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TAUBERIAN THEOREMS FOR MATRIX REGULAR VARIATION

M. M. MEERSCHAERT AND H.-P. SCHEFFLER

Abstract. Karamata’s Tauberian theorem relates the asymptotics of a non-
decreasing right-continuous function to that of its Laplace-Stieltjes transform,
using regular variation. This paper establishes the analogous Tauberian theo-
rem for matrix-valued functions. Some applications to time series analysis are
indicated.

1. Introduction

Regular variation is an asymptotic property of functions that captures power be-
havior. In essence, a regularly varying function grows like a power, times another
factor that varies more slowly than any power. The book of Bingham, Goldie,
and Teugels [5] describes numerous applications to number theory, analysis, and
probability. Karamata’s Tauberian theorem proves that a nondecreasing right-
continuous function is regularly varying if and only if its Laplace-Stieltjes trans-
form is regularly varying, and establishes an asymptotic equivalence between these
two functions. This paper establishes the corresponding Tauberian theorem for
matrix-valued functions, along with some related results on power series with ma-
trix coefficients. This work was originally motivated by a problem in time series
analysis; see Section 5 for a discussion.

2. Matrix regular variation

We say that a Borel measurable function f : R+ → R
+ is regularly varying at

infinity with index ρ, and we write f ∈ RV∞(ρ), if

lim
x→∞

f(λx)

f(x)
= λρ for all λ > 0.

The functions xρ and xρ log x are both in RV∞(ρ). We say that a function g(x) is
regularly varying at zero with index −ρ, and we write g ∈ RV0(−ρ), if the function
g(x) = f(1/x) is in RV∞(ρ). If ρ = 0, we also say that f(x) is slowly varying
at infinity. It is easy to check that any f ∈ RV∞(ρ) can be written in the form
f(x) = xρL(x), where L is slowly varying at infinity. Then for any δ > 0, there
exists an x0 > 0 such that x−δ < L(x) < xδ for all x ≥ x0; see for example Feller
[8, Lemma 2, VIII.8]. It follows that

xρ−δ < f(x) < xρ+δ for all x ≥ x0,

so that f(x) grows like a power.
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Let GL(Rm) denote the space of invertible m × m matrices with real entries.
We say that a Borel measurable function f : R+ → GL(Rm) is regularly varying at
infinity with index E, and we write f ∈ RV∞(E), if

(2.1) lim
x→∞

f(λx)f(x)−1 = λE for all λ > 0.

Here the matrix power λE = exp(E log λ), where exp(A) = I+A+A2/2!+· · · is the
usual matrix exponential. If f ∈ RV∞(E), then we also say that the function g(x) =
f(1/x) is regularly varying at zero with index −E, and we write g ∈ RV0(−E).
Matrix regular variation was first considered by Balkema [1] and Meerschaert [10].
They proved that, if (2.1) holds, then we have uniform convergence in (2.1) on
compact sets λ ∈ [a, b] for 0 < a < b < ∞ (e.g., see [11, Theorem 4.2.1]).

A sequence of matrices (Cn) is regularly varying at infinity with index E if
the function f(x) = C[x] is in RV∞(E). This is equivalent to C[λn]C

−1
n → λE

for all λ > 0; see [11, Theorem 4.2.9]. For matrix regular variation, a spectral
decomposition reveals the power behavior. Factor the minimal polynomial of E
into f1(x) · · · fp(x), where all roots of fi have real part ai, and ai < aj for i < j.
Define Vi = Ker(fi(E)). Then we can write R

m = V1 ⊕ · · · ⊕ Vp, a direct sum
decomposition of Rm into E-invariant subspaces, called the spectral decomposition of
R

m with respect to E. The spectral decomposition of E is E = E1⊕· · ·⊕Ep, where
Ei : Vi → Vi, and every eigenvalue of Ei has real part ai. The matrix for E in an
appropriate basis is then block-diagonal with p blocks, the ith block corresponding
to the matrix for Ei. This is a special case of the primary decomposition theorem
of linear algebra (see, e.g., Curtis [7]).

Write Cn ∼ Dn for matrices Cn, Dn ∈ GL(Rm) if CnD
−1
n → I, the identity

matrix. The spectral decomposition theorem [11, Theorem 4.3.10] states that (Cn)
varies regularly with index E if and only if Cn ∼ DnT for some invertible matrix
T and some (Dn) regularly varying with index E such that each Vi in the spectral
decomposition of Rm with respect to E is Dn-invariant for all n, and Dn = D1n ⊕
· · ·⊕Dpn, where each Din : Vi → Vi is regularly varying with index Ei. We say that
(Dn) is spectrally compatible with E. The role of T is clear, since D[λn]T (DnT )

−1 =

D[λn]D
−1
n for any T . Then for any nonzero x ∈ Vi, for any ε > 0, for some n0 we

have

nai−ε < ‖Dnx‖ < nai+ε for all n ≥ n0;

see [11, Theorem 4.3.1]. Then ‖Cnx‖ grows like a power, with an exponent depend-
ing on x.

3. Matrix Tauberian theorem

Let u(x) be a nondecreasing right-continuous function defined on x ≥ 0, and
suppose that its Laplace-Stieltjes transform

(3.1) ũ(s) :=

∫ ∞

0

e−sxu(dx)

exists for some s > 0. Karamata’s Tauberian theorem (e.g., see [8, Theorem 1,
XIII.5]) states that

(3.2) u(x) ∼ xρ�(x)

Γ(1 + ρ)
as x → ∞ ⇐⇒ ũ(s) ∼ s−ρ�(1/s) as s → 0,
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where ρ ≥ 0 and �(x) is slowly varying at infinity. In order to extend this result to
matrix-valued Laplace transforms, we require the matrix gamma function, defined
by

(3.3) Γ(P ) :=

∫ ∞

0

yP−Ie−ydy

for any matrix P whose eigenvalues a+ ib all satisfy a > 0.

Proposition 3.1. Γ(P ) exists, is invertible, and Γ(P + I) = PΓ(P ) = Γ(P )P .

Proof. Let 0 < b1 < · · · < bp denote the real parts of the eigenvalues of P . Then,
by Theorem 2.2.4 of [11], for any δ > 0 there exists a constant K > 0 such that
‖yP−I‖ ≤ Kyb1−1−δ for 0 < y ≤ 1 and ‖yP−I‖ ≤ Kybp−1+δ for y > 1. Hence
Γ(P ) is well defined. Since d

dt (t
P ) = PtP−I , integration by parts yields Γ(P + I) =

PΓ(P ). That Γ(P ) and P commute follows directly from (3.3). Finally, it follows
from [9] that Γ(P ) is invertible. �

Given a sequence of matrices (Cj) ∈ RV∞(E), let a1 < · · · < ap denote the real
parts of the eigenvalues of E, and suppose that a1 > −1. Define

(3.4) U(x) :=

[x]∑
j=0

Cj

for x > 0. The function U(x) has the matrix-valued Laplace transform

(3.5) Ũ(s) :=

∫ ∞

0

e−sx U(dx) =
∞∑
j=0

e−sjCj .

It follows from [11, Theorem 4.2.4] that for any δ > 0, there exists a constant K > 0

such that ‖Cj‖ ≤ Kjap+δ for all j > 0, and hence Ũ(s) exists for all s > 0. Our
next goal is to show that regular variation of (Cj) implies regular variation of the

function U(x) at infinity, as well as regular variation of its Laplace transform Ũ(s)
at zero. We begin by establishing two convergence results, which we will later prove
are equivalent to regular variation.

Theorem 3.2. Let (Cn) ∈ RV∞(E) and assume that every eigenvalue a+ ib of E
has real part a > −1. Define Bn = nCn. Then

(3.6) U(nx)B−1
n → Φ(x)

uniformly on compact subsets of {x > 0}, where

(3.7) Φ(x) :=

∫ x

0

sEds = P−1xP

is invertible for all x > 0, where P := I + E.

Before we give a proof of Theorem 3.2, we establish the existence of the limit in
(3.7).

Lemma 3.3. The function Φ(x) in (3.7) exists for all x > 0, and Φ(x) → 0 as
x → 0.
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Proof. Choose δ > 0 such that a1 − δ > −1. Then, by Theorem 2.2.4 of [11], there
exists a constant K > 0 such that ‖sE‖ ≤ Ksa1−δ for any 0 < s ≤ 1. Hence the
integral in (3.7) exists. Moreover we have

‖Φ(x)‖ ≤
∫ x

0

‖sE‖ ds ≤ Kx1+a1−δ → 0

as x → 0. It remains to evaluate that integral. It is well known that the function
x = exp(tA) solves the linear system of differential equations x′ = Ax. This and the
chain rule imply that f(t) = tA = exp(A log t) has derivative f ′(t) = AtA(log t)′ =
AtA−I , and then the fundamental theorem of calculus yields (3.7). �

The following two lemmas are essential for the proof of Theorem 3.2.

Lemma 3.4. Given δ > 0 such that a1 − δ > −1, there exists a constant K > 0
and a natural number k0 such that

(3.8)
∥∥CkC

−1
n

∥∥ ≤ K

(
k

n

)a1−δ

for all k0 ≤ k ≤ n.

Proof. Let Et denote the transpose of the matrix E with respect to the usual
Euclidean inner product. Since both E and Et have the same eigenvalues, the
real parts of the eigenvalues of −Et are −ap < · · · < −a1 < 1. By [11, Theorem

2.2.4] there exists a λ0 > 1 such that ‖λ−Et

0 ‖ ≤ λ
−a1+δ/2
0 . Choose ε1 > 0 such

that λ
−a1+δ/2
0 + ε1 ≤ λ−a1+δ

0 . Since (Cn) is in RV∞(E), it follows easily that
(Ct

n)
−1 = (C−1

n )t is in RV∞(−Et). Then for any 0 < a < b < ∞ we have

(3.9) (C−1
[λn])

tCt
n → λ−Et

uniformly on λ ∈ [a, b] as n → ∞

by the uniform convergence theorem [11, Theorem 4.2.1] for regularly varying ma-
trices. Hence, there exists a k0 ≥ 1 such that

∥∥(C−1
[λk])

tCt
k − λ−Et∥∥ < ε1

for all 1 ≤ λ ≤ λ0 and all k ≥ k0. Then, using the general fact that ‖At‖ = ‖A‖,
we get ∥∥CkC

−1
[λ0k]

∥∥ ≤ ε1 +
∥∥λ−Et

0

∥∥ ≤ λ−a1+δ
0

for all k ≥ k0. Given k0 ≤ k ≤ n, write

n

k
= λ

m(n,k)
0 μn,k

for some integer m(n, k) ≥ 0 and 1 ≤ μn,k < λ0. Using (3.9) again, there exists a
constant K > 0 such that∥∥∥C[λ

m(n,k)
0 k]

C−1

[μn,kλ
m(n,k)
0 k]

∥∥∥ ≤ K
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for all k0 ≤ k ≤ n. Moreover∥∥CkC
−1
n

∥∥ =
∥∥CkC

−1
[(n/k)k]

∥∥
=

∥∥∥CkC
−1

[μn,kλ
m(n,k)
0 k]

∥∥∥
≤

∥∥∥CkC
−1
[λ0k]

∥∥∥ · · · ∥∥∥C[λ
m(n,k)−1
0 k]

C−1

[λ
m(n,k)
0 k]

∥∥∥ ∥∥∥C[λ
m(n,k)
0 k]

C−1

[μn,kλ
m(n,k)
0 k]

∥∥∥
≤ K

(
λ−a1+δ
0

)m(n,k)

≤ K
(n
k

)−a1+δ

for all k0 ≤ k ≤ n and the proof is complete. �

Lemma 3.5. For any δ > 0 such that a1 − δ > −1, there exists a constant K ′ > 0
and a natural number n0 such that

(3.10)

∥∥∥∥∥∥
1

n

[nε]∑
k=0

CkC
−1
n

∥∥∥∥∥∥ ≤ K ′ε1+a1−δ

for all n ≥ n0 and all ε > 0.

Proof. By Lemma 3.4, there exists a k0 ≥ 1 such that (3.8) holds for k0 ≤ k ≤ n.
Write

Jε
n :=

1

n

[nε]∑
k=0

CkC
−1
n

=
1

n

k0−1∑
k=0

CkC
−1
n +

1

n

[nε]∑
k=k0

CkC
−1
n

=: An +Dε
n.

Since Bn := nCn is in RV∞(E + I), and the real parts of the eigenvalues of E + I
are positive, we get using [11, Corollary 4.2.6] that

‖An‖ ≤
∥∥∥∥∥
k0−1∑
k=0

C−1
k

∥∥∥∥∥ ‖B−1
n ‖ → 0 as n → ∞.

Furthermore, by (3.8) we get

‖Dε
n‖ ≤ 1

n

[nε]∑
k=k0

‖CkC
−1
n ‖

≤ K
1

n

[nε]∑
k=k0

(k
n

)a1−δ

≤ Kn−1−a1+δ

∫ nε

k0−1

ya1−δ dy

≤ K ′ε1+a1−δ

for all large n, where K ′ > 0 is a constant independent of n. �
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2212 M. M. MEERSCHAERT AND H.-P. SCHEFFLER

Proof of Theorem 3.2. For n ≥ 1 and s ≥ 0 let

ψn(s) :=
1

n

∞∑
k=0

(k + 1)1[k,k+1)(s)

and observe that ψn(ns) → s as n → ∞. Fix any x > 0. Then for any 0 < ε < x
we can write

U(nx)B−1
n =

1

n

[nx]∑
k=0

CkC
−1
n

=

∫ [nx]

0

C[t]C
−1
n dψn(t)

=

∫ xn

0

C[ns]C
−1
n dψn(ns)

=

∫ xn

ε

C[ns]C
−1
n dψn(ns) +

∫ ε

0

C[ns]C
−1
n dψn(ns)

=: Ix,εn + Jε
n,

where xn := [nx]/n → x as n → ∞. By uniform convergence on compact subsets
in (2.1) we get

C[ns]C
−1
n → sE uniformly in s ∈ [ε, x]

as n → ∞. Then it follows by standard arguments that

Ix,εn →
∫ x

ε

sE ds as n → ∞.

By Lemma 3.3 we know that Φ(ε) → 0 as ε → 0. Then it follows from Lemma 3.5
that (3.6) holds.

To show uniform convergence, we have to show that whenever xn → x > 0 we
have U(nxn)B

−1
n → Φ(x) as n → ∞. Assume first that xn ↓ x. Then we have

U(nxn)B
−1
n = U(nx)B−1

n +
1

n

[nxn]∑
k=[nx]+1

CkC
−1
n .

The argument for Lemma 3.5 yields

∥∥∥ 1
n

[nxn]∑
k=[nx]+1

CkC
−1
n

∥∥∥ ≤ K
(
x1+a1−δ
n − x1+a1−δ

)
→ 0

as n → ∞. The proof of the case xn ↑ x is similar. �

Remark 3.6. In the scalar case m = 1, there is a partial converse to Theorem
3.2, called the monotone density theorem (e.g., see Feller [8, Theorem 4, XIII]): If
the sequence (cn) is eventually monotone, then regular variation of u(x) = c1 +
· · · + c[x] with index ρ implies regular variation of a sequence cn with index ρ −
1. If every element [Cn]ij forms a monotone sequence, then this result can be
extended to sequences and series of matrices, with a very similar proof. However,
this assumption is rather strong. For example, if every Cn is a diagonal matrix, and
if the diagonal entries are all eventually monotone, then U(x) ∈ RV∞(P ) implies
that (Cn) is in RV∞(P − I). However, since each diagonal entry forms a regularly
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MATRIX REGULAR VARIATION 2213

varying sequence of real numbers, everything reduces to the scalar case. A more
general monotone density theorem for matrix-valued functions seems difficult.

Next we state and prove the analogue of Theorem 3.2 for the Laplace-Stieltjes
transform. Note that Φ(dx) = sEdx in light of (3.7).

Theorem 3.7. Let (Cn) ∈ RV∞(E) and assume that every eigenvalue a+ ib of E
has real part a > −1. Define Bn := nCn. Then

(3.11) Ũ(n−1s)B−1
n → Φ̃(s)

uniformly on compact subsets of {s > 0}, where

(3.12) Φ̃(s) :=

∫ ∞

0

e−sxΦ(dx) = s−PΓ(P )

for all s > 0, with P := I + E.

Before we prove Theorem 3.7, we need some preliminary results.

Lemma 3.8. The integral Φ̃(s) in (3.12) exists, and

(3.13) Φ̃(λs) = λ−P Φ̃(s)

for all s > 0 and all λ > 0.

Proof. As in the proof of Lemma 3.3 we have∥∥∥
∫ 1

0

e−sxxE dx
∥∥∥ ≤

∫ 1

0

∥∥xE
∥∥ dx < ∞.

By Theorem 2.2.4 of [11], for any δ > 0 there exists a K > 0 such that ‖xE‖ ≤
Kxap+δ for all x ≥ 1. Then we have∥∥∥∥

∫ ∞

1

e−sxxE dx

∥∥∥∥ ≤ K

∫ ∞

1

e−sxxap+δ dy < ∞,

so Φ̃(s) is well defined. Equation (3.12) follows from the definition (3.3) of the
matrix gamma function, by a simple change of variable. Then (3.13) follows from
(3.12). �

Lemma 3.9. Given δ > 0, there exists a constant K > 0 and an integer n0 ≥ 1
such that

(3.14)
∥∥CnC

−1
k

∥∥ ≤ K
(k
n

)ap+δ

for all n0 ≤ n ≤ k.

Proof. By Theorem 2.2.4 of [11], there exists a λ0 > 1 such that ‖λE
0 ‖ ≤ λ

ap+δ/2
0 .

Choose ε1 > 0 such that λ
ap+δ/2
0 + ε1 ≤ λ

ap+δ
0 . By uniform convergence in (2.1),

there exists an n0 ≥ 1 such that∥∥C[λn]C
−1
n − λE

∥∥ < ε1

for all n ≥ n0 and 1 ≤ λ ≤ λ0. Especially, for all n ≥ n0,∥∥C[λ0n]C
−1
n

∥∥ ≤ ε1 + ‖λE
0 ‖ ≤ λ

ap+δ
0 .

Now for n0 ≤ n ≤ k write
k

n
= λ

m(n,k)
0 μn,k
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2214 M. M. MEERSCHAERT AND H.-P. SCHEFFLER

for some integerm(n, k) ≥ 0 and some 1 ≤ μn,k < λ0. Then we have for n0 ≤ n ≤ k,

‖CkC
−1
n ‖ =

∥∥∥C[μn,kλ
m(n,k)
0 n]

C−1
n

∥∥∥
≤

∥∥C
[μn,kλ

m(n,k)
0 n]

C−1

[λ
m(n,k)
0 n]

∥∥ ∥∥C
[λ

m(n,k)
0 n]

C−1

[λ
m(n,k)−1
0 n]

∥∥ · · · ∥∥C[λ0n]C
−1
n

∥∥
≤ K

(
λ
ap+δ
0

)m(n,k)

≤ K
(k
n

)ap+δ

using uniform convergence again. This concludes the proof. �

Proof of Theorem 3.7. Fix any s > 0. Given 0 < ε < M , use the notation from the
proof of Theorem 3.2 to write

Ũ(s/n)B−1
n =

1

n

∞∑
k=0

e−(s/n)kCkC
−1
n

=

∫ ∞

0

e−syC[ny]C
−1
n dψn(ny)

=

∫ ε

0

e−syC[ny]C
−1
n dψn(ny) +

∫ M

ε

e−syC[ny]C
−1
n dψn(ny)

+

∫ ∞

M

e−syC[ny]C
−1
n dψn(ny).

By uniform convergence on compact subsets in (2.1) we get by a standard argument
that ∫ M

ε

e−syC[ny]C
−1
n dψn(ny) →

∫ M

ε

e−syyE dy

as n → ∞.
Furthermore, as in the proof of Lemma 3.3 we have

∥∥∥
∫ ε

0

e−syyE dy
∥∥∥ ≤

∫ ε

0

‖yE‖ dy → 0 as ε → 0.

As in the proof of Lemma 3.8 we have

∥∥∥
∫ ∞

M

e−syyE dy
∥∥∥ ≤ K

∫ ∞

M

e−syyap+δ dy → 0 as M → ∞.

Now

∥∥∥
∫ ε

0

e−syC[ny]C
−1
n dψn(ny)

∥∥∥ =
∥∥∥ 1
n

[nε]∑
k=0

e−(s/n)kCkC
−1
n

∥∥∥ ≤ 1

n

[nε]∑
k=0

∥∥CkC
−1
n

∥∥,

which can be made arbitrarily small, uniformly for all large n, if ε > 0 is chosen
small enough, using Lemma 3.5.
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Finally, for any δ > 0, by Lemma 3.9, there exists an n0 ≥ 1 such that (3.14)
holds for all n0 ≤ n ≤ k. Then, for M ≥ 1 and n ≥ n0 we get that

∥∥∥
∫ ∞

M

e−syC[ny]C
−1
n dψn(ny)

∥∥∥ =
∥∥∥ 1
n

∞∑
k=[nM ]

e−s(k/n)CkC
−1
n

∥∥∥

≤ 1

n

∞∑
k=[nM ]

e−s(k/n)‖CkC
−1
n ‖

≤ K
1

n

∞∑
k=[nM ]

e−s(k/n)
(k
n

)ap+δ

≤ K ′n−1−ap−δ

∫ ∞

[nM ]−1

e−s(y/n)yap+δ dy

≤ K ′
∫ ∞

M−1

e−suuap+δ du,

which can be made arbitrarily small if M ≥ 1 is chosen large enough.
To prove uniform convergence let sn ↓ s > 0 and write

Ũ(s/n)B−1
n − Ũ(sn/n)B

−1
n =

1

n

n−1∑
k=0

e−s(k/n)
(
1− e−(k/n)(sn−s)

)
CkC

−1
n

+
1

n

∞∑
k=n

e−s(k/n)
(
1− e−(k/n)(sn−s)

)
CkC

−1
n

=: En + Fn.

Now, using |1− e−x| ≤ x for x > 0 we get

‖En‖ ≤ |sn − s| 1
n

n∑
k=0

∥∥CkC
−1
n

∥∥.
Using Lemma 3.5 with ε = 1, it follows that En → 0 as n → ∞. Moreover, using
Lemma 3.9 again, there exists an n0 ≥ 1 such that (3.14) holds for all n0 ≤ n ≤ k.
Then we get

‖Fn‖ ≤ |sn − s| 1
n

∞∑
k=n

e−s(k/n)

(
k

n

)∥∥CkC
−1
n

∥∥

≤ K|sn − s| 1
n

∞∑
k=n

e−s(k/n)

(
k

n

)1+ap+δ

≤ K ′|sn − s|
for some constant K ′ > 0. The proof of the case sn ↑ s is similar. �

Equation (3.6) is a sequential version of the definition for regular variation. Our
next goal is to show that this sequential definition is equivalent to the standard
definition (2.1).

Theorem 3.10. A Borel measurable function U : R+ → GL(Rm) is RV∞(P ) if
and only if there exists a sequence (Bn) in RV∞(P ) such that (3.6) holds uniformly
on compact subsets of x > 0, for some Φ(x) ∈ GL(Rm). Then Φ(x) = xPQ for
some Q ∈ GL(Rm).
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The proof requires a simple lemma.

Lemma 3.11. The function U(x) in (3.4) is invertible for all x > 0 sufficiently
large.

Proof. Theorem 3.2 implies that U(nx)B−1
n → Φ(x) in the topological vector space

L(Rm) of m × m matrices with real entries, where Φ(x) is invertible. The set of
invertible matrices is an open subset of L(Rm), since it is the inverse image of the
open set {y ∈ R : y �= 0} under the determinant function, which is continuous.
Then U(nx)B−1

n is invertible for all large n, and since Bn is also invertible, it
follows that U(x) is invertible for all large x. �
Proof of Theorem 3.10. Suppose that (3.6) holds uniformly on compact subsets,
with Φ(x) ∈ GL(Rm). Then for any λ > 0, using the uniform convergence, we have

U(λx)U(x)−1 =
(
U(λx)B−1

[x]

) (
U(x)B−1

[x]

)−1

→ Φ(λ)Φ(1)−1 =: Ψ(λ)

as x → ∞. Then [11, Theorem 4.1.2] implies that Ψ(λ) = λR for some matrix R,
and U(x) is RV∞(R). Write

U(nλx)B−1
n = U(nλx)B−1

[λn] B[λn]B
−1
n

and take limits to see that Ψ(λx) = Ψ(x)λP , showing that R = P . Then Φ(x) =
xPQ, where Q = Φ(1). Conversely, if U(x) is RV∞(P ) and (2.1) holds, then this
convergence is also uniform on compact subsets of x > 0 by [11, Theorem 4.2.1],
and so we have U(nx)U(n)−1 → xP as n → ∞, uniform on compact subsets. Then
(3.6) holds uniformly on compact subsets with Bn = U(n) and Φ(x) = xP . �

Corollary 3.12. A Borel measurable function Ũ : R+ → GL(Rm) is RV0(−P ) if
and only if there exists a sequence (Bn) in RV∞(P ) such that (3.11) holds uniformly

on compact subsets of s > 0, for some Φ̃(s) ∈ GL(Rm). Then Φ̃(s) = s−PQ for
some Q ∈ GL(Rm).

Proof. Apply Theorem 3.10 to the function f(x) = Ũ(1/x). �
Now we will state and prove the analogue of Karamata’s Tauberian theorem for

matrix-valued functions. The scalar result (3.2) implies that u(x) varies regularly
at infinity with index ρ ≥ 0 if and only if ũ(s) varies regularly at zero with index
−ρ, and in either case

ũ(1/x) ∼ Γ(ρ+ 1)u(x) as x → ∞.

In the matrix version of this result, the index ρ becomes a matrix P , whose eigenval-
ues a+ib all satisfy a > 0. Suppose that U : R+ → GL(Rm) is Borel measurable and
that every component [U(x)]ij is of bounded variation. Assume that the Laplace
transform

Ũ(s) :=

∫ ∞

0

e−sxU(dx)

exists for any s > 0. Here the integral is defined as a Stieltjes integral component-
wise.

Theorem 3.13 (Karamata theorem for matrices). Suppose that every eigenvalue

a+ ib of P has a > 0. Then U(x) is RV∞(P ) if and only if Ũ(s) is RV0(−P ), and
in either case

(3.15) Ũ(1/x) ∼ Γ(P + I)U(x) as x → ∞.
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Proof. Suppose U(x) is RV∞(P ) and that every component [U(x)]ij is of bounded
variation. Then Theorem 3.10 implies that (3.6) holds uniformly on compact sub-
sets of x > 0 for some sequence (Bn) in RV∞(P ), with Φ(x) = xPQ for some
Q ∈ GL(Rm). Let b1 < · · · < bp be the real parts of the eigenvalues of P . It follows
from [11, Theorem 4.2.4] that for any δ > 0, there exists a constant K > 0 such that

‖U(x)‖ ≤ Kxbp+δ for all x > 0, and hence Ũ(s) exists for all s > 0. Applying the
continuity theorem for Laplace transforms (e.g., see Feller [8, Theorem 2a, p. 433])
component-wise, we obtain by a simple change of variables

Ũ(s/n)B−1
n =

∫ ∞

0

e−(s/n)x U(dx)B−1
n

=

∫ ∞

0

e−sy U(ndy)B−1
n →

∫ ∞

0

e−syΦ(dy) = Φ̃(s)

for any s > 0, where

Φ̃(s) =

∫ ∞

0

e−syPyP−IQdy =

∫ ∞

0

e−xxP−IsI−PQs−1dx = s−PΓ(P + I)Q.

To prove uniform convergence, given sn → s > 0, let xn = (sn/s)x → x and
substitute yn = xn/n to get

Ũ(sn/n)B
−1
n =

∫ ∞

0

e−(s/n)xn U(dx)B−1
n

=

∫ ∞

0

e−syn U(ndyn)B
−1
n →

∫ ∞

0

e−syΦ(dy) = Φ̃(s)

since U(nyn)B
−1
n → Φ(y). Then Corollary 3.12 implies that Ũ(s) is RV0(−P ).

Conversely, suppose that Ũ(s) is RV0(−P ). Then Corollary 3.12 and Proposition
3.1 imply that (3.11) holds uniformly on compact subsets of x > 0 for some sequence

(Bn) in RV∞(P ), with Φ̃(s) = s−PΓ(P + I)Q for some Q ∈ GL(Rm). A simple
change of variables yields

Ũ(s/n)B−1
n =

∫ ∞

0

e−sxU(dx)B−1
n =

∫ ∞

0

e−syU(ndy)B−1
n → Φ̃(s) =

∫ ∞

0

e−syΦ(dy)

as n → ∞. Applying the continuity theorem for Laplace transforms component-
wise, we obtain U(ndy)B−1

n → Φ(dy). Integrating over the set [0, x] yields
U(nx)B−1

n → Φ(x), uniformly on compact subsets of x > 0. Then Theorem 3.10
implies that U(x) is RV∞(P ).

In either case, we have from (3.6) with Φ(x) = xPQ that

U(x)B−1
[x] → Q as x → ∞.

We also have from (3.11) with Φ̃(s) = s−PΓ(P + I)Q and s = 1/x that

Ũ(1/x)B−1
[x] → Φ̃(1) = Γ(P + I)Q as x → ∞,

and hence, in view of Lemma 3.11 it follows that

Ũ(1/x)U(x)−1 = Ũ(1/x)B−1
[x] (U(x)B−1

[x] )
−1 → Γ(P + I)QQ−1 as x → ∞.

Then using Proposition 3.1 we get

Ũ(1/x)U(x)−1Γ(P + I)−1 → I as x → ∞,

which is the same as (3.15). �
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4. Sharp growth bounds

In this section, we prove sharp bounds on the growth behavior of the function
U(x) in (3.4) and its Laplace transform Ũ(s) in (3.5), assuming that the underlying
sequence of matrices (Cn) is in RV∞(E), where every eigenvalue a + ib of E has
real part a > −1. Recall the spectral decomposition R

m = V1 ⊕ · · · ⊕ Vp and
E = E1 ⊕ · · · ⊕Ep, where Ei : Vi → Vi and every eigenvalue of Ei has real part ai.
Apply [11, Corollary 4.3.12] to obtain a matrix T0 and a regularly varying sequence
(Gn) such that T0Cn ∼ Gn, where (Gn) is RV∞(E0) with E0 = T0ET−1

0 and:

(a) The subspaces Wi = T0(Vi) in the spectral decomposition of Rm with re-
spect to E0 are mutually orthogonal.

(b) These subspaces are also Gn invariant.
(c) If we write E0 = E10 ⊕ · · · ⊕ Ep0 and Gn = G1n ⊕ · · · ⊕ Gpn with respect

to this direct sum decomposition, then each Gin : Wi → Wi is regularly
varying with index Ei0 = T0EiT

−1
0 .

(d) Every eigenvalue of Ei0 has real part ai.
(e) If xn → x in W1 ⊕ · · · ⊕Wi, then n−ρ‖Gnxn‖ → 0 for all ρ > ai.
(f) If xn → x �= 0 in R

m \ (W1 ⊕ · · · ⊕ Wi), then n−ρ‖Gnxn‖ → ∞ for all
ρ < ai+1.

Define

α(θ) := max{aj : θj �= 0},

for θ �= 0, where we write θ = θ1+· · ·+θp with respect to the spectral decomposition
W1⊕ · · · ⊕Wp. The following result gives a sharp bound on the growth in different
directions for the regularly varying matrix-valued function U(x).

Theorem 4.1. For any direction θ �= 0 and any δ > 0 small, there exist m,M > 0
and x0 > 0 such that

(4.1) mx1+α(θ)−δ ≤ ‖U(x)θ‖ ≤ Mx1+α(θ)+δ

for all x ≥ x0.

Proof. Since all norms are equivalent in R
m, it suffices to consider the Euclidean

norm. Write

U(x)θ =
(
U(x)B−1

[x]

)
B[x]θ

so that

‖U(x)θ‖ =
∥∥(U(x)B−1

[x]

)
B[x]θ‖

≤
∥∥U(x)B−1

[x]

∥∥ ‖B[x]θ
∥∥.

In view of Theorem 3.2, there exists a constant K > 0 such that

‖U(x)B−1
[x] ‖ ≤ K

for all x > 0. Then it remains to obtain an upper bound on ‖B[x]θ
∥∥. By definition,

α(θ) = ai if and only if both θ ∈ W1 ⊕ · · · ⊕Wi and θ ∈ R
m \ (W1 ⊕ · · · ⊕Wi−1).

Recall that Bn = nCn ∼ nT−1
0 Gn. By property (e), there exists K > 0 such that

∥∥Gnθ
∥∥ ≤ Knai+δ
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for all large n. Since Cn ∼ Dn for matrices implies that ‖Cnx‖ ∼ ‖Dnx‖ for all
x ∈ R

m, it follows that∥∥B[x]θ
∥∥ ∼ [x]

∥∥T−1
0 G[x]θ

∥∥ ≤ K‖T−1
0 ‖x1+ai+δ

for all large x. This proves the upper bound in (4.1).
For the proof of the lower bound, use the general fact that ‖Ax‖ ≥ ‖x‖/‖A−1‖

for all x ∈ R
m to write

‖U(x)θ‖ =
∥∥U(x)B−1

[x] B[x]θ
∥∥ ≥

∥∥B[x]θ
∥∥∥∥(U(x)B−1

[x] )
−1

∥∥ ≥ M
∥∥B[x]θ

∥∥

for some constant M > 0, since (U(x)B−1
[x] )

−1 → Φ(1)−1 as x → ∞ by Theorem

3.2. By property (f), there exists K > 0 such that∥∥Gnθ
∥∥ ≥ Knai−δ

for all large n. Then∥∥B[x]θ
∥∥ ∼ [x]

∥∥T−1
0 G[x]θ

∥∥ ≥ K‖T−1
0 ‖x1+ai−δ

for all large x. This proves the lower bound in (4.1), and hence the proof is complete.
�

Next we prove sharp growth bounds on the behavior of the matrix-valued Laplace
transform Ũ(s) near zero.

Theorem 4.2. For any direction θ �= 0 and any δ > 0 small, there exist constants
m,M > 0 and s0 > 0 such that

(4.2) ms−1−α(θ)+δ ≤ ‖Ũ(s)θ‖ ≤ Ms−1−α(θ)−δ

for all 0 < s < s0.

Proof. For x > 0 write

Ũ(1/x)θ =
(
Ũ(1/x)B−1

[x]

)
B[x]θ

and observe that by Theorem 3.7 we have Ũ(1/x)B−1
[x] → Γ(I + E) as x → ∞.

Then, it follows as in Theorem 4.1 that, for some constants m,M > 0 and x0 > 0,
we have

mx1+α(θ)−δ ≤ ‖Ũ(1/x)θ‖ ≤ Mx1+α(θ)+δ

for all x ≥ x0. Setting x = 1/s, the result follows. �

5. Applications

This paper was motivated by a problem in time series analysis. Some recent
papers of Barbe and McCormack [3, 4] apply regular variation to model linear
processes

Xt :=

∞∑
j=0

cjZt−j ,

where (Zj) is a sequence of iid random variables. In time series analysis, it is
common to represent the linear process Xt = p(B)Zt, where p(z) :=

∑
j cjz

j , using
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2220 M. M. MEERSCHAERT AND H.-P. SCHEFFLER

the backward shift operator BZt = Zt−1. For example, in the FARIMA(0, d, 0)
process we take

cj = w
(d)
j :=

(
−d
j

)
(−1)j ∼ d

Γ(1 + d)
j d−1 as j → ∞

so that p(B) = (1−B)−d, Xt is the fractional integral of the noise sequence Zt, and
we take 0 < d < 1/2 for long range dependence [6]. The more general approach
in [3, 4] uses a regularly varying sequence cj with the same index d − 1. The
analysis of these long range dependent times series relies on a Tauberian theorem,
Theorem 5.1.1 in [4] (see also Corollary 1.7.3 in [5]), that relates the function
u(x) = c0 + · · · + c[x] to its Laplace transform ũ(λ) =

∑
j e

−λjcj using regular

variation. The connection to Laplace transforms comes from p(z) = ũ(− ln z).
For vector time series, it is natural to consider the linear process

(5.1) Xt :=

∞∑
j=0

CjZt−j ,

where the Zj are iid random vectors, and the Cj are matrices. Then we can write
Xt = p(B)Zt, where p(z) =

∑
j Cjz

j . For example, a vector FARIMA time series
with a different order of fractional integration in each coordinate can be defined
using

Cj = diag[w
(d1)
j , . . . , w

(dp)
j ] =

⎛
⎜⎜⎝
w

(d1)
j

. . .

w
(dp)
j

⎞
⎟⎟⎠ .

Then Cj varies regularly with index E = diag[d1−1, . . . , dp−1] and the eigenvalues
of E are (dj − 1) ∈ (−1,−1/2). In this example, we have

p(s) = diag[(1− s)−d1 , . . . , (1− s)−dp ]

and the ith coordinate of Xt is a FARIMA(0, di, 0) time series, where we emphasize
that di varies with the coordinate. The Laplace transform

Ũ(s) =
∞∑
j=0

e−sjCj

exists for s > 0, and clearly we have

(5.2) p(1− s) = Ũ(− log(1− s)) ∼ Ũ(s) as s → 0.

Since p(1 − s) = diag[s−d1 , . . . , s−dp ] varies regularly at zero with index −P =

−I − E, so does Ũ(s), consistent with Corollary 3.12.
The vector time series (5.1), where (Cj) ∈ RV∞(E), and every eigenvalue a+ib of

E has real part a ∈ (−1,−1/2), provides a flexible model for long range dependence.
The strength of the long range dependence varies with the coordinate, and the
coordinate system is completely arbitrary. The convergence and other properties
of the moving average (5.1) depend on analysis of the matrix-valued power series
p(1− s) =

∑
j Cj(1− s)j as s → 0; see Barbe and McCormack [3, 4] for the scalar

case. It follows from (5.2) and the matrix Tauberian theorem, Theorem 3.13, that

p(1− s) ∼ U(1/s)Γ(P + I) as s → 0,

where P = E+ I, so that p(1− s) is regularly varying at zero with index −P . This
indicates one possible application of the results in this paper. Since vector regular
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variation has proven useful in many areas (e.g., see Balkema and Embrechts [2] for
a regular variation approach to extreme value theory in R

m), it is possible that the
results of this paper will also find applications in other contexts.

Remark 5.1. For modeling purposes, we are free to choose the sequence (Cn) in
(5.1). Theorems 4.1 and 4.2 illustrate the advantage of choosing the regularly
varying sequence to be spectrally compatible with its index E. Then the sharp
growth bounds in those results are governed by the spectral decomposition of E.
Specifically, one can take Wi = Vi in the definition of the index function α(θ), and
Gn = Cn in the proofs.
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