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Hierarchical mixture models arise naturally for clustering a heteroge-
neous population of objects where observations made on each object follow
a standard mixture density. Hierarchical mixtures utilize complementary
aspects of mixtures at different levels of the hierarchy. At the first (top)
level, the mixture is used to perform clustering of the objects, while at
the second level, nested mixture models are used as flexible representations
of distributions of observables from each object. Inference for hierarchical
mixtures is more challenging since the number of unknown mixture compo-
nents arise in both the first and second levels of the hierarchy. In this paper,
a Bayesian approach based on Reversible Jump Markov Chain Monte Carlo
methodology is developed for the inference of all unknown parameters of
hierarchical mixtures. Our methodology is then applied to the clustering of
fingerprint images and used to assess the variability of quantities which are
functions of the second level mixtures.

1. Hierarchical Mixture Models. Consider an object, O, selected at ran-
dom from a heterogenous population, P, with G (unknown) clusters. Let X ≡
(x1, x2, x3, · · · ) denote the observables on O where xj ≡ (x(1)

j , x
(2)
j , · · · , x

(d)
j )′ is a

d-variate random vector in Rd. A hierarchical mixture model for the distribution
of O in the population is

q(x) =
G∑

g=1

ωg

n∏

j=1

qg(xj) (1.1)

where x = (x1, x2, · · · , xn) are the n observations made on O, ωg, g = 1, 2, · · · , G

are the G cluster proportions with ωg > 0 and
∑G

g=1 ωg = 1, qg(·) is the mixture
density for the g-th cluster given by

qg(x) =
Kg∑

k=1

pkg fkg(x | θkg), (1.2)

with fkg denoting a density with respect to the Lebesgue measure on Rd, pkg

denoting the mixing probabilities satisfying: (1) pkg > 0 and (2)
∑Kg

k=1 pkg = 1,
and θkg denoting the set of all unknown parameters in fkg. Identifiability of the
hierarchical mixture model of (1.1) is achieved by imposing the constraints

ω1 < ω2 < · · · < ωG and θ1g ≺ θ2g ≺ · · · ≺ θKgg, (1.3)
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2 DASS & LI

for each g = 1, 2, · · · , G, where ≺ is a partial ordering to be defined later. The set of
all unknown parameters in the hierarchical mixture model (1.1) is denoted by x =
(G,ω, K,p, θ) where ω = (ω1, ω2, · · · , ωG), K = (K1,K2, · · · , Kg), p = (pkg, k =
1, 2, · · · ,Kg, g = 1, 2, · · · , G), and θ = (θkg, k = 1, 2, · · · ,Kg, g = 1, 2, · · · , G).

Hierarchical mixture models of (1.1) arise naturally when the goal is to clus-
ter a population of objects, where observables from each object follow a standard
mixture distribution. At the first (top, or G) level, the mixture is used to perform
clustering of the objects, while at the second (or Kg) level, nested mixture models
(nested within each g = 1, 2, · · · , G specification) are used as flexible representa-
tions of distributions of observables. The unknown number of mixture components,
or mixture complexity, arise at both levels of the hierarchy, and is, therefore, more
challenging to estimate compared to standard mixtures.

Estimating mixture complexity has been the focus of intense research for many
years resulting in various estimation methodologies in a broad application domain.
Non-parametric methods were developed in Escobar and West (1995) and Roeder
and Wasserman (1997), whereas Ishwaran et al. (2001) and Woo and Sriram (2006)
developed methodology for the robust estimation of mixture complexity for count
data. In a Bayesian framework, the work of Green and Richardson (1997) demon-
strated that both issues of estimating mixture parameters can be unified if viewed
as a problem of model selection. With this view in mind, Green and Richardson
(1997) developed a Reversible Jump Markov Chain Monte Carlo (RJMCMC) ap-
proach for the estimating mixture complexity by exploring the space of models of
varying dimensions.

In this paper, we develop a Bayesian framework based on RJMCMC for the
inference on hierarchical mixture models. One advantage of our approach is that
we are able to assess the variability of the cluster estimate, which in turn, can be
used to ascertain the variability of quantities that are functions of the clusters. We
present one such example based on clustering a sample of fingerprint images. One
quantity that is of special interest is the probability of a random correspondence
(PRC) which measures to what extent two randomly chosen fingerprints from a
population match with each other. The RJMCMC methodology developed in this
paper provides an estimate of its mean and variance.

In the subsequent text, we assume each fkg is multivariate normal with mean
vector µkg ≡ (µ(1)

kg , µ
(2)
kg , · · · , µ

(d)
kg )′ ∈ Rd and covariance matrix

∑
kg ∈ Rd×Rd. Our

analysis on fingerprint images in Section 6 revealed that it is adequate to consider di-

agonal covariance matrices of the form
∑

kg = diag

((
σ

(1)
kg

)2

,
(
σ

(2)
kg

)2

, · · · ,
(
σ

(d)
kg

)2
)

where
(
σ

(b)
kg

)2

is the variance of the b-th component of the multivariate normal dis-
tribution. Thus, we have

fkg(x | θkg) = φd(x |µkg, σkg) =
d∏

b=1

φ1

(
x(b) |µ(b)

kg ,
(
σ

(b)
kg

)2
)

(1.4)

where φ1(· |µ, σ2) denotes the density of the univariate normal distribution with
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BAYESIAN ANALYSIS OF HIERARCHICAL MIXTURE MODELS 3

mean µ and variance σ2, and σkg ≡
((

σ
(1)
kg

)2

,
(
σ

(2)
kg

)2

, · · · ,
(
σ

(d)
kg

)2
)′

is the d-

variate vector of the variances. The second identifiability condition of (1.3) is re-
expressed in terms of the first component of the mean vector as

µ
(1)
1g < µ

(1)
2g < · · · < µ

(1)
Kgg. (1.5)

In the subsequent text, the identifiability condition (1.5) based on the first compo-
nents of µkg for k = 1, 2, · · · ,Kg will be re-written using the ‘≺’ symbol as

µ1g ≺ µ2g ≺ · · · ≺ µKgg (1.6)

for each g = 1, 2, · · · , G.
For N independent objects selected randomly from the population, say, Oi ≡

(xij , j = 1, 2, · · · , ni), i = 1, 2, · · · , N , it follows that the joint distribution of the
observations are

N∏

i=1

q(xi) =
N∏

i=1

G∑
g=1

ωg

ni∏

j=1

Kg∑

k=1

pkg φd

(
xij |µkg,σkg

)
. (1.7)

Two other notations are introduced here: µ and σ will respectively denote the collec-
tion of all {µkg, k = 1, 2, · · · ,Kg, g = 1, 2, · · · , G} and {σkg, k = 1, 2, · · · ,Kg, g =
1, 2, · · · , G} vectors. Our goal is to make inference about the unknown parameters
x = (G, ω,K, p, µ, σ) based on the joint distribution in (1.7).

2. A Bayesian Framework for Inference. For the subsequent text, we
introduce some additional notations. The symbol I(S) denotes the indicator func-
tion of the set S, that is I(S) = 1 if S is true, and 0, otherwise. The notation
A,B, · · · |C, D, · · · denotes the distribution of random variables A, B, · · · condi-
tioned on C,D, · · · with π(A,B, · · · |C, D, · · · ) denoting the specific form of the
conditional distribution. The notation π(A,B, · · · | · · · ) denotes the distribution of
A,B, · · · given the rest of the parameters. We specify a joint prior distribution on
x as follows:
– (1) G and K: We assume

π(G, K) = π(G) · π(K |G) = π0(G) ·
G∏

g=1

π0(Kg) (2.1)

where π0 is the discrete uniform distribution between Gmin and Gmax (respectively,
Kmin to Kmax), both inclusive, for G (respectively, Kg).
– (2) The first and second level mixing proportions: We assume

π(ω, p |G, K) = G! DG(ω | δω) · I(ω1 < ω2 < · · · < ωG)
G∏

g=1

DKg (pg | δp), (2.2)

where DH(· | δ) denotes the H-dimensional Dirichlet density with the H-component
baseline measure (δ, δ, · · · , δ), where δ is a pre-specified constant, and pg ≡ (p1g, p2g, · · · , pKg,g)′.
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4 DASS & LI

The indicator function arises due to the imposed identifiability constraint (1.3) on
ω; it follows that G! is the appropriate normalizing constant for this constrained
density which is obtained by integrating out ω and noting that DG(ω | δω) is in-
variant under different permutations of ω. ω1, ω2, · · · , ωG are exchangeable.
– (3) The prior on the mean vector is taken as

π(µ |K, G) =
G∏

g=1





Kg!

Kg∏

k=1

φ1(µ
(1)
kg |µ0, τ

2)


 ·

(
I

(
µ

(1)
1g < µ

(1)
2g < · · · < µ

(1)
Kgg

))

×



d∏

b=2

Kg∏

k=1

φ1(µ
(b)
kg |µ0, τ

2)





 . (2.3)

The indicator function appears due to the identifiability constraint (1.3) imposed
on µ with resulting normalizing constant Kg! for each g = 1, 2, · · · , G.
– (4) The prior distribution of the variances is taken as

π(σ |K, G) =
G∏

g=1




Kg∏

k=1

d∏

b=1

IG

((
σ

(b)
kg

)2

|α0, β0

)
 (2.4)

where IG denotes the inverse gamma distribution with prior shape and scale para-
meters α0 and β0, respectively. The joint prior distribution on x = (G,ω, K,p, µ,σ)
is thus given by

π(x) = π(G, K) · π(ω, p |G, K) · π(µ |G, K) · π(σ |G, K) (2.5)

where the component priors are given by equations (2.1-2.4). The prior on x depends
on the hyper-parameters δp,δω,Gmax,Gmin,Kmin,Kmax, µ0 τ2, α0 and β0, all of
which need to be specified for a given application. This will be done in Sections 5
and 6.

The likelihood (1.7) involves several summations within each product term and
is simplified by augmenting variables to denote the class labels of the individual ob-
servations. Two different class labels are introduced for the two levels of mixtures:
The augmented variable W ≡ (W1, W2, · · · ,WN ) denotes the class label of the G
sub-populations, that is, Wi = g whenever object i, Oi, arises from the g-th subpop-
ulation, and Z ≡ (Z1, Z2, · · · , ZN ) with Zi ≡ (Zij , j = 1, 2, · · · , ni), where Zij = k
for 1 ≤ k ≤ Kg if xij arises from the k-th mixture component φd(· |µkg, σkg). We
denote the augmented parameter space by the same symbol x as before, that is,
x = (G, ω,K, p, µ, σ,W , Z). The augmented likelihood is now

`(G, ω, K,p, µ,σ, W ,Z) =
N∏

i=1

ni∏

j=1

G∏
g=1

Kg∏

k=1

(φd(xij |µkg, σkg))I(Zij=k,Wi=g).

(2.6)
with priors on W and Z given by

π(W , Z |G, K, ω, p ) = π(W |G, ω) · π(Z |G, K, W , p ) (2.7)
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where π(W |G, ω) =
∏N

i=1

∏G
g=1 ω

I(Wi=g)
g and π(Z |G, K, W , p ) =

∏G
g=1

∏
i : Wi=g∏ni

j=1

∏Kg

k=1 p
I(Zij=k)
kg . Based on the augmented likelihood and prior distributions,

one can write down the posterior distribution (up to a normalizing constant) via
Bayes Theorem. The posterior has the expression

π(x | data) ∝ `(G, ω, K, p, µ,σ, W , Z)× π(W ,Z |G, K, ω, p)
×π(G, K,ω, p, µ, σ) (2.8)

based on (2.5), (2.6) and (2.7).

3. Posterior Inference. The total number of unknown parameters in the
hierarchical mixture model depends on the values G and K. Thus, the posterior
in (2.8) can be viewed as a probability distribution on the space of all hierarchical
mixture models with varying dimensions. To obtain posterior inference for such a
space of models, Green (1995) and Green and Richardson (1997) developed the
RJMCMC for Bayesian inference. In this paper, we develop a RJMCMC approach
to explore the posterior distribution in (2.8) resulting from the hierarchical mixture
model specification. We briefly discuss the most general RJMCMC framework here.
Let x and y be elements of the model space with possibly differing dimensions. The
RJMCMC approach proposes a move, say m, with probability rm. The move m
takes x to y via the proposal distribution qm(x,y). In order to maintain the time
reversibility condition, we require to accept the proposal with probability

α(x, y) = min
{

1,
π(y | data)
π(x | data)

rm′qm′(y, x)
rmqm(x, y)

}
; (3.1)

in (3.1), qm′(y, x) represents the probability of moving from y to x based on the
“reverse” move m′, and π(x | data) denotes the posterior distribution of x given
data. It is crucial that the moves m and m′ be reversible (see Green (1995)), meaning
that the densities qm(x,y) and qm′(y,x) have the same support with respect to a
dominating measure. In case y represents the higher dimensional model, we can first
sample u from a proposal q0(x,u) (with possible dependence on x), and then obtain
y as a one-to-one function of (x, u). In that case, the proposal density qm(x, y) in
(3.1) is expressed as

qm(x,y) = q0(x,u)/det
[

∂y

∂(x, u)

]
(3.2)

where ∂y
∂(x,u) denotes the Jacobian of the transformation from (x, u) to y, and det

represents the absolute value of its determinant. If the triplet (x, u, y) involves
some discrete components, then the Jacobian of the transformation is obtained by
the one-to-one map of the continuous parts of y and (x, u), which can depend on
the values realized by the discrete components.

For the inference on hierarchical mixture models, five types of updating steps
are considered with reversible pairs of moves, (m,m′), corresponding to moves in

imsart-aoas ver. 2007/12/10 file: manuscript-extended.tex date: July 23, 2008



6 DASS & LI

spaces of varying dimensions. The steps are:




(1) Update G with (m,m′) ≡ (G-split, G-merge),
(2) Update K |G,ω, W with (m,m′) ≡ (K-split,K-merge),
(3) Update ω |G,K, W ,Z, p, µ, σ,
(4) Update W , Z |G, K,ω, p, µ, σ, and
(5) Update p,µ, σ |G,K, ω,W , Z.

(3.3)

The steps (3-5) do not involve jumps in spaces of varying dimensions, and can
be carried out based on a regular Gibbs proposal.

3.1. Update G. To discuss the G-split and G-merge moves, we let x and y
denote two different states of the model space, that is,

x = (G,ω, K,p,µ, σ, W , Z) and y = (G∗, ω∗, K∗,p∗, µ∗, σ∗, W ∗, Z∗) (3.4)

where the ∗s in (3.4) denote a possibly different setting of the parameters.

3.2. The G-merge move. The G-merge move changes the current G to G − 1
(that is, G∗ = G− 1) and is carried out based on the following steps:

STEP 1: First, two of the G components, say g1 and g2 with g1 < g2, are selected
randomly for merging into a new component g∗. The first level mixing proportions
are merged as ωg∗ = ωg1 + ωg2 .

STEP 2: The K-components in K corresponding to g1 and g2 are, respectively,
Kg1 and Kg2 . These are combined to obtain the new K-value, Kg∗ , in the following
way. Adding Kg1 + Kg2 = Kt,

Kg∗ =
{

(Kt + 1)/2 if Kt is odd, and
Kt/2 if Kt is even. (3.5)

STEP 3: Next, (pg1
, µg1

,σg1) and (pg2
, µg2

, σg2) are merged to obtain (pg∗ ,µg∗ , σg∗)
as follows. The identifiability conditions of (1.6) holds for g = g1 and g = g2, and
must be ensured to hold for g = g∗ after the merge step. To achieve this, the Kt

µ’s are arranged in increasing order

µ1 ≺ µ2 ≺ · · · ≺ µKt−1 ≺ µKt
(3.6)

with associated probability pj for µj , for j = 1, 2, · · · ,Kt. Thus, pj are a re-
arrangement of the Kt probabilities in pg1

and pg2
according to the partial ordering

on µg1
and µg2

in (3.6). First, the case when Kt is even is considered. Adjacent µ
values in (3.6) are paired

µ1 ≺ µ2︸ ︷︷ ︸ ≺ µ3 ≺ µ4︸ ︷︷ ︸ ≺ · · · ≺ µKt−1 ≺ µKt︸ ︷︷ ︸, (3.7)

and the corresponding g∗ parameters are obtained using the formulas p∗kg∗ =
p2k−1+p2k

2 ,

µ∗kg∗ =
p2k−1µ2k−1 + p2kµ2k

p2k−1 + p2k
, and σ∗kg∗ =

p2k−1σ2k−1 + p2kσ2k

p2k−1 + p2k
, (3.8)
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for k = 1, 2, · · · ,Kg∗ .
STEP 4: To obtain W ∗ and Z∗, objects with Wi = g1 or Wi = g2 are relabeled

as W ∗
i = g∗. For these objects, the allocation to the Kg∗ components is carried

out using a Bayes allocation scheme. The probability that object i is assigned to
component k is

P (Z∗ij = k |W ∗
i = g∗) =

p∗kg∗φd(xij |µ∗kg∗ , σ
∗
kg∗)∑Kg∗

k=1 p∗kg∗ φd(xij |µ∗kg∗ ,σ
∗
kg∗)

. (3.9)

for k = 1, 2, · · · ,Kg∗ . The allocation of all xij to the Kg∗ components is the product
of the above probabilities, namely,

PmergeAlloc =
∏

i : W∗
i
=g∗

ni∏

j=1

P (Z∗ij = kij |W ∗
i = g∗) (3.10)

where kij are the realized values of k when the allocation is done for each observation
xij .

When Kt is odd, an index, i0 is selected at random from the set of all odd
integers up to Kt, namely, {1, 3, 5, · · · ,Kt}. The triplet (pi0 , µi0 , σi0) is not merged
with any other indices but the new p∗i0 = pi0/2. The remaining adjacent indices are
merged according to STEP 3 above. For the G-merge step, the proposal density,
qm′(x,y), is given by

qm′(x,y) =

{ (
G
2

)−1 × PmergeAlloc if Kt is even, and(
G
2

)−1 × PmergeAlloc× 2
Kt+1 if Kt is odd.

(3.11)

This completes the G-merge move.

3.3. The G-split move. The split move is reverse to the merge step above and
is carried out in the following steps:

STEP 1: A candidate G-component for split, say g, is chosen randomly with prob-
ability 1/G. The split components are denoted by g1 and g2. The first level mixing
probability, ωg, is split into ωg1 and ωg2 by generating a uniform random variable,
u0, in [0, 1] and setting ωg1 = u0 ωg and ωg2 = (1− u0) ωg.

STEP 2: The value of Kg is transformed to Kt where Kt is either 2Kg − 1 or
2Kg with probability 1/2 each. Once Kt is determined, a pair of indices (Kg1 ,Kg2)
is selected randomly from the set of all possible pairs of integers in {Kmin,Kmin +
1, · · · ,Kmax}2 satisfying Kg1 + Kg2 = Kt . If M0 is the total number of such
pairs, then the probability of selecting one such pair is 1/M0. The selection of Kg1

and Kg2 determines the number of second level components in the g1 and g2 groups.

STEP 3: The aim now is to split each component of the triplet (pg, µg, σg) into
2 parts: (pg1

, µg1
,σg1) and (pg2

, µg2
,σg2) such that both µg1

and µg2
satisfy the

constraints (1.6) for g = g1 and g2. The case of Kg1 +Kg2 = 2Kg is first considered.
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u1g u2g · · · ukg · · · uKgg

2p1g ≺ 2p2g ≺ · · · ≺ 2pkg ≺ · · · ≺ 2pKgg

↓ ↓ · · · ↓ · · · ↓
v1g v2g · · · vkg · · · vKg,g

↙↘ ↙↘ · · · ↙↘ · · · ↙↘
p
(1)
1g p

(2)
1g p

(1)
2g p

(2)
2g · · · p

(1)
kg

p
(2)
kg

· · · p
(1)
Kgg p

(2)
Kgg

µ1g → µ2g → · · · → µkg → · · · → µKgg

↙↘ ↙↘ · · · ↙↘ · · · ↙↘
y1g ỹ1g y2g ỹ2g · · · ykg ỹkg · · · yKgg ỹKgg

σ1g → σ2g → · · · → σkg → · · · → σKgg

↙↘ ↙↘ · · · ↙↘ · · · ↙↘
z1g z̃1g z2g z̃2g · · · zkg z̃kg · · · zKgg z̃Kgg

Fig 1. Diagram showing the split of 2pg, µg and σg. The partial ordering ≺ refers to the ordering

of the µ
(1)
kg s. The variables ukg , k = 1, 2, · · · , Kg determine how many splits (out of two) go to

component g1 for each k. The right arrows ‘→’ represents the sequential split for µg and σg.

A sketch of the split move is best described by the diagram in Figure 1, which
introduce the additional variables to be used for performing the split. In Figure 1,
2pg is considered for splitting because the two split components will represent the
second level mixing probabilities of g1 and g2, the sum of which together equals 2.

For each k, the variable ukg in Figure 1 takes three values, namely, 0, 1 and 2
that respectively determines if the split components of 2pkg, µkg and σkg either
(1) both go to component g2, (2) one goes to component g1 and the other goes to
g2, or (3) both go to g1. The variables ukg, k = 1, 2, · · · ,Kg must satisfy several
constraints: (1)

∑Kg

k=1 ukg = Kg1 , (2) ukg = 1 for any k such that pkg > 0.5, and
(3)

∑
k : ukg=h 2pkg < 1 for h = 0, 2. Restriction (1) means that the number of

components that go to g1 must be Kg1 which is already pre-selected. The need
for restriction (2) can be seen as follows: If ukg = 0 or 2, and pkg > 0.5, the
total probability 2pkg will be assigned to g1 or g2, and the sum of the second
level mixing probabilities for that g component will be greater than 1, which is not
possible. Restriction (3) is necessary to ensure that second level mixing probabilities
for both g1 and g2 are non-negative (see equation (3.13)).

To generate the vector u ≡ (u1g, u2g, · · · , uKgg)′, we consider all combinations of
u ∈ {0, 1, 2}Kg , and reject the ones that do not satisfy the three restrictions. From
the total number of remaining admissible combinations, M1 say, we select a vector
u randomly with equal probability 1/M1.

Once u has been generated, a random vector v ≡ (vkg, k = 1, 2, · · · ,Kg) is
generated to split 2pg (see Figure 1). Some notations are in order: Let A0 = { k :
ukg = 0}, A1 = { k : ukg = 1} and A2 = { k : ukg = 2}. As in the case of u, a few
restrictions also need to be placed on the vector v. To see what these restrictions
are, we denote

p
(1)
kg = 2vkgpkg and p

(2)
kg = 2(1− vkg)pkg (3.12)
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for k = 1, 2, · · · ,Kg, to be the split components from 2 pkg. Note that depending
on the value of ukg = 0, 1, or 2, the split components, p

(1)
kg and p

(2)
kg , are either both

assigned to component g2, one to g1 and the other to g2, or both to g1. For the
case ukg = 1, we will assume that p

(1)
kg is the split probability that goes to g1 and

p
(2)
kg goes to g2. Note that the mixing probabilities for both components g1 and g2

should equal 1. This implies
∑

k : k∈A1

p
(1)
kg +

∑

k : k∈A2

2 pkg = 1 and
∑

k : k∈A1

p
(2)
kg +

∑

k : k∈A0

2 pkg = 1 (3.13)

for components g1 and g2, respectively. The second equation of (3.13) is redun-
dant if the first is assumed since

∑
k : k∈A1

p
(1)
kg +

∑
k : k∈A2

2 pkg +
∑

k : k∈A1
p
(2)
kg +∑

k : k∈A0
2 pkg = 2

∑Kg

k=1 pkg = 2. We re-write the first equation as

∑

k : k∈A1

akvkg = 1 (3.14)

where ak = 2pkg/(1−∑
k : k∈A2

2pkg). Equation (3.14) implies that the entries of the
vector v are required to satisfy two restrictions: (1) 0 ≤ vkg ≤ 1 for k = 1, 2, · · · ,Kg

from (3.12), and (2) Equation (3.14) above. In the Appendix, an algorithm is given
to generate such a v where the proposal density can be written down in the closed
form (see (7.2)).

The next step in the G-split move is to split µg and σg. Each component of
µg = (µkg, k = 1, 2, · · · , Kg) and σg = (σkg, k = 1, 2, · · · ,Kg in Figure 1 are split
sequentially starting from k = 1, then k = 2 and so on until k = Kg. At the k-th
stage, µkg is split into the components ykg and ỹkg where ykg is d-dimensional vec-

tor consisting of the entries (y(1)
kg , y

(2)
kg , · · · , y

(d)
kg )′, and ỹkg = (ỹ(1)

kg , ỹ
(2)
kg , · · · , ỹ

(d)
kg )′.

Similarly, σkg is split into the components zkg ≡ (z(1)
kg , z

(2)
kg , · · · , z

(d)
kg )′ and z̃kg ≡

(z̃(1)
kg , z̃

(2)
kg , · · · , z̃

(d)
kg )′. The collection of variables {ykg, k = 1, 2, · · · ,Kg } and { zkg, k =

1, 2, · · · ,Kg } are denoted by y and z, respectively, and represent the additional
variables that require to be generated for the split, via the proposal distribution
q0(y, z), say. The remaining variables (with˜s) are obtained by solving the vector
equations

p
(1)
kg ykg + p

(2)
kg ỹkg

p
(1)
kg + p

(2)
kg

= µkg and
p
(1)
kg zkg + p

(2)
kg z̃kg

p
(1)
kg + p

(2)
kg

= σkg (3.15)

componentwise. We describe the split move further to see what properties q0(y, z)
should satisfy.

While the values of ykg and ỹkg (respectively, zkg and z̃kg) are candidate val-
ues for µkg1

and µkg2
(respectively, σkg1 and σkg2), they are still not quite so

since µg1
and µg2

must satisfy the constraints (1.6). To achieve this, we intro-
duce two functions operating on d-dimensional vectors. The vector-valued “min”
and “max” functions are defined as follows: For each s = 1, 2, · · · , S, let as and
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bs denote two d-dimensional vectors given by as = (a(1)
s , a

(2)
s , · · · , a

(d)
s )′ and bs =

(b(1)
s , b

(2)
s , · · · , b

(d)
s )′. We define

min (as, bs) = as and max (as, bs) = bs (3.16)

for each s = 1, 2, · · · , S if a1 ≺ b1 (recall this is by definition a
(1)
1 ≤ b

(1)
1 ), and vice

versa when b1 ≺ a1. Thus, the maximum and minimum functions above operate
on the indices s ≥ 1 with output depending on the index s = 1.

In the present case, consider the maximum and minimum functions defined as
in (3.16) for each k = 1, 2, · · · ,Kg. Here, S = 3 with a1 = ykg, a2 = zkg, and

a3 = p
(1)
kg , and b1 = ỹkg, b2 = z̃kg, and b3 = p

(2)
kg . If ykg ≺ ỹkg, then it follows that

min
(
ykg, ỹkg

)
= ykg, max

(
ykg, ỹkg

)
= ỹkg,

min (zkg, z̃kg) = zkg, max (zkg, z̃kg) = z̃kg, and
min

(
p
(1)
kg , p

(2)
kg

)
= p

(1)
kg , max

(
p
(1)
kg , p

(2)
kg

)
= p

(2)
kg ;

(3.17)

if ỹkg ≺ ykg, then the opposite holds true.
To ensure that the constraints (1.6) hold, ykg is generated in a way so that

max
(
y(k−1)g, ỹ(k−1)g

)
≺ ykg, ỹkg ≺ µ(k+1)g (3.18)

in the sequential procedure for k = 1, 2, · · · ,Kg. In (3.18), maximum function
max

(
y0g, ỹ0g

)
for k = 1 (respectively, µ(Kg+1)g for k = Kg) is defined to be

the vector of lower (respectively, upper) bounds for the means. In the application
to fingerprint images in Section 6, each image has size 500 × 500 which implies
that the componentwise lower and upper bounds are, respectively, 0 and 500. For
zkg and z̃kg, we require these variables to satisfy the constraints zkg ≥ 0 and
z̃kg ≥ 0 componentwise since they are candidate values for σkg1 and σkg2 . Thus,
the generation of y and z, via the proposal distribution q0(y, z), requires that (3.18),
zkg ≥ 0, and z̃kg ≥ 0 be satisfied. A proposal density that achieves this is discussed
in the Appendix.

The values of each triplet (pg1
, µg1

, σg1) and (pg2
, µg2

,σg2) can now be obtained.
A sequential procedure is again adopted. The post-split parameters pgh

, µgh
and

σgh
, h = 1, 2, are initialized to the empty set. Starting from k = 1, the sets are

appended as follows: For h = 0, 2, define h1 = 2 and h2 = 1 if h = 0, and h1 = 1
and h2 = 2 if h = 2. For k = 1, 2, · · · , Kg, if k ∈ Ah,

pgh1
=

(
pgh1

, min
(
p
(1)
kg , p

(2)
kg

)
, max

(
p
(1)
kg , p

(2)
kg

))
, pgh2

=
(
pgh2

)
,

µgh1
=

(
µgh1

, min
(
ykg, ỹkg

)
,max

(
ykg, ỹkg

))
, µgh2

=
(
µgh2

)
, (3.19)

σgh1
=

(
σgh1

, min (zkg, z̃kg) , max (zkg, z̃kg)
)
, σgh2

=
(
σgh2

)
,

and if k ∈ A1, pg1
=

(
pg1

, p
(1)
kg

)
, pg2

=
(
pg2

, p
(2)
kg

)
, µg1

=
(
µg1

, ykg

)
, µg2

=(
µg2

, ỹkg

)
, σg1 = (σg1 ,zkg), and σg2 = (σg2 , z̃kg).
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The above procedure guarantees that the post-split components µg1
and µg2

satisfy the constraints (1.6). At this point, we can explicitly determine some of the
components of y in equation (3.4); we have G∗ = G + 1, K∗ = K ∪ {Kg1 , Kg2} \
{Kg}, p∗ = p ∪ {pg1

, pg2
} \ {pg}, µ∗ = µ ∪ {µg1

, µg2
} \ {µg} and σ∗ = σ ∪

{σg1 , σg2} \ {σg}.
When Kg1 +Kg2 = 2Kg−1, an index i0 is selected from the set I0 = { k : 2pkg <

1 } with probability 1/|I0|. The component with index i0 is not split, and assigned a
value of ui0g of either 0 or 2. For this case, u = (u1g, u2g, · · · , u(Kg−1)g, ui0g) is cho-
sen from the product space {0, 1, 2}(Kg−1) × {0, 2}, with M1 denoting the number
of admissible combinations satisfying the three restrictions on u. After selecting a
u, we define p∗i0g′ = 2pi0g′ , yi0g′ = ỹi0g′ = µi0g′ , and zi0g′ = z̃i0g′ = σi0g′ where g′

is either g1 or g2 depending on the selected u. The split procedure above is carried
out for the remaining indices k 6= i0.

STEP 4: To complete the G-split proposal, we require to obtain the new first
and second level labels, W ∗ and Z∗, in y (see (3.4)). All objects with labels Wi = g
are split into either W ∗

i = g1 or W ∗
i = g2 with allocation probabilities obtained as

follows: Define Qi(gh) =
∏ni

j=1

∑Kgh

k=1 pkgh
φd(xij |µkgh

, σkgh
) with h = 1, 2 for the

i-th object. The W ∗-allocation probabilities for components g1 and g2 are given by

P (W ∗
i = gh) = Qi(gh)/(Qi(g1) +Qi(g2)) (3.20)

for h = 1, 2. Once W ∗
i has been determined, the Z∗ijs are determined from the

Bayes allocation probabilities (3.9) which is denoted here by Qij(k, gh) for h = 1, 2.
It follows that the allocation probability for the G-split move is

PsplitAlloc =
∏

h=1,2

∏

i : Wi=gih

Qi(gih)
ni∏

j=1

Qij(kij , gih) (3.21)

where gih is the realized value of gh for the i-th object, and kij are the realized
values of k for the second level labels Zij . Dass and Li (2008) give the proposal
density for the G-split move as

qm(x,y) =
R0 q0(v) q0(y, z)× PsplitAlloc

G M0 M1
det

[
∂y

∂(x, u)

]
(3.22)

where R0 = 1/2 or 1/(2|I0|) according to whether Kg1 + Kg2 = 2Kg or 2Kg − 1 is
chosen; in (3.22),

det
[

∂y

∂(x, u)

]
= 22(Kg−1) ωg


 ∏

k∈A0∪A2∪Ac
2

pkg




Kg∏

k=1

(
1 +

p
(1)
kg

p
(2)
kg

)2d

(3.23)

is the absolute value of the Jacobian of the transformation from (x,u) → y, and
Ac

1 is the set A1 excluding the largest element. The explicit expression of (3.23) is
derived in the Appendix.
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(y, u) x

G-split

G-merge

I

R

Fig 2. Figure showing the G-split and G-merge proposals as a reversible pair of moves.

We conclude the G-split and G-merge sections with a note on establishing re-
versibility of the two moves. The G-merge proposal (move m′) takes x to y with
proposal density given by qm′(x, y) in (3.11). However, the acceptance probability
in (3.1) also requires the proposal density, qm(y,x), to move from y to x based
on the “reverse” move m. In order to show that m is precisely the G-split move,
we require to show that given x and y, there is a unique u such that x can be
obtained from the combination of (y, u) via the G-split move (see Figure 2). We
demonstrate this in the next paragraph.

For the G-split move, the variables in u is given by u = (u0,Kt, u, v, y, z). These
variables have the same interpretation as in the G-split move discussed earlier. Now,
we check to see if u can be determined from x and y. First, the variable u0 can be
determined from u0 = ωg1/ωg∗ . Second, the value of Kt = Kg1 + Kg2 . Note that
Kg alone cannot determine Kt since Kt is either 2Kg or 2Kg − 1 with probability
1/2 each. However, with information on Kg1 and Kg2 , Kt is uniquely determined.

Next, to get u, we rearrange the components of µg1
and µg2

in the increasing
order (3.6). If Kt is even, Kg ≡ Kt/2 adjacent pairs of µs are formed, and ukg is
assigned the values 0, 1 or 2 since it is known from which component (either g1 or
g2) the two means in each of the k pairs came from. The case for odd Kt can be
similarly handled since one of the µ components is not paired, and subsequently,
ukg for that component is either 2 or 0 depending on whether the µ component
came from g1 or g2. Once u is obtained, v can be determined in the following way:
The components of pg1

and pg2
are arranged according to the increasing order of µs.

Suppose the k-th pair consists of µk′g′ ≺ µk′′g′′ with corresponding probabilities
pk′g′ and pk′′g′′ , where k′, k′′, g′ and g′′ are some indices of k and g resulting from
the ordering. The value of vkg = pk′g′/(2pkg) where (pk′g′ + pk′′g′′)/2 = pkg is the
merged probability in the G-merge move.

Next, we obtain the values of ykg and zkg. In the case ukg = 1, ykg (respectively,
ỹkg) equals to the µ-value that came from component g1 (respectively, g2) in the
pair (µk′g′ ,µk′′g′′). In the case when ukg = 0 or 2, ykg and ỹkg can be determined
only up to min

(
ykg, ỹkg

)
and max

(
ykg, ỹkg

)
. Subsequently, the proposal density
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q0(y, z) depends only on min
(
ykg, ỹkg

)
and min

(
ykg, ỹkg

)
for these values of ukg.

A similar argument as above can be made for the zkg and z̃kg.

3.4. Update K. We consider the move types K-split (type m) and K-merge
(move type m′). The update of K is carried out for fixed G by selecting a component
g on which Kg will be updated to either Kg − 1 or Kg + 1. For the K-merge move,
we select two adjacent components for merging where adjacency is determined by
the partial ordering (1.6). The merged mixing probability, mean and variance for
the new component, k∗, are given by p∗k∗g = pkg + p(k+1)g,

µ∗k∗g =
pkgµkg + pk+1gµ(k+1)g

pkg + p(k+1)g
and σ∗k∗g =

pkgσkg + pk+1gσ(k+1)g

pkg + p(k+1)g
. (3.24)

The objects with Wi = g and Zij = k or (k + 1) are merged into a newly relabelled
bin W ∗

i = g and Z∗ij = k∗.
For the K-split move, we first select a component that we want to split, k, which

will be split into k1 and k2. A uniform random variable u0 is selected to split pkg

into pk1g and pk2g in the following way:

pk1g = u0 · pkg and pk2g = (1− u0) · pkg. (3.25)

Next, µkg and σkg are split by generating the variables ykg and zkg as in the case
for the G-split move but now for a single k only. As in the G-split move, ykg and
ỹkg are required to satisfy a similar constraint of the form

µ(k−1)g ≺ ykg, ỹkg ≺ µ(k+1)g, (3.26)

so that the post-split µ parameters satisfy the restriction (3.26), and subsequently
(1.6). Once ykg and zkg are generated, the assignments to µkhg and σkhg, h = 1, 2
are done as follows:

µk1g = min(ykg, ỹkg), µk2g = max(ykg, ỹkg),
σk1g = min(zkg, z̃kg), σk2g = max(zkg, z̃kg).

Objects with Wi = g and observation labels Zij = k are allocated to component k1

or k2 based on the Bayes allocation probabilities given by (3.9) with fixed Wi = g.

3.5. Update Other Steps. The update of the other quantities in steps (3-5) of
equation (3.3) can be done via regular Gibbs sampler since they do not involve
models in spaces of varying dimensions. We give the summary steps here for com-
pletion.
• Update ω |G, K,W , Z,p,µ, σ: The conditional posterior distribution of ω

given the remaining parameters is given by

π(ω | · · · ) ∝
(

G∏
g=1

ωδω+Ng−1
g

)
· I(ω1 < ω2 < · · ·ωG) (3.27)
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where Ng =
∑N

i=1 I(Wi = g) is the number of objects with label Wi = g. Equation
(3.27) is the order statistic distribution of a Dirichlet with parameters (δω+N1, δω+
N2, · · · , δω + NG) and can be easily simulated from.
•Update W , Z |G,K, ω,p,µ, σ: The conditional posterior distribution of Wi, Zi

is independent of each other. The update of Wi and Zi |Wi based on the conditional
posterior distribution is the Bayes allocation scheme of (3.20) and (3.9).
• Update p,µ, σ |G,K, ω,W , Z: The conditional posterior distribution of p =

{pg, g = 1, 2, · · · , G} is given by

π(p | · · · ) ∝
G∏

g=1

Kg∏

k=1

p
(δπ+Nkg−1)
kg (3.28)

where Nkg =
∑N

i=1

∑ni

j=1 I(Wi = g, Zij = k) is the number of observations xij

with Wi = g and Zij = k. Thus, each pg is independent Dirichlet with parameters
(δp + N1g, δp + N1g, · · · , δp + NKgg). The update of µ is carried out based on
generating from its conditional posterior distribution π(µ | · · · ). The generation
scheme for µ is as follows:

(µ(1)
1g , µ

(1)
2g , · · · , µ

(1)
Kgg) ∼




Kg∏

k=1

φ1(µ
(1)
kg | ξ(1)

kg , η
(1)
kg )


 · I{µ(1)

1g < µ
(1)
2g < · · · < µ

(1)
Kgg}

(3.29)
independently for each g = 1, 2, · · · , G, and for the remaining components,

µ
(b)
kg ∼ φ1(µ

(b)
kg | ξ(b)

kg , η
(b)
kg ) (3.30)

independently for each b ≥ 2, k = 1, 2, · · · ,Kg and g = 1, 2, · · · , G; in (3.29) and
(3.30),

ξ
(b)
kg =

Nkg

(σ
(b)
kg

)2
x̄

(b)
kg + 1

τ2 µ0

Nkg

(σ
(b)
kg

)2
+ 1

τ2

, and η
(b)
kg =


 Nkg(

σ
(b)
kg

)2 +
1
τ2




−1

. (3.31)

Equation (3.29) is the distribution of the order statistic from independent normals
with different means and variances and can be simulated easily. The variances σ,
are updated via (

σ
(b)
kg

)2

∼ IG

((
σ

(b)
kg

)2

|α(b)
kg , β

(b)
kg

)
, (3.32)

independently of each other, where

α
(b)
kg = α0 + Nkg and β

(b)
kg =


1/β0 +

∑

ij

(
x

(b)
ij − µ

(b)
kg

)2

/2



−1

with
∑

ij denoting the sum over all observations with Wi = g and Zij = k.
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Fig 3. (a) Density and (b) scatter plots for objects with univariate and bivariate observables
corresponding to d = 1 and d = 2, respectively.

3.6. Update Empty Components. The RJMCMC sampler developed also incor-
porates the updating of empty components into the chain. This is done with some
modification to the earlier updating G and K move types. Empty components can
arise naturally in the sampler when allocating the observations into the g or k
components in both the G-split and K-split moves. In case of the G-split move,
for example, it is possible that no objects are allocated into one of the split g
components. Instead of rejecting this proposal altogether, we incorporate an ad-
ditional variable, Eg, that indicates whether the g component is empty; Eg = 1
(respectively, 0) indicates that a component is non-empty (respectively, empty).
The introduction of Eg incorporates additional steps into the RJMCMC algorithm,
namely, E-Add and E-Remove which are reversible to each other. In the E-Remove
move, an empty g∗ component is selected for removal. The only change in this case
is in the subpopulation parameters ω, since after the removal of ωg∗ , the remaining
ω probabilities should sum to 1. We thus have

ω∗g = ωg/(1− ωg∗) (3.33)

for g 6= g∗. In the E-Add move type, a uniform random variable u0 in [0, 1] is
generated and the probabilities ω are redistributed to include the empty component
g∗ according to

ωg∗ = u0 and ω∗g = (1− u0) · ωg for g 6= g∗. (3.34)

The proposal distributions for the E-Add and E-Remove move types and the asso-
ciated Jacobians are given in the Appendix. The E-Add and E-Remove reversible
move types for the K components is similar, and therefore, not discussed further.

4. Convergence Diagnostics. The assessment of convergence of the RJM-
CMC is carried out based on the methodology of Brooks and Guidici (1998,2000).
Brooks and Guidici (1998,2000) suggests running I ≥ 2 chains from different start-
ing values and monitoring parameters that maintain the same interpretation across
different models. Six quantities for used for monitoring, namely, the overall variance,
V̂ , the within chain variance, Wc, within model variance Wm, within model within
chain variance WmWc, the between model variance, Bm and the between model
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Fig 4. Convergence diagnostics for d = 1. Panels (a), (b) and (c), respectively, show the plots

of (V̂ , Wc), (Wm, WmWc) and (Bm, BmWc) as a function of the iterations. The x-axis unit is
10,000 iterations.

within chain variance, BmWc. For each monitoring parameter, the corresponding
three plots of V̂ and Wc, Wm and WmWc, and Bm and BmWc against the number
of iterations should be close to each other to indicate that the chains have suffi-
ciently mixed. Our choice of the monitoring parameter is the log-likelihood of the
hierarchical mixture model (see (1.7)).

5. Simulation. Two simulation experiments were carried out for the cases
d = 1 and d = 2 with prior parameter specifications given by Gmin = Kmin =
2, Gmax = Kmax = 5, δπ = δω = 1, µ0 = 7, τ0 = 20, α0 = 2.04 and β0 =
0.5/(α0 − 1). The population of objects were simulated from G = 3 groups with
population proportions ω = (0.2, 0.3, 0.5). The nested K-components were chosen
to be Kg = 3 for all g = 1, 2, 3. The specification of p, µ and σ are as follows: pg =
(0.33, 0.33, 0.34) for all g, µ1 = (−6,−4,−2), µ2 = (5, 7, 9) and µ3 = (14, 17, 20).
Common variances were assumed: σg = (0.5, 0.5, 0.5) for g = 1, 2, 3. For the second
experiment with d = 2, we took µ1 = 1 · (−6,−4,−2), µ2 = 1 · (5, 7, 9), and
µ3 = 1 · (14, 17, 20), where 1 = (1, 1)′. All component variances of σ were taken
to be 0.5. The total number of objects sampled from the population were N = 100
with ni (the number of observables from the i-th object) were iid from a Discrete
Uniform distribution on the integers from 20 to 40, both inclusive. The density
plot for the 3 components of the hierarchical mixture model in the case of d = 1
as well as the scatter plot for d = 2 based on a sample of observations from the
population are given in Figures 3 (a) and (b), respectively. In both experimens,
the RJMCMC algorithm is cycled through the 7 updating steps (5 steps in (3.3)
as well as 2 steps involving updating empty G and K components). We took the
probabilities of selecting various move types to be rm = rm′ = 0.5 for the moves
(m,m′) = (G-split,G-merge) for G = Gmin + 1, Gmin + 2, · · · , Gmax − 1. When
G = Gmax, rm = 0 = 1 − rm′ and rm′ = 0 = 1 − rm for G = Gmin. We used the
same probabilities of selecting the K move types as above.

The space of hierarchical mixture models with the above specifications consists of
42+43+44+45 = 1, 360 models and so monitoring convergence of the chain becomes
important. A total of I = 3 chains were chosen for monitoring with initial estimates
of the hierarchical mixture model obtained using the values of G = 2, 3 and 4; Zhu,
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Fig 5. Convergence diagnostics for d = 2. Panels (a), (b) and (c), respectively, show the plots

of (V̂ , Wc), (Wm, WmWc) and (Bm, BmWc) as a function of the iterations. The x-axis unit is
10,000 iterations.
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Fig 6. Convergence diagnostics for the NIST Fingerprint Database. Panels (a), (b) and (c),

respectively, show the plots of (V̂ , Wc), (Wm, WmWc) and (Bm, BmWc) as a function of the
iterations. The x-axis unit is 20,000 iterations.

Dass and Jain (2007) develops an algorithm that fits a hierarchical mixture model
based on an agglomerative clustering procedure on the space of standard mixtures
which requires a pre-specified value of G as input, and subsequently, the three
choices of G mentioned were used to get the three initial estimates. The RJMCMC
algorithm was run for B = 60, 000 and convergence of the chain was monitored (see
Figures 4 and 5). In both experiments, the RJMCMC appear to have converged
after 60, 000 iterations. Highest posterior probabilities were found to be at the true
values of the parameters.

6. An Application: Assessing the Individuality of Fingerprints. Fin-
gerprint individuality refers to the study of the extent of uniqueness of fingerprints.
It is the primary measure for assessing the uncertainty involved when individuals
are identified based on their fingerprints, and has been the highlight of many court
cases recently. In the case of Daubert v. Merrell Dow Pharmaceuticals (Daubert
v. Merrell Dow Pharmaceuticals Inc., 1993), the U.S. Supreme Court ruled that in
order for an expert forensic testimony to be allowed in courts, it had to be sub-
ject to five main criteria of scientific validation, that is, whether (i) the particular
technique or methodology has been subject to statistical hypothesis testing, (ii)
its error rates has been established, (iii) standards controlling the technique’s op-
eration exist and have been maintained, (iv) it has been peer reviewed, and (v)
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Fig 7. Posterior distribution of PRC based on 1, 000 realizations of the RJMCMC after burn-in.

Fig 8. Illustrating impostor minutiae matching (taken from Pankanti et al (2002)). A total of m =
64 and n = 65 minutiae were detected in left and right image, respectively, and 25 correspondences
(i.e., matches) were found.

it has a general widespread acceptance (see Pankanti, Prabhakar and Jain (2002),
and Zhu et al (2007)). Following Daubert, forensic evidence based on fingerprints
was first challenged in the 1999 case of U.S. v. Byron C. Mitchell, stating that the
fundamental premise for asserting the uniqueness of fingerprints had not been ob-
jectively tested and its potential matching error rates were unknown. Subsequently,
fingerprint based identification has been challenged in more than 20 court cases in
the United States.

A quantitative measure of fingerprint individuality is given by the probability
of a random correspondence (PRC), which is the probability that a random pair
of fingerprints in the population will match with each other. Mathematically, the
PRC is expressed as

PRC(w |m,n) = P (S ≥ w |m,n ), (6.1)

where S denotes the number of feature matches with distribution based on all
random pairs of fingerprints from the target population, w is the observed number of
matches, and m and n, respectively, are the number of features in the two fingerprint
images. Small (respectively, large) values of the PRC indicate low (respectively,
high) uncertainty associated with the identification decision.

Here, we focus on a particular type of feature match based on minutiae. Minu-
tiae are locations (i.e., xj ∈ R2) on the fingerprint image which correspond to
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ridge anomalies (for example, ridge bifurcations and ridge endings) and are used
by forensic experts to declare that two fingerprints belong to the same individual if
sufficiently large number of minutiae are found to be common to both prints. Figure
8 shows an example of such a random match between two fingerprints of different
individuals (also called an impostor match). The number of matches is determined
by the number of minutiae in the right panel that falls within a square of area 4r2

0

centered at each minutiae in the left panel, where r0 is a small number relative to
the size of the fingerprint image. The number of matching minutiae in Figure 8 is
25, but it is not known how likely such a match occurs between a pair of impostor
fingerprints in the population of individuals.

The reliability of the estimated PRC depends on how well elicited statistical
models fits the distribution of minutiae in the population. Thus, candidate sta-
tistical models have to meet two important requirements: (i) flexibility, that is,
the model can represent minutiae distributions over the entire population, and (ii)
associated measures of fingerprint individuality can be easily obtained from these
models. Zhu et al. (2007) demonstrated that a mixture of multivariate normals
(with independent components) fits the distribution of minutiae well for each fin-
gerprint. Furthermore, when m and n are large, the distribution of S in (6.1) can be
approximated by a Poisson distribution with mean (expected) number of matches

λ(q1, q2,m, n) = mn p(q1, q2) (6.2)

where qh represents the normal mixture (see (1.2)) fitted to fingerprint h for h = 1, 2,
and p(q1, q2) is the probability of a match between a pair of random minutiae, one
generated from q1 and the other from q2. The analytical expression for p(q1, q2) is

p(q1, q2) = 4 r2
0

K1∑

k=1

K2∑

k′=1

2∏

b=1

φ1

(
0

∣∣
(
µ

(b)
k1 − µ

(b)
k2

)

︸ ︷︷ ︸
,
(
σ

(b)
k1

)2

+
(
σ

(b)
k2

)2

︸ ︷︷ ︸

)
,

µ σ2 (6.3)

where φ1(· |µ, σ2) is the normal density with mean µ and variance σ2.
One drawback of Zhu et al (2007) is that no statistical model is elicited on the

minutiae for a population of fingerprints. The hierarchical mixture model of (1.1) is
such a population model on minutiae (since xj ∈ R2) satisfying both requirements
of (i) flexibility and (ii) computational ease mentioned earlier. For a fingerprint pair
coming from the subpopulation g1 and g2, we have q1 = qg1 and q2 = qg2 in (6.2).
Hence, it follows that the mean PRC corresponding to w observed matches in the
population is given by

PRC(w |m,n ) =
G∑

g1=1

G∑
g2=1

ωg1 ωg2P (S ≥ w |λ(hg1 , hg2 ,m, n) ), (6.4)

where S follows a Poisson distribution with mean λ(hg1 , hg2 ,m, n). The RJMCMC
algorithm developed in the previous section can now be used to obtain the posterior
distribution of PRC. As an illustration, we considered 100 fingerprint images from
the NIST Special Database 4 as a sample from a population of fingerprints. A total
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of I = 3 chains were run with starting values given by the algorithm of Zhu et
al. (2007) for the cases G = 1, 2 and 3. Figure 6 gives the diagnostics plots of the
RJMCMC sampler which establish convergence after a burn-in of B = 100, 000 runs.
The posterior distribution of PRC (corresponding to m = 64, n = 65, w = 25 and
r0 = 15 pixels) based on 1, 000 realizations of the RJMCMC after the burn-in period
is given in Figure 7. The posterior mean and standard deviation in Figure 7 is 0.6859
and 0.0250, respectively, and the 95% HPD interval is [0.63, 0.735], approximately.
We conclude that if a fingerprint pair was chosen from this population with m = 64,
n = 65 and an observed number of matches w = 25, there is high uncertainty in
making a positive identification. Our analysis actually indicates that the fingerprints
in Figure 8 represent a typical impostor pair. The 95% HPD set suggests that the
PRC can be as high as 0.735, that is, about 3 in every 4 impostor pairs can yield
25 or more matches.

7. Summary and Future Work. We have developed Bayesian inference
methodology for the inference on hierarchical mixture models with application to
the study of fingerprint individuality. Our future work will be to derive hierarchi-
cal mixture models on the extended feature space consisting of minutiae and other
fingerprint features. In this paper, we only considered a two level hierarchy. The US-
VISIT program now requires individuals to submit prints from all 10 fingers. This is
the case of a 3-level hierarchical mixture model; in the first (top) level, individuals
form clusters based on similar characteristics of their 10 fingers, and the distrib-
ution of features in each finger is modelled using standard mixtures. Hierarchical
mixture models have potential use in other areas as well, including the clustering
of soil samples (objects) based on soil characteristics (which can be modelled by a
mixture or a transformation of mixtures).
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Appendix.

7.1. Generating v. The generation of v is discussed here. Let |A1| = T de-
note the cardinality of the set A1 and let Ac

1 be all k indices in A1 excluding the
largest one. Without loss of generality, we can relabel the k ordered indices in A1

as 1, 2, · · · , T . It follows that the indices of Ac
1 are 1, 2, · · · , (T − 1). The restric-

tion
∑

k : k∈A1
akvk = 1 can be rewritten as vT = (1 − ∑T−1

k=1 akvk)/aT . Since
0 ≤ vT ≤ 1, it follows that the (T − 1) indices in Ac

1 must satisfy the inequality
1 − aT ≤ ∑T−1

k=1 ak vk ≤ 1. Also note that 0 ≤ ∑T−1
k=1 ak vk ≤

∑T−1
k=1 ak since each

0 ≤ vk ≤ 1. Combining these inequalities, we get the following restriction on the
T − 1 free parameters of v:

max(0, 1− aT ) ≤
T−1∑

k=1

akvk ≤ min(1,

T−1∑

k=1

ak) (7.1)

Let C = { (v1, v2, · · · , vT−1) : Equation (7.1) is satisfied and 0 ≤ vk ≤ 1 }. It fol-
lows that C is a convex polyhedral in the unit hypercube [0, 1]T−1. The challenge
now is to generate (v1, v2, · · · , vT−1) from C and be able to write down the pro-
posal density q0(v1, v2, · · · , vT−1) in a closed form. To do this, we determine the
set of all extreme points of C. There are a total of T inequality constraints on
(v1, v2, · · · , vT−1): (1) T − 1 constraints of the form 0 ≤ vk ≤ 1 and (2) one con-
straint of the form A ≤ ∑T−1

k=1 ak vk ≤ B given by equation (7.1). Extreme points
of a convex polyhedral in T − 1 dimensions are formed by T − 1 active equations.
We can select T − 1 candidate active equations from the T constraints above, solve
for (v1, v2, · · · , vT−1) based on the T − 1 equations and then check based on the
remaining equation whether the solution obtained is admissible. For example, we
may select all vk = 0 for k = 1, 2, · · · , T − 1 from (1). Plugging in (0, 0, · · · , 0) in
the remaining equation (2), we get

∑T−1
k=1 ak vk = 0. So, if aT < 1 (respectively,

aT ≥ 1), we get 0 < A (respectively, 0 ≥ A), giving an inadmissible (respectively,
admissible) solution. Another candidate extreme point is formed by selecting the
first T−2 vk’s to be zero and solving vT−1 from the equation

∑T−1
k=1 ak vk = B. The

solution here is (0, 0, 0, · · · , 0, B/aT−1) and will be admissible if 0 ≤ B/aT−1 ≤ 1
since the inequality that was not used is 0 ≤ vT−1 ≤ 1.

It is easy to see that there are (T − 1) 2(T−1) candidate extreme points to be
checked for admissibility; we have to select (T−1) constraints from T first which can
be done in T −1 ways. Next, for each of the T −1 selected constraints, we can select
either the lower or upper bounds of the constraints for candidate active equations.
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The remaining constraint is used to check the admissibility of the candidate extreme
point. Once this procedure is carried out, we obtain all admissible extreme points of
C, denoted by E , say. From E , we select the ones with smallest and largest v1 values:
v1L and v1U . The random variable v1 is now generated from a uniform distribution
between v1L and v1U . The uniform distribution represents the proposal distribution
of v1 and is denoted by q0(v1).

Once v1 is generated, equation (7.1) is updated to max(A−a1 v1, 0) ≤ ∑T−1
k=2 akvk ≤

min(B − a1 v1,
∑T−1

k=2 ak) with 0 ≤ vk ≤ 1 for k = 2, 3, · · · , T − 1. Note that the
new constraints again determine a convex polyhedral in [0, 1](T−2), and one can use
the procedure outlined above to find all admissible extreme points. From these ex-
treme points, we find the smallest and largest values of v2, say v2L(v1) and v2U (v1)
with proposal distribution q0(v2 | v1) which is uniform between v2L(v1) and v2U (v1).
This procedure is carried out until T − 1, and finally vT is solved using equation
vT = (1−∑T−1

k=1 akvk)/aT . The proposal distribution for v is given by

q0(v) =
1

(v1U − v1L)

T−1∏

k=2

1
(vkL(v1, v2, · · · , vk−1)− vkU (v1, v2, · · · , vk−1))

(7.2)

Dass and Li (2008) also derives the proposal distributions for the other variables as
well as the explicit form of the Jacobian det[∂y/∂(x,u)] for the G-split move. We
refer the reader to Dass and Li (2008) for details.

7.2. Generating y and z. Next, we consider the proposal densities for y and z.
The generation of ykg is done sequentially starting from k = 1, 2, · · · ,Kg. At stage
k, note that both ykg and ỹkg must satisfy the constraint (3.18), the lower bound of

which we denote here by Q(k−1)g ≡ max
(
y(k−1)g, ỹ(k−1)g

)
. From equation (3.18),

we have
Q(k−1)g ≺ ykg ≺ µ(k+1)g

and

Q(k−1)g ≺
(p(1)

kg + p
(2)
kg )µkg − p

(1)
kg ykg

p
(2)
kg

≺ µ(k+1)g.

Solving the above two inequalities for ykg, we get the following upper and lower
bounds for ykg:

A∗ ≺ ykg ≺ B∗

where

A∗ = max

(
µkg −

p
(2)
kg

p
(1)
kg

(µ(k+1)g − µkg), Q(k−1)g

)

and

B∗ = min

(
µkg +

p
(2)
kg

p
(1)
kg

(µkg −Q(k−1)g),µ(k+1)g

)
.
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Since ≺ puts restriction on the first component of ykg, y
(1)
kg is generated from a

uniform distribution between the first components of A∗ and B∗, A(1)∗ and B(1)∗

say, when ukg = 1. As seen before, when ukg = 0 or 2, y
(1)
kg and y

(2)
kg are known only

up to min(y(1)
kg , y

(2)
kg ) and max(y(1)

kg , y
(2)
kg ). In this case, min(y(1)

kg , y
(2)
kg ) is generated

from the uniform distribution between A(1)∗ and (A(1)∗ + B(1)∗)/2. The remaining
y
(b)
kg are generated as iid uniform between the lower and upper bounds for the means.

The case of zkg is similar. Both zkg and z̃kg must satisfy zkg ≥ 0 and z̃kg ≥ 0
componentwise. Based on a similar analysis above, it follows that each component
z

(b)
kg must satisfy

0 ≤ z
(b)
kg ≤

(
σ

(b)
kg

)2
(

1 +
p
(2)
kg

p
(1)
kg

)
(7.3)

Thus, we propose to generate z from independent IG(· |α0, β0) distributions subject
to (7.3). It follows that the proposal density for z is

q0(z) ∼
Kg∏

k=1

B∏

b=1

IG(z(b)
kg |α0, β0) · I

(
0 ≤ z

(b)
kg ≤

(
σ

(b)
kg

)2
(

1 +
p
(2)
kg

p
(1)
kg

))
. (7.4)

7.3. The Jacobian ∂y/∂(x, u). For the G-split move with g being the compo-
nent that was selected for split, we can focus only on the components of y, x and
u that were changed. So, we have

x = (G,ωg,Kg,pg, µg, σg), (7.5)

u = (u0,Kt, u, v, yg, zg) (7.6)

and
y = (G + 1, ωg1 , ωg2 ,Kg1 ,Kg2 , pg1

, pg2
, µg1

, µg2
, σg1 ,σg2). (7.7)

The Jacobian matrix (conditioned on u and Kt) can be written in the following
form:

y/(x,u) ωg u0 pg v µg y σg z

ωg1 ? ? 0 0 0 0 0 0
ωg2 ? ? 0 0 0 0 0 0
pg1

0 0 ? ? 0 0 0 0
pg2

0 0 ? ? 0 0 0 0
µg1

0 0 ? ? ? ? 0 0
µg2

0 0 ? ? ? ? 0 0
σg1 0 0 ? ? 0 0 ? ?
σg2 0 0 ? ? 0 0 ? ?

(7.8)

where ? indicate non-zero entries. It is clear that the Jacobian is a block lower tri-
angular matrix, and so, its determinant depends on the determinant of the diagonal
blocks. The diagonal determinants of the first two blocks are of

ωg1 = u0ωg

ωg2 = (1− u0)ωg
(7.9)
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with det
[

∂(ωg1 ,ωg2 )

∂(ωg,u0)

]
= ωg, and

p
(1)
kg = 2vkgpkg

p
(2)
kg = 2(1− vkg)pkg

(7.10)

for k = 1, 2, · · · ,Kg with det
[

∂(p
(1)
kg

,p
(2)
kg

)

∂(pkg,vkg)

]
= 22(Kg−1)

∏
k∈A0∪A2∪Ac

2
pkg. Note that

in (7.10), the last equation with k = Kg is redundant due to the restrictions placed
on v. There are a total of |A0| + |A2| + |A1| − 1 free parameters, and that is why
the Jacobian involves Kg − 1 and A0 ∪ A2 ∪ Ac

1, and not Kg and A0 ∪ A2 ∪ A1,
respectively. The determinant for the block of µ is given by

µk′g1
= min(ykg, ỹkg)

µ(k′+1)g1
= max(ykg, ỹkg)

}
if ukg = 2, (7.11)

µk′g2
= min(ykg, ỹkg)

µ(k′+1)g2
= max(ykg, ỹkg)

}
if ukg = 0, (7.12)

and if ukg = 1,
µk′g1

= ykg

µk′′g2
= ỹkg

or
µk′g1

= ỹkg

µk′′g2
= ykg

(7.13)

according to whether ykg ≺ ỹkg or ỹkg ≺ ykg; in (7.11-7.13), k′ and k′′ are values
of k depending on the previous values of ukg in the sequential splitting procedure.
Regardless of which of (7.11-7.13) is true, the absolute value of the Jacobian is
always

det
[
∂(µk′g′ , µk′′g′′)

∂(µkg, ykg)

]
=

(
1 +

p
(1)
kg

p
(2)
kg

)d

. (7.14)

The relationship of σk′g′ and σk′′g′′ to zkg and z̃kg is the same as (7.11-7.13) above,
and hence, it follows that

det
[
∂(σk′g′ , σk′′g′′)

∂(σkg,zkg)

]
=

(
1 +

p
(1)
kg

p
(2)
kg

)d

.

7.4. Updating Empty G-components. For the E-Add move, a empty G-component,
g∗, is added to the existing hierarchical mixture model, thus increasing the number
of components in the first level by 1 (that is, from G to G + 1). A uniform [0, 1]
random variable u0 is generated and the first level population proportion of g∗ is
set to u0. The remaining ωg are multiplied by (1−u0) so that the new ωg’s add up
to 1. Thus, we have

ωg∗ = u0 and ω∗g = ωg(1− u0)

for all g 6= g∗. The second level mixture complexity, mixing probabilities, means
and variances (namely, Kg∗ , pg∗ , µg∗ , and σg∗), are generated from the prior spec-
ifications (2.1), (2.3) and (2.4). The proposal density corresponding to the E-Add
move is

qm(x, y) = π0(Kg∗) π(pg∗ |Kg∗)π(µg∗ |Kg∗) π(σg∗ |Kg∗)× (1) (7.15)
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where π0 and π are the prior densities given in (2.1-2.4), and (1) is the Jacobian

det
[

∂y

∂(x,u)

]
= (1− u0)(G−1). (7.16)

The Jacobian takes a relatively simple form since only ω is affected by re-scaling
above; the remainder of the Jacobian is the determinant of an identity matrix. In
a similar fashion, the proposal density corresponding to removing an empty G-
component is qm′(y, x) = 1

K0
where K0 is the number of empty G-components

prior to removal. Again, only ω is affected by this move; ωgs are updated as ω∗g =
ωg/(1− ωg∗) for all g 6= g∗ where g∗ is the empty component selected for removal.
The Empty-Add and Empty-Remove moves for the K-levels are much simpler than
the corresponding G moves. We only have to deal with a single k component as
opposed to multiple k components for the G moves. The details of the K moves are
hence omitted.
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