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WITH REGULARLY VARYING TAILS 
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Albion College and University of Nevada 

In this paper we establish the basic asymptotic theory for periodic 
moving averages of i.i.d. random variables with regularly varying tails. The 
moving average coefficients are allowed to vary according to the season. A 
simple reformulation yields the corresponding results for moving averages 
of random vectors. Our main result is that when the underlying random 
variables have finite variance but infinite fourth moment, the sample au- 
tocorrelations are asymptotically stable. It is well known in this case that 
sample autocorrelations in the classical stationary moving average model 
are asymptotically normal. 

Introduction. Regular variation is used to characterize those i.i.d. se- 
quences of random variables for which a version of the central limit theorem 
holds. When these random variables have infinite variance, the sum is asymp- 
totically stable instead of asymptotically normal. Stable random variables 
have found many practical applications beginning with the work of Holts- 
mark (1919) on gravitation. Elegant scaling properties of these distributions 
and the fact that the sample paths of the associated stochastic processes are 
random fractals form the basis for an impressive array of physical applica- 
tions found in Mandelbrot (1963). Infinite variance noise processes are im- 
portant in electrical engineering; see, for example, Stuck and Kleiner (1974) 
and Rybin (1978). Mandelbrot (1963) and Fama (1965) argued that varia- 
tions in stock market prices should be modeled as stable random variables. 
Taylor (1986) recounted the controversy among economists over the use of 
stable laws in modeling economic time series. If a random variable X has 
regularly varying tails with index -a, then P[IXI > t ]  +- 0 about as fast 
as t-". We say that X has heavy tails, since in this case ElXlP = oo for all 
p > a. Jansen and de Vries (1991) invoke a heavy tail model to explain the 
stock market crash of 1987. They calculate that for many stock price returns 
the parameter a is between 2 and 4, which makes large fluctuations in price 
more likely than standard models or intuition would suggest. Loretan and 
Phillips (1994) demonstrate that fluctuations in aggregate stock market re- 
turns and currency exchange rates also exhibit heavy tails with a between 
2 and 4. The recent book of Mittnik and Rachev (1995) provides details on 
heavy tail models in finance, including recent developments in the theory of 
option pricing. Resnick and Stgricg (1995) show that the duration of quiet pe- 
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riods between communications for a networked terminal has heavy tails with 
an infinite mean. Janicki and Weron (1994a) survey applications of stable 
laws and stable processes in economics, physics and geology, A modern refer- 
ence on stable laws and processes is Samorodnitsky and Taqqu (1994). Janicki 
and Weron (1994b) discuss practical methods for simulating stable stochastic 
processes. 

Davis and Resnick (1985a, b, 1986) compute the asymptotic distribution 
of the sample autocovariance and sample autocorrelation for moving aver- 
ages of random variables with regularly varying tails. They employ methods 
which elucidate the Poisson nature of the underlying point process. A sum- 
mary of these results along with some practical applications can be found in 
Brockwell and Davis [(1991), Section 13.31. Brockwell and Davis advised that 
"any time series which exhibits sharp spikes or occasional bursts of outlying 
observations suggests the possible use" of these methods. These results also 
form the basis for the analysis of ARMA models with infinite variance innova- 
tions in Kokoszka and Taqqu (1994) and Mikosch, Gadrich, Kliippenberg and 
Adler (1995). Kokoszka (1996) and Kokoszka and Taqqu (1996) discuss predic- 
tion and parameter estimation for infinite variance fractional ARIMA models. 
Bhansali (1993) gives a general method for parameter estimation for linear 
infinite variance processes. Asymptotic results for the sample autocovariances 
and sample autocorrelations of periodic ARMA processes have been derived 
by Tjostheim and Paulsen (1982) and Anderson and Vecchia (1993), but only 
in the case where the noise sequence has finite fourth moment. Adams and 
Goodwin (1995) discuss parameter estimation for the periodic ARMA model 
with finite fourth moments. Forecasting for this model including the multi- 
variate case is considered in Ula (1993). Gardner and Spooner (1994) include 
an extensive review of results on periodic time series models with finite fourth 
moments and their applications in signal processing. Tiao and Grupe (1980) 
demonstrate the pitfalls of ignoring seasonal behavior in time series model- 
ing. Seasonal variations in the mean of time series data can easily be removed 
by a variety of methods, but when the variance (or dispersion in the infinite 
variance case) as well as the mean varies with the season, then the use of 
periodic time series models is indicated. If the data also indicate heavy tails, 
then the methods of this paper are relevant. 

In this paper we develop the basic asymptotic theory for periodic moving 
averages of random variables with regularly varying tails. The moving average 
coefficients are allowed to vary according to the season. A simple reformulation 
yields the corresponding results for moving averages of random vectors with 
heavy tails. Our main focus is on the case where the underlying distribution 
possesses a finite variance but an infinite fourth moment (the case 2 < a < 4). 
This case is of considerable practical importance in economics. Our main result 
in this case is that for periodic moving averages the sample autocorrelations 
are asymptotically stable with index a/2. It is well known [see, for example, 
Brockwell and Davis (1991), Proposition 7.3.81 that in this case the sample 
autocorrelations for the classical moving average model are asymptotically 
normal. This paradoxical result occurs because of a cancellation in the formula 
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for the classical case which does not occur in the periodic case; see the remark 
following the Proof of Theorem 3.1. 

In Section 1, we compute the asymptotic distribution of periodic moving 
averages of random variables with regularly varying tails. We show that the 
asymptotics of moving averages are essentially the same as for the underlying 
i.i.d. sequence. In Section 2, we compute the asymptotic distribution of the 
sample autocovariance function of a periodic moving average. In Section 3, 
we apply the results of Section 2 to obtain the asymptotic distribution of the 
sample autocorrelation function. In Section 4, we reformulate our results in 
terms of vector moving averages. These results should provide a useful guide 
to further research. Section 5 discusses the representation of a periodic ARMA 
model as a periodic moving average and the application of our results to these 
models. 

1. Periodic moving averages. In this section we discuss the asymptotic 
behavior of moving averages of an i.i.d. sequence with regularly varying tails, 
assuming that the moving average coefficients vary according to the season. 
We will call Xt  a periodic moving average if 

where @,( j ) is periodic in t with the same period v 2 1for all j and st is an 
i.i.d. sequence of random variables. We will say that the i.i.d. sequence st is 
RV(a) if P[lst1 > x] varies regularly with index -a and P[st > X I /  P[lst1 > 
x] + p for some p E [O,l]. The periodic moving average (1.1)of an RV(a) 
sequence converges almost surely provided that 

for all t and for some 6 < a with 6 5 1; compare Brockwell and Davis [(1991), 
Proposition 13.3.11. In this paper we will always assume that (1.2) holds, so 
that (1.1)is well defined. 

If st is an RV(a) sequence, then ElstlP exists for 0 < /3 < a and is infinite 
for /3 > a .  For 0 < a < 2 the sequence st belongs to the domain of attrac- 
tion of a stable law with index a ;  see Feller (1971). If a 2 2, then st belongs 
to the domain of attraction of a normal law. The following result shows that 
periodic moving averages have essentially the same asymptotic behavior as 
the underlying RV(a) sequence. When Es: < co this follows directly from 
the central limit theorem, and so we only consider the case where the under- 
lying variables st have an infinite variance. When v = 1our result reduces 
to the classical case considered by Davis and Resnick (1985a, 1986), but our 
proof does not require their point process machinery. While these results are 
of some independent interest, they will also be used to compute the asymp- 
totic distribution of the sample autocovariance in the next section. The proofs 
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of Theorem 1.1and Corollary 1.2 are straightforward but technical; see the 
Appendix. We use + to denote convergence in distribution. 

THEOREM1.1. Suppose that Y ,  = C ct( j ) Z t -  is a periodic moving aver- 
age of some R V ( P )  sequence Z t  with EZ: = co. Then for some d N  +- cc and 
some i.i.d, random variables S o ,  . . . , S,-I we have 

where bN = EZtI(IZtI 5 d N )  and C i , ,  = C jc i ( j v+ i - r ) .  If /3 < 2, we can 
choose d N  to satisfy NPIIZtI > d N ]+- 1and S o , .. . , SvP1 i.i.d. stable with 
index p. I f  P = 2, we can choose d N  to satisfy N ~ & ~ E z : I ( I z , I 5 d N )+- 1and 
S o ,. . . , S,-l i.i.d. normal. 

If 1< p 5 2, we can also take bN = EZ,. Then if /3 = 2, the limit in (1.3) 
is normal with mean zero and variance C, C:, ,, and if 1< p < 2, the limit in 
(1.3) is stable with index p ,  mean zero and dispersion C ,  IC,, , lP.  If 0 < p < 1, 
we can also take bN = 0 and then the limit in (1.3) is centered stable with 
index p and dispersion C,  ICi,,lP. The skewness of the stable limit in (1.3) is 
the same as for the stable limit of the underlying RV(a)  sequence. 

COROLLARY1.2. Suppose that Y t ( k )  = C jct( j ,  k ) Z t -  for k = 0, . . . , h - 1 
are period v moving averages of some R V ( P )  sequence Z t  with EZ: = co. Then 

jointly over all seasons i = 0, . . . , v -1and all k = 0, . . . , h - 1, where b N ,  d N  
and S, are as in Theorem 1.1and Ci,  , (k )  = C jci( jv + i - r ,  k ) .  

2. The sample autocovariance. In this section we compute the asymp- 
totic distribution of the sample autocovariance of the periodic moving average 
X t  defined in (1.1), where st is RV(a)  and Es: = co. When EE: < co, the 
results of Anderson and Vecchia (1993) apply. Recall that if st is RV(a) ,then 
ElstlP is finite for 0 < /3 < a and infinite for P > a ,  so that we need only 
consider the case 0 < a 5 4. We define the sample autocovariance at season i 
and lag l by 

By substituting (1.1)into (2.1) we obtain an expression for the sample autoco- 
variance in terms of the errors st .  Our first result shows that in this formula 
the E: terms dominate. The proof is straightforward, but technical; see the 
Appendix. 
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LEMMA2.1. Suppose that st is RV(a)  with Esf = cc and that E s ,  = 0 i f  
a 2 2. Then for some a N  + co we have 

If a < 4, we can choose a N  to satisfy NP[ls,l > a N ]+ 1 and if a = 4, we can 
choose a N  to satisfy ~ a & ~ ~ s ; l ( l s , l5 a N )+ 1. 

Next we present the main result of this section, which gives the asymptotic 
distribution of the sample autocovariance in the case EE: = co.The analogous 
results for the classical moving average of an RV(a)  sequence can be found 
in Davis and Resnick (1985a, 1986). For 0 < a < 2, we have Es;  = cc and 
the autocovariance y,( l)  = cov(X, ,  X,+,) is undefined. For a > 2, we have 
u2= EE! < cc and the autocovariance can be written in the form 

THEOREM2.2. Suppose that X ,  is a periodic moving average of an  R V ( a )  
sequence st with Es: = co and that E E ,  = 0 if a ) 2. Then for some a N  + cc 
we have 

where a$ = EE!I(IE,I 5 a N )  and C r ( i ,l )  = C jt,hi(jv+ i - r)+i+e(jv+ i + 
e - r ) .  If a < 4,  then we can choose a N  to satisfy NP[Is,I > a N ]  + 1 and 
S o ,S,, . . . ,S,-, i.i.d, stable with index a /2 .  If a = 4, then we can choose a~ 
to satisfy ~ a & ~ ~ s f l ( l s ,1 5 a N )+ 1 and S o ,S 1 ,. . . ,Sv-I  i.i.d. normal. 

PROOF. If st is RV(a) ,  then 2, = sf is RV(aI2). Apply Theorem 1.1 with 
d N  = a&, c t ( j )= +t( j )+t+e( j+ e )  and /3 = a / 2  to obtain 

and then apply Lemma 2.1 to see that (2.4)holds. 

REMARKS. Note that the normi;lg sequence in (2.4)varies regularly with 
index 1 - 2/a .  If 2 < a 5 4, we can also substitute a$ = a2 = EE;  in (2.4). 
Then the left-hand side of (2.4) becomes Nak2(?,(t) - yi (e) )  and the limit 
on the right-hand side is normal with mean zero and variance CrC r ( i ,t )2 
if a = 4 and stable with index a / 2 ,  mean zero, skewness 1 and dispersion 
CrI C r ( i ,l )1"12 if 2 < a < 4. Since Na& + cc when a > 2, this also shows that 
qi( t )+ yi(e) in probability in this case. If 0 < a < 2, then we can substitute 
a$ = 0 in (2.4) and then the limit in (2.4)is centered stable with index a /2 ,  
skewness 1 and dispersion CrICr(i,l)1"I2.Since Nai2 + 0 when a < 2, this 
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also shows that T i ( ! )  is not bounded in probability in this case. Note also 
that the limit is almost surely positive in this case, since the left-hand side of 
(2.5)is nonnegative and the right-hand side, being stable, has a density with 
respect to Lebesgue measure. 

COROLLARY2.3. The convergence (2.4) holds jointly for all seasons i = 
0 , 1 ,  . . . ,v - l a n d l a g s l = O  , . . . , h - 1 .  

To prove Corollary 2.3, apply Corollary 1.2 with c , ( j , l )= t,ht( j)@,+,(j + l )  
in place of Theorem 1.1 in the proof of Theorem 2.2. 

COROLLARY The convergence (2.4) still holds if we define 2.4. 

N-1 

(2.6) Ti ( l )= N-' C (Xtu+i- - Xi+!),X i ) (xtv+i+e 
t=O 

where X i  = N-I xZi1Xt,+i. Therefore, we need not assume E s ,  = 0 i f  a 3 2. 

PROOF. The difference between (2.1)and (2.6)is 

and so it suffices to show that N ~ > ~ X ~ X ~ + ,+-0 in probability. The proof is 
a straightforward application of regular variation theory; see the Appendix. 
Then if a 3 2, we can assume without loss of generality that E s t  = 0 since 
the mean always exists, and in formula (2.6) a nonzero mean cancels. 

3. The sample autocorrelation. In this section we compute the asymp- 
totic distribution of the sample autocorrelation of the periodic moving average 
X, defined in (1.1) where E ,  is R V ( a )  with E E ~= ca.When Es? < co the 
results of Anderson and Vecchia (1993)apply. We define the sample autocor- 
relation a t  season i and lag l by 

where T i ( ! )  is given by (2.1). For a > 2 the autocorrelation = 
corr(X,, Xi+,) = -y,(l)/Jyt(0)-yt+,(0)and, in view of (2.3)this reduces to 

For 0 < a < 2 the autocorrelation is undefined, but we will persist in using 
(3.2)for ease of notation. 

In the following theorem, it is interesting to note that for 0 < a < 2 the 
sample autocorrelation of the periodic moving average (1.1)converges in dis- 
tribution to a limit which can be expressed as a function of stable laws. The 
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limit is similar to the formula of Logan, Mallows, Rice and Shepp (1973) for 
self-normalized sums. For the classical moving average model, Theorem 4.2 of 
Davis and Resnick (1985a) shows that the sample autocorrelation converges 
in probability. For 2 < a < 4 the sample autocorrelation of the periodic moving 
average model is typically asymptotically stable, while the sample autocorre- 
lation of the classical moving average is always asymptotically normal. This 
is especially curious since the periodic moving average model reduces to the 
classical model when v = 1.See the remarks following the proof for a simple 
explanation. 

THEOREM3.1. Suppose that X ,  is a periodic moving average of the RV(a) 
sequence E, with EE: = GQ. If 0 < a < 2, then 

where C , ( i , t )=  C j + i ( j v + i - r ) + i + e ( j v + i + l - r ) a n d  So ,S1, . . . ,  Sv-lare 
i.i.d. stable with index a/2. If 2 5 a 5 4 and Es,  = 0, then for some a N  + GO 

we have 

where a$ = Ec?I(Ic,I Ia N )  and C,(i , t)  = Cj +i( jv+i-r )+i+e( jv+i+!-r) .  
If 2 Ia < 4, then we can choose a N  to satisfy NP[ls,l > aN]  + 1 and 
So ,  S1, . . . , i.i.d. stable with index a/2. If a = 4, then we can choose a N  
to satisfy Nal;4~c:~(l&tl 5 a N )+ 1and So,  S , , .  . . ,Sv-,i.i.d. normal. 

PROOF. Define V = (C, C,(i, t)S,, C, C,(i, O)S,, C, C,(i + l ,  O)S,), 
g(x, y, z )  = x / & ?  and VN = (Ti(!), qi(0), qi+e(0)). If 0 < a < 2, then Theo- 
rem 2.2, the remark following Theorem 2.2 [substitute a$ = 0 into (2.4)l and 
Corollary 2.3 imply that N ~ & ~ v ~=+ V. Apply the continuous mapping theo- 
rem (recall that the components of 'V are almost surely positive in this case) 
to obtain g(Nah2vN) = g(VN)=+ g(V) which is equivalent to (3.3). If a > 2, 
define c~ = Nah2a$ and Vo = Cj(+i(j)+i+e(j  + el, +i(jI2, +i+e(j + el2). 
Theorem 2.2 and Corollary 2.3 imply that c N ( a i 2 v N  - VO)+ V and we will 
invoke the delta method [e.g., see Billingsley (19791, page 3401 to obtain (3.4). 
Write g ( a i 2 v N )  - g(Vo) = - - V0)2 and D g ( v o ) ( a i 2 v N  VO)+ o ( ~ ; ~ v ~  
note that cN + GO so that we must have aP2vN-Vo + 0 in probability. Then 
civ(g(~;~vN)- = - + O P ( ~ )  D ~ ( V O ) V ,~ ( v o ) )  ~ g ( ~ o ) c N ( a # v N  ~ 0 )  =+ 
which is equivalent to (3.4). EI 
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REMARKS.The parameters of the stable laws appearing in the limit in 
(3.3) were specified in the remarks following the proof of Theorem 2.2. If 
2 < a < 4, the limit in (3.4) is stable with index a/2, mean zero, skewness 
1and dispersion Cr 1Dr1"I2, where CrDrSr  represents the right-hand side 
of (3.4). If a = 4 the limit in (3.4) is normal with mean zero and variance 
CrD:. Since CrCr(t,C) = C Gt( j)Gt+!( j + .!), when v = 1, (3.3) reduces 
to l;,(.!) + pi(.!) in probability, which agrees with the result of Davis and 
Resnick (1985a) for the classical moving average model. Similarly (3.4) re- 
duces to ~ai;~a$(l;~(.!) - pi(.!)) + 0 in probability. I t  is well known that in 
this case N1I2(bi(.!) -pi(.!)) is asymptotically normal; see, for example, Brock- 
well and Davis [(1991), Proposition 7.3.81. Since ~ a ; ~ a $varies regularly with 
index 1-2/a < 112, these norming constants tend to infinity slower than N1I2, 
so there is no contradiction. If we view the classical moving average model as 
a special case of the periodic model (1.1)in which v = 1, then mathematically 
it is a degenerate special case. If we assume that v > 1but that the coeffi- 
cients +, in (1.1)do not depend on t, then the classical sample autocovariance 
is given by ?(.!) = v-l(qo(.!) + . . . + and the classical sample autocor- 
relation l;(.!) = ?(.!)/?(O) is very different from &(.!). The latter can also be 
viewed as an entry in the autocorrelation matrix of a vector moving average; 
see Section 4. 

COROLLARY The convergence in (3.2) and (3.3) holds jointly for all sea- 3.2. 
sons i = 0, l,. . . , v - l and lags .!= 0, . . . , h - l. 

To prove the corollary, the continuous mapping arguments extend immedi- 
ately. 

COROLLARY3.3. Theorem 3.1 still holds if we define l;,(.!) by (3.11,where 
fi(.!) is given by (2.6). Therefore, we need not assume Ect  = 0 if a > 2. 

For the proof, apply Corollary 2.4 together with Theorem 2.2 in the foregoing 
proof of Theorem 3.1. 

4. Vector moving averages. The periodic moving average model (1.1) 
is mathematically equivalent to a vector moving average. If we let Z t  = 
(q, ,  . . . , ~(t+l),-l)' and Yt = (X,,, . . . , X(t+l),-l)', then we can rewrite (1.1) 
in the form 

00 

(4.1) Yt = 'PjZt-j, 
j=-00 

where 'P, is the v x v matrix with i j  entry Gi(tv + i - j )  and we number the 
rows and columns 0, 1, . . . , v - 1for ease of notation. In this section we apply 
our results on periodic moving averages to vector moving averages, using this 
mathematical equivalence. If ct is RV(a), then Z t  has i.i.d. components with 
regularly varying tails and we will also say that Z t  is RV(a). If a E (0,2), 
then Zt  belongs to the domain of attraction of a multivariable stable law with 
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index a and the components of this limit law are in fact i.i.d. stable laws 
with the same index a.  If a 3 2, then 2, belongs to the domain of attraction 
of a multivariate normal law whose components are i.i.d. univariate normal. 
Our first result shows that vector moving averages have essentially the same 
asymptotic behavior as the underlying RV(a)  sequence. When E 1 1  2, 1 1 2  < CQ 

this follows directly from the central limit theorem, so we only consider the 
remaining case. 

THEOREM4.1. Suppose that Y ,  is a vector moving average of some RV(a)  
sequence 2,with E 1 1  2,11 = CQ. Then for some a N  + CQ and nonrandom vectors 
bN we have 

where S is multivariable stable with index a if a < 2 and multivariate normal 
if a 2 2. 

Define the sample autocovariance I ' (h)= N-l C Z ~ ' ( Y ,-Y N ) ( Y t + h-y N ) ' ,  
where PN = N-l zEoY , ,  and define the autocovariance matrix by r ( h )  = 
E ( Y ,  - F ) ( Y , + ~- F)' if it  exists (it always exists if a > 2), where y = EY, .  
Note that the i j  entry of r ( h )  is yi(hv + j - i )  and likewise for f ( h ) .  Let 
diag(do,. . . ,duel)denote the v x v matrix with diagonal elements do,  . . . ,du-l 
and zeroes elsewhere. 

THEOREM4.2. Suppose that Y ,  is a vector moving average of some RV(a)  
sequence 2,with Ell 2,1 1 4  = CQ. Then for some a N  + CQ and nonrandom vectors 
bN we have 

where So,. . . ,Sv-lare i.i.d, stable with index a /2  if a < 4 and i.i.d. normal if 
a = 4. 

The limit in (4.3) is a random matrix whose entries are dependent. If 0 < 
a < 4, then the i j  entry is stable with index a/2  and dispersion CrIC,(i, e)1"I2, 
where e = hv + j - i .  If a = 4, then the i j  entry is normal with variance 
Cr I C r ( i ,e)l2. The autocorrelation matrix R ( h )  has i j  entry equal to pi (hv  + 
j -  i )  and likewise for the sample autocorrelation matrix ~ ( h ) .The asymptotic 
behavior can be obtained by reference to (3.3) and (3.4). For example, if 0 < 
a < 2, then ~ ( h )+ M ( h ) ,  where the i j  entry of M ( h )  is given by the right- 
hand side of (3.3) with e = hv+ j -  converges to a random matrix i .  Then ~ ( h )  
whose entries are dependent and each entry is a function of dependent stable 
laws. 

The results of this section are intended to guide further research. Peri- 
odic moving averages correspond to vector moving averages for a very special 
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class of i.i.d. random vectors. It is natural to consider more general sequences 
Z,, since we do not expect these vectors to have i.i.d. components in most 
real applications. The treatment of arbitrary sequences of i.i.d. random vec- 
tors with regularly varying tails requires a fundamentally multivariable ap- 
proach. Meerschaert (1988) introduced regular variation on IRd .  Meerschaert 
(1993) solved the domains of attraction problem on IRd using regular varia- 
tion, extending the approach of Feller (1971). We are currently investigating 
the application of these methods to moving averages of i.i.d. random vectors 
with regularly varying tails. 

5. Applications. In this section we discuss the reformulation of a peri- 
odic ARMA model as a periodic moving average. Then we apply our results 
on periodic moving averages. We restict our attention to the case where the 
innovations have finite variance but infinite fourth moment (2 < a < 4), 
which is relevant to applications in economics. We will say that X, follows 
a PARMA,(p, q) model [a periodic ARMA(p, q) model with period vl if there 
exists a RV(a) sequence (8,) such that 

holds almost surely for all t ,  where X, = X, - p, is the mean-standardized 
process; see, for example, Anderson and Vecchia (1993). The model parameters 
p,, +,(j) ,  e t ( j )  and a, are all assumed periodic with the same period v. As 
in Section 4, we can reformulate (5.1) as a vector ARMA model, and then 
Theorem 11.3.1 in Brockwell and Davis (1991) gives the causality criterion 
under which (5.1) can be rewritten as a periodic moving average. Then (2.4) 
and (3.4) give the asymptotic distributions of the sample autocovariances and 
sample autocorrelations. Brockwell and Davis [(1991), Section 13.31 assume 
that xaP[l&,l > x] + C as x -+ m. In this case we can take a~ = (CN)lIa, 
where C and a can be estimated by the method of Hill (1975). Confidence limits 
for stable random variables can be obtained by simulation or from unpublished 
tables; see Samorodnitsky and Taqqu (1994). 

EXAMPLE.Consider the PARMA,(l, 0) model X, - +,XtP1= a,&,,where 
E,  is a RV(a) sequence with 2 < a < 4. If 1 + , 1  < 1 for all t ,  then X, has 
a causal moving-average representation X,= Cj$,( j ) ~ , -j, where $, ( l )= 
+ t + t - l . .  . +t-e+lat-e. = 2, 6, = 112 + (-l),/6, a, = 112 -For example, if v 
(-l),/6 and xaPII&,I > x] -+ 1 as x -+ m, then the approximate 100(1 -
6 ) s  confidence interval for fio(l) -po(l) is p o ( l ) ~ l l p l ~ ~ u ~ p ,  =where po(l) 
5 m / 1 1 1 ,  P = a/2, Dp = 2(154/925)p, up = r (2  - P) cos(~@/2)/(1- P) and 
P[S  E Ip]  = 1- 6, where S is centered P stable with skewness 1and scale 
factor 1.Standard tables and simulation routines usually assume stable laws 
with scale factor 1rather than dispersion 1,which accounts for the appearance 
of the scale factor a. Since published tables of quantiles for skewed stable 
random variables are not available we used S-PLUS to approximate IDby 
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TABLE1 

Approximate 95% confidence intervals for io(l)
- pO(l)  

Lower -0.558 -0.188 -0.092 -0.055 -0.036 -0.027 -0.021 -0.019 -0.020 

Upper 0.317 0.232 0.133 0.078 0.051 0.036 0.026 0.022 0.021 


simulation and produced approximate 95% confidence intervals for C o ( l )  -
p o ( l )  with N = 1000, which are given in Table 1for several values of a. When 
a > 4, the results of Anderson and Vecchia (1993)yield confidence bounds of 
f0.059. Notice that the confidence intervals for the case 2 < a < 4 may be 
wider, so that the classical model based on a normal limit may be misleading. 

APPENDIX 

PROOFOF THEOREM1.1. Feller [(1971), XVII.51 showed that for the speci- 
fied d N ,  bN and S ,  we have dG1 ~ ~ ~ l ( Z t , + ,  b N )jS,. If i mod v = r, write-

S i  = S,. Define ZN = N-1 (Z 
t,+i-j -bN):I jl 5 mu)  and S = ( S i P j :jl Id & ' ( ~ , = ~  I 

mu)  and note that ZN jS since any u consecutive entries of ZN are mutually 
independent and the difference between the j entry and the j +u entry tends 
to zero in probability. Define c = ( c i ( j ) :1 j J  Imu)  and apply the continuous 
mapping theorem to obtain c . ZN jc . S, which can be rewritten in the form 

where Y t ( m )= E lj15m,ct( j ) Z t -  j .  Notice that C;"=-,c,( j ) S i P j= CY::C,, ,Sr 
and so as m -+ oo the limit in (A.l)tends to the limit in (1.3)with probability 1. 
By a standard result [e.g., see Theorem 6.3.9 in Brockwell and Davis (1991)1, 
the convergence (1.3)will follow once we show that 

(A.2) 	 lim lim sup PIIXN - X N ( m ) l > E ]  = 0 
m+cc N+oo 

for E > 0 arbitrary, where X N  denotes the left-hand side of (1.3) and 
X N ( m )  is the left-hand side in (A. l ) .  Define U a ( y ) = EIZtlaI(lZtI 5 y )  
and V b ( y )  = E I Z , ~ ~ I ( ~ Z , Iy) .  The regular variation implies that> 
( a  - P ) ~ ~ u ~ ( ~ )b ) y a V b ( y )as y -+ oo whenever a > p > b; see- ( P  -
Feller (1971). Suppose 0 < P < 1 so that N V o ( d N ) -+ 1. For an inter- 
val U define XU = xI(lx1 E U )  and note that bN = EZt[O, d N ]  while 
X N  - X N ( m )= A + B - C ,  where A = Cljl,mvci(j)dG1EZi1Zt,+i-j[O, d N ] ,  

= Nd&'bN C l j l > m v~ i ( j )and = C l j > m uci(j)d%' CZi1Z t v + i - j ( d ~ ,  w).  
Then P [ J A J> ~ / 3 ]  where EJAl  I5 ~ E - ~ E J A J ,  ~ d ~ ~ ~ ~ ( d ~ ) ~ ~ , ~ , ) c ~ ( j ) l  
and Nd&lUl(dN)  - P/(1  - P )  as N -+ oo. Choose 6 < P such that 
C jlei( j)l" oo and observe that P[I BI > ~ / 3 ]  where E(BI"5 ( ~ / E ) % E ( B ( ~ ,  
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~ d ~ ' ~ ~ ( d ~ ) ~ ~ ~ ~ , , ,Ici(j)ls and ~ d & ' ~ , ( d ~ )- P / ( P  - 8).  Since ICI = 
INd;;lbNI 5 Nd; lu l (dN)  - Pl (1 - P ) ,  it follows easily that (A.2)holds in this 
case. Next suppose 1 5 P < 2 and note that E A  = C so that by Chebyshev's 
inequality we have P[IA-CI > 8/21 p 4 8  Eljl,mu ci(j ) 2 ~ d ; 2 ~ a r ( ~ t [ ~ ,d N ] ) ,  
where ~ d ; ~ v a r ( Z , [ ~ ,d N ] )5 N d i 2 U 2 ( d N )- ( 2  - P ) / P  as N -+ co. If f i  > 1, 
then P[IBI > 8/21 5 28-lEIB1, where ElBl 5 xljl,muI ~ ~ ( j ) l d i ' N ~ ~ ( d ~ )  
and Nd; lv l (dN)  - P / ( P  - 1 )  as N -+ co. If P = 1, choose S < 1 such 
that C jIci(j)18 < cc and observe that P[IBI > 8/21 5 (2/.9)'EIB18, where 
EIBI' 5 Cljl,muI ~ ~ ( j ) l ' d ; ' N ~ ~ ( d ~ )and N d i 8 V 8 ( d N )  - 1 / (1  - 6 )  as 
N -+ co. In either case it follows that (A.2) holds when 1 5 P < 2. Fi-
nally suppose P = 2 so that N d 2 u 2 ( d N )  -+ 1. Then by Chebyshev's 
inequality P[IA- CI > ~ / 2 ]5 4 ~ - ~Eljl,mu ci(j ) 2 ~ d ; 2Var(Zt[O,d N ] ) ,where 
N d i 2 V a r ( Z t [ 0 , d N ] )5 N d 2 u 2 ( d N )  -+ 1. Since P = 2 and EZ: = m 
we have U 2 ( y )slowly varying and y 2 - b ~ b ( y ) / ~ z ( y )-+ 0 as N -+ co for 
all 0 5 b < 2; see Feller (1971). Then P[IBI > ~ / 2 ]5 2.s-lEI BI, where 
ElBl 5 Ciji,muI c i ( j ) l d ; l ~ ~ l ( d N )and N d i l V l ( d N )  -+ 0. It follows that 
(A.2)holds in this case as well, which completes the proof. 

PROOFOF COROLLARY1.2. Apply the argument in the proof of Theorem 1.1 
to the moving average Y t ( k )to obtain 

(-4.4) lim limsup P I I X N ( k )- X N ( k ,m)l > E ]  = 0 
m+60 N+m 

for E > 0 arbitrary, where X N ( k )  denotes the left-hand side of (1.4) 
and X N ( k ,m )  is the left-hand side in (A.3). Write (A.3) in the form 
V N ( i ,k ,  m )  =+ V ( i ,k ,  m )  and (1.4) in the form V N ( i ,k )  =+ V ( i ,k ) .  Let 
V N ( m )= ( V N ( i ,k ,  m ) :  0 5 i < v, 0 5 k < h )  and likewise define V ( m ) ,V N  
and V .The continuous mapping argument in the proof of Theorem 1.1 extends 
immediately to yield V N ( m )* V ( m )as N -+ m, and clearly V ( m )-+ V al-
most surely as m -+ m. To show that lirn,,, lim SUPN,~PIIIVN(m)-VN 1 1  > 
E ]  = 0 ,  use the fact that PIIIVN(m)-VNII> E ]  5 xi:; PIIVN(i ,k,m )  -
V N ( i ,m )  > E / ( ~ v ) ]for arbitrary 8 > 0,  along with (A.4). 

PROOFOF LEMMA2.1. We adapt the proof of Proposition 2.1 in Davis and 
Resnick (19861, using the same notation as in the proof of Theorem 1.1. Sub-
stitute (1.1) into (2.1) and then (2.1) into (2.2) to see that the left-hand side 
in (2.2) can be written in the form L = a 2  xjZkc i ( j ,k ) Z n j Z n k ,  
where c i ( j ,k )  = $ i ( j )$ i+t (k+ e) and Z n j  = E, ,+~-~ .  If 0 < a < 2, 
then for any S < a with S 5 1 such that (1.2) holds, we have EILIS 5 
a & 2 " ~ j z k  lei(j ,  k ) l Q p n j ~ n k l "  where E I Z , ~ Z , ~ ~ ?  ( ~ l s , ~ ' ) ~is finite. 
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Since a N  is regularly varying with index l / a  we see that -+ 0 
and so L + 0 in probability in this case. Next suppose 2 5 a < 4 
and write Z n j Z n k  in the form Ajk + Bjk  + Cjk  + D j k ,  where Ajk = 

( Z n j [ o ,  U N ]  - l * . ~ > ( ~ n k [ O ,U N ]  - P N ) ,  B jk  = p ~ ( ~ n j [ O ,U N ]  + Z n k [ o ,  a ~ l ) ,  
whereCjk = ZnjZnkI(IZnjl > aN or IZnkl > U N ) ,  and Djk = -PN,  

pN = EZnj[O,a N ]Substitute back to obtain L = A+ B+C+ D. Now it suffices 
to show that each of A, B and C tends to zero in probability and D -+ 0. Write 
Z'n~. = Znj[O,a N ]- pN SO that A = ah2C?i1Cjikc i ( j ,k)Z',,ZLk and then 

compute V a r ( A )  5 2:~;c E L ~C j f kIci(j,  k )c i ( (n l  - n2)u+ j ,  ( n l  -
n2)u+ k)l + lei(j ,  k )c i ( (n l- n2)u+ k ,  ( n l  - n2)v+ j)l ,  where a$ = EIZLj12. 
This triple sum is bounded above by N ClnliN-lCjik lei(j ,  k)ci(nu+ j ,  nu + 
k)l + lei(j ,  k)ci(nu+ k ,  nu + j)l ,  where the factor of N is an upper bound 
for the number of times that n equals d ,  where 1 - N Id 5 N - 1. 
This double sum is in turn bounded above by (C I $ i(j ) 1 ) 2 ( ~1 $i+e( j)1)2, 
which is finite in view of (1.2). Since a N  is regularly varying with in-
dex l / a  and a$ is slowly varying, we have Nai4a$ + 0 as N + oo, 
hence V a r ( A )  + 0 and this implies A -+ 0 in probability. We also have 
E I B l  IU & ~ I P N Ic?=o~c~#~ Ici(j, k ) l E ( I Z i [ o ,  ~ ~ 1 1+ I Z n k [ O ,  a ~ l l ) ,where 
C?G' CjikIci(j, k)l f (Cj I $ i ( j ) l ) ( C jI $i+e(j)l)is finite in view of (1.2),and 
E(IZnj[O,aN]l+ IZnk[O,a N ] l )5 2Elstl < oo. Since Est  = 0 by assumption 
in this case, we have IpNI = I E E ~ ( c z ~ ,w)l IEI&,(aN,oo)l = V l ( a N )  -
a / ( a  - 1)N-laN so ~ a & ~ 1 p ~ 1-+ 0 as N -+ w. Then ElBl + 0 and so B -+ 0 
in probability. Similarly ElCl f NU&~(CI i,bi(j)l)(C I$i+e(j)l)EICjk1 ,  where 
EICjkI 5 2EIZnj lEZnk(aN,m)/and N U & ~ E I Z , ~ ( U ~ ,w)l = N U & ~ V ~ ( U ~ )-+ 0. 
Then ElCl + 0 which implies C + 0 in probability. Since D = O ( N U & ~ ~ & )-+ 

0 and since we have already shown that ~ a & ~ l p ~ I+ 0,  we have D + 0 as 
well, which finishes the proof in the case 2 5 a < 4. Finally suppose that 
a = 4. The argument is essentially the same, but note that the norming 
constants a N  are different. We still have V a r ( A )= ~ ( N a & ~ a $ ) ,where now 
a$ + a2 = EE: < w and since ~ a & ~ U ~ ( a ~ )-+ 1, we also have Nah4 -+ 0 ,  
which makes V a r ( A )  + 0.  We also have El Bl = O ( N U & ~ V ~ ( ~ ~ ) ) ,where 

v l ( a N )+ 0 and so E 1 Bl + 0.  The proof that El Cl -+ 0 is similar, and 
D = o(EIBI),so D -+ 0 as well. 

PROOFOF COROLLARY2.4. We must show that N U & ~ X ~ X ~ + ,-+ 0 in 
probability. First suppose that 0 ,< a < 2. We will show that in this case 
f l a h l x i  -+ 0 in probability for all i. Theorem 1.1 yields NU&'(X~ -
bN C j$ i ( j ) )  + Y ,  where Y is a stable and bN = E&,[O,a N ] .  Then 
f l a & l ( X ,  - bN C $ , ( j ) )  -+ 0 in probability and so it suffices to show 
that fla&'bN -+ 0.  If 0 < a < 1, then INa&lbNI 5 N a & l ~ ~ ( a ~ )-+ a / ( l  - a )  
so fla&'bN -+ 0. If a = 1, then U l ( a N )is slowly varying and a&' is regu-
larly varying with index -1, so again we have f la&lbN -+ 0. If 1 < a < 2,  
then bN -+ E E ,  and a N  is regularly varying with index ( l / a )  E ( 1 / 2 , 1 )  so 
fla&'bN -+ 0. Finally suppose that a = 2 and E E ~= w. Without loss of gen-
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erality we may assume that Eet = 0 in (2.6) and then the weak law of large 
numbers yields xi+,-+ 0 in probability, so it suffices to show that IVa i2x i  -+ 0 
in probability. Theorem 1.1 yields ~ d i ; ' ( ~ ~-bN C i,bi (j ) )  =+Y normal, where 
I V d i 2 u 2 ( d N )-+ 1 and bN = E&,[O,d N ] .Since bN = -Ect(dN, oo),we have 
1IVdi1bNI I IVdi;'vl(dN) -+ 0 as in the proof of Theorem 1.1, so in fact 
I V d i l x i  + Y normal. Both a~ and d N  vary regularly with index 112, so 
IVa i2x i  = ~ d i ; ' x ~ ( a i ; ~ d ~ )-+ 0 in probability, which completes the proof. 
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