)

∫

df(u)

du
(t− u)−βdu.

This appears to be a Caputo derivative, in which case (5.9) would contradict (5.7). However, examples
in [38, Appendix A] make it clear that the authors intend df/du to represent the weak derivative. Then
∂β/∂tβ equals the weak fractional derivative:

∂β

∂tβ
f(t) = I

1−β
t Dtf(t) =

1

Γ (1− β)

∫

Duf(u)(t− u)−βdu.

Since the weak fractional and Riemann-Liouville fractional derivatives are equal for x 6= 0 (see Section
4), the left-hand side of (5.9) reduces to the traditional Riemann-Liouville fractional derivative Dβ

t h(x, t)
for all x 6= 0, and hence the governing equation (5.9) agrees with the form (5.5).

5.4. Generalized CTRW

Kolokoltsov [14] develops governing equations for the long-time limit of a CTRW-like process, where the
jumps distribution depends on the current state x of the random walk, so that A(t) is a time-homogeneous

10
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Markov process. Assuming that the motion process A(t) has a transition density p(x, t; y) conditional on
y = A(0), the generalized CTRW limit A(Et) has a transition density

q(x, t; y) =

∫ ∞

0

p(x, u; y)h(u, t) du. (5.10)

If the Markov process A(t) is homogeneous in y, this reduces to the formula (2.7). The transition density
solves a governing equation

A∗
t p(x, t; y) = −L∗

xp(x, t; y) +A∗
tH(t)δ(x− y), (5.11)

where L∗
x is the forward semigroup generator for the Markov process A(t), A∗

t is the forward generator
for the standard stable subordinator Dt, and H(t) = I(t > 0) is the Heaviside function. In some cases
(e.g, the Ornstein-Uhlenbeck process) the steady-state transition density p(x, u; y) can be computed in
closed form, and then (5.10) along with (2.9) gives an explicit solution to equation (5.11).

The forward generator [14, Proposition 4.1] of the standard stable subordinator is

A∗f(t) =
1

Γ (1− β)

∫ ∞

0

[f(t− u)− f(t)]βu−β−1du. (5.12)

Then it follows from [26, Example 3.24] that A∗f(t) = −D
β
t f(t), using the weak fractional derivative.

From (5.12), it is easy to compute the boundary term

A∗
tH(t) = − t−β

Γ (1− β)
. (5.13)

Suppose for example that A(t) is a Brownian motion with forward generator D∂2x, as in Section 2. Then
the generalized CTRW governing equation (5.11) reduces to the time-fractional diffusion equation (2.11).
Kolokoltsov also derives a governing equation

A∗
th(x, t) = Dxh(x, t) + δ(x)A∗

tH(t) (5.14)

for the hitting time density. Substituting A∗ = −D
β
t and (5.13), this reduces immediately to (5.5).

5.5. Stochastic differential equations

Hahn, Kobayashi, and Umarov [10] develop stochastic differential equations

Xt = X0 +

∫ t

0

b(Xs)dEs +

∫ t

0

a(Xs)dB(Es)

driven by a time-changed Brownian motion B(Et). They also derive the governing (forward) equation

∂βt q(x, t) = Lq(x, t); v(x, 0) = δ(x),

for the transition density, using the Caputo fractional derivative in time, and the generator (pseudo-
differential operator)

Lf =
d
∑

i,j=1

aij(x)
∂2f

∂xi∂xj
+

d
∑

i=1

bi(x)
∂f

∂xi
. (5.15)

Using the relation (3.1), this can be rewritten in the form

D
β
t q(x, t) = Lq(x, t) +

t−β

Γ (1− β)
δ(x),

11
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which agrees with (5.6). The governing equation for the hitting time density h(x, t) is given [10, Lemma
2.2] by

∂βt h(x, t) = −∂xq(x, t)−
t−β

Γ (1− β)
δ(x), (5.16)

which at first glance seems to contradict (5.5), due to the negative sign in front of the δ(x) term. To
reconcile with (5.5), first apply (3.5) to rewrite (5.16) in the form

∂βt h(x, t) = −Dxq(x, t).

Next, use the fact that h(0+, t) = t−β/Γ (1− β) along with (3.1) to arrive at (5.5). Equation (5.16) differs
from (5.5) in two ways: It uses a Caputo derivative in t, rather than the Riemann-Liouville derivative;
and it uses a strong derivative in x, rather than the weak derivative.

5.6. Fractional Fokker-Planck equation

Barkai, Metzler and Klafter [3] derive the fractional Fokker-Planck equation

∂tq(x, t) = D
1−β
t Lq(x, t) + δ(x)δ(t) (5.17)

where 0 < β < 1, and L = D∂2x − c∂xF (x) is the Fokker-Planck operator for motion and dispersion in
a spatially varying external field. The fractional derivative accounts for particle sticking and trapping.
The model is derived from a generalized CTRW model in [27]. If A(t) is the Markov process with forward
generator L, then the fractional Fokker-Planck equation (5.17) governs a time-changed Markov process
A(Et). In the special case L = −Dx, the fractional Fokker-Planck equation models ballistic motion
at unit speed, interrupted by random particle waiting times Wn that follow a power law distribution
P (Wn > t) ≈ t−β for t > 0 sufficiently large. Then the equation

∂th(x, t) = −D
1−β
t Dxh(x, t) + δ(x)δ(t) (5.18)

should govern the inverse stable subordinator h(x, t).
Now we reconcile equation (5.18) with (5.5): It follows from definition (3.3) that the Riemann-Liouville

fractional derivative D1−β
t f(t) = ∂tI

β
t f(t), the first derivative of a fractional integral. Integrate both sides

of equation (5.18) from 0 to t, and recall that h(x, 0+) = 0 (see Section 3.1), to obtain

h(x, t) = −I
β
t Dxh(x, t) + δ(x)H(t),

where H(t) = I(t > 0) is the Heaviside function. Next, apply the fractional integral (3.2) of order 1− β
on both sides, compute I1−β

t H(t) = t1−β/Γ (2 − β), and use the semigroup property of the fractional
integral (see Section 2) to get

I
1−β
t h(x, t) = −I

1
tDxh(x, t) + δ(x)

t1−β

Γ (2− β)
.

Now take the first derivative ∂t on both sides, and use (3.3) again, to arrive at (5.5).

5.7. Laplace and Fourier transforms

Recall from (2.10) that the probability density h(x, t) of the inverse stable subordinator Et has Laplace
transform h̃(x, s) = sβ−1 exp(−xsβ). Taking Laplace transforms in the x variable as well, we arrive at
the double Laplace transform

h̄(λ, s) =

∫ ∞

0

e−λxh̃(x, s) dx

=

∫ ∞

0

e−λxsβ−1e−xsβdx =
sβ−1

sβ + λ
. (5.19)

12
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Rewrite in the form
sβ h̄(k, s) = −λh̄(k, s) + sβ−1

and note that h̃(0+, s) = sβ−1, so that λh̄(k, s)− sβ−1 is the Laplace transform (x 7→ λ) of the function
∂xh̃(x, s). Invert this Laplace transform to arrive at

sβ h̃(x, s) = −∂xh̃(x, s).

Now use the fact that sβ f̃(s) is the Laplace transform of the Riemann-Liouville fractional derivative
D

β
t f(t) to invert the remaining transform:

D
β
t h(x, t) = −∂xh(x, t).

Next, use the relation (3.1) along with h(x, 0) = δ(x) to arrive at

∂βt h(x, t) +
t−β

Γ (1− β)
δ(x) = −∂xh(x, t).

Finally, move the delta function term to the opposite side, to obtain equation (5.16) from Hahn,
Kobayashi, and Umarov [10].

Now follow the same steps, but use the Fourier transform instead of the Laplace transform in the x
variable: Write the Fourier-Laplace transform

ȟ(k, s) =

∫ ∞

0

e−ikxsβ−1e−xsβdx =
sβ−1

sβ + ik
. (5.20)

Rewrite in the form
sβ ȟ(k, s)− sβ−1 = −ikȟ(k, s)

and invert the Fourier transform to get

sβ h̃(x, s)− sβ−1δ(x) = −Dxh̃(x, s).

Now invert the Laplace transform to arrive at (5.7), using the fact that sβ f̃(s)−sβ−1f(0+) is the Laplace
transform of the Caputo fractional derivative ∂βt f(t), or the equivalent form (5.5), using the Laplace
formula for the Riemann-Liouville derivative, along with the fact that sβ−1 is the Laplace transform of
t−β/Γ (1− β).

The governing equations that result from the Laplace-Laplace or Fourier-Laplace transforms seem
incompatible, until one remembers that the Fourier transform pair (ik)f̂(x) ↔ f ′(x) actually involves a
weak derivative. This is an important distinction in the case of the inverse stable density h(x, t), because
this density has a jump at the origin: h(x, t) = 0 for x < 0, but h(0+, t) = t−β/Γ (1− β), see Figure 2.

5.8. Mittag-Leffler eigenfunctions

The Mittag-Leffler function

Eβ(z) =
∞
∑

j=0

zj

Γ (1 + βj)
(5.21)

is a convergent power series for any complex z, which reduces to the exponential function when β = 1.
Mainardi and Gorenflo [18] prove that Eβ(λt

β) is an eigenfunction of the Caputo fractional derivative
(3.4) with eigenvalue λ, so that

∂βt Eβ(λt
β) = λEβ(λt

β).

Eigenfunctions are useful to solve ordinary differential equations. In Section 2, we used the eigenfunction
relation ∂te

λt = λeλt to solve the diffusion equation (2.2): Equation (2.3) states that p̂(k, t) is an eigen-
function of ∂t with eigenvalue −Dk2, hence we set p̂(k, t) = exp(−tDk2). Then we inverted the Fourier
transform to arrive at (2.1).
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A similar argument has been applied to fractional diffusion problems [25]. First we consider the case
of a traditional diffusion, to establish notation. Given a bounded domain D in R

d, under some technical
conditions, the generator L defined by (5.15) with Dirichlet boundary conditions p(x, t) = 0 ∀x ∈ ∂D has
an orthonormal basis of eigenfunctions: Lψn(x) = −λnψn(x) on L2(D). Now the generalized diffusion
equation

∂tp(x, t) = Lp(x, t); p(x, 0) = f(x) (5.22)

can be solved by separation of variables. Assume p(x, t) = v(x)w(t), so that (5.22) implies

∂tw(t)

w(t)
=
Lv(x)

v(x)
= −λ.

The eigenfunction solutions are vn(x) = ψn(x) and wn(t) = exp(−λnt), leading to the general solution

p(x, t) =
∞
∑

n=0

cn exp(−λnt)ψn(x), (5.23)

where cn =
∫

D
f(x)ψn(x) dx. Solutions to the generalized time-fractional diffusion equation

∂βt q(x, t) = Lq(x, t); q(x, 0) = f(x) (5.24)

can be obtained by a very similar argument, substituting the Mittag-Leffler eigenfunctions for the expo-
nential:

q(x, t) =
∞
∑

n=0

cnEβ(−λntβ)ψn(x).

Bingham [6] showed that the inverse stable subordinator Et has a Mittag-Leffler distribution:
∫ ∞

0

e−suh(u, t) du = Eβ(−stβ).

Then the solution to (5.24) is

q(x, t) =

∞
∑

n=0

cnψn(x)

∫ ∞

0

e−λnuh(u, t) du

=

∫ ∞

0

(

∞
∑

n=0

cne
−λnuψn(x)

)

h(u, t) du

which reduces to (2.7). This shows that A(Et) is the stochastic solution to (5.24). In the very special case
L = −∂x on an unbounded domain with initial condition f(x) = δ(x), (5.24) reduces to the governing
equation (5.7) for the inverse stable density h(x, t).

6. Summary

The inverse stable subordinator is an important and useful tool in the theory of time-fractional diffusion
equations. The inverse stable process can be used as a time change, to develop stochastic solutions
to time-fractional diffusion problems. The inverse stable density leads to explicit solution formulae for
a broad range of time-fractional diffusion problems. The simplest of these governs the inverse stable
density itself. Several different forms of that governing equation have appeared in the mathematics and
physics literature. In order to reconcile these forms, it is necessary to distinguish the different kinds
of ordinary and fractional derivatives (Riemann-Liouville and Caputo, weak and strong) that appear in
those equations.
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15



“Meerschaert˙MMNP” — 2013/4/11 — 22:06 — page 16 — #16
i

i

i

i

i

i

i

i

M. M. Meerschaert, P. Straka Inverse Stable Subordinators

[38] A.I. Saichev, G.M. Zaslavsky. Fractional kinetic equations: solutions and applications. Chaos, 7 (1997), 753–764.

[39] H. Scher, M. Lax. Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B 7 (1973), 4491–4502.

[40] W. R. Schneider, W. Wyss. Fractional diffusion and wave equations. J. Math. Phys. 30 (1989), 134–144.

[41] I. N. Sneddon. Fourier Transforms. Dover, New York, 1995.

[42] I. Stakgold, M. J. Holst. Green’s functions and boundary value problems. Wiley, New York, 1998.

[43] V. V. Uchaikin, V. M. Zolotarev. Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht,
1999.

[44] G. Zaslavsky. Fractional kinetic equation for Hamiltonian chaos. Phys. D 76 (1994), 110–122.

[45] Y. Zhang, D. Benson, M. M. Meerschaert, H. Scheffler. On using random walks to solve the space-fractional advection-
dispersion equations. J. Stat. Phys. 123 (2006), 89–110.

[46] V. Zolotarev. One-dimensional Stable Distributions. Translations of Mathematical Monographs 65, American Mathe-
matical Society, Providence, RI, 1986.

16


