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Abstract

A continuous time random walk (CTRW) is a random walk subordinated to a renewal process, used
in physics to model anomalous diffusion. Transition densities of CTRW scaling limits solve fractional
diffusion equations. This paper develops more general limit theorems, based on triangular arrays, for
sequences of CTRW processes. The array elements consist of random vectors that incorporate both the
random walk jump variable and the waiting time preceding that jump. The CTRW limit process consists of
a vector-valued Lévy process whose time parameter is replaced by the hitting time process of a real-valued
nondecreasing Lévy process (subordinator). We provide a formula for the distribution of the CTRW limit
process and show that their densities solve abstract space–time diffusion equations. Applications to finance
are discussed, and a density formula for the hitting time of any strictly increasing subordinator is developed.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A continuous time random walk (CTRW) is a random walk subordinated to a renewal process.
It is specified in terms of a sequence of independent, identically distributed random vectors
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(Yi , Ji ) where Yi represents a particle jump and Ji > 0 is the waiting time preceding that jump.
Let S(n) = X1 +· · ·+ Xn denote the particle location after n jumps and let T (n) = J1 +· · ·+ Jn
be the time of the nth jump. Then Nt = max{n ≥ 0 : T (n) ≤ t} is the number of jumps
by time t > 0 and the CTRW X (t) = S(Nt ) represents the particle location at time t > 0.
The CTRW is useful in physics for modeling anomalous diffusion. Heavy tailed particle jumps
lead to superdiffusion, where a cloud of particles spreads faster than the classical Brownian
motion, and heavy tailed waiting times lead to subdiffusion. If Yi belongs to the strict domain
of normal attraction of a stable law with index α then as c → ∞ we get c−1/αS([ct]) ⇒ A(t),

a stable Lévy motion with superdiffusive scaling A(ct)
d
= c1/αA(t). Densities of A(t) solve

a diffusion equation that involves a fractional derivative in space of order α. If the waiting
times Ji belong to the domain of normal attraction of a stable law with index β < 1 then

c−1/βT ([ct]) ⇒ D(t), a stable subordinator with D(ct)
d
= c1/βD(t). The renewal process Nt

is a kind of inverse to the process T (n), and it follows that c−βNct ⇒ E(t), the inverse or

hitting time process of the stable subordinator, with inverse scaling E(ct)
d
= cβE(t). In this case

c−β/αX ([ct]) ⇒ M(t) = A(E(t)), a non-Markovian limit with scaling M(ct)
d
= cβ/αM(t).

Densities of the CTRW scaling limit M(t) solve a space–time fractional diffusion equation that
also involves a fractional time derivative of order β; see [9,39] for complete details.

Continuous time random walks and the associated fractional diffusion equations are useful
in physics [42,43], finance [23,33,41,47,48,52], and hydrology [10,12,55]. In applications to
hydrology, the heavy tailed particle jumps capture the velocity irregularities caused by a
heterogeneous porous media, and the waiting times model particle sticking or trapping. In
applications to finance, the particle jumps are price changes or log-returns, separated by a random
waiting time between trades. One principal motivation for this work comes from the application
to finance, where price jumps typically exhibit power law tails but finite variance. In this situation,
the scaling limits in the preceding paragraph lose the power law tails, since the limit A(t) is
Gaussian. A more delicate limiting procedure based on triangular arrays yields Lévy process
limits that combine heavy tails with finite variance. A similar triangular array approach was
already used in [40] to develop models for ultraslow diffusion.

Consider a sequence of continuous time random walks indexed by a scale parameter c > 0.
Take {J (c)i : j = 1, 2, . . .} nonnegative i.i.d. random variables representing the waiting times

between particle jumps and T (c)(n) =
∑n

i=1 J (c)i the time of the n-th jump. Let {Y (c)i : i =

1, 2, . . .} be i.i.d. random vectors on Rd representing the particle jumps and S(c)(n) =
∑n

i=1 Y (c)i

the location after n jumps. Define N (c)
t = max{n ≥ 0 : T (c)(n) ≤ t}, the number of jumps by

time t ≥ 0 and

X (c)(t) = S(c)(N (c)
t ) =

N (c)
t∑

i=1

Y (c)i (1.1)

the position of the particle at time t ≥ 0 and scale c > 0. Observe that we do not necessarily
assume that the waiting times {J (c)i : i ≥ 1} and the particle jumps {Y (c)i : i ≥ 1} are independent.
In fact we allow dependence between the waiting time before the particle jump and the particle
jump. More precisely we assume that for each c > 0 the sequence (Y (c)i , J (c)i ), i = 1, 2, . . . , of
Rd

× R+-valued random vectors are i.i.d., allowing arbitrary dependence between the waiting
time J (c)i and the following jump Y (c)i . In this paper, we develop limit theorems for these CTRW
sequences using a triangular array approach. Then we prove a density formula for hitting times
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of strictly increasing subordinators, which may be of independent interest. The main result of
this paper is a formula for the distribution of the CTRW limit process under a weak technical
condition, see Theorem 3.6. Finally we derive governing equations for the density of the CTRW
limit process. As a special case, governing equations for the uncoupled case (where the waiting
times J (c)i and the jumps Y (c)i are independent) are discussed in detail. The governing equations
are generalized Cauchy problems involving pseudo-differential operators in space and time,
related to the generators of semigroups associated with the Lévy processes that emerge as the
triangular array limits in space and time.

2. Limit theorems

In order to obtain a triangular array limit for the CTRW sequence {X (c)(t)}t≥0 as c → ∞ we
need to impose certain assumptions on the triangular array 1 = {(Y (c)i , J (c)i ) : i ≥ 1, c > 0}.

For each fixed c > 0 the random vectors (Y (c)i , J (c)i ), i = 1, 2, . . ., are assumed to be i.i.d. on
Rd

× R+. Let

S(c)(t) =

[t]∑
i=1

Y (c)i and T (c)(t) =

[t]∑
i=1

J (c)i

denote the row sums. We assume that 1 is given so that

{(S(c)(cu), T (c)(cu))}u≥0 ⇒ {(A(u), D(u))}u≥0 as c → ∞ (2.1)

in the J1 topology on D([0,∞),Rd
× R+), where {(A(u), D(u))}u≥0 is a Lévy process on

Rd
× R+. Observe that {D(u)}u≥0 is necessarily a subordinator.
Recall that N (c)

t = max{n ≥ 0 : T (c)(n) ≤ t} and let

E(t) = inf{u ≥ 0 : D(u) > t} (2.2)

denote the hitting time of the subordinator {D(u)}u≥0 obtained in (2.1). It follows from Theorem
21.3 of [51] that if assumption (3.7) stated below holds, then the subordinator has strictly
increasing sample path almost surely and hence the hitting time process {E(t)}t≥0 has continuous
nondecreasing sample path almost surely. Moreover it is easy to see that {E(t)}t≥0 is strictly
increasing at some t0 > 0 if and only if {D(u)}u≥0 is continuous at E(t0). For any element x ∈

D([0,∞), S) for some complete separable metric space S let Disc(x) = {t ≥ 0 : x(t−) 6= x(t)}
denote the set of discontinuities of x .

Theorem 2.1. Assume that (2.1) and (3.7) holds. If

Disc({A(t)}t≥0) ∩ Disc({D(t)}t≥0) = ∅ a.s. (2.3)

then

{X (c)(t)}t≥0 ⇒ {M(t)}t≥0 as c → ∞ (2.4)

in the M1-topology on D([0,∞),Rd), where M(t) = A(E(t)) is a random time change of the
first component {A(t)}t≥0 in (2.1) caused by the hitting time process {E(t)}t≥0 of the second
component {D(t)}t≥0 in (2.1).

Proof. Since the argument is similar to [9, Theorem 3.1] we only sketch the proof. A
continuous mapping argument on D(R+,Rd

× R+) using (x, y) 7→ (x, y−1) shows that
(S(c)(ct), c−1 N (c)

t ) → (A(t), E(t)) as c → ∞ in the M1-topology. Then another continuous
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mapping argument using (x, y) 7→ x ◦ y (composition) yields (2.4). The technical condition is
needed to satisfy condition (i) in [59, Theorem 13.2.4]. �

Remark 2.2. Since E(t) is almost surely continuous and as a Lévy process {A(t)}t≥0 almost
surely does not have any fixed points of discontinuity, it follows from Theorem 11.6.6 of [59]
that (2.4) also holds in the sense of convergence of all finite dimensional marginal distributions,
and hence under the conditions of Theorem 2.1 we have

X (c)(t) ⇒ A(E(t)) as c → ∞

in distribution for any fixed t > 0.

Remark 2.3. Observe that condition (2.3) is rather strong. In fact it is close to independence
of {A(t)}t≥0 and {D(t)}t≥0; see Lemma 15.6 in [28]. It is a challenging open problem to find
weaker conditions such that X (c)(t) ⇒ A(E(t)) as c → ∞ at least for any fixed point in time or
for all finite dimensional marginals.

Since in general the processes {A(t)}t≥0 and {D(t)}t≥0 are dependent, the distribution of
M(t) can have a complicated structure; see [9]. In the next result, we consider the important
special case in which Y (c)i and J (c)i are independent. Then the processes {A(t)}t≥0 and {E(t)}t≥0
are independent, and the distributional properties of M(t) = A(E(t)) can be obtained via a
conditioning argument.

Corollary 2.4. Assume that (2.1) and (3.7) hold. If the triangular array elements Y (c)i and J (c)i
are independent for each i and c then (2.4) holds in the M1-topology on D([0,∞),Rd), where
M(t) = A(E(t)).

Proof. In this case the components of the limit in (2.1) are independent stochastic processes.
Then it is easy to check that the independent Lévy processes {A(x)} and {D(x)} have
(almost surely) no simultaneous jumps, so that (2.3) holds. Then the result follows from
Theorem 2.1. �

We conclude this section with some examples to illustrate the practical application of the
triangular array convergence for continuous time random walks.

Example 2.5. If Ji are nonnegative independent and identically distributed random variables in
the strict domain of attraction of a stable law with index β < 1 then there exists a regularly
varying sequence of positive reals (bn) with index −1/β such that

bn(J1 + · · · + Jn) ⇒ D, (2.5)

where D is stable with index β and D > 0 almost surely. Write b(t) = b[t] and let J (c)i = b(c)Ji .

Then T (c)(ct) = b(c)
∑[ct]

i=1 Ji ⇒ D(t) for any fixed t > 0 and furthermore it follows from
Theorem 4.1 in our paper [39] that

{T (c)(ct)}t≥0 ⇒ {D(t)}t≥0 as c → ∞, (2.6)

in the J1 topology, where {D(t)} is a stable subordinator. If (Yi ) are i.i.d. Rd -valued random
variables that belong to the strict generalized domain of attraction of some operator stable law
with exponent E , then there exists a regularly varying sequence of linear operators (Bn) with
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index −E such that

Bn

n∑
i=1

Yi ⇒ A as n → ∞, (2.7)

where A is strictly operator stable with exponent E . Write B(t) = B[t] and let Y (c)i = B(c)Yi .
Another application of Theorem 4.1 in [39] shows that

{S(c)(ct)}t≥0 ⇒ {A(t)}t≥0 as c → ∞, (2.8)

in the J1 topology, where {A(t)} is an operator Lévy motion on Rd . Finally, in the case where
(Ji , Yi ) are i.i.d. random vectors of dimension d + 1, and allowing dependence between the
waiting times Ji and the jumps Yi , if we assume that

n∑
i=1

(BnYi , bn Ji ) ⇒ (A, D) (2.9)

and we define Y (c)i and J (c)i as before, then we obtain the joint convergence (2.1) by another
application of Theorem 4.1 in [39], since (Ji , Yi ) belong to the strict generalized domain
of attraction of the operator stable random vector (A, D). Then the CTRW limit theorem
[9, Theorem 3.1] is a special case of Theorem 2.1. For the situation where the waiting times
and jumps are independent, see [39, Theorem 4.2],

Example 2.6. The classical example that requires the triangular array construction is a sequence
of random walks that converges to a Brownian motion with drift. Given a sequence of
independent and identically distributed random vectors (Yi ) on Rd with mean µ and finite second
moments, we define for each scale c > 0 the array elements Y (c)i = c−1µ+ c−1/2(Yi −µ). Then
a classical computation yields

S(c)(ct) =
[ct]

c
µ+ c−1/2

[ct]∑
i=1

(Yi − µ) ⇒ A(t)

which is a Brownian motion with drift EA(t) = tµ, with convergence in the J1 topology on
D([0,∞),Rd). The two spatial scales are necessary to retain both the Gaussian and the drift
components in the limit, since each has a different scaling. For heavy tailed random vectors
with finite mean, a similar approach leads to an operator Lévy motion with drift. Then the
constructions of the previous example can be applied to obtain joint convergence (2.1) in this
case. The drift is important in finance, for example, where it represents the average rate of growth
for the log-price A(t) of an asset. In a similar way, we can also add a drift to the subordinator
D(t) by replacing Ji by Ji + µ in Example 2.5 (note that µ is not the mean waiting time) and
using two time scales; see [4,8].

Example 2.7. Given (Bi ) i.i.d. with density p(β) supported on (0, 1), for any scale c ≥ 1 let
J (c)i be nonnegative i.i.d. random variables with P{J (c)i > u|Bi = β} = c−1u−β for u ≥ c−1/β .

This amounts to letting J (c)i = c−1/β Ji conditionally on Bi = β where Ji are i.i.d. random
variables with slowly varying probability tails. The triangular array construction leads to a richer
asymptotic theory than the usual methods for very heavy tails. In particular, Corollary 3.5 in [40]
shows that under certain regular variation assumptions on the mixing density p(β) we have

{T (c)(ct)}t≥0 ⇒ {D(t)}t≥0 as c → ∞
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in the J1 topology on D([0,∞), [0,∞)), where {D(t)} is a subordinator with Lévy measure
tφ and φ(r,∞) is slowly varying at infinity. Combining this triangular array for waiting times
with an independent array of jumps yields another example that satisfies (2.1). In applications to
physics D(t) is called an ultrafast subordinator, and its inverse process {E(t)} is used to build
models of ultraslow diffusion.

Example 2.8. In applications to finance, the waiting times J (c)i represent the times between

transactions and the jumps Y (c)i are the price jumps (or log-returns). There is considerable
evidence in finance for heavy tailed price jumps, where the probability of a jump larger in
magnitude than r > 0 falls off like r−α , or more generally, regularly varying probability tails.
A multivariable theory of regular variation is developed in [37], and applications to finance are
suggested in [7,38]. Mandelbrot [34] and Fama [21] pioneered the use of heavy tail distributions
in finance. Mandelbrot [34] presents graphical evidence that historical daily price changes in
cotton have heavy tails with α ≈ 1.7, so that the mean exists but the variance is infinite. Jansen
and de Vries [26] argue that daily returns for many stocks and stock indices have heavy tails with
3 < α < 5, and discuss the possibility that the October 1987 stock market plunge might be just a
heavy tailed random fluctuation. Loretan and Phillips [32] use similar methods to estimate heavy
tails with 2 < α < 4 for returns from numerous stock market indices and exchange rates. In
this case the limiting process A(u) is Gaussian if a classical scaling is used, but the underlying
CTRW has power law jumps, and this important feature would be lost in the asymptotic analysis.
Triangular array asymptotics allow the power law probability tail to persist in the limit. In the
simplest model of this type is one takes

(Y (c)i , J (c)i ) = (A(c−1i)− A(c−1(i − 1)), D(c−1i)− D(c−1(i − 1)))

i.i.d. where {(A(u), D(u))}u≥0 is a Lévy process with D(u) a subordinator and A(u) has a Lévy
measure φA with power law tails. For example, if φA{x : |x | > r} ∼ Cr−α when r > r0 for some
(any) r0 > 0, C > 0 and α > 0, then it follows from [51, Theorem 25.3] that E‖A(u)‖ρ exists for
0 < ρ < α and diverges for ρ ≥ α. This includes the case where A(u) is compound Poisson with
Pareto jump distribution. Then we have {(S(c)(cu), T (c)(cu))} = {(A(c−1

[cu]), D(c−1
[cu]))}

and then (2.1) holds in the J1 topology on D([0,∞),Rd
× R+) in view of [28, Theorem 16.14].

The Lévy measure or jump intensity describes the constituent price jumps in this model,
and thus allows the coding of dependence between various stocks or other financial issues;
see [38] for an illustration. It also allows the modeling of dependence between waiting times
and price jumps; see [41,53]. If D(u) is a stable subordinator then the hitting time process E(t)
has Mittag–Leffler distributions, see [16,17,39]. A coupled model can be obtained by taking

(Y (c)i , J (c)i )
d
= (X (D(c−1)), D(c−1)) where {(X (u), D(u))}u≥0 is a Lévy process with D(u)

a subordinator and {X (u)} another Lévy process independent of {D(u)}. An example in [41]
illustrates a reasonable fit to a set of high-resolution (tick-by-tick) data for bond futures with
a stable subordinator in time and {X (u)} a Brownian motion, so that A(u) = X (D(u)) is
symmetric stable with index 2β < 2. Extending to triangular array CTRW limits allows the
consideration of similar models with α > 2, which seems to be the most common case in finance.

3. The limit process

In this section we analyze the distribution of the triangular array CTRW limit M(t) = A(E(t))
under weak technical conditions on the underlying space–time Lévy process {(A(u), D(u))}u≥0.
Before we formulate our main result let us state the general assumptions needed in the proof.
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3.1. General assumptions

In this paper we will denote the Fourier transform of a function f : Rd
→ R by

f̂ (k) =
∫
Rd e−i〈k,x〉 f (x)dx , the Laplace transform of a function g : R+ → R by g̃(t) =∫

∞

0 e−st g(s)ds, and the Fourier–Laplace transform of a function h : Rd
× R+ → R by

h̄(k, s) =
∫

∞

0

∫
Rd e−st−i〈k,x〉h(x, t)dxdt . For probability measures µ we adopt a similar

notation, µ̃(s) =
∫

e−stµ(dt) and so forth. Let {(A(u), D(u))}u≥0 be a Lévy process on Rd
×R+

with Lévy representation [(a, 0), Q, φ]. That is, the Fourier–Laplace transform (FLT) of the
probability measure P(A(u),D(u)) is given by

P̄(A(u),D(u))(k, s) =

∫
∞

0

∫
Rd

e−st−i〈k,x〉 P(A(u),D(u))(dx, dt) = e−uψ(k,s) (3.1)

for k ∈ Rd and s > 0, with

ψ(k, s) = i〈a, k〉 + Q(k)+

∫
Rd×R+\{(0,0)}

(
1 − e−i〈k,x〉e−st

−
i〈k, x〉

1 + ‖x‖2

)
φ(dx, dt),

(3.2)

where a ∈ Rd is some shift, Q(k) = 〈k, Ak〉 is a nonnegative definite quadratic form on Rd and
φ(dx, dt) is a Lévy measure on Rd

× R+ \ {(0, 0)}; see for example [13, Theorem 4.3.19]. That
is, φ(dx, dt) assigns finite measure to sets bounded away from the origin and∫

0<‖x‖2+t≤1
(‖x‖

2
+ t)φ(dx, dt) < ∞.

Note that by Lemma 2.1 of [9] the function ψ : Rd
× R+ → C with ψ(0, 0) = 0 and Reψ ≥ 0

is uniquely determined and continuous. We will call ψ the Fourier–Laplace symbol of this Lévy
process.

We denote by φA(dx) = φ(dx,R+) the Lévy measure of the Lévy process {A(u)}u≥0. By
setting s = 0 in the representation (3.1) we see that∫

Rd
e−i〈k,x〉 PA(u)(dx) = e−uψA(k), (3.3)

where

ψA(k) = i〈a, k〉 + Q(k)+

∫
Rd\{0}

(
1 − e−i〈k,x〉

−
i〈k, x〉

1 + ‖x‖2

)
φA(dx) (3.4)

is the Fourier symbol of the Lévy process {A(u)}. Similarly, we let φD(dt) = φ(Rd , dt) denote
the Lévy measure of {D(u)}. By setting k = 0 in the representation (3.1) we see that∫

∞

0
e−st PD(u)(dt) = e−uψD(s), (3.5)

where

ψD(s) =

∫
∞

0

(
1 − e−sv)φD(dv) (3.6)

is the Laplace symbol of the Lévy process {D(u)}. Note that {D(u)} is a subordinator, i.e., a
Lévy process with nondecreasing sample paths. Note also that we assume that the drift term of
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the subordinator is zero. The main results in this paper require that

φD(0,∞) = ∞ (3.7)

and ∫ 1

0
y| ln y|φD(dy) < ∞. (3.8)

Assumption (3.7) implies that the process {D(u)} is strictly increasing, since in this case the set of
jumps of D(u) is almost surely dense in (0,∞); see for example Theorem 21.3 in [51]. Observe
that (3.8) is a rather weak technical condition on the subordinator, since the integral must con-
verge if the | ln y| term is omitted. Finally we note that if A(u) and D(u) are independent, we have

P̄(A(u),D(u))(k, s) =

∫
∞

0

∫
Rd

e−st−i〈k,x〉 PA(u)(dx)PD(u)(dt) = e−uψA(k)e−uψD(s) (3.9)

so that ψ(k, s) = ψA(k)+ ψD(s).
Recall the definition E(t) = inf{u ≥ 0 : D(u) > t} of the inverse or hitting time process.

Then

{E(t) ≤ x} = {D(x) ≥ t}. (3.10)

Since D(t) is strictly increasing, E(t) is almost surely continuous. Before we state the main result
of this section, we first provide a preliminary result on the distribution of E(t) which may be of
independent interest. In the sequel, measurability of functions g : Rd

→ R is always understood
to mean measurable with respect to the σ -field of Lebesgue-measurable sets in Rd . Furthermore,
let λd denote the Lebesgue measure on Rd .

Theorem 3.1. Under assumption (3.7), for all t > 0, the random variable E(t) has the Lebesgue
density

f (x, t) =

∫ t

0
φD(t − y,∞)PD(x)(dy). (3.11)

Moreover, the mapping (x, t) 7→ f (x, t) is measurable.

Proof. For fixed z > 0 let

L(z, t) =

∫ z

0
f (u, t)du and R(z, t) = P{E(t) ≤ z}.

It is enough to show that L(z, t) = R(z, t) for all z, t > 0. Observe that R(z, t) = P{D(z) ≥ t}
and define the occupation measure

W (dy) =

∫
∞

0
PD(u)(dy)du.

In view of [29], Corollary 6.2 on p. 119, we get∫
∞

0
f (z, t)dz =

∫
∞

0

∫ t

0
φD(t − y,∞)PD(z)(dy)dz

=

∫ t

0
φD(t − y,∞)W (dy) = 1

for all t > 0 and hence z 7→ L(z, t) is a distribution function for any fixed t > 0.
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Let us now compute the double Laplace transforms of the functions R(z, t) and L(z, t). For
s, ξ > 0 let

L̃(ξ, s) =

∫
∞

0
e−st

(∫
∞

0
e−ξ zdz L(z, t)

)
dt =

∫
∞

0
e−ξ z

(∫
∞

0
e−st f (z, t)dt

)
dz,

where dz L(z, t) denotes integration with respect to the z-variable. For fixed s > 0 we compute
using Tonelli’s theorem and a simple change of variables∫

∞

0
e−st f (z, t)dt =

∫
∞

0
e−st

(∫ t

0
φD(t − y,∞)PD(z)(dy)

)
dt

=

(∫
∞

0
e−suφD(u,∞)du

) (∫
∞

0
e−sy PD(z)(dy)

)
.

In view of (3.5) a change of variables yields∫
∞

0
e−suφD(u,∞)du =

∫
∞

0
e−su

∫
∞

u
φD(dz)du =

1
s
ψD(s). (3.12)

Hence∫
∞

0
e−st f (z, t)dt =

1
s
ψD(s)e−zψD(s). (3.13)

Therefore we get

L̃(ξ, s) =
ψD(s)

s

∫
∞

0
e−ξ ze−zψD(s)dz =

1
s

ψD(s)

ξ + ψD(s)
.

On the other hand we need to compute

R̃(ξ, s) =

∫
∞

0
e−st

(∫
∞

0
e−ξ zdz R(z, t)

)
dt.

Integration by parts together with R(0, t) = P{D(0) ≥ t} = 0 for t > 0 yields∫
∞

0
e−ξ zdz R(z, t) = ξ

∫
∞

0
e−ξ z R(z, t)dz.

Moreover, an application of Fubini together with (3.5) yields∫
∞

0
e−st R(z, t)dt =

∫
∞

0
e−st P{D(z) ≥ t}dt =

1
s

(
1 − e−zψD(s)

)
and hence

R̃(ξ, s) =
ξ

s

∫
∞

0

(
1 − e−zψD(s)

)
e−ξ zdz =

ξ

s

(
1
ξ

−
1

ξ + ψD(s)

)
=

1
s

ψD(s)

ξ + ψD(s)
. (3.14)

Hence we have shown that for all ξ, s > 0 we have L̃(ξ, s) = R̃(ξ, s). The uniqueness
theorem of the Laplace transform applied to the t-variable implies that for any ξ > 0 we have
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∞

0
e−ξ zdz L(z, t) =

∫
∞

0
e−ξ zdz R(z, t) (3.15)

for Lebesgue almost all t > 0. However, we wish to establish (3.11) for every t > 0. If we can
show that for any fixed ξ > 0 both

t 7→

∫
∞

0
e−ξ zdz L(z, t) (3.16)

and

t 7→

∫
∞

0
e−ξ zdz R(z, t) (3.17)

are right-continuous, then it would follow that (3.15) holds for all t > 0 and all ξ > 0. Applying
the uniqueness theorem for the Laplace transform (see e.g. [22], Theorem 1 on p. 430) again to
(3.15) it would follow that L(z, t) = R(z, t) for all t > 0 and all z > 0 and the proof would be
complete.

Using Theorem 21.3 in [51] we know by assumption (3.7) that the sample paths of the
subordinator {D(u)}u≥0 are strictly increasing almost surely and hence t 7→ E(t) is continuous
almost surely and hence in distribution. Therefore the mapping in (3.17) is continuous for any
ξ > 0, by the continuity theorem for Laplace transforms; e.g. see [22, Theorem 4, p. 431].

It remains to show that for any fixed ξ > 0 the function

t 7→

∫
∞

0
e−ξ zdz L(z, t) =

∫
∞

0
e−ξ z f (z, t)dz

is right-continuous. For t, h > 0 write∫
∞

0
e−ξ z f (z, t)dz −

∫
∞

0
e−ξ z f (z, t + h)dz

=

∫
∞

0
e−ξ z

∫ t

0
[φD(t − y,∞)− φD(t + h − y,∞)] PD(z)(dy)dz

−

∫
∞

0
e−ξ z

∫ t+h

t
φD(t + h − y,∞)PD(z)(dy)dz

= Ih − Jh .

Let

gh(z, y) = e−ξ z [φD(t − y,∞)− φD(t + h − y,∞)] .

Since v 7→ φD(v,∞) is right-continuous it follows that gh(z, y) → 0 as h ↓ 0 for all z ≥ 0 and
0 ≤ y < t . Moreover gh(z, y) ≤ φD(t − y,∞) where by (3.11)∫

∞

0

∫ t

0
φD(t − y,∞)PD(z)(dy)dz = 1.

In view of dominated convergence we have Ih → 0 as h ↓ 0.
Next we have, using Corollary 6.2 in [29] again, that

Jh ≤

∫
∞

0

∫ t+h

t
φD(t + h − y,∞)PD(x)(dy)dx

=

∫ t+h

t
φD(t + h − y,∞)W (dy)
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=

∫ t+h

0
φD(t + h − y,∞)W (dy)−

∫ t

0
φD(t + h − y,∞)W (dy)

= 1 −

∫ t

0
φD(t + h − y,∞)W (dy).

Rewriting Eqs. (6.1) and (6.7) on pp. 116–117 of [29] in our notation, we have for any r > 0 and
x ≥ 0

P{D(E(r)) > r + x} =

∫ r

0
φD(r + x − y,∞)W (dy).

Hence∫ t

0
φD(t + h − y,∞)W (dy) = P{D(E(t)) > t + h}

and therefore

1 −

∫ t

0
φD(t + h − y,∞)W (dy) = P{D(E(t)) ≤ t + h} = P{D(E(t))− t ≤ h}

= G t (h).

By Proposition 5 on p. 119 of [29] we know that G t (h) is a continuous function in h ≥ 0 with
limh↓0 G t (h) = G t (0). Since

1 − G t (0) = P{D(E(t)) > t} =

∫ t

0
φD(t − y,∞)W (dy) = 1

using [29], Corollary 6.2 again, we have G t (0) = 0. Hence we have shown that

Jh ≤ G t (h) → G t (0) = 0 as h ↓ 0

which proves that t 7→ L z(t) is right-continuous in any t > 0. The measurability of (x, t) 7→

f (x, t) follows by approximating the integrand from below by simple functions and using the
continuity in distribution of x 7→ D(x). Now the proof is complete. �

Remark 3.2. In the special case of Example 2.7, the hitting time density f (x, t) in (3.11) was
computed in [40] under a technical condition on the continuity of the Laplace transform. That
result was strengthened in [31, Theorem 3.1] using a deep result from analysis, the Carasso–Kato
theorem [19], along with some multivariable regular variation arguments. Theorem 3.1 gives a
more elementary proof, and extends the result to an arbitrary strictly increasing subordinator,
under weaker assumptions.

Example 3.3. Here we relate the density formula (3.11) to the formula in [39] for the hitting
time density of a stable subordinator. Suppose that D > 0 is a β-stable random variable with
the bounded C∞-density gβ normalized so that g̃β(s) = exp(−sβ). Note that this normalization
corresponds to the Lévy measure φD(t,∞) = t−β/Γ (1 − β) for t > 0. Next observe that

zgβ(z) =
β

Γ (1 − β)

∫ z

0
(z − y)−βgβ(y)dy for z > 0. (3.18)

To see that (3.18) holds, compute the Laplace transform of both sides, and use uniqueness
of the Laplace transform for continuous functions. The Laplace transform of the left-hand
side is (− d

ds )g̃β(s); for the right-hand side use (3.13) with ψD(s) = sβ . Now let {D(x)}x≥0
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be the β-stable subordinator with D(1) = D. Then every D(x) has density g(x, y) = x−1/βgβ
(x−1/β y). Hence, by Theorem 3.1 the density of the hitting time E(t) is given by

f (x, t) =
x−1/β

Γ (1 − β)

∫ t

0
(t − y)−βgβ(x

−1/β y)dy. (3.19)

If we let z = t x−1/β in (3.18), a simple change of variable together with (3.19) yields

t x−1/βgβ(t x−1/β) =
β

Γ (1 − β)

∫ t x−1/β

0

(
t x−1/β

− y
)−β

gβ(y)dy

=
βx

Γ (1 − β)

(
x−1/β

∫ t

0
(t − y)−βgβ(x

−1/β y)dy

)
= βx f (x, t).

Hence

f (x, t) =
t

β
x−1−1/βgβ(t x−1/β) (3.20)

which agrees with [39], Corollary 3.1(c).

Example 3.4. In this simple example, we extend the formula (3.20), for the hitting time density
of a stable subordinator, to the case of a stable subordinator with drift. As in Example 3.3, let gβ
denote the density of a standard β-stable random variable D > 0 with g̃β(s) = exp(−sβ). Let
D0(t) be a stable subordinator with D0(1) = D and let D(t) = at + D0(t) for some a > 0. Then
the inverse or hitting time process E(t) defined by (2.2) has a density, which can be calculated as
follows. Note that (3.10) still holds, and hence we can write P{E(t) ≤ x} = P{D(x) ≥ t}
= P{D0(x) ≥ t − ax}. Recall that D0(x) is identically distributed with x1/βD, and let
Gβ(y) = P{D ≤ y}, so that d

dy Gβ(y) = gβ(y). Then the random variable E(t) has density

f (x, t) =
d

dx

[
1 − Gβ(x

−1/β(t − ax))
]

=

(
t − ax

βx
+ a

)
x−1/βgβ(x

−1/β(t − ax)) for 0 < x < t/a. (3.21)

Since D(x) > ax , the density of the inverse process E(t) is zero on x 6∈ (0, t/a). Note that
(3.21) reduces to (3.20) when a = 0.

Example 3.4 illustrates that the density formula for the hitting time of a subordinator with
drift is considerably different. A complete analysis of this case is beyond the scope of this paper.
However, we can determine the double Laplace transform of the distribution of E(t), using
arguments from the proof of Theorem 3.1. Suppose, then, that {D(t)} is a subordinator with
E(e−s D(t)) = e−uψD(s) where the Laplace symbol

ψD(s) = as +

∫
∞

0

(
1 − e−sv)φD(dv) (3.22)

for some a ≥ 0. We emphasize that assumption (3.7) is not needed here, as the next result holds
for any subordinator.
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Corollary 3.5. For all t > 0, the distribution R(z, t) = P{E(t) ≤ z} of the hitting time (2.2)
satisfies

R̃(ξ, s) =

∫
∞

0
e−st

(∫
∞

0
e−ξ zdz R(z, t)

)
dt =

1
s

ψD(s)

ξ + ψD(s)
, (3.23)

where the Laplace symbol ψD(s) of the subordinator D(t) is given by (3.22).

Proof. The argument is exactly the same as (3.14) in Theorem 3.1. �

Recall from above that the limiting process of a triangular array CTRW sequence is of the form
M(t) = A(E(t)), where E(t) is the hitting time process of the subordinator {D(u)}u≥0. Note that
in the space–time process {(A(u), D(u))}u≥0 the processes {A(u)}u≥0 and {D(u)}u≥0 are usually
dependent, so {A(u)}u≥0 and E(t) are dependent and hence the distribution of M(t) = A(E(t))
can have quite a complicated structure; see [9]. However, the following theorem provides a
formula in the general case under weak technical conditions.

Theorem 3.6. Assume that conditions (3.7) and (3.8) hold. Then for any fixed t > 0 we have

PM(t)(dx) =

∫
∞

0

∫ t

0
φD(t − u,∞)P(A(s),D(s))(dx, du)ds. (3.24)

Moreover we have for any ξ > 0 and k ∈ Rd that∫
∞

0
e−ξ t P̂M(t)(k)dt =

1
ξ

·
ψD(ξ)

ψ(k, ξ)
, (3.25)

where ψ(k, ξ) is given by (3.2).

Proof. First note that (3.24) means for any Borel set S ⊂ Rd

P{M(t) ∈ S} =

∫
∞

0

∫ t

0
φD(t − u,∞)P(A(s),D(s))(S, du)ds, (3.26)

or equivalently for any bounded continuous function f on Rd∫
Rd

f (x)PM(t)(dx) =

∫
∞

0

∫
Rd

∫ t

0
f (x)φD(t − u,∞)P(A(s),D(s))(dx, du)ds.

Before we go into the details of the proof let us describe its main idea. We first show that the FLT
of the right-hand side of (3.24) is equal to the right-hand side of (3.25). Then we show that (3.25)
holds true. This implies by uniqueness of the FLT that (3.26) holds true for Lebesgue almost all
t > 0. Using (right-)continuity together with results from [29] we then show as in the proof of
Theorem 3.1 that (3.24) holds for all t > 0.

Define a family (ρt (dx) : t > 0) of measures on Rd by the right-hand side of (3.24), that is

ρt (dx) =

∫
∞

0

∫ t

0
φD(t − u,∞)P(A(s),D(s))(dx, du)ds. (3.27)

First note that by (3.12) we have for u, ξ > 0 that∫
∞

u
e−ξ tφD(t − u,∞)dt =

ψD(ξ)

ξ
e−ξu .
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Moreover, observe that by Theorem 3.1 we have

ρt (Rd) =

∫
∞

0

∫ t

0
φD(t − u,∞)P(A(s),D(s))(Rd , du)ds

=

∫
∞

0

∫ t

0
φD(t − u,∞)PD(s)(du)ds =

∫
∞

0
f (s, t)ds = 1

showing that ρt (dx) is a probability measure for any t > 0. Hence, by Fubini’s theorem together
with (3.1), we get for ξ > 0 and k ∈ Rd that∫

∞

0
e−ξ t ρ̂t (k)dt =

∫
∞

t=0
e−ξ t

∫
∞

s=0

∫ t

0

∫
Rd

e−i〈k,x〉φD(t − u,∞)P(A(s),D(s))(dx, du)dsdt

=

∫
∞

t=0
e−ξ t

∫
∞

s=0

∫
∞

0

∫
Rd

1[0,t](u)φD(t − u,∞)e−i〈k,x〉 P(A(s),D(s))(dx, du)dsdt

=

∫
∞

s=0

∫
∞

0

∫
Rd

(∫
∞

t=0
e−ξ t 1[0,t](u)φD(t − u,∞)dt

)
e−i〈k,x〉 P(A(s),D(s))(dx, du)ds

=

∫
∞

s=0

∫
∞

0

∫
Rd

(∫
∞

t=u
e−ξ tφD(t − u,∞)dt

)
e−i〈k,x〉 P(A(s),D(s))(dx, du)ds

=
ψD(ξ)

ξ

∫
∞

s=0

(∫
∞

0

∫
Rd

e−ξue−i〈k,x〉 P(A(s),D(s))(dx, du)

)
ds

=
ψD(ξ)

ξ

∫
∞

0
e−sψ(k,ξ)ds

=
1
ξ

ψD(ξ)

ψ(k, ξ)
.

Note that the last equality in the chain of equations above holds true since for any ξ > 0

Reψ(k, ξ) ≥

∫
Rd×R+

(
1 + cos(〈k, x〉)e−ξ t)φ(dx, dt)

≥

∫
Rd×R+

(
1 − e−ξ t)φ(dx, dt) =

∫
∞

0

(
1 − e−ξ t)φD(dt) = ψD(ξ) > 0

using φD 6= 0. This shows that the FLT of the right-hand side of (3.24) equals the right-hand side
of (3.25).

We now show that (3.25) holds using M(t) = A(E(t)). For Borel sets S ⊂ Rd and t, s > 0
let

Hs(t) = P{A(s) ∈ S, D(s) < t} (3.28)

and note that by the inversion formula for the Fourier transform (see, e.g., Proposition 2.5(xi) of
Sato [51]) and the Lévy–Khinchin formula the mapping

(s, t) 7→ P{A(s) ∈ S, D(s) < t}

is measurable. Observe further that by Theorem 3.1

P{M(t) ∈ S} =

∫
∞

0
P{A(s) ∈ S|E(t) = s} f (s, t)ds, (3.29)

where f (s, t) is the density of E(t).
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The proof of (3.25) is based on the following lemma.

Lemma 3.7. For h, t, s > 0 let

qh(s, t) = P{A(s) ∈ S|s < E(t) ≤ s + h}.

Then we have

(a) For all h > 0 the mapping (s, t) 7→ qh(s, t) is measurable.
(b)

lim
h↓0

qh(s, t) = P{A(s) ∈ S|E(t) = s}

for λ2-almost every (s, t). Hence there exists a version of P{A(s) ∈ S|E(t) = s} such that

(s, t) 7→ P{A(s) ∈ S|E(t) = s}

is measurable.
(c) For any ξ > 0 we have∫

∞

0
e−ξ t P{A(s) ∈ S|E(t) = s} f (s, t)dt = ψD(ξ)H̃s(ξ) (3.30)

for λ1-almost every s ≥ 0, where H̃s(ξ) =
∫

∞

0 e−ξ t Hs(t)dt denotes the Laplace transform
of Hs(t) in t .

Proof. (a) Observe that

qh(s, t) =
P{A(s) ∈ S, s < E(t) ≤ s + h}

P{s < E(t) ≤ s + h}
.

Using (3.10) we have

P{s < E(t) ≤ s + h} = P{D(s + h) ≥ t} − P{D(s) ≥ t}

and hence (s, t) 7→ P{s < E(t) ≤ s + h} is measurable. Moreover, we can write

P{A(s) ∈ S, s < E(t) ≤ s + h}

= P{A(s) ∈ S, E(t) > s} − P{A(s) ∈ S, E(t) > s + h}

= P{A(s) ∈ S, D(s) < t} − P{A(s) ∈ S, D(s + h) < t} (3.31)

which implies that (s, t) 7→ qh(s, t) is measurable for any h > 0.
(b) Let F = {(s, t) : limh↓0 qh(s, t) exists}. Then F is measurable and hence

g(s, t) =

{
lim
h↓0

qh(s, t) (s, t) ∈ F

0 (s, t) ∈ Fc

is measurable. Now it follows from a variant of Lebesgue’s differentiation theorem (see e.g. [15],
exercise 33.16 on p. 444) that for any fixed t > 0 we have

lim
h↓0

qh(s, t) = P{A(s) ∈ S|E(t) = s} for λ1-almost every s ≥ 0.

Hence, since F is measurable we have for all t > 0 that λ1(Fc
t ) = 0 where Fc

t = {s ≥ 0 :

(s, t) ∈ Fc
}. Then by Tonelli’s theorem we know that λ2(Fc) = 0 and hence

g(s, t) = P{A(s) ∈ S|E(t) = s}
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for λ2-almost every (s, t). Since g is measurable, this implies that there exists a version of
P{A(s) ∈ S|E(t) = s} which is jointly measurable in (s, t).

For the proof of (c) first note that, since the Lévy process {D(u)}u≥0 has stationary
independent increments, a simple conditioning argument yields

P{A(s) ∈ S, D(s + h) < t} =

∫ t

0
Hs(t − τ)PD(h)(dτ). (3.32)

Note further that by Lebesgue’s differentiation theorem we see, by arguing as in part (a) of the
proof, that for each t > 0 we have

1
h

P{s < E(t) ≤ s + h} =
1
h

∫ s+h

s
f (x, t)dx → f (s, t) as h ↓ 0

for λ1-almost every s > 0. Then we can argue as in the proof of part (b) that the same
convergence holds for λ2-almost every (s, t). Hence, by part (b) we obtain

1
h

P{A(s) ∈ S, s < E(t) ≤ s + h} = qh(s, t)
1
h

P{s < E(t) ≤ s + h}

→ P{A(s) ∈ S|E(t) = s} f (s, t) (3.33)

as h ↓ 0 for λ2-almost every (s, t). Since in view of (3.31) and (3.32) we have

P{A(s) ∈ S, s < E(t) ≤ s + h} = Hs(t)−

∫ t

0
Hs(t − τ)PD(h)(dτ)

we obtain by (3.33) that

fh(s, t) = e−ξ t 1
h

(
Hs(t)−

∫ t

0
Hs(t − τ)PD(h)(dτ)

)
→ e−ξ t P{A(s) ∈ S|E(t) = s} f (s, t)

as h ↓ 0 for λ2-almost every (s, t). Therefore∫
∞

0
e−ξ t P{A(s) ∈ S|E(t) = s} f (s, t)dt =

∫
∞

0
lim
h↓0

fh(s, t)dt

for λ1-almost every s ≥ 0. Observe that by Tonelli’s theorem we have∫
∞

0
fh(s, t)dt = −

1
h

(∫
∞

0
e−ξ t

∫
∞

0
1[0,t)(τ )Hs(t − τ)PD(h)(dτ)dt − H̃s(ξ)

)
= −

1
h

(∫
∞

0

(∫
∞

0
e−ξ t 1[0,t)(τ )Hs(t − τ)dt

)
PD(h)(dτ)− H̃s(ξ)

)
= −

1
h

(∫
∞

0

(∫
∞

τ

e−ξ t Hs(t − τ)dt

)
PD(h)(dτ)− H̃s(ξ)

)
= −H̃s(ξ)

1
h

(∫
∞

0
e−ξτ PD(h)(dτ)− 1

)
= −H̃s(ξ)

1
h

(
e−hψD(ξ) − 1

)
→ ψD(ξ)H̃s(ξ)

as h ↓ 0.
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Now in view of dominated convergence, in order to prove (3.30) it suffices to show that for
any fixed s > 0 there exists an integrable function g : [0,∞) → R+ such that | fh(s, t)| ≤ g(t)
for 0 < h ≤ 1. Observe that, using Tonelli’s theorem again∫ t

0
Hs(t − τ)PD(h)(dτ) =

∫ t

0

∫
∞

0

∫
Rd

1S×[0,t−τ)(x, v)P(A(s),D(s))(dx, dv)PD(h)(dτ)

=

∫
∞

0

∫
S

(∫ t

0
1[0,t−τ)(v)PD(h)(dτ)

)
P(A(s),D(s))(dx, dv)

=

∫
∞

0

∫
S

P{D(h) < t − v} P(A(s),D(s))(dx, dv)

=

∫ t

0

∫
S

P{D(h) < t − v} P(A(s),D(s))(dx, dv).

Recalling (3.28) we have

| fh(s, t)| = e−ξ t
∫ t

0

∫
S

1
h

P{D(h) ≥ t − v} P(A(s),D(s))(dx, dv). (3.34)

Since the function x 7→ 1 − e−x is strictly increasing, we get from Markov’s inequality, for
any x > 0 that

P{D(h) ≥ x} = P{1 − e−x−1 D(h)
≥ 1 − e−1

}

≤
1

1 − e−1 E
[
1 − e−x−1 D(h)

]
= C

(
1 − e−hψD(x−1)

)
.

Using the inequality 1 − e−y
≤ y for all y > 0 we therefore get for some constant C > 0

1
h

P{D(h) ≥ x} ≤ C
1 − e−hψD(x−1)

h
≤ CψD(x

−1)

for all h > 0.
By (3.34) we therefore get

| fh(s, t)| ≤ Ce−ξ t
∫ t

0

∫
S
ψD

(
1

t − v

)
P(A(s),D(s))(dx, dv) = g(t)

for all t, h > 0. It remains to show that∫
∞

0
g(t)dt < ∞. (3.35)

Using Tonelli’s theorem again we conclude that∫
∞

0
g(t)dt = C

∫
∞

0
e−ξ t

∫
∞

0

∫
S

1[0,t)(v)ψD

(
1

t − v

)
P(A(s),D(s))(dx, dv)dt

= C
∫

∞

0

∫
S

(∫
∞

0
e−ξ t 1[0,t)(v)ψD

(
1

t − v

)
dt

)
P(A(s),D(s))(dx, dv)

= C

(∫
∞

0
e−ξuψD(u

−1)du

) (∫
∞

0

∫
S

e−ξv P(A(s),D(s))(dx, dv)
)
,

where∫
∞

0

∫
S

e−ξv P(A(s),D(s))(dx, dv) ≤

∫
∞

0
e−ξv PD(s)(dv) = e−sψD(ξ) < ∞.
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Moreover, using the fact that z 7→ ψD(z) is monotone, we have for some constant C > 0 that∫
∞

0
e−ξuψD(u

−1)du =

∫ 1

0
e−ξuψD(u

−1)du +

∫
∞

1
e−ξuψD(u

−1)du

≤

∫ 1

0
ψD(u

−1)du + C
∫

∞

1
e−ξudu,

so it remains to show that∫ 1

0
ψD(u

−1)du < ∞. (3.36)

In view of Proposition 1 on p. 74 of [14] we know that

ψD(z)

z
≤ C

∫ 1/z

0
φD(r,∞)dr for all z > 0

and hence

ψD(u
−1) ≤ Cu−1

∫ u

0
φD(r,∞)dr.

Therefore∫ 1

0
ψD(u

−1)du ≤ C
∫ 1

0
u−1

∫ u

0
φD(r,∞)dtdu

= C
∫ 1

0

∫ 1

0
u−11[0,u](r)du φD(r,∞)dr

= −C
∫ 1

0
ln(r)φD(r,∞)dr

= −C
∫ 1

0
ln(r)

∫
∞

0
1(r,∞)(y)φD(dy)dr

= −C
∫ 1

0
ln(r)

∫ 1

0
1(r,∞)(y)φD(dy)dr

− C
∫ 1

0
ln(r)

∫
∞

1
1(r,∞)(y)φD(dy)dr

= A + B.

Now, by assumption (3.8) we have

A = −C
∫ 1

0

∫ 1

0
ln(r)1(r,∞)(y)dr φD(dy)

= −C
∫ 1

0
y ln(y)φD(dy)+

∫ 1

0
y φD(dy) < ∞.

Finally

B = −C
∫

∞

1

∫ 1

0
1(r,∞)(y) ln(r)dr φD(dy)

= −C
∫

∞

1
φD(dy)

∫ 1

0
ln(r)(dr) = CφD(1,∞) < ∞
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which concludes the proof of Lemma 3.7. �

Proof of Theorem 3.6 (Continued). For ξ > 0 define a finite measure µ on Rd by

µ(S) =

∫
∞

0
e−ξ t P{M(t) ∈ S}dt

for Borel sets S ⊂ Rd . Then for bounded continuous functions f : Rd
→ R we have by

definition∫
Rd

f (x)µ(dx) =

∫
∞

0
e−ξ t

∫
Rd

f (x)PM(t)(dx)dt. (3.37)

In view of (3.29), (3.30) and Tonelli’s theorem we compute

µ(S) =

∫
∞

0
e−ξ t

∫
∞

0
P{A(s) ∈ S|E(t) = s} f (s, t)dsdt = ψD(ξ)

∫
∞

0
H̃s(ξ)ds.

Now observe that

H̃s(ξ) =

∫
∞

0
e−ξ t P{A(s) ∈ S, D(s) < t}dt

=

∫
∞

0
e−ξ t

∫
S×R+

1[0,t)(u)P(A(s),D(s))(dx, du)dt

=

∫
S×R+

(∫
∞

u
e−ξ t dt

)
P(A(s),D(s))(dx, du)

=
1
ξ

∫
S×R+

e−ξu P(A(s),D(s))(dx, du).

Therefore

µ(S) =
ψD(ξ)

ξ

∫
∞

0

∫
S×R+

e−ξu P(A(s),D(s))(dx, du)ds

and hence we also have

µ(dx) =
ψD(ξ)

ξ

∫
∞

0

∫
∞

0
e−ξu P(A(s),D(s))(dx, du)ds.

Now using (3.1) we get in view of (3.37) that∫
∞

0
e−ξ t P̂M(t)(k)dt = µ̂(k)

=
ψD(ξ)

ξ

∫
∞

0

∫
∞

0

∫
Rd

e−ξue−i〈k,x〉 P(A(s),D(s))(dx, du)ds

=
ψD(ξ)

ξ

∫
∞

0
e−sψ(k,s)ds

=
1
ξ

·
ψD(ξ)

ψ(k, ξ)
.

This shows that (3.25) holds.
By uniqueness of the Laplace transform we therefore conclude that for all k ∈ Rd and for

Lebesgue almost every t > 0

P̂M(t)(k) = ρ̂t (k). (3.38)
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If we can prove that both t 7→ P̂M(t)(k) and t 7→ ρ̂t (k) are right-continuous functions for any
k ∈ Rd it follows that (3.38) holds true for all t > 0 and all k ∈ Rd . The uniqueness theorem of
the Fourier transform then implies that (3.24) holds for any t > 0 and the proof is complete.

In view of assumption (3.7) and Theorem 21.3 in [51], we know that the sample paths
of {D(u)}u≥0 are almost surely strictly increasing, and hence the sample paths of E(t) are
continuous and nondecreasing almost surely. Moreover we can choose a version of {A(u)}u≥0
with right-continuous sample path almost surely. Hence t 7→ A(E(t)) is right-continuous almost
surely and also in distribution. The continuity theorem of the Fourier transform implies that
t 7→ P̂M(t)(k) is right-continuous for any k ∈ Rd .

The proof that t 7→ ρ̂t (k) is right-continuous is similar to the second half of the proof of
Theorem 3.1. In view of (3.27) we obtain

ρ̂t (k) =

∫
∞

0

∫ t

0

∫
Rd

e−i〈k,x〉φD(t − u,∞)P(A(s),D(s))(dx, du)ds

and therefore for any t > 0 and h > 0 we can write

ρ̂t (k)− ρ̂t+h(k) =

∫
∞

0

∫ t

0

∫
Rd

e−i〈k,x〉φD(t − u,∞)P(A(s),D(s))(dx, du)ds

−

∫
∞

0

∫ t+h

0

∫
Rd

e−i〈k,x〉φD(t + h − u,∞)P(A(s),D(s))(dx, du)ds

=

∫
∞

0

∫ t

0

∫
Rd

e−i〈k,x〉 [φD(t − u,∞)− φD(t + h − u,∞)] P(A(s),D(s))(dx, du)ds

−

∫
∞

0

∫ t+h

t

∫
Rd

e−i〈k,x〉φD(t + h − u,∞)P(A(s),D(s))(dx, du)ds

= Ih − Jh .

As in the proof of Theorem 3.1 we have for 0 < u < t < t + h that 0 ≤ φD(t − u,∞)−φD(t +

h − u,∞) ≤ φD(t − u,∞). Moreover, using the right-continuity of v 7→ φD(v,∞) we have

fh(x, u) = e−i〈x,k〉 [φD(t − u,∞)− φD(t + h − u,∞)] → 0 as h ↓ 0

for all x ∈ Rd and all 0 < u < t . Since | fh(x, u)| ≤ φD(t −u,∞) and since Theorem 3.1 shows
that f (x, t) is a density in x , dominated convergence implies Ih → 0 as h ↓ 0. Finally

|Jh | ≤

∫
∞

0

∫ t+h

t

∫
Rd
φD(t + h − u,∞)P(A(s),D(s))(dx, du)ds

=

∫
∞

0

∫ t+h

t
φD(t + h − u,∞)PD(s)(du)ds → 0

as h ↓ 0 as in the proof of Theorem 3.1. This concludes the proof of Theorem 3.6. �

Corollary 3.8. Under the assumptions of Theorem 3.6, assume additionally that for any s > 0
the distribution of (A(s), D(s)) has a density p(s, x, u) with respect to Lebesgue measure. Then
M(t) = A(E(t)) has Lebesgue density

m(x, t) =

∫
∞

0

∫ t

0
φD(t − u,∞)p(s, x, u)duds (3.39)
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with Fourier–Laplace transform

m̄(k, ξ) =
1
ξ

ψD(ξ)

ψ(k, ξ)
. (3.40)

4. Governing equations

Triangular array limits of continuous time random walks (CTRWs) have the distribution
specified in Theorem 3.6. In this section, we will show how these CTRW limit distributions
are related to certain pseudo-differential equations in space and time. The CTRW limit process
is M(t) = A(E(t)) where A(t) is a Lévy process and E(t) is the inverse or hitting time process
for a subordinator D(t). In the case where D(t) is a stable process with index β, the governing
equation involves a fractional derivative ∂βt ; see for example [39,49,57,60]. If A(t) is a stable
process with index α, then the governing equation employs fractional space derivatives of order
α; see for example [3,11,20,35,36]. Space–time fractional differential equations are important in
physics, finance, and hydrology, where they are used to model anomalous diffusion; see [24,30,
42,54,56,58] for an introduction to this diverse literature. The fractional space derivative models
superdiffusion, where a cloud of particles spreads at a faster rate than the classical diffusion
equation predicts. In terms of stochastic processes, this is the result of replacing a Brownian
motion by a stable Lévy motion whose self-similarity (Hurst) index is larger: 1/α > 1/2. In
terms of the random walk model that leads to this limit, superdiffusion arises from particle
jumps with regularly varying probability tails with index −α, whose variance does not exist.
Fractional time derivatives model sticking or trapping, a kind of subdiffusion. When D(t) is a
stable subordinator with index β, the inverse process E(t) grows at a sub-linear rate with Hurst
index 0 < β < 1, which retards the growth of the plume modeled by the CTRW limit M(t);
see [39]. The random waiting times in the underlying CTRW have infinite mean, since their
probability tails vary regularly with index −β.

The Fourier–Laplace symbol of any Lévy process {(A(u), D(u))}u≥0 on Rd
× R+ defines

a pseudo-differential operator that is also the generator of the corresponding convolution
semigroup. Given any ω > 0 let L1

ω(Rd
× R+) denote the collection of real-valued measurable

functions on Rd
× R+ for which the integral and hence the norm

‖ f ‖ω =

∫
∞

0

∫
Rd

e−ωt
| f (x, t)|dxdt

exists. With this norm, L1
ω(Rd

× R+) is a Banach space, and clearly L1(Rd
× R+) ⊂ L1

ω

(Rd
× R+). Also, if f ∈ L1(Rd

× R+), then ‖ f ‖ω ≤ ‖ f ‖1. A family of bounded linear
operators {T (t) : t ≥ 0} on a Banach space X such that T (0) is the identity operator and
T (u + v) = T (u)T (v) for all u, v ≥ 0 is called a semigroup of bounded linear operators on X .
If ‖T (u) f ‖ ≤ M‖ f ‖ for all f ∈ X and all u ≥ 0 then the semigroup is uniformly bounded;
if in this case M ≤ 1 then we have a contraction semigroup. If T (un) f → T (u) f in X for all
f ∈ X whenever un → u then the semigroup is strongly continuous. It is easy to check that
{T (u) : u ≥ 0} is strongly continuous if T (u) f → f in X for all f ∈ X as u ↓ 0. If we write
f ≥ g if f (x, t) ≥ g(x, t) almost everywhere on Rd

× R+ then L1
ω(Rd

× R+) is an ordered
Banach space in the sense of [2], and we say that a semigroup on this space is positive if f ≥ 0
implies that T (u) f ≥ 0 for all u ≥ 0. A strongly continuous positive contraction semigroup
is also called a Feller semigroup. For any strongly continuous semigroup {T (u) : u > 0} on a
Banach space X we define the generator
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L f = lim
u→0+

T (u) f − f

u
in X (4.1)

meaning that ‖u−1(T (u) f − f ) − L f ‖ → 0 in the Banach space norm. The domain D(L) of
this linear operator is the set of all f ∈ X for which the limit in (4.1) exists. Then D(L) is dense
in X , and L is closed, meaning that if fn → f and L fn → g in X then f ∈ D(L) and L f = g
(see, for example, [45, Corollary I.2.5]). For any Lévy process {(A(u), D(u))}u≥0 on Rd

× R+

we define

T (u) f (x, t) =

∫ t

0

∫
Rd

f (x − y, t − r)P(A(u),D(u))(dy, dr) (4.2)

for all f ∈ L1
ω(Rd

× R+) and all u ≥ 0. Proposition 3.1 in [5] (see also Jacob [25]) shows that
{T (u) : u ≥ 0} is a Feller semigroup on L1

ω(Rd
× R+), and Theorem 3.2 in [5] shows that the

generator L = −ψ(−iDx , ∂t ) of this semigroup is a pseudo-differential operator such that for
any u ∈ D(L) the element v = ψ(−iDx , ∂t )u of the space L1

ω(Rd
× R+) has Fourier–Laplace

transform (FLT)

v̄(k, s) =

∫
∞

0

∫
Rd

e−st−i〈k,x〉ψ(−iDx , ∂t )u(x, t)dxdt = ψ(k, s)ū(k, s), (4.3)

where ψ(k, s) is given by (3.2). Theorem 3.2 in [5] also shows that D(L) contains any
f ∈ L1

ω(Rd
× R+) whose weak first- and second-order spatial derivatives as well as weak

first-order time derivatives are in L1
ω(Rd

× R+), and that in this case we have

ψ(−iDx , ∂t ) f (x, t) = 〈a,∇ f (x, t)〉 − 〈∇, A∇ f (x, t)〉

−

∫
Rd×R+\{(0,0)}

(
H(t − u) f (x − y, t − u)− f (x, t)+

〈∇ f (x, t), y〉

1 + ‖y‖2

)
φ(dy, du)

(4.4)

where ∇ f = (∂x1 f, . . . , ∂xd f )′ and H(t) = I (t ≥ 0) is the Heaviside step function.
Suppose that, for any u > 0, the distribution of (A(u), D(u)) has a density p(u, x, t) with

respect to the Lebesgue measure. Then Corollary 3.8 shows that the CTRW scaling limit M(t)
has a density m(x, t) given by (3.39). The FLT m̄(k, s) of the density m(x, t) is given by (3.40),
and it follows that ψ(k, s)m̄(k, s) = s−1ψD(s). We can invert this FLT using (3.12) and (4.3) to
obtain

ψ(−iDx , ∂t )m(x, t) = δ(x)φD(t,∞), (4.5)

where δ(x) is the Dirac delta function. This extends the coupled governing equation (4.7) in [9]
to the case of a more general subordinator. Some applications of the coupled space–time equation
(4.5) to problems in statistical physics are given in [9]. In these applications, the coupled equation
governs the scaling limit of a continuous time random walk where the particle jump length is
dependent on the waiting time. Coupled space–time jumps were originally considered in [30,57]
to enforce physically meaningful velocity constraints. For example, one model assumes that the
jump length is exactly equal to the waiting time, to enforce a constant velocity. In the case where
the waiting time scaling limit is a stable subordinator, this leads to a coupled governing equation
(∂/∂t + ∂/∂x)βm(x, t) = δ(x)t−β/Γ (1 − β).

Next we consider the uncoupled case, where the limiting jump process A(t) and the waiting
time process D(t) are independent. It turns out that the subordination formula M(t) = A(E(t))
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along with the corresponding density formula leads to a useful decomposition result for certain
abstract space–time pseudo-differential equations. The space–time limit density m(x, t), which
is the fundamental solution to a generalized Cauchy problem, decomposes into two parts. The
first part is the density of the space process {A(u)} and it represents the fundamental solution to
an abstract Cauchy problem. The second part is the density f (u, t) of the time process {E(t)}
and it represents the fundamental solution to an inhomogeneous Cauchy problem (4.9). This
space–time decomposition illustrates the advantages of the stochastic approach to the study of
abstract evolution equations. We say that a function m is a mild solution to a space–time pseudo-
differential equation, if its (Fourier–Laplace or Laplace–Laplace) transform m̄ solves the equiv-
alent algebraic equation in transform space. This is somewhat different from the standard usage
for integer-order time derivative equations (e.g., see Pazy [45, Def. 2.3 p. 106]) where a mild
solution is defined as a solution to the corresponding integral equation. For abstract evolution
equations that involve pseudo-differential operators in time, there is no standard concept of a
mild solution, and the usage here is consistent with [4,40]. Some deeper questions regarding
strong solutions of these equations are also interesting, but beyond the scope of this paper.

Theorem 4.1. Assume that conditions (3.6)–(3.8) hold, and that the space limit variable A(u)
in (2.1) has a density p(x, u) for any u > 0. Suppose also that the limiting jump process A(t)
and the waiting time process D(t) are independent (uncoupled). Then the uncoupled triangular
array CTRW limit process M(t) = A(E(t)) from Theorem 3.6 has density m(x, t) given by

m(x, t) =

∫
∞

0
p(x, u) f (u, t)du, (4.6)

where f (u, t) is the density (3.11) of the time variable E(t) defined by (2.2). This density m(x, t)
is the fundamental solution to the generalized Cauchy problem

ψD(∂t )m(x, t) = −ψA(−iDx )m(x, t)+ δ(x)φD(t,∞), (4.7)

in the mild sense. Furthermore, its components p(x, u) and f (u, t) are fundamental solutions
in the mild sense of two constituent equations. The space component p(x, u) is the fundamental
solution to the Cauchy problem

∂t p(x, t) = L A p(x, t); m(x, 0) = δ(x), (4.8)

where L A = −ψA(−iDx ) is the generator of the semigroup associated with A(t). The time
component f (u, t) is the fundamental solution to the inhomogeneous Cauchy problem

∂x f (x, t) = −ψD(∂t ) f (x, t)+ δ(x)φD(t,∞) (4.9)

corresponding to the inverse or hitting time process {E(t)} for the Lévy process {D(u)} in (2.1).

Proof. In this uncoupled case where A(t), D(t) are independent, the symbol ψ(k, s) = ψA(k)+
ψD(s) and the pseudo-differential operator ψ(−iDx , ∂t ) = ψA(−iDx ) + ψD(∂t ) is uncoupled
into space and time components. Then the density m(x, t) has FLT

m̄(k, s) =
1
s

ψD(s)

ψA(k)+ ψD(s)
, (4.10)

and it follows that ψD(s)m̄(k, s) = −ψA(k)m̄(k, s) + s−1ψD(s). Invert this FLT using (3.12)
and (4.3) to obtain (4.7).

Suppose that the space limit variable A(u) in (2.1) has a density p(x, u) for any u > 0. Then
it follows immediately from Theorems 3.1 and 3.6 that the uncoupled CTRW scaling limit M(t)
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has a density (4.6) where f (u, t) is the density of E(t) given by Theorem 3.1. It is well known
that p(x, t) solves the Cauchy problem (4.8) where L A = −ψA(−iDx ) is the generator of the
semigroup associated with A(t); see for example [1,45]. In the proof of Theorem 3.1 we showed
that the bivariate Laplace transform

f̃ (ξ, s) =

∫
∞

0

∫
∞

0
e−ξ z−st f (z, t)dtdz =

1
s

ψD(s)

ξ + ψD(s)
.

This rearranges to

ξ f̃ (ξ, s) = −ψD(s) f̃ (ξ, s)+
ψD(s)

s
,

and then inverting the double Laplace transform using (3.12) shows that f (x, t) solves an
inhomogeneous Cauchy problem (4.9). This completes the proof. �

Remark 4.2. The space–time pseudo-differential equation (4.7) extends the uncoupled
governing equation (5.4) in [39] to the case of a more general subordinator.

Remark 4.3. The density formula (4.6) can also be written in the form (3.39) by substituting
(3.11) into (4.6).

Example 4.4. Specialize for the moment to the case where A(t) is a Gaussian Lévy process
with Fourier symbol ψA(k) = ‖k‖

2, and suppose further that D(t) is a stable subordinator,
independent of A(t), with Laplace symbol ψD(s) = sβ . Then we have ψA(−iDx ) = −1 where
1 =

∑
j ∂

2/∂x2
j is the Laplacian operator, and ψD(∂t ) = ∂

β
t , a Riemann–Liouville fractional

derivative in time. More information on fractional derivatives can be found in [44,46,50]. Then
m(x, t) solves

∂
β
t m(x, t) = 1m(x, t)+ δ(x)

t−β

Γ (1 − β)
,

a form considered in [60] as a model for Hamiltonian chaos. Here we have used the fact, which
is easy to check, that t−β/Γ (1 − β) has Laplace transform sβ−1 for 0 < β < 1. Alternatively,
one can simply compute the tail of the corresponding Lévy measure ψD(t,∞); compare
[9, Theorem 2.2].

Example 4.5. In the situation of Example 2.7, where the CTRW waiting times have slowly
varying probability tails, the Laplace symbol ψD(s) =

∫ 1
0 sβΓ (1 − β)p(β)dβ; see [40]. Then it

follows from (3.25) that ψD(s)m̄ −s−1ψD(s) = −ψA(k)m̄, and we get by inverting the FLT that
the density m(x, t) of the uncoupled CTRW limit M(t) solves a distributed-order time fractional
partial differential equation∫ 1

0
Dβt m(t, x)Γ (1 − β)p(β)dβ = −ψA(−iDx )m(t, x). (4.11)

Remark 4.6. For initial value problems, it is convenient to introduce the Caputo fractional
derivative in time, defined so that Dβt g(t) has Laplace transform sβ g̃(s) − sβ−1g(0); see for
example [18,46]. Using this definition, and inverting the FLT in Example 4.4 using the initial
condition m(x, 0) = δ(x) (or equivalently, m̂(k, 0) = 1) yields

Dβt m(x, t) = 1m(x, t). (4.12)
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When A(t) is an operator Lévy motion, the situation of Example 2.5, the density m(x, t) of the
CTRW limit {M(t)} satisfies a similar form Dβt m(x, t) = L Am(x, t) where L A is the generator
of the semigroup associated with the Lévy process {A(u)}u≥0; see [39, Theorem 5.1]. Note that
in this case a smooth density p(x, t) always exists for t > 0; see [27, Theorem 4.10.2].

Remark 4.7. In view of the fact that the density p(x, t) of A(t) solves the Cauchy problem
(4.8), we call A(t) a stochastic solution to this Cauchy problem. Suppose that D(t) is a stable
subordinator, independent of A(t), with Laplace symbol ψD(s) = sβ . Then the CTRW limit
density m(x, t) solves the fractional Cauchy problem

∂
β
t m(x, t) = L Am(x, t)+ δ(x)

t−β

Γ (1 − β)
, (4.13)

a special case of the uncoupled governing equation (4.7). We call (4.7) a generalized Cauchy
problem. The triangular array CTRW limit {M(t)} is the stochastic solution to the generalized
Cauchy problem (4.7), and its density m(x, t) is the fundamental (point source) solution. This
is the case relevant to Example 2.8 when price jumps and waiting times are independent
(uncoupled), or more generally, when they are asymptotically independent in the sense that the
two limit processes {A(u)} and {D(u)} in (2.1) are independent, as in the finance application
in [41].

Remark 4.8. In order to avoid distributions, we may define a generalized Caputo derivative.
For suitable functions g : R+ → R we specify the generalized Caputo derivative operator
CD(∂t)g(t) as the inverse Laplace transform of ψD(s)g̃(s) − s−1ψD(s)g(0). Of course this
reduces to the usual Caputo derivative when {D(u)} is a stable subordinator, and to the
distributed-order time fractional derivative operator on the left-hand side of (4.11) in the situation
of Example 2.7. With this notation, we see that the uncoupled CTRW limit density m(x, t) solves
the abstract equation

CD(∂t)m(x, t) = −ψA(−iDx )m(x, t). (4.14)

The Caputo fractional derivative facilitates and clarifies the incorporation of initial values in
fractional Cauchy problems; see for example [6]. The extension described here should be
similarly useful for generalized Cauchy problems.

Remark 4.9. In the case where the subordinator D(t) has positive drift, the study of CTRW
scaling limits seems to require different methods. To facilitate comparison with the case of
no drift, suppose D(t) = at + D0(t) is a subordinator with positive drift, as in Example 3.4.
The proof of Theorem 3.6 does not extend, as (3.36) certainly does not hold when ψD(u) =

au + ψD0(u). In the special case of Example 3.4, where D0(u) is a stable subordinator with
index β, we know that the hitting time E(t) has a density f (x, t) given by (3.21). Corollary 3.5
shows that

f̃ (ξ, s) =

∫
∞

0

∫
∞

0
e−st e−zξ f (z, t)dzdt =

1
s

ψD(s)

ξ + ψD(s)
,

where ψD(s) = as + sβ . Rewrite in the form ξ f̃ (ξ, s) = −sβ f̃ (ξ, s)− as f̃ (ξ, s)+ a + sβ−1.
Invert the double Laplace transform using (3.12) and (4.3) to get

∂x f (x, t) = −∂
β
t f (x, t)− a∂t f (x, t)+ δ(x)

(
aδ(t)+

t−β

Γ (1 − β)

)
. (4.15)
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If A(t) has density p(x, t) for all u > 0, then this family of densities solves the Cauchy problem
(4.8) where L A = −ψA(−iDx ) is the generator of the associated semigroup. Then the CTRW
scaling limit density m(x, t) given by (4.6) solves

∂
β
t m(x, t)+ ∂t m(x, t) = −ψA(−iDx )m(x, t)+ δ(x)

(
aδ(t)+

t−β

Γ (1 − β)

)
. (4.16)

Eq. (4.16) can also be written in the form (4.14), where in this case CD(∂t) is the sum of Caputo
derivatives of order 1 and order β.
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